
Proceedings of the 11th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+11), pages 108–116,
Paris, September 2012.

A Formal Model for Plausible Dependencies
in Lexicalized Tree Adjoining Grammar

Laura Kallmeyer
Heinrich-Heine-Universität Düsseldorf

Universitätsstr. 1
40225 Düsseldorf, Germany

kallmeyer@phil.uni-duesseldorf.de

Marco Kuhlmann
Uppsala University

Box 635
751 26 Uppsala, Sweden

marco.kuhlmann@lingfil.uu.se

Abstract

Several authors have pointed out that the
correspondence between LTAG derivation
trees and dependency structures is not as
direct as it may seem at first glance, and
various proposals have been made to over-
come this divergence. In this paper we pro-
pose to view the correspondence between
derivation trees and dependency structures
as a tree transformation during which the
direction of some of the original edges is re-
versed. We show that, under this transform-
ation, LTAG is able to induce both ill-nes-
ted dependency trees and dependency trees
with gap-degree greater than 1, which is not
possible under the direct reading of deriva-
tion trees as dependency trees.

1 Introduction

In lexicalized tree adjoining grammar (LTAG), the
operations of substitution and adjunction establish
an asymmetric relation between two lexical items:
The elementary tree for one item is substituted or
adjoined into the elementary tree for another one.
In many cases, this relation can be interpreted as
a relation of syntactic dependency (complement-
ation or adjunction), and it is natural then to try to
interpret LTAG derivations as dependency trees.
However, as several authors have pointed out, the
correspondence between derivation trees and de-
pendency structures is not as direct as it may seem
at first glance (Rambow et al., 1995; Candito and
Kahane, 1998; Frank and van Genabith, 2001).
Examples of mismatches are in particular those
where predicates adjoin into their arguments, an
analysis that is chosen whenever an argument al-
lows for long extractions. In these cases, the edge

in the derivation tree and the syntactic depend-
ency have opposite directions.

Different strategies have been adopted to ob-
tain linguistically plausible dependency structures
using LTAG. Some proposals adopt variants of
the formalism with different derivation operations
(Rambow et al., 2001; Chen-Main and Joshi,
2012); others retrieve the missing dependencies
from the derivation tree and the derived tree (Kall-
meyer, 2002; Gardent and Kallmeyer, 2003). In
this paper we follow the second line of work in
that we take a two-step approach: To get a de-
pendency tree, we first construct a derivation tree,
and then obtain the dependencies in a postpro-
cessing step. However, in contrast to previous
work we retain the property that dependencies
should form a tree structure: We do not regard the
missing dependencies as additions to the deriva-
tion tree, but view the correspondence between
derivation trees and dependency structures as a
tree-to-tree mapping. The crucial feature of this
mapping is that it can reverse some of the edges
in the derivation tree. In particular it can ‘correct’
the directions of predicate–argument adjunctions.

The paper is structured as follows. We start
by reviewing the divergence between derivation
trees and dependency trees in Section 2. In Sec-
tion 3 we present the basic ideas behind our trans-
formation. A formalization of this transformation
is given in Section 4. In Section 5 we examine
the structural properties of the dependency trees
that can be induced using our transformation. We
propose in particular analyses for some examples
of ill-nested dependencies and of dependencies of
gap degree > 1. Under the direct interpretation,
LTAG induces the class of well-nested depend-
ency trees with gap-degree at most 1 (Bodirsky et

108



NP

John

S

NP VP

V

came

VP

VP∗ PP

P NP

in
NP

December

derived tree:

S

NP VP

John VP PP

V P NP

came in December

derivation tree:

came

John in

December

Figure 1: A sample derivation

al., 2005). With our transformation, both ill-nes-
ted dependency trees and dependency trees with
gap-degree > 1 can be induced. Section 6 dis-
cusses related work and Section 7 concludes.

2 Derivations and Dependencies

A lexicalized tree adjoining grammar (LTAG,
Joshi and Schabes (1997)) consists of a finite set
of elementary trees, each of which has at least
one leaf with a lexical item. Starting from the
elementary trees, larger trees are derived by the
operations of substitution (which replaces a leaf
with a new tree) and adjunction (which replaces
an internal node with a new tree). In case of an ad-
junction, the tree being adjoined has exactly one
leaf that is marked as the foot node. Such a tree
is called an auxiliary tree. To license its adjunc-
tion to a node n, the root and foot node must have
the same label as n. When adjoining an auxiliary
tree at a node n, in the resulting tree, the subtree
with root n from the old tree is attached to the
foot node of the auxiliary tree. Non-auxiliary ele-
mentary trees are called initial trees. A complete
derivation starts with an initial tree and produces
a derived tree in which all leaves have terminal la-
bels. The history of a derivation is captured in its
derivation tree. The nodes of this tree correspond
to the elementary trees that have been used in the
derivation; the edges correspond to the operations
performed. Fig. 1 shows a sample derivation.

As can be seen from Fig. 1, in many cases
the LTAG derivation tree corresponds to a de-
pendency structure. However, the correspondence

between derivation trees and dependency struc-
tures is not always a direct one. Examples of
mismatches are in particular those where a) an
adjunction of a predicate into one of its argu-
ments occurs and b) furthermore, a higher predic-
ate adjoins into the same argument (Rambow et
al., 1995). Consider the following example:

(1) John Bill claims Mary seems to love.

A derivation of this sentence, together with the
corresponding derivation tree and a dependency
tree, is shown in Fig. 2. Here, we have a long-
distance topicalization of one of the arguments
of love. In order to account for this in a satis-
fying way, in particular without violating any of
the linguistic assumptions underlying the form of
LTAG elementary trees, one has to realize the sub-
stitution node for John in the elementary tree for
to_love while making sure that claim can end up
in between. Therefore, standardly, claim adjoins
to an S node in the to_love tree. Concerning rais-
ing verbs such as seems, the standard analysis is
to adjoin them to the VP node of the sentence to
which they contribute finiteness and tense. In this
example, seems adjoins to the VP node of to_love.

S

NP VP

V S∗

claims

S

NP S

NP VP

V NP

to_love ε

VP

V VP∗

seems

derivation tree:

to_love

1 2 21 22

John claims Mary seems
1

Bill

dependency tree:

claims

Bill seems

to_love

John Mary

Figure 2: Derivation for (1), together with the corres-
ponding derivation tree and a dependency tree

3 From Derivation to Dependency Trees

Let us inspect the derivation and dependency trees
in Fig. 2 more closely in order to understand what
the difference is. Concerning substitution nodes,
the two trees show the same predicate–argument

109



NP

N

whom

S

NP S

NP VP

V NP

prefers ε

S

NP VP

V S∗

think

S

Aux S∗

does

NP

N

John

NP

Det NP∗

the

N

Adj N∗

beautiful

NP

N

girl

derivation
tree:

prefers

1 2 21

whom think girl

0 1 0 1

does John the beautiful

dependency
tree:

think

does John prefers

whom girl

the beautiful

Figure 3: Derivation for (2)

dependencies: John and Mary are daughters of
to_love, and Bill is a daughter of claims. The
edge between seems and to_love has the oppos-
ite direction in the derivation tree. This is due to
seems adjoining into the complement clause that
it embeds, which is separated into two discontinu-
ous parts. So, as a first attempt to characterize the
relation between LTAG derivation trees and de-
pendency trees, we can say that we should reverse
any derivation tree edges originating from com-
plement-taking adjunctions.1 More precisely, we
should replace every complement-adjoining edge
γ → γ′ with the reverse edge, and redirect the
previous incoming edge of γ (if it existed) into γ′.

This transformation works in many cases. As
an example consider the following:

1The observation that complement-taking adjunction
edges need to be reversed in order to retrieve the correct de-
pendency goes back to Rambow and Joshi (1994).

(2) Whom does John think the beautiful girl
prefers?

The derivation of (2) is given in Fig. 3. There
are different types of adjunctions: The adjunction
of think into prefers is a complement-taking ad-
junction, whose edge gets reversed. All the other
adjunctions (of does, the, and beautiful) are not
complement-taking, and therefore their edges re-
main unchanged. As a result, we obtain the de-
sired dependency tree after the tree transforma-
tion.

Now let us go back to Fig. 2. Here we
have the additional complication that there are
two complement-taking adjunctions that target the
to_love tree, and that we get different dependency
trees depending on which of the edges we reverse
first. A look at the desired tree tells us that claim
should dominate seems. Our hypothesis is that
this is related to the fact that claim adjoins higher
on the head projection line in the to_love tree than
seems.2 The address of the verbal head (i.e., the
anchor) is 221, so the verbal projection line is
ε, 2, 22, 221. The edge reversals proceed from
higher complement-taking adjunctions to lower
ones, i.e., in Fig. 4, first the adjunction of claim is
reversed and then the adjunction of seems. More
generally, for our transformation to be determin-
istic, we need to assume a total order on comple-
ment-taking adjunctions on the head projection
line. Figure 4 shows the two steps of the trans-
formation of the derivation tree for (1) that yields
the desired dependency tree.

to_love

1 2 21 22

John claim Mary seems
1

Bill

!

claim
1

Bill to_love

1 21 22

John Mary seems

!

claim

Bill seems

to_love

John Mary

Figure 4: Transformation of the derivation tree for (1)

2Kallmeyer and Romero (2008) use specific features on
the head projection line of verbs (the verbal spine in their ter-
minology) in order to retrieve the missing dependency links.

110



4 Formal Version of the Transformation

In this section we give a formal account of the
transformation sketched above.

4.1 Derivation Trees as Terms
We represent derivation trees as terms, formal ex-
pressions over a signature of operation symbols
(Vijay-Shanker et al., 1987). For example, we
represent the derivation in Fig. 2 by the term t0:

t0 = to_love(John, claims(Bill), Mary, seems)

Here ‘to_love’ is an operation symbol with rank 4;
this corresponds to the fact that during the de-
rivation, four trees are substituted/adjoined into
the elementary tree for to_love. We will use the
term t0 as a running example in this section.

Note that in order to capture all information
contained in a derivation tree, each operation
symbol needs to encapsulate not only an element-
ary tree γ but also the specific addresses at which
trees were substituted/adjoined into γ. Since ad-
junctions may be optional, there will in general
be several (albeit a bounded number) of opera-
tion symbols per elementary tree, and in particular
several different versions of the symbol ‘to_love’.
To simplify our notation, we ignore this aspect of
the term representation in this paper.

4.2 Yield Functions
Each derivation tree t encodes the derivation of a
derived tree γ. This can be formalized by inter-
preting the operation symbols in t as operations
on derived trees: The symbol to_love for example
can be interpreted as a function that takes four de-
rived trees as arguments and returns the tree ob-
tained by substituting/adjoining these trees at the
specified nodes of the elementary tree for to_love.
To compute the derived tree corresponding to t0,
for example, one applies the operation corres-
ponding to to_love to the derived trees corres-
ponding to the subderivations John, claims(Bill),
Mary and seems, respectively.

Let the yield of a derived tree γ be defined as
follows. If γ is a derived initial tree, then its
yield is the one-component tuple 〈w〉, where w
is the string consisting of the symbols at the fron-
tier of γ. If γ is a derived auxiliary tree, then its
yield is the pair 〈w1, w2〉, where w1 and w2 are
the strings corresponding to the parts of the fron-
tier of γ to the left and to the right of the foot node,

respectively. The yield of the derived tree cor-
responding to a derivation tree t can be obtained
by associating with each operation symbol in t a
yield function (Weir, 1988). To illustrate the idea,
suppose that the yields of the four subterms of t0
are given as 〈John〉, 〈Bill claims, ε〉, 〈Mary〉, and
〈seems, ε〉, respectively. Then the full yield (1) is
obtained by assigning the following yield function
to ‘to_love’:

to_love(〈x11〉, 〈x21, x22〉, 〈x31〉, 〈x41, x42〉) =

〈x11 x21 x31 x41 to_love x42 x22〉

In the context of our transformation, yields may
consist of more than two strings, so yield func-
tions will be operations on arbitrary (finite) tuples
of strings. We only require that they are non-
copying and non-deleting, as in LCFRSs (Weir,
1988). This means that each yield function f can
be defined by an equation of the form

f($x1, . . . , $xm) = 〈α1, . . . ,αk〉

where the $xi are vectors of variables and α1 · · · αk

is a string over these variables and symbols from
the yield alphabet in which each variable oc-
curs exactly once. We adopt the convention that
the variables in the vector $xi should be named
xi1, . . . , xiki

. In this case, the defining equation
of a yield function is uniquely determined by the
tuple on its right-hand side. We call this tuple
the template of f , and use it as a unique name
for f . This means that we can talk about e.g.
the standard binary concatenation function as ‘the
yield function 〈x11 x21〉’.

The yield function associated with an operation
symbol in a derivation tree can be extracted in a
systematic way; see Boullier (1999) for a proced-
ure that performs this extraction in the formalism
of range concatenation grammars.

4.3 Direct Interpretation
The direct interpretation of a derivation tree as a
dependency tree can be formalized by interpreting
symbols as operations on dependency trees (Kuhl-
mann, 2013). Continuing our running example,
suppose that for each subtree of t0 we are not only
given a string or a pair of strings as before, but
also a corresponding dependency tree. Then the
symbol to_love has a straightforward reading as
constructing a new dependency tree for the full
sentence (1): Preserve all the old dependencies,

111



and add new edges from to_love to the roots of the
dependency trees associated with the subterms.

4.4 Transformation
We illustrate the formal transformation by means
of our running example. In order to convey the
intuitive idea, we first present the transformation
as an iterative procedure, in much the same way as
in Section 3. Then, in a second step, we show how
the transformation can be carried out in a single
top–down traversal of the initial derivation tree.

Starting from the tree t0, we will reverse some
edges and change some operation symbols to ob-
tain the modified tree

t1 = claims′(seems′(to_love′(John, Mary)), Bill)

When interpreting this transformed tree as out-
lined in Section 4.3, we will obtain the plausible
dependency tree shown in Fig. 2.

In a first step, we want to reverse the direction
of the edge from to_love to claims, so the trans-
formed derivation tree should have the form

t′0 = claims′(to_love′′(John, Mary, seems), Bill)

However, the yield of t0 and t′0 should be the
same. To achieve this, we change the yield func-
tions of to_love and claims from

to_love ! 〈x11 x21 x31 x41 to_love x42 x22〉
claims! 〈x11 claims, ε〉

in the source derivation tree t0 to

claims′ ! 〈x11 x21 claims x12 x13〉
to_love′′ ! 〈x11, x21 x31 to_love x32, ε〉

in the target derivation tree t′0.
The idea is illustrated in Fig. 5, which shows

the schematic structure of the yield of a derived
tree that results from the adjunction of an auxil-
iary tree β2 (grey part) into an auxiliary tree β1

(white parts). In the term representation, the yield
functions associated with β1 and β2 take the forms

f1 = 〈v1 x1 v2, v3 x2 v4〉 and f2 = 〈w1, w2〉,
respectively, where the variables x1, x2 in f1 are
placeholders for the two components of the tuple
returned by f2. When we now reverse the edge
between β1 and β2, but want the resulting term
to have the same yield as before, then we need to
change the yield functions into

∗

v1

w1

v2 v3

w2

v4

Figure 5: Schematic structure of the yields involved in
an adjunction

f ′
2 = 〈x1 w1 x2, x3 w2 x4〉 f ′

1 = 〈v1, v2, v3, v4〉.
In the second step, we want to reverse the direc-

tion of the edge from to_love to seems and obtain

t1 = claims(seems(to_love(John, Mary)), Bill)

as above. Again, the yield of t′0 and t1 should be
the same. We therefore change the yield functions
of to_love and seems from

to_love′′ ! 〈x11, x21 x31 to_love x32, ε〉
seems! 〈seems, ε〉

in the source derivation tree t1 to

seems′ ! 〈x11, x12 seems x13 x14, x15〉
to_love′ ! 〈x11, x21, to_love, ε, ε〉

in the target derivation tree t1. Note that the yield
of to_love′′ no longer has the schematic structure
of Fig. 5, but consists of three discontinuous seg-
ments (even though the third segment is empty).
More generally, each step of our transformation
may increase the fan-out of the yield functions
that are involved.

4.5 Macro Tree Transducers
To implement our transformation in a single pass
over the initial derivation tree, we use a macro tree
transducer (Engelfriet and Vogler, 1985). Macro
tree transducers extend standard top–down tree
transducers by the ability to pass the output of the
translation of a subtree to the translation of an-
other subtree as an argument. We illustrate how
we take advantage of this ability by means of the
derivation tree t0. To obtain the tree t1, we apply
the following rule to t0:

〈q0, to_love(x1, x2, x3, x4)〉 →
〈q2, x2〉(〈q4, x4〉(to_love′(〈q1, x1〉, 〈q3, x3〉)))

112



The informal reading of this rule is: ‘To translate
an input tree of the form to_love(t1, t2, t3, t4):
translate the subtrees t1 and t3 (corresponding
to John and Mary); attach the outputs of these
translations as arguments of the modified symbol
to_love′; attach the resulting tree to the output of
the translation of t4 (seems); and attach the tree
resulting from that to the output of the translation
of t2 (claims). The qi are states that can be used
to communicate a limited amount of contextual
information to the translations of the subtrees. In
our case, they are used to transport information
about how to modify the yield functions. Each
rule of the macro tree transducer encapsulates the
full set of modifications to the yield functions that
are necessary to simulate the reversals of the com-
plement-taking adjunctions.

In the macro tree transducer for our running ex-
ample, the rules for the translations of seems and
claims have access to a special variable y that will
be instantiated with the output of the translation of
the subtrees for to_love and seems, respectively:

〈q4, seems〉(y) → seems′(y)

〈q2, claims(x1)〉(y) → claims′(y, 〈q21, x1〉)

These rules produce the following output trees:

seems! seems′(to_love′(john, mary))

claims! claims′(seems′(· · · ), bill)

Concerning the complexity of parsing, our
transformation is linear in the size of the deriv-
ation tree. Consequently, parsing (i.e., obtain-
ing derived, derivation, and dependency tree for
a given input) is still polynomial both in the size
of the input string and in the size of the grammar,
as in the case of standard TAG. This is a differ-
ence compared to tree-local MCTAG where, due
to the fact that adjunctions at different nodes of
an elementary tree are no longer completely inde-
pendent from each other, the universal recognition
problem is NP-complete (Søgaard et al., 2007).

5 Structural Properties

In this section, we reconsider some examples in-
volving ill-nested dependency structures and de-
pendency structures with gap-degree > 1 that
have been argued to be problematic for TAG. If
we assume that LTAG derivation trees are depend-
ency trees, TAG is limited to well-nested depend-
ency trees of gap-degree ≤ 1 (Bodirsky et al.,

VP

VP gekauft

VP NP∗

VP NP↓

ε

VP

VP
NP

ein Buch

VP

VP∗ VP

das teuer war

VP

VP VP∗

habe

NP

ich

VP

NP↓ VP∗ für
NP

da
derivation tree:

Buch

gekauft teuer

habe ich für

da

dependency tree:

gekauft

habe ich für Buch

da teuer

Figure 6: LTAG derivation for (3)

2005). We will see that if the transformation de-
scribed above is applied to a TAG derivation tree,
then this limit is no longer given.

5.1 Ill-Nestedness

Consider the following ill-nested dependency
structures in German, both taken from Chen-Main
and Joshi (2012). (3) combines a dafür-split with
an NP containing an extraposed relative clause.
(4) combines a split quantifier with an NP having
an extraposed relative clause.

(3) Da habe ich ein Buch für gekauft das
that have I a book for bought which
teuer war
expensive was
‘for that I bought a book which was expensive’

(4) Bücher hat der Student drei gekauft
books has the student three bought
der am meisten Geld hatte
who the most money had
‘the student with the most money bought three
books’

Assuming that adjunctions to complements
have to be reversed in order to obtain the correct
dependencies, we can analyze (3) with the TAG
derivation from Fig. 6. The adjunction of gekauft
to Buch then has to be reversed. As a result, we

113



VP

VP
NP gekauft

VP NP∗

ε

VP

VP
NP

der Student

VP

VP∗ VP

der . . . Geld hatte

VP

VP VP∗

hat

VP

NP NP∗ NP

Bücher ε

NP

NP∗ drei

dependency
tree:

gekauft

hat Bücher Student

drei Geld

Figure 7: Derivation for (4)

obtain the dependency tree in the lower part of
Fig. 6. Note that we assume a feature structure
based TAG where the CAT (= category) feature
can be different in the top and bottom structures
of a node, requiring an adjunction. In Fig. 6 the
Buch tree requires the adjunction of a VP tree that
takes an NP-complement.3

The second example for ill-nested dependen-
cies, (4), is slightly more complicated since both
split constituents are arguments of the same verb.
In order to deal with this, we need to adjoin one
of the arguments. This is a major change to stand-
ard TAG analyses since there is no argument slot
in the sense of substitution or foot node for this
argument. The selection of this argument has
to be done via the features, namely via the CAT

feature of the node where the argument adjoins.
The derivation is shown in Fig. 7. Here, the only
complement taking adjunction is the adjunction of
gekauft into der Student; the corresponding edge
is reversed by our transformation. This yields the
correct dependency tree.

5.2 Gap-Degree > 1

Now let us move to examples of gap-degree
greater than 1, such as (5). The analysis of this
sentence involves an NP that is split into three
non-adjacent parts, was für Bücher von Chomsky
die spannend sind. This is again an example from
Chen-Main and Joshi (2012).

3With this feature-based modeling of adjunction con-
straints, the requirement that root and foot node have the
same labels in auxiliary trees is no longer assumed.

VP

NP VP
NP

was für Bücher PP↓

VP

VP∗ VP

die spannend waren

PP

von Chomsky

VP

VP VP∗

hast
NP

du

VP

NP↓ NP∗ gelesen

Figure 8: LTAG derivation for (5)

Derivation tree:
was für Bücher

von Chomsky gelesen die spannend waren

hast du
Dependencies:

gelesen

hast du was für Bücher

von Chomsky die spannend waren

Figure 9: Derivation tree and dependencies for (5)

(5) Was für Bücher hast du von Chomsky
what type of books have you by Chomsky
gelesen die spannend sind
read which exciting are
‘what type of books by Chomsky have you read
that are exciting’

This example could be analyzed as in Fig. 8.
Again, we assume that an adjunction into a
complement (here gelesen adjoins into its object
Bücher) is an adjunction that needs to be reversed.
As a result, we obtain the derivation and depend-
ency structures in Fig. 9.4

5.3 Generalization
From these examples we have already seen that,
under the new interpretation of derivation trees as
dependency structures, TAG can generate ill-nes-
ted dependencies and dependencies of gap degree
> 1. A question is whether the gap-degree is lim-
ited at all. And here the answer is no. Or rather,
there is a grammar-dependent limit on the max-
imal number of gaps a derivation can generate.

4Note that this example involves a complement-taking
adjunction that does not take place above the lexical anchor.
We leave the investigation of possible nodes for comple-
ment-taking adjunctions for future research.

114



As we have seen, gaps arise from complement-
taking adjunctions where each of these adjunc-
tions can introduce two new gaps (to the left and
right of the spine of the auxiliary tree). Further-
more, the number of such adjunctions is limited
by the maximal number of internal nodes per ele-
mentary tree. In addition to this, the tree itself can
be a non-complement taking auxiliary tree that
contains a gap below its foot node. Consequently,
the following holds under our transformation:

Claim. Let G be an LTAG, and let k be the max-
imal number of internal nodes in a tree of G. Then
the gap-degree of the dependency trees induced
by G is upper-bounded by 2(k − 2) + 1.

This is actually surprising, given that previ-
ous assumptions were that LTAG is too limited
to generate the dependency structures needed for
natural languages (Kuhlmann, 2010). As shown
in this paper, instead of moving to a TAG vari-
ant different from standard LTAG, one can also
use standard LTAG and assume the transforma-
tion described in this paper as the operation that
induces the underlying dependency structure. In
this sense, this paper opens a different perspective
on LTAG, showing that the claim about the lim-
itations of LTAG concerning dependency trees is
not valid if the induction of dependencies is taken
to be an operation on the derivation tree that is
different from just the identity.

6 Related Work

The mismatch between TAG derivation trees and
dependency structures has been known for a long
time, and several solutions have been proposed.
These fall, roughly, into two classes. On the
one hand, several authors have proposed to use
a variant of TAG that yields different derivation
trees than standard TAG. On the other hand, some
approaches keep standard TAG while exploring
ways to obtain the missing links from the deriva-
tion tree. Our approach falls into the second class.

Concerning the first class, one of the earli-
est proposals was D-Tree Substitution Grammar
(Rambow et al., 2001). The idea is to use tree de-
scriptions instead of trees. These tree descriptions
contain dominance links whenever different parts
of an elementary tree can be split. Arguments are
added by substitution but an ‘extracted’ part of an
argument, linked to the lower part by a domin-
ance link, can be separated from this lower part

and end up much higher. This gives more flex-
ibility concerning the modeling of discontinuities
and non-projective dependencies.

Another LTAG variant that has been discussed
a lot recently in the context of the ‘missing link
problem’ is tree-local MCTAG with flexible com-
position (Joshi et al., 2007; Chen-Main and Joshi,
2012), formalized by the notion of delayed tree-
locality (Chiang and Scheffler, 2008). The idea
is roughly to perform the reversal of complement-
taking adjunctions not on the derivation tree, but
already during derivation. More precisely, instead
of considering such an operation as a standard ad-
junction, it is considered as a wrapping operation
directed from the adjunction site to the auxiliary
tree. Consider for instance the derivation in Fig. 3.
If we take the adjunction of the think tree into
the prefer tree to be a wrapping of prefer, split
at its internal S node, around the think tree. If
this is reflected in the derivation tree by an edge
from prefer to think, then one obtains the lower
tree in Fig. 3 as a derivation tree. Chen-Main and
Joshi (2012) provide analyses for the examples
from Section 6 using tree-local MCTAG with flex-
ible composition. In contrast to their approach, in
our proposal flexible composition is replaced by a
transformation on the derivation trees. As a res-
ult, for the construction of the derivation tree, we
keep standard TAG and we can still use its pars-
ing techniques. The choice to remain with stand-
ard TAG however requires some relaxation of the
predicate argument cooccurrence principle since,
as we have seen in with the analysis of (4), we
sometimes have to adjoin arguments and express
their selection via features of an internal node.

Concerning the use of TAG with some addi-
tional means to retrieve the desired dependencies
from the derivation tree, this has been pursued
by Kallmeyer (2002), where the derivation tree
is explicitly enriched with additional links, and
by Gardent and Kallmeyer (2003) and Kallmeyer
and Romero (2008), where these links are indir-
ectly constructed via feature percolation. How-
ever, these approaches do not provide an explicit
transformation from derivation trees to depend-
ency structures.

7 Conclusion

In this paper we have addressed the relation
between LTAG derivation trees and linguistically
plausible dependency trees. We have formalized

115



the correspondence between the two as an edge-
reversing tree transformation, and shown that, un-
der this transformation, LTAG can induce depend-
ency trees that cannot be induced under the direct
interpretation.

We used our approach to analyze some of
the problematic examples from the literature. It
turned out that, given our transformation, these
examples can be treated using only TAG, i.e.,
without multiple components. This is a nice result
since it means that parsing (yielding derived, de-
rivation and dependency tree) is polynomial both
in input and grammar size. The latter is not the
case for tree-local MCTAG.

In future work we hope to address the question
whether there are linguistic phenomena that are
not covered by our approach, and to carry out a
more systematic and comprehensive comparison
of the various proposals that have been put for-
ward to address the ‘missing link problem’.

References
Manuel Bodirsky, Marco Kuhlmann, and Mathias

Möhl. 2005. Well-nested drawings as models of
syntactic structure. In Proceedings of the 10th Con-
ference on Formal Grammar (FG) and Ninth Meet-
ing on Mathematics of Language (MOL), pages
195–203, Edinburgh, UK.

Pierre Boullier. 1999. On TAG parsing. In Traitement
Automatique des Langues Naturelles (TALN), pages
75–84, Cargèse, France.

Marie-Hélène Candito and Sylvain Kahane. 1998.
Can the TAG derivation tree represent a semantic
graph? an answer in the light of Meaning-Text
Theory. In Fourth International Workshop on Tree
Adjoining Grammars and Related Frameworks,
IRCS Report 98–12, pages 25–28, University of
Pennsylvania, Philadelphia.

Joan Chen-Main and Aravind Joshi. 2012. A de-
pendency perspective on the adequacy of tree local
multi-component tree adjoining grammar. Journal
of Logic and Computation Advance Access, June.

David Chiang and Tatjana Scheffler. 2008. Flexible
composition and delayed tree-locality. In TAG+9
Proceedings of the Ninth International Workshop on
Tree-Adjoining Grammar and Related Formalisms
(TAG+9), pages 17–24, Tübingen, June.

Joost Engelfriet and Heiko Vogler. 1985. Macro tree
transducers. Journal of Computer and System Sci-
ences, 31(1):71–146.

Anette Frank and Josef van Genabith. 2001. GlueTag.
Linear logic based semantics for LTAG – and what
it teaches us about LFG and LTAG. In Miriam Butt

and Tracy Holloway King, editors, Proceedings of
the LFG01 Conference, Hong Kong.

Claire Gardent and Laura Kallmeyer. 2003. Semantic
Construction in FTAG. In Proceedings of EACL
2003, pages 123–130, Budapest.

Aravind K. Joshi and Yves Schabes. 1997. Tree-
Adjoining Grammars. In Grzegorz Rozenberg and
Arto Salomaa, editors, Handbook of Formal Lan-
guages, volume 3, pages 69–123. Springer.

Aravind K. Joshi, Laura Kallmeyer, and Maribel
Romero. 2007. Flexible Composition in LTAG:
Quantifier Scope and Inverse Linking. In Rein-
hard Muskens and Harry Bunt, editors, Computing
Meaning Volume 3, volume 83 of Studies in Lin-
guistics and Philosophy, pages 233–256. Springer.

Laura Kallmeyer and Maribel Romero. 2008. Scope
and situation binding in LTAG using semantic uni-
fication. Research on Language and Computation,
6(1):3–52.

Laura Kallmeyer. 2002. Using an Enriched TAG De-
rivation Structure as Basis for Semantics. In Pro-
ceedings of the Sixth International Workshop on
Tree Adjoining Grammars and Related Frameworks
(TAG+6), pages 127–136, Venice, May.

Marco Kuhlmann. 2010. Dependency Structures
and Lexicalized Grammars, volume 6270 of LNCS.
Springer.

Marco Kuhlmann. 2013. Mildly non-projective de-
pendency grammar. Computational Linguistics,
39(2). Just Accepted publication August 22, 2012.

Owen Rambow and Aravind K. Joshi. 1994. A pro-
cessing model for free word order languages. In
Charles J. Clifton, Lyn Frazier, and Keith Rayner,
editors, Perspectives on sentence processing. L. Er-
lbaum Associates.

Owen Rambow, K. Vijay-Shanker, and David Weir.
1995. D-Tree Grammars. In Proceedings of ACL.

Owen Rambow, K. Vijay-Shanker, and David Weir.
2001. D-Tree Substitution Grammars. Computa-
tional Linguistics, 27(1):87–121.

Anders Søgaard, Timm Lichte, and Wolfgang Maier.
2007. The complexity of linguistically motivated
extensions of tree-adjoining grammar. In Recent
Advances in Natural Language Processing 2007,
Borovets, Bulgaria.

K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.
1987. Characterizing structural descriptions pro-
duced by various grammatical formalisms. In Pro-
ceedings of the 25th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
104–111, Stanford, CA, USA.

David J. Weir. 1988. Characterizing Mildly Context-
Sensitive Grammar Formalisms. Ph.D. thesis, Uni-
versity of Pennsylvania, Philadelphia, USA.

116


