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Preface

Research in natural language processing (NLP) applications for education has continued to progress
using innovative statistical and rule-based NLP methods, or most commonly, a combination of the
two. As a community, we continue to improve existing capabilities and to identify and generate
innovative ways to use NLP in applications for writing, reading, speaking, critical thinking, curriculum
development, and assessment. Steady growth in the development of NLP-based applications for
education has prompted an increased number of workshops, typically focusing on a single subfield.
In this workshop, researchers present papers from many subfields: tools for automated scoring of text
and speech, intelligent tutoring, readability measures, use of corpora, grammatical error detection,
and tools for teachers and test developers. These focus on contributions to the three core educational
problem spaces: development of curriculum and assessment (e.g., applications that help teachers
develop reading materials), delivery of curriculum and assessments (e.g., applications where the
student receives instruction and interacts with the system), and reporting of assessment outcomes (e.g.,
automated essay and other constructed response scoring).

NLP-based educational applications continue to develop in order to serve the learning and assessment
needs of students, teachers, schools, and assessment organizations. The practical need for language-
analysis capabilities has been motivated even further by increased requirements for state and
national assessments, and a growing population of foreign and second language learners. There are
currently a number of commercial systems that handle automated scoring of free-text and speech
as well as systems that address linguistic complexity in text – commonly referred to as readability
measures. More recently, the need for language analysis tools is, in part, driven by a new influence
in the educational landscape in the United States: the Common Core State Standards initiative
(http://www.corestandards.org/). The initiative has been adopted by 46 states for use in Kindergarten
through 12th grade (K-12) classrooms and is likely to have a strong influence on teaching standards, as
well as how NLP research and applications are applied in the classroom.

This workshop is the seventh in a series related to Building NLP Applications for Education. The series
began at NAACL/HLT (2003), and continued at ACL 2005 (Ann Arbor), ACL/HLT 2008 (Columbus),
NAACL/HLT 2009 (Boulder), NAACL/HLT 2010 (Los Angeles), ACL/HLT 2011 (Portland), and
now NAACL/HLT 2012 (Montréal). This year, we received a record 42 submissions and accepted 8
full papers as oral presentations and 16 papers as poster presentations, as well as an invited talk by
Robert Dale describing the HOO2012 Shared Task. The acceptance rate is 57%. All of the papers
are published in these proceedings. Each paper was carefully reviewed by at least three members of
the Program Committee. We carefully selected reviewers most appropriate for each paper so as to get
knowledgeable reviews. This workshop offers an opportunity to present and publish work that is highly
relevant to NAACL/HLT, but is also specialized. Thus, the BEA workshop is often a more appropriate
venue for such work. We believe that the workshop framework designed to introduce works in progress
and new ideas needs to be revived, and we hope that we have achieved this with the breadth and variety
of research accepted presented here.
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While the field is growing, we do recognize that there is a core group of institutions and researchers
who work in this area. With a higher acceptance rate, we were able to include papers from a broad
range of topics and institutions. We continue to have a strong policy to avoid conflicts of interest. We
did not assign papers to reviewers if the paper had an author from the same institution. Second, with
respect to the organizing committee, authors of papers where there was a conflict of interest did not
participate in the discussion.

The papers accepted to this workshop were selected on the basis of several factors, including the
relevance to a core educational problem space, the novelty of the approach or domain, and the strength
of the research. The final set of 24 papers fall under several main themes:

Assessing Speech: Four papers focus on assessing spoken language of non-native speakers of English
(Chen; Chen and Zechner; Huant et al, and Yoon et al.).

Automated Scoring Tools: Six papers focus on aspects of scoring textual responses, such as short
answer scoring (Hahn and Meurers; Rus and Lintean; and Ziai et al.), measuring coherence in learner
essays (Yannakoudakis and Briscoe), measuring the use of factual information (Beigman-Klebanov
and Higgins), and automatically grading responses to science questions (Sil et al.).

Generation: Two papers (both Perez-Beltrachini et al.) present work into generation cloze questions
and grammar exercises.

Grammatical Error Detection: Three papers target grammatical error detection. Madnina et al. discuss
novel techniques for error correction and Ferraro et al. judge grammatically. The third paper (Flor and
Futagi) focuses on automatic spell correction in student essays.

Intelligent Tutoring: Two papers discuss issues related to intelligent tutoring systems (Becker et al.;
and Bethard et al.).

Readability and Reading Assistance Tools: Four papers investigate aspects of readability ranging from
developing tools for student reading assistance to detecting a document’s reading level (Talukdar and
Cohen; Eom et al.; Maamouri et al.; and Vajjala and Meurers).

Other Learning Assistance Research: Finally, we have three papers on other topics. Xiong et al.,
present a tool for peer-review exploration. Dickinson et al. present a method for predicting which
college level Hebrew class a student should place into. And Chen et al. present an approach to
generating paraphrases for language learning.

This year, we are pleased to host the Helping Our Own (HOO-2012) shared task on grammatical
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error detection (http://www.correcttext.org/hoo2012), organized by Robert Dale et al. In its second
year, this instantiation of the shared task focuses on the detection and correction of determiner and
preposition errors in texts written by non-native speakers of English. These error types are two of the
most frequent, and nettlesome, ones for English learners. 14 teams took part in the shared task and
descriptions of their submitted systems are found in these proceedings and are presented as posters in
conjunction with the BEA7 poster session.

We wish to thank everyone who showed interest and submitted a paper, all of the authors for their
contributions, the members of the Program Committee for their thoughtful reviews, and everyone who
attended this workshop. All of these factors contribute to a truly enriching event!

Joel Tetreault, Educational Testing Service
Jill Burstein, Educational Testing Service
Claudia Leacock, CTB McGraw-Hill
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Abstract

A key challenge for dialogue-based intelligent
tutoring systems lies in selecting follow-up
questions that are not only context relevant
but also encourage self-expression and stimu-
late learning. This paper presents an approach
to ranking candidate questions for a given di-
alogue context and introduces an evaluation
framework for this task. We learn to rank us-
ing judgments collected from expert human
tutors, and we show that adding features de-
rived from a rich, multi-layer dialogue act
representation improves system performance
over baseline lexical and syntactic features to
a level in agreement with the judges. The ex-
perimental results highlight the important fac-
tors in modeling the questioning process. This
work provides a framework for future work
in automatic question generation and it rep-
resents a step toward the larger goal of di-
rectly learning tutorial dialogue policies di-
rectly from human examples.

1 Introduction

Socratic tutoring styles place an emphasis on elicit-
ing information from the learner to help them build
their own connections to the material. The role of a
tutor in a Socratic dialogue is to scaffold the material
and present questions that ultimately lead the student
to an “A-ha!” moment. Numerous studies have il-
lustrated the effectiveness of Socratic-style tutoring
(VanLehn et al., 2007; Rose et al., 2001; Collins and
Stevens, 1982); consequently recreating the behav-
ior on a computer has long been a goal of research

in Intelligent Tutoring Systems (ITS). Recent suc-
cesses have shown the efficacy of conversational ITS
(Graesser et al., 2005; Litman and Silliman, 2004;
Ward et al., 2011b), however these systems are still
not as effective as human tutors, and much improve-
ment is needed before they can truly claim to be So-
cratic. Furthermore, development and tuning of tu-
torial dialogue behavior requires significant human
effort.

While our overarching goal is to improve ITS
by automatically learning tutorial dialogue strategies
directly from expert tutor behavior, we focus on the
crucial subtask of selecting follow-up questions. Al-
though asking questions is only a subset of the over-
all tutoring process, it is still a complex process that
requires understanding of the dialogue state, the stu-
dent’s ability, and the learning goals.

This work frames question selection as a task of
scoring and ranking candidate questions for a spe-
cific point in the tutorial dialogue. Since dialogue
is a dynamic process with multiple correct possibil-
ities, we do not restrict ourselves only to the moves
and questions found in a corpus of transcripts. In-
stead we posit “What if we had a fully automatic
question generation system?” and subsequently use
candidate questions hand-authored for each dialogue
context. To explore the mechanisms involved in
ranking follow-up questions against one other, we
pair these questions with judgments of quality from
expert human tutors and extract surface form and
dialogue-based features to train machine learning
classification models to rank the appropriateness of
questions for specific points in a dialogue.

Our results show promise with our best question
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ranking models exhibiting performance on par with
expert human tutors. Furthermore these experiments
demonstrate the utility and importance of rich dia-
logue move annotation for modeling decision mak-
ing in conversation and tutoring.

2 Background and Related Works

Learning tutorial dialogue policies from corpora is
a growing area of research in natural language pro-
cessing and intelligent tutoring systems. Past studies
have made use of hidden Markov models (Boyer et
al., 2009a) and reinforcement learning (Chi et al.,
2010; Chi et al., 2009; Chi et al., 2008) to discover
tutoring strategies. However, these approaches are
typically optimized to maximize learning gains, and
are not necessarily focused on replicating human tu-
tor behavior. Other work has explored specific fac-
tors in questioning such as when to ask “why” ques-
tions (Rose et al., 2003), provide hints (Tsovaltzi
and Matheson, 2001), or insert discourse markers
(Kim et al., 2000).

There is also an expanding body of work that ap-
plies ranking algorithms toward the task of ques-
tion generation (QG) using approaches such as over-
generation-and-ranking (Heilman and Smith, 2010),
language model ranking (Yao, 2010), and heuristics-
based ranking (Agarwal and Mannem, 2011). While
the focus of these efforts centers on issues of gram-
maticality, fluency, and content selection for auto-
matic creation of standalone questions, we move to
the higher level task of choosing context appropri-
ate questions. Our work merges aspects of these
QG approaches with the sentence planning tradi-
tion from natural language generation (Walker et al.,
2001; Rambow et al., 2001). In sentence planning
the goal is to select lexico-structural resources that
encode communicative action. Rather than select-
ing representations, we use them directly as part of
the feature space for learning functions to rank the
questions’ actual surface form realization. To our
knowledge there has been no research in ranking the
quality and suitability of questions within a tutorial
dialogue context.

Because questioning tactics depend heavily on the
curriculum and choice of pedagogy, we ground our
investigations within the context of the My Science
Tutor (MyST) intelligent tutoring system (Ward et

al., 2011b), a conversational virtual tutor designed
to improve science learning and understanding for
students in grades 3-5 (ages 8-11). Students using
MyST investigate and discuss science through nat-
ural spoken dialogues and multimedia interactions
with a virtual tutor named Marni. The MyST dia-
logue design and tutoring style is based on a ped-
agogy called Questioning the Author (QtA) (Beck
et al., 1996) which emphasizes open-ended ques-
tions and keying in on student language to promote
self-explanation of concepts, and its curriculum is
based on the Full Option Science System (FOSS) 1

a proven system for inquiry based learning.

3 Data Collection

3.1 MyST Logfiles and Transcripts
For these experiments, we use MyST transcripts col-
lected in a Wizard-of-Oz (WoZ) condition with a hu-
man tutor inserted into the interaction loop. Project
tutors trained in both QtA and in the tutorial sub-
ject matter served as the wizards. During a ses-
sion tutors were responsible for accepting, overrid-
ing, and/or authoring system actions. Tutor wizards
were also responsible for setting the current dialogue
frame to indicate which of the learning goals was
currently in focus. Students talked to MyST via mi-
crophone while MyST communicates using Text-to-
Speech (TTS) in the WoZ setting. A typical MyST
session revolves around a single FOSS lesson and
lasts approximately 15 minutes. To obtain a dia-
logue transcript, tutor moves are taken directly from
the system logfile, while student speech is manu-
ally transcribed from audio. In addition to the di-
alogue text, MyST records additional information
such as timestamps and the current dialogue frame
(i.e. learning goal). In total we make use of tran-
scripts from 122 WoZ dialogues covering 10 units
on magnetism and electricity and 2 in measurement
and standards.

3.2 Dialogue Annotation
Lesson-independent analysis of dialogue requires
a level of abstraction that reduces a dialogue to
its underlying actions and intentions. To address
this need we use the Dialogue Schema Unifying
Speech and Semantics (DISCUSS) (Becker et al.,

1http://www.fossweb.com
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2011), a multidimensional dialogue move taxon-
omy that captures both the pragmatic and seman-
tic interpretation of an utterance. Instead of us-
ing one label, a DISCUSS move is a tuple com-
posed of three dimensions: Dialogue Act, Rhetor-
ical Form, Predicate Type. Together these labels
account for the action, function, and content of an
utterance. This scheme draws from past work in
task-oriented dialogue acts (Bunt, 2009; Core and
Allen, 1997), tutorial act taxonomies (Pilkington,
1999; Tsovaltzi and Karagjosova, 2004; Buckley
and Wolska, 2008; Boyer et al., 2009b) discourse
relations (Mann and Thompson, 1986) and question
taxonomies (Graesser and Person, 1994; Nielsen et
al., 2008).

Dialogue Act (22 tags): The dialogue act dimen-
sion is the top-level dimension in DISCUSS, and its
values govern the possible values for the other di-
mensions. Though the DISCUSS dialogue act layer
seeks to replicate the learnings from other well-
established taxonomies like DIT++ (Bunt, 2009) or
DAMSL (Core and Allen, 1997) wherever possible,
the QtA style of pedagogy driving our tutoring ses-
sions dictated the addition of two tutorial specific
acts: marking and revoicing. A mark act highlights
key words from the student’s speech to draw atten-
tion to a particular term or concept. Like with mark-
ing, revoicing keys in on student language, but in-
stead of highlighting specific words, a revoice act
will summarize or refine the student’s language to
bring clarity to a concept.

Rhetorical Form (22 tags): Although the dia-
logue act is useful for identifying the speaker’s in-
tent, it gives no indication of how the speaker is ad-
vancing the conversation. The rhetorical form re-
fines the dialogue act by providing a link to its sur-
face form realization. Consider the questions “What
is the battery doing?” and “Which one is the bat-
tery?”. They would both be labeled with Ask dia-
logue acts, but they elicit two very different kinds
of responses. The former, which elicits some form
of description, would be labeled with a Describe
rhetorical form, while the latter is seeking to Iden-
tify an object. Similarly an Assert act from a tutor
could be coupled with a Describe rhetorical form to
introduce new information or with a Recap to recon-
vey a major point.

Predicate Type (19 tags): Beyond knowing the

Reliability Metric DA RF PT
Cohen’s Kappa 0.75 0.72 0.63
Exact Agreement 0.80 0.66 0.56
Partial Agreement 0.89 0.77 0.68

Table 1: Inter-annotator agreement for DISCUSS types
(DA=Dialogue Act, RF=Rhetorical Form, PT=Predicate
Type)

propositional content of an utterance, it is useful to
know how the entities and predicates in a response
relate to one another. A student may mention several
keywords that are semantically similar to the learn-
ing goals, but it is important for a tutor to recognize
whether the student’s language provides a deeper de-
scription of some phenomena or if it is simply a su-
perficial observation. The Predicate Type aims to
categorize the semantic relationships a student may
talk about; whether it is a Procedure, a Function, a
Causal Relation, or some other predicate type.

3.2.1 Annotation
All transcripts used in this experiment have been

annotated with DISCUSS labels at the turn level. A
reliability study using 15% of the transcripts was
conducted to assess inter-rater agreement of DIS-
CUSS tagging. This consisted of 18 doubly anno-
tated transcripts comprised of 828 dialogue utter-
ances.

To assess inter-rater reliability we use Cohen’s
Kappa (κ) (Carletta, 1996). Because DISCUSS per-
mits multiple labels per instance, we compute a κ
value for each label and provide a mean for each
DISCUSS dimension. To get an additional sense of
agreement, we use two other metrics: exact agree-
ment and partial agreement. For each of these met-
rics, we treat each annotators’ annotations as a per
class bag-of-labels. For exact agreement, each an-
notators’ set of labels must match exactly to receive
credit. Partial agreement is defined as the number
of intersecting labels divided by the total number
of unique labels. Together these statistics help to
bound the reliability of the DISCUSS annotation.
Table 1 lists all three metrics broken down by DIS-
CUSS dimension. The κ values show fair agreement
for the dialogue act and rhetorical form dimensions,
whereas the predicate type shows more moderate
agreement. This difference reflects the relative diffi-
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culty in labeling each dimension, and the agreement
as a whole illustrates the open-endedness of the task.

3.3 Question Authoring

While the long-term plan for this work is to inte-
grate fully automatic question generation into a tu-
toring system, for this study we opted to use manu-
ally authored questions. This allows us to remain
focused on learning to identify context appropri-
ate questions rather than confounding our experi-
ments with issues of question grammaticality and
well-formedness. Even though using multiple au-
thors would provide greater diversity of questions,
to avoid repeated effort and to maintain consistency
in authoring we trained a single question author
in both the FOSS material and MyST QtA tech-
niques. Although he was free to author any ques-
tion he found appropriate, our guidelines primar-
ily emphasized authoring by making permutations
aligned with DISCUSS dimensions while also per-
mitting the author to incorporate changes in word-
ing, learning-goal content, and tutoring tactics. For
example, we taught him to consider how QtA moves
such as Revoicing, Marking, or Recapping could al-
ter otherwise similar questions. To minimize the risk
of rater bias, we explicitly told our author to avoid
using positive feedback expressions such as “Good
job!” or “Great!”. Table 2 illustrates how the com-
binations of DISCUSS labels, QtA tactics, and dia-
logue context drives the question generation process.

To simulate the conditions available to both the
human WoZ and computer MyST tutors, the author
was presented with the entire dialogue history pre-
ceding the decision point, the current dialogue frame
(learning goal), and any visuals that may be on-
screen. Question authoring contexts were manually
selected to capture points where students provided
responses to tutor questions. This eliminated the
need to account for other dialogue behavior such as
greetings, closings, or meta-behavior, and allowed
us to focus on follow-up style questions. Because
these question authoring contexts came from actual
tutorial dialogues, we also extracted the original turn
provided by the tutor, and we filtered out turns that
did not contain questions related to the lesson con-
tent. Our corpus has 205 question authoring contexts
comprised of 1025 manually authored questions and
131 questions extracted from the original transcript

yielding 1156 questions in total.

3.4 Ratings Collection
To rate questions, we enlisted the help of four tu-
tors who had previously served as project tutors and
wizards. The raters were presented with much of
the same information used during question author-
ing. The interface included the entire dialogue his-
tory preceding the question decision point and a list
of up to 6 candidate questions (5 manually authored,
1 taken from the original transcript if applicable). To
give a more complete tutoring context, raters also
had access to the lessons’ learning goals and the in-
teractive visuals used by MyST.

Previous studies in rating questions (Becker et al.,
2009) have found poor inter-rater agreement when
rating questions in isolation. To decrease the task’s
difficulty we instead ask raters to simultaneously
score all candidate questions. Because we did not
want to bias raters, we did not specify specific cri-
teria for question quality. Instead we instructed the
raters to consider the question’s role in assisting stu-
dent understanding of the learning goals and to think
about factors such as tutorial pacing, context appro-
priateness, and content. Scores were collected us-
ing an ordinal 10-point scale ranging from 1 (low-
est/worst) to 10 (highest/best).

Each set of questions was rated by at least three
tutors, and rater assignments were selected to ensure
raters never score questions from sessions they tu-
tored themselves. In total we collected ratings for
1156 question representing a total of 205 question
contexts distributed across 30 transcripts.

3.4.1 Rater Agreement
Because these judgments are subjective, a key

challenge in this work centers on understanding to
what degree the tutors agree with one another. Since
our goal is to rank questions and not to score ques-
tions, we convert each tutors scores for a given con-
text into a rank-ordered list. To compute inter-
rater agreement in ranking, we use Kendall’s-Tau
(τ ) rank correlation coefficient. This measure is a
non-parametric statistic that quantifies the similarity
in orderings of data, and it is closely tied to AUC,
the area under the receiver operating characteristics
(ROC) curve. Though Kendall’s-τ can vary from -1
to 1, its value is highly task dependent, and it is typ-

4



. . .
T: Tell me more about what is happening with the electricity in a complete circuit.
S: Well the battery sends all the electricity in a circuit to the motor so the motor starts to go.

Candidate Question Frame Element DISCUSS
Q1 Roll over the switch and then in your own

words, tell me again what a complete or
closed circuit is all about.

Same Same Direct/Task/Visual
Ask/Describe/Configuration

Q2 How is this circuit setup? Is it open or closed? Same Same Ask/Select/Configuration
Q3 To summarize, a closed circuit allows the

electricity to flow and the motor to spin. Now
in this circuit, we have a new component. The
switch. What is the switch all about?

Diff Diff Assert/Recap/Proposition
Direct/Task/Visual
Ask/Describe/Function

Q4 You said something about the motor spinning
in a complete circuit. Tell me more about that.

Same Same Revoice/None/None
Ask/Elaborate/CausalRelation

Table 2: Example dialogue context snippet and a collection of candidate questions. The frame, element, and DISCUSS
columns show how the questions vary from one another.

ically lower when the range of possible choices is
narrow as it is in this task. To get a single score we
average τ values across all sets of questions (con-
texts) and all pairs of raters. The mean value for all
pairs of raters and contexts is τ = 0.1478. The inter-
rater statistics are shown in table 3. While inter-rater
agreement is fairly modest, we do see lots of vari-
ation between different pairs of tutors. Addition-
ally, we found that a pair of raters agreed on the top
rated question 33% of the time. This suggests that
despite their common training and experience, the
raters may be using different criteria in rating.

To assess the tutors’ internal consistency, we had
each tutor re-rate 60 sets of questions approximately
two months after their first trial, and we computed
self-agreement Kendall’s-τ values using the method
above. These statistics are listed in the bottom row
of table 3. In contrast with the inter-rater agreement,
self-agreement is much more consistent giving fur-
ther evidence for a difference in criteria. Together
self and inter-rater agreement help bound expected
system performance in ranking.

4 Automatic Ranking

Because we are more interested in learning to pre-
dict which questions are more suitable for a given
tutoring scenario than we are in assigning specific
scores to questions, we approach the task of ques-
tion selection as a ranking task. To create a gold-

rater A rater B rater C rater D
rater A X 0.2590 0.1418 0.0075
rater B 0.2590 X 0.1217 0.2370
rater C 0.1418 0.1217 X 0.0540
rater D 0.0075 0.2370 0.0540 X
mean 0.1361 0.2059 0.1058 0.0995
self 0.4802 0.4022 0.2327 0.3531

Table 3: Inter-rater rank agreement (Kendall’s-τ ). The
bottom row is the self-agreement for contexts they rated
in two separate trials.

standard for training and evaluation we first need to
convert the collective ratings for a set of questions
into a rank-ordered list. While the most straight-
forward way to make this conversion is to average
the ratings for each item, this approach assumes all
raters operate on the same scale. Furthermore, a sin-
gle score does not account for how a question re-
lates to other candidate questions. Instead we create
a single rank-order by tabulating pairwise wins for
all pairs of questions qi, qj , (i 6= j) within a given
dialogue context C. If rating(qi) > rating(qj),
questions qi receives a win. This is summed across
all raters for the context. The question(s) with the
most wins has rank 1. Questions with an equal num-
ber of wins are considered tied and are given the av-
erage ranking of their ordinal positions. For exam-
ple if two questions are tied for second place, they
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are each assigned a ranking of 2.5.
Using this rank-ordering we then train a pairwise

classifier to learn a preferences function (Cohen et
al., 1998) that determines if one question has a bet-
ter rank than another. For each question qi within a
contextC, we construct a vector of features φi. For a
pair of questions qi and qj , we then create a new vec-
tor using the difference of features: Φ(qi, qj , C) =
φi − φj . For training, if rank(qi) < rank(qj), the
classification is positive otherwise it is negative. To
account for the possibility of ties, and to make the
difference measure appear symmetric, we train both
combinations (qi, qj) and (qj , qi). During decoding,
we run the trained classifier on all pairs and tabulate
wins using the approach described above.

For our experiments we train pairwise classi-
fiers using Mallet’s Maximum Entropy (McCallum,
2002) and SVMLight’s Support Vector Machines
models (Joachims, 1999). We also use SVMRank

(Joachims, 1999), which performs the same max-
imum margin separation as SVMLight, but uses
Kendall’s-τ as a loss function to optimize for rank
ordering. We run SVMRank with a linear kernel
and model parameters of c = 2.0 and ε = 0.0156.
For MaxEnt, we use Mallet’s default model param-
eters. Training and evaluation are carried out us-
ing 10-fold cross validation (3 transcripts per fold,
approximately 7 dialogue contexts per transcript).
Folds are partitioned by FOSS unit, to ensure train-
ing and evaluation are on different lessons. To ex-
plore the impact of DISCUSS representations on this
question ranking task, we train and evaluate models
by incrementally adding additional information ex-
tracted from the DISCUSS annotation.

4.1 Features

When designing features for this task, we wanted to
capture the factors that may play a role in the tutor’s
decision making process during question selection.
When rating, scorers may consider factors such as
the question’s surface form, lesson relevance, con-
textual relevance. The subsections below detail the
motivations and intuitions behind these factors.

4.1.1 Surface Form Features
When presented with a list of questions, a rater

likely bases the decision on his or her initial reaction
to the questions’ wording. In some cases, wording

may supercede any other decisions regarding edu-
cational value or dialogue cohesiveness. Question
verbosity is captured by the number of words in the
question feature. Analysis of rater comments also
suggested that preferences are often tied to the ques-
tion’s form and structure. A rough measure of form
comes from the Wh-word features to mark the pres-
ence of the following question words: who, what,
why, where, when, which, and how. Additionally we
use the bag-of-part-of-speech-tags (POS) features to
provide another aspect of the question’s structure.

4.1.2 Lexical Similarity Features

Past work (Ward et al., 2011a) has shown that en-
trainment, the process of automatic alignment be-
tween dialogue partners, is a useful predictor of
learning and is a key factor in facilitating a success-
ful conversation. For question selection, we hypoth-
esize that successful tutors ask questions that dis-
play some degree of semantic entrainment with stu-
dent utterances. In MyST-based tutoring, dialogue
actions are driven by the goal of eliciting student re-
sponses that address the learning goals for the les-
son. Consequently, choosing an appropriate ques-
tion may depend on how closely student responses
align with the learning goals. To model both en-
trainment and lexical similarity we extract features
for unigram and bigram overlap of words, word-
lemmas, and part-of-speech tags between the pairs
below.

• The candidate question and the student’s last
utterance
• The candidate question and the last tutor’s ut-

terance
• The candidate question and the text of the cur-

rent learning goal
• The candidate question and the text of the other

learning goals

Example learning goals for a lesson on circuits are
provided in table 4. The current learning goal is sim-
ply the learning goal in focus at the point of question
asking according to the MyST logfile. Other learn-
ing goals are all other goals for the lesson. Using
the example from the table, if goal 2 is the current
learning goal, then goals 1 and 3 are the other goals.
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Goal 1: Wires carry electricity and can connect
components

Goal 2: Bulb receives electricity and transforms
electricity into heat

Goal 3: A circuit provides a pathway for energy
to flow

Table 4: Example learning goals

4.1.3 DISCUSS Features
The lexical and surface form features provide

some cues about the content of the question, but
they do not account for the action or intent in tutor-
ing. The DISCUSS annotation allows us to bridge
between the question’s semantics and pragmatically
and focus on what differentiates one question from
another. Basic DISCUSS features include bags of
Dialogue Acts (DA), Rhetorical Forms (RF), and
Predicate types (PT) found in the question’s DIS-
CUSS annotation. We capture the question’s dia-
logue cohesiveness with binary features indicating
whether or not the question’s RF and PT match those
found in the previous student and tutor turns.

4.1.4 Contextualized DISCUSS Features
In tutoring, follow-up questions are licensed by

the questions that precede them. For example a tutor
may be less likely to ask how an object functions un-
til after the object has first been identified by the stu-
dent. Along a different dimension, a tutor’s line of
questioning may change to match a student’s under-
standing of the material. Struggling students may re-
quire additional opportunities to explain themselves,
while advanced students may benefit more from a
more rapid pace of instruction.

We model the conditional relevance of moves
by computing dialogue act transition probabilities
from our corpus of DISCUSS annotated tutorial di-
alogues. Although DISCUSS allows multiple tags
per dialogue turn, we simplify probability calcula-
tions by treating each DISCUSS tuple as a separate
event, and tallying all pairs of turn-turn labels. A
DISCUSS tuple consists of a Dialogue Act (DA),
Rhetorical Form (RF), and Predicate Type (PT),
and we use different subsets of the tuple to com-
pute the transition probabilities listed in equations 1-
3. All probabilities are computed using Laplace-
smoothing. When extracting features, we sum the

log of the probabilities for each DISCUSS label
present in the question.

MyST models dialogue as a sequence of seman-
tic frames which correspond to specific learning
goals. For natural language understanding, MyST
uses Phoenix semantic grammars (Ward, 1994) to
identify which elements within these frames have
been filled. To account for student progress in ques-
tion asking, we compute the conditional probabil-
ity of a DISCUSS label given the percentage of el-
ements filled in the current dialogue frame (equa-
tion 4). This progress percentage is discretized into
bins of 0-25%, 25-50%, 50-75%, and 75-100%.

p(DA,RF, PTquestion|DA,RF, PTstud. turn) (1)

p(DA,RFquestion|DA,RFstudent turn) (2)

p(PTquestion|PTstudent turn) (3)

p(DA,RF, PTques.|% elements filled) (4)

4.2 Evaluation

To evaluate our systems’ performance in ranking,
we use two measures commonly used in information
retrieval: the Mean Kendall’s-τ measure described
in section 3.4.1 and Mean Reciprocal Rank (MRR).
MRR is the average of the multiplicative inverse of
the rank of the highest ranking question across all
contexts. To account for ties we use the Tau-b vari-
ant of Kendall’s-τ , and for MRR we compute re-
ciprocal rank by averaging the system rankings for
all of the questions tied for first. To obtain a gold-
standard ranking for comparison, we combine indi-
vidual raters’ ratings using the approached described
in section 4.

5 Results and Discussion

We trained several models to investigate how differ-
ent feature classes influence overall performance in
ranking. The results for these experiments are listed
in Table 5. Because we found comparable perfor-
mance between MaxEnt and SVMLight, we only
report results for MaxEnt and SVMRank models.
In addition to MRR and Kendall’s-τ , we list the
number of concordances and discordances in pair-
wise classification to give the reader another sense
of the accuracy associated with rank agreement.

Random Baseline: On average, assigning ran-
dom ranks will yield mean τ=0 and MRR=0.408.
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Model Features Mean Num. Num. Pairwise MRR
Kendall’s-τ Concord. Discord. Accuracy

MaxEnt CONTEXT+DA+PT+MATCH+POS- 0.211 1560 974 0.616 0.516
SVMRank CONTEXT+DA+PT+MATCH+POS- 0.190 1725 1154 0.599 0.555
MaxEnt CONTEXT+DA+RF+PT+MATCH+POS- 0.185 1529 1014 0.601 0.512
MaxEnt DA+RF+PT+MATCH+POS- 0.179 1510 1009 0.599 0.503
MaxEnt DA+RF+PT+MATCH+ 0.163 1506 1044 0.591 0.485
MaxEnt DA+RF+PT+ 0.147 1500 1075 0.583 0.480
MaxEnt DA+RF+ 0.130 1458 1082 0.574 0.476
MaxEnt DA+ 0.120 1417 1076 0.568 0.458
SVMRank Baseline 0.108 1601 1278 0.556 0.473
MaxEnt Baseline 0.105 1410 1115 0.558 0.448

Table 5: System scores by feature set and and machine learning model. Presence or absence of specific features is
denoted with a ‘+’ or ‘-’ otherwise the label refers to a set of features. The Baseline features consist of the Surface Form
and Lexical Similarity features described in sections 4.1.1 and 4.1.2. POS are the bag-of-POS surface form features.
DA, RF, and PT refer to the DISCUSS presence features for the Dialogue Act, Rhetorical Form, and Predicate Type
dimensions described in section 4.1.3. MATCH refers specifically to the RF and PT match features. CONTEXT
refers to the Contextualized DISCUSS features described in section 4.1.4. The best scores for each column appear in
boldface.
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Figure 1: Distribution of per-context Kendall’s-τ values
for the top-scoring system (top), and the baseline system
(bottom).

Baseline System: Our baseline system used all
of the surface form and lexical similarity features
described above. This set of features achieves the
highest rank agreement (τ = 0.105) using max-
imum entropy and the highest MRR (0.473) with
SVMRank . This improvement over the random
baseline suggests there is a correlation between a
question’s ranking and its surface form.

DISCUSS System: Table 5 shows system per-
formance steadily improves as additional DISCUSS
features are included in the model. When us-
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Figure 2: Distribution of per-context system ranks for the
highest rated question for the top-scoring system (top),
and the baseline system (bottom). These ranks are the
inverse of the reciprocal rank used to calculate MRR.

ing DISCUSS features, removing the part-of-speech
features gives an additional bump in performance
suggesting that there is an overlap in information
between DISCUSS representations and POS tags.
Finally, adding contextualized DISCUSS features
pushes our ranking models to their highest level
of agreement with τ = 0.211 using MaxEnt and
MRR=0.555 using SVMRank . Inspection of the
MRR values shows that without taking into account
the possibility of ties the baseline system selects
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the top-ranked question in 44/205 (21.4%) contexts.
While the system with the best MRR score, correctly
chooses the top-ranked question in 71/205 (34.6%)
contexts – a rate comparable to how often a pair of
raters agreed on the number-one item (33.4%).

Application of the Wilcoxon signed-rank test
shows the DISCUSS system exhibits statistically
significant improvement over the baseline system in
its distribution of Kendall’s-τ values (n = 205, z =
7350, p < 0.001) and distribution of reciprocal
ranks (n = 205, z = 3739, p < 0.001). Figures 1
and 2 give visual confirmation of this improvement,
and highlight the overall reduction in negative τ val-
ues as well as the greater-than-50% increase in like-
lihood of selecting the best question first.

To get another perspective on system perfor-
mance, we evaluated our human raters on the gold-
standard rankings from the subset of questions used
for assessing internal agreement. This yielded a
mean τ between 0.2589 and 0.3619. If we remove
ratings so that the gold-standard does not include the
rater under evaluation, tutor performance drops to
a range of 0.1523 to 0.2432, which is roughly cen-
tered around the agreement exhibited by our best-
performing system.

Looking at the impact of learning algorithms
we see that SVMRank tends to perform better on
MRR while the pairwise maximum entropy mod-
els yield higher τ ’s. One possible explanation for
this discrepancy may stem from the ranking algo-
rithms’ different treatment of ties. The pairwise
model permits ties, whereas the scores produced by
SVMRank produce a strict order. Without ties, it is
difficult to exactly match the raters’ orderings which
had numerous ties, which can in turn produce an
overall higher number of concordances and discor-
dances than the pairwise classification model.

6 Conclusions and Future Work

We have introduced a framework for learning and
evaluating models for ranking and selecting ques-
tions for a given point in a tutorial dialogue. Fur-
thermore these experiments show that it is feasible
to learn this behavior by coupling predefined ques-
tions with ratings from trained tutors. Supplement-
ing our baseline surface form and lexical similarity
features with additional features extracted from the

dialogue context and DISCUSS dialogue act anno-
tation improves system performance in ranking to a
level on par with expert human tutors. These results
illustrate how question asking depends not only on
the form of the question but also on the underlying
dialogue action, function and content.

In the near future we plan to train models on indi-
vidual tutors to investigate which factors drive in-
dividual preferences in question asking. We also
plan to characterize system performance using auto-
matically labeled DISCUSS annotation. Lastly, we
feel these results provide a natural starting point to
explore automatic generation of questions from the
DISCUSS dialogue move representation.
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Abstract

We present initial steps towards an interac-
tive essay writing tutor that improves science
knowledge by analyzing student essays for mis-
conceptions and recommending science web-
pages that help correct those misconceptions.
We describe the five components in this sys-
tem: identifying core science concepts, deter-
mining appropriate pedagogical sequences for
the science concepts, identifying student mis-
conceptions in essays, aligning student miscon-
ceptions to science concepts, and recommend-
ing webpages to address misconceptions. We
provide initial models and evaluations of the
models for each component.

1 Introduction

Students come to class with a variety of misconcep-
tions present in their science knowledge. For ex-
ample, science assessments developed by the Amer-
ican Association for the Advancement of Science
(AAAS)1 showed that 49% of American 6th-8th
graders believe that the Earth’s tectonic plates are
only feet thick (while in fact they are miles thick)
and that 48% of American 6th-8th graders believe
that atoms of a solid are not moving (while in fact
all atoms are in constant motion). A key challenge
for interactive tutoring systems is thus to identify and
correct such student misconceptions.

In this article, we develop an interactive essay writ-
ing tutor that tries to address these challenges. The
tutor first examines a set of science webpages to iden-
tify key concepts (Section 4) and attempts to order

1http://assessment.aaas.org/

the science concepts in a pedagogically appropriate
learning path (Section 5). Then the tutor examines a
student essay and identifies misconception sentences
(Section 6) and aligns these misconceptions to the
true science concepts (Section 7). Finally, the tutor
suggests science webpages that can help the student
address each of the misconceptions (Section 8).

The key contributions of this work are:

• Demonstrating that a summarization approach
can identify core science concepts

• Showing how a learning path model can be boot-
strapped from webpages with grade metadata

• Developing models for misconception identifi-
cation based on textual entailment techniques

• Presenting an information retrieval approach to
aligning misconceptions to science concepts

• Designing a system that recommends webpages
to address student misconceptions

2 Related work

Interactive tutoring systems have been designed for
a variety of domains and applications. Dialog-based
tutoring systems, such as Why2-Atlas (VanLehn et
al., 2002), AutoTutor (Graesser et al., 2004) and
MetaTutor (Azevedo et al., 2008), interact with stu-
dents via questions and answers. Student knowledge
is judged by comparing student responses to knowl-
edge bases of domain concepts and misconceptions.
These knowledge bases are typically manually cu-
rated, and a new knowledge base must be constructed
for each new domain where the tutor is to be used.
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Essay-based tutoring systems, such as Summary
Street (Wade-Stein and Kintsch, 2004) or CLICK
(de la Chica et al., 2008b), interact with students who
are writing a summary or essay. They compare what
the student has written to domain knowledge in the
form of textbooks or webpages. They typically do not
require a knowledge base to be manually constructed,
instead using natural language processing techniques
to compare the student’s essay to the information in
the textbooks or webpages.

The current work is inspired by these essay-based
tutoring systems, where interaction revolves around
essay writing. However, where Summary Street re-
lies primarily upon measuring how much of a text-
book a student essay has “covered”, we aim to give
more detailed assessments that pinpoint specific stu-
dent misconceptions. CLICK targets a similar goal
to ours, but assumes that accurate knowledge maps
can be generated for both the domain knowledge and
for each student essay. Our approach does not re-
quire the automatic generation of knowledge maps,
instead working directly with the sentences in the
student essays and the webpages of science domain
knowledge.

3 System overview

Our system is composed of five key components.
First, a core concept identifier examines domain
knowledge (webpages) and identifies key concepts
(sentences) that describe the most important pieces
of knowledge in the domain. Second, a concept se-
quencer assigns a pedagogically appropriate order in
which a student should learn the identified core con-
cepts. Third, a misconception identifier examines the
student essay and identifies sentences that describe
misconceptions the student has about the domain.
Fourth, a misconception-concept aligner finds a core
concept that can be used to correct each misconcep-
tion. Finally, a recommender takes all the informa-
tion about core concepts and student misconceptions,
decides what order to address the misconceptions in,
and identifies a set of resources (webpages) for the
student to read.

To assemble this system, we draw on a variety of
existing datasets (and some data collection of our
own). For example, we use data from an annotation
study of concept coreness to evaluate our model for

identifying domain concepts, and we use data from
science assessments of the American Association for
the Advancement of Science to train and evaluate our
model for identifying misconceptions. We use this
disparate data to establish baseline models for each of
the tutor’s components. In the near future, this base-
line tutoring system will be used to collect student
essays and other data that will allow us to develop
more sophisticated model for each component.

4 Identifying core concepts

This first module aims at automatically identifying a
set of core concepts in a given set of digital library
resources or webpages. Core concepts in a subject
domain are critical ideas necessary to support deep
science learning and transfer in that domain. From
a digital learning perspective, availability of such
concepts helps in providing pedagogical feedback
to learners to support robust learning and also in
prioritizing instructional intervention (e.g., deciding
the order in which to treat student misconceptions).
A concept can be materialized using different levels
of linguistic expressions (e.g. phrases, sentences or
paragraphs), but for this work, we focus only on
individual sentences as expressions of concepts.

We used COGENT (de la Chica et al., 2008a), a
multi-document summarization system to extract con-
cepts (i.e. sentences) from a given set of resources.
In the following two subsections, we describe the
COGENT system, discuss how we used it for core
concept extraction and report the results of its evalu-
ation of effectiveness.

4.1 Model

COGENT is a text summarizer that builds on MEAD
(Radev et al., 2004), a multidocument summarization
and evaluation platform . MEAD was originally de-
veloped to summarize news articles. COGENT aims
to generate pedagogically useful summaries from
educational resources.

COGENT extends MEAD by incorporating new
features in the summarization process. MEAD uses
a set of generic (i.e. domain-independent) features to
evaluate each sentence in the given set of documents.
These features include the length of the sentence, the
distance from the sentence to the beginning of the
document, etc. Individual scores of a sentence along
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these dimensions are combined to assign a total score
to the sentence. After removing redundant sentences,
MEAD then generates a summary using the sentences
that had the highest scores. A user-specified parame-
ter determines the number of sentences included in
the summary.

COGENT extends this framework by incorporat-
ing new domain-general and domain-specific features
in the sentence scoring process. The domain-general
features include a document structure feature, which
takes into account a sentence’s level in terms of
HTML headings, and a content word density fea-
ture, which computes the ratio of content words to
function words. The domain-specific features include
an educational standards feature, which uses a TF-
IDF based textual similarity score between a sentence
and nationally recognized educational goals from the
American Association for the Advancement of Sci-
ence (AAAS) Benchmarks (Project2061., 1993) and
the associated National Science Education Standards
(NRC, 1996), and a gazetteer feature, which scores
sentences highly that mention many unique names
from a gazetteer of named entities.

While in the past, COGENT was used primarily
as a summarization system, in the current work, we
evaluate its utility as a means of identifying core
concepts. That is, are the top sentences selected
by COGENT also the sentences describing the key
science concepts in the domain?

4.2 Evaluation

We evaluate the core concept extraction module by
assessing the extracted concepts against human ex-
pert annotations. We ran an annotation study where
two human experts assigned “coreness” ratings to
a selected set of sentences collected from digital
resources in three science domains: Plate Tecton-
ics, Weather and Climate, and Biological Evolution.
These experts had been recruited based on their train-
ing and expertise in the selected subject domains.

First, a set of digital resources was selected from
the Digital Library for Earth System Education
(DLESE) 2 across the three subject domains. Then
COGENT was used to extract the top 5% sentences
for each domain. The experts then annotated each
extracted sentence with its coreness rating on a scale

2http://www.dlese.org

Extraction %
0.5% 1.0% 2.5% 5.0%

Plate Tectonics 3.33 3.27 3.00 2.81
Weather and Climate 3.13 2.97 3.07 2.99
Biological Evolution 2.00 2.13 2.46 2.25

Table 1: Average coreness of sentences extracted at differ-
ent percentages in each domain

of 1 to 4, 4 being the highest. Human annotation is
a time-consuming process and this is why we had
to limit the number of extracted sentences to a mod-
erate 5% (which is still more than 400 sentences).
17% of the sentences were double annotated and the
inter-rater reliability, measured by Spearman’s rho,
was 0.38. These expert ratings of sentences form the
basis of our evaluation.

Table 1 shows the average coreness assigned by the
experts to sentences extracted by COGENT in each
domain, for different extraction percentages. For ex-
ample, if COGENT is used to extract the top 1% of
sentences from all the Plate Tectonics resources, then
the average of their coreness ratings (as assigned by
the experts) is 3.27, representing a high level of core-
ness. This is essentially a measure of the precision
of COGENT at 1% extraction. Note that we cannot
calculate a measure of recall without asking experts
to annotate all of the domain sentences, a time con-
suming task which was outside of the scope of this
study.

The performance of COGENT was the best in the
Plate Tectonics domain since the domain-aware fea-
tures (e.g. the gazetteer features) used to train CO-
GENT were selected from this domain. In the “near
domain” of Weather and Climate, the performance is
still good, but performance falls in the “far domain”
of Biological Evolution, because of the significant
differences between the training domain and the test
domain. In the two latter domains, the performance
of COGENT was also inconsistent in that with an
increase in the extraction percentage, the average
coreness increased in some cases and decreased in
others. This inconsistency and overall degradation
in performance in the two latter domains are indica-
tive of the importance of introducing domain-aware
features into COGENT.

It is evident from the values in Table 1 that the
core concepts extraction module does a decent job,
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especially when trained with appropriate domain-
aware features.

5 Sequencing core concepts

The goal of this next component is to take a set of
core science concepts (sentences), as produced by
the preceding module, and predict an appropriate se-
quence in which those concepts should be learned by
the student. Some concepts serve as building blocks
for other concepts, and thus it is essential to learn the
basic concepts first (and address any misconceptions
associated with them) before moving on to other con-
cepts that depend on the basic concepts. For example,
a student must first understand the concept of tectonic
plates before they can understand the concept of a
convergent plate boundary. The sequence of core
concepts that results from this module will serve as
input for the later module that prioritizes a student’s
misconceptions.

There may exist several different but reasonable
concept sequences (also known as learning paths) –
the goal of this component is to recommend at least
one of these. As a first step, we focus on generating
a single concept sequence that represents a general
path through the learning goals, much like textbooks
and curriculums do.

5.1 Models
Our model for concept sequencing is a pair-wise
ordering model, that takes two concepts c1 and c2,
and predicts whether c1 should come before or after
c2 in the recommended learning path. Formally,

SEQUENCE(c1, c2) =

{
0 if c1 < c2

1 if c1 ≥ c2

To generate a complete ordering of concepts, we
construct a precedence table from these pair-wise
judgments and generate a path that is consistent with
these judgments.

We learn the SEQUENCE model as a supervised
classifier, where a feature vector is extracted for each
of the two concepts and the two feature vectors, con-
catenated, serve as the input to the classifier. For each
word in each concept, we include the following two
features:

• local word count - the number of times the
word appeared in this concept

• global word count - the log of the ratio between
the number of times the word occurred in the
concept and the number of times it occurred in
a background corpus, Gigaword (Graff, 2002)

These features are motivated by the work of Tanaka-
ishii et al (2010) that showed that local and global
word count features were sufficient to build a pair-
wise readability classifier that achieved 90% accu-
racy.

For the supervised classifier, we consider naive
Bayes, decision trees, and support vector machines.

5.2 Evaluation

To evaluate our concept sequencing model, we gath-
ered learning paths from experts in high school earth
science. Using the model from Section 4, we selected
30 core concepts for the domain of plate tectonics.
We asked two earth science experts to each come up
with two learning paths for these core concepts, with
the first path following an evidence or research based
and second path following a traditional learning path.

An evidence or research based learning path, is
a pedagogy where students are encouraged to use
the scientific method to learn about a phenomena, i.e
they gather information by observing the phenomena,
form a hypothesis, perform experiment, collect and
analyze data and then interpret the data and draw
conclusions that hopefully align with the current un-
derstanding about the phenomena. A teacher that
uses this learning path acts as a guide on the side. A
traditional learning path on the other hand, is the ped-
agogy where teachers are simply trying to pass on the
correct information to students rather than letting the
students discover the information themselves. In a
classroom environment, a teacher using this learning
path would be seen as the classical sage on stage.

We used the learning paths collected from the ex-
perts to form two test sets, one for the evidence-based
pedagogy, and one for the traditional pedagogy. For
each pedagogy, we asked which of all the possible
pair-wise orderings our experts agreed upon. For ex-
ample, if the first expert said that A < B < C and
the second expert said that A < C < B, then both
experts agreed that A < B and A < C, while they
disagreed on whether B < C or C < B. Note that
we evaluate pair-wise orderings here, not a complete
ranking of the concepts, because the experts did not
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Pedagogy Pairs (%) c1 < c2 c1 ≥ c2

Evidence 637 (68%) 48.5% 51.5%
Traditional 613 (70%) 48.5% 51.5%

Table 2: Test sets for sequencing concepts. The Pairs
column shows how many pairs the experts agreed upon
(out of a total of 30 ∗ 29 = 870 pairs).

produce a total ordering of the concepts, only a par-
tial tree-like ordering. The experts put the concepts
in levels, with concepts in the same level having no
precedence relationship, while a concept in a lower
level preceded a concept in a higher level.

For our test sets, we selected only the pairs on
which both experts agreed. Table 2 shows that experts
agreed on 68-70% of the pair-wise orderings. Table
2 also shows the percentage of each type of pair-wise
ordering (c1 < c2 vs. c1 ≥ c2) present in the data.
Note that even though all concepts are paired with all
other concepts, because the experts do not produce
complete orderings, the number of agreements for
each type of ordering may not be the same. Consider
the case where expert E1 says that concepts A and
B are on the same level (i.e., A = B) and expert E2

says that concept A is in a lower level than concept
B (i.e., A < B). Then for the pair (A, B), they
disagree on the relation (E1 says A ≥ B while E2

says A < B) but for the pair (B, A) they agree on
the relation (they both say B ≥ A). As a result, the
c1 ≥ c2 class is slightly larger than the c1 < c2 class.

Since these data sets were small, we reserved them
for testing, and trained our pair-wise classification
model using a proxy task: ordering sentences by
grade. In this task, the model is given two sentences
s1 and s2, one written for middle school and written
for high school, and asked to decide whether s1 < s2

(i.e. s1 is the middle school sentence) or s2 < s1

(i.e. s2 is the middle school sentence). We expect
that a model for ordering sentences by grade should
also be a reasonable model for ordering concepts
for a pedagogical learning path. And importantly,
getting grade ordering data automatically is easy: the
Digital Library for Earth System Education (DLESE)
contains a variety of earth science resources with
metadata about the grade level they were written for.

To construct the training data, we searched the
DLESE website for text resources that contained
the words earthquake or plate tectonics. We col-

Baseline NaiveBayes SVM
Evidence 51.5% 60.8% 53.3%
Traditional 51.5% 56.6% 49.7%

Table 3: Accuracy result from Naive Bayes and SVM for
classifying the core concepts

lected 10 such resources for each of the two grade
cohorts, middle school (we allowed anything K-8)
and high school (we allowed anything 9+). We down-
loaded the webpage for each resource, and used CO-
GENT to extract the 20 most important sentences
from each. This resulted in 200 sentences for each
of the two grade cohorts. To create pairs of grade-
ordered sentences, we paired up middle and high
school concepts both ways: middle school first (i.e.
SEQUENCE(cm, ch) = 0) and high school first (i.e.
SEQUENCE(ch, cm) = 1). This resulted in 40,000
grade-ordered sentence pairs for training.

We then used this proxy-task training data to
train our models. We extracted 1702 unique non-
stopwords from the training data, resulting in 3404
features per concept, and 6808 features per con-
cept pair (i.e. per classification instance). On the
grade-ordering task, we evaluated three models using
WEKA3, a naive Bayes model, a decision tree (J48)
model, and a support vector machine (SVM) model.
Using a stratified 50/50 split of the training data, we
found that the naive Bayes and SVM models both
achieved an accuracy of 80.2%, while the decision
tree achieved only 62%. So, we selected the naive
Bayes and SVM models for our real task, concept
sequencing.

Table 3 shows the performance of the two models
on the expert judgments of concept sequencing. We
find that the naive Bayes model produces more expert-
like concept sequences than would be generated by
chance and also outperforms the SVM model on the
concept sequencing task. For the final output of the
module, we combine the pair-wise judgments into a
complete concept sequence, breaking any ties in the
pair-wise judgments by preferring the order of the
concepts in the output of the core concept identifier.

3http://www.cs.waikato.ac.nz/ml/weka/
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6 Identifying student misconceptions

The previous components have focused on analyzing
the background knowledge – finding core concepts
in the domain and selecting an appropriate learning
sequence for these concepts. The current component
focuses on the student essay, using the collected back-
ground knowledge to help analyze the essay and give
feedback.

Given a student essay, the goal of this component
is to identify which sentences in the essay are most
likely to be misconceptions. The task of misconcep-
tion identification is closely related to the task of
textual entailment (Dagan et al., 2006), in which the
goal is to predict if a hypothesis sentence, H, can be
reasonably concluded given another sentence, T. In
misconception identification, the goal is to predict if
a student sentence can be concluded from any com-
bination of the sentences in the domain knowledge,
similar to a textual entailment task with a single H
but many Ts. A student sentence that can not be
concluded from the domain knowledge is likely a
misconception.

6.1 Models

We developed two models for identifying student
misconceptions, inspired by work in textual entail-
ment that showed that a model that simply counts the
words in H that appeared in T, after expanding the
words in T using WordNet, achieves state-of-the-art
performance (Shnarch et al., 2011)4.

The Coverage model scores a student sentence
by counting the number of its words that are also in
some domain sentence. Low-scoring sentences are
likely misconceptions. Formally:

SCORE(s) =
|s ∩ d|
|s|

d =
⋃

s′∈D

EXPAND(s′)

where s is a student sentence (a list of words), D is
the set of domain sentences, and EXPAND performs
lexical expansion on the words of a sentence.

The Retrieval model indexes the domain sen-
tences with an information retrieval system (we use

4The paper also proposes a more elaborate probabilistic
model, but shows that the “lexical coverage” model we adopt
here is quite competitive both with their probabilistic model and
with the top-performing systems of RTE5 and RTE6.

Lucene5), and scores a student sentence by querying
the index and summing the scores. Formally:

SCORE(s) =
∑
s′∈D

SCORElucene(s, EXPAND(s′))

where s, D and EXPAND are defined as before, and
SCORElucene is a cosine over TF-IDF vectors6.

For both the Coverage and Retrieval models, we
consider the following lexical expansion techniques
for defining the EXPAND function:

• tokens – words in the sentence (no expansion)

• tokens, synsets – words in the sentence, plus
all lemmas of all WordNet synsets of each word

• tokens, synsetsexpanded – words in the sentence,
plus all lemmas of all WordNet synsets of each
word, plus all lemmas of derived forms, hy-
ponyms or meroynms of the WordNet synsets

• tokens, synsetsexpanded×4 – words in the sen-
tence, plus all lemmas of all WordNet synsets of
each word, plus all lemmas of WordNet synsets
reachable by a path of no more than 4 links
through derived forms, hyponyms or meroynms

6.2 Evaluation
We evaluate the quality of our misconception identi-
fication models using data collected from the Amer-
ican Association for the Advancement of Science’s
Project 2061 Science Assessment Website7. This
website identifies the main ideas in various topics
under Life Science, Physical Science and Earth Sci-
ence, and for each idea provides several sentences
of description along with its individual concepts and
common student misconceptions.

We used 3 topics (17 ideas, averaging 6.2 descrip-
tion sentences, 7.1 concept sentences and 9.9 miscon-
ception sentences each) as a development set:

CE Cells
AM Atoms, Molecules, and States of Matter
PT Plate Tectonics

We used 11 topics (64 ideas, averaging 5.9 descrip-
tion sentences, 9.4 concept sentences and 8.6 miscon-
ception sentences each) as the test set:

5http://lucene.apache.org
6See org.apache.lucene.search.Similarity javadoc for details.
7http://assessment.aaas.org/
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Model MAP P@1
Randomly ordered 0.607 0.607
Coverage - tokens 0.647 0.471
Coverage - tokens, synsets 0.633 0.529
Coverage - tokens, synsetsexpanded 0.650 0.471
Coverage - tokens, synsetsexpanded×4 0.690 0.706
Retrieval - tokens 0.665 0.529
Retrieval - tokens, synsets 0.641 0.471
Retrieval - tokens, synsetsexpanded 0.650 0.529
Retrieval - tokens, synsetsexpanded×4 0.684 0.647

Table 4: Development set results for identifying miscon-
ceptions.

EN Evolution and Natural Selection
BF Human Body Systems
IE Interdependence in Ecosystems
ME Matter and Energy in Living Systems
RH Reproduction, Genes, and Heredity
EG Energy: Forms, Transformation, Transfer. . .
FM Force and Motion
SC Substances, Chemical Reactions. . .
WC Weather and Climate: Basic Elements
CL Weather and Climate: Seasonal Differences
WE Weathering, Erosion, and Deposition

For the evaluation, we provide all of the idea’s de-
scription sentences as the domain knowledge, and
combine all of an idea’s concepts and misconcep-
tions into a “student essay”8. We then ask the system
to rank the sentences in the essay, placing miscon-
ceptions above true concepts. Accuracy at placing
misconceptions at the top of the ranked list is then
measured using mean average precision (MAP) and
precision at the first item (P@1).

The models were compared to a chance baseline:
the expected MAP and P@1 if the concept and mis-
conception sentences were ordered randomly. Table 4
shows that on the development set, while all models
outperformed the random ordering baseline’s MAP
(0.607), only models with lexical expansion from
4-link WordNet chains outperformed the baseline’s
P@1 (0.607). The Coverage and Retrieval models us-
ing this expansion technique had comparable MAPs

8These “student essays” are a naive approximation of real
essays, but the sentences are at least drawn from real student er-
rors. In the future, we hope to create an evaluation corpus where
real student essays have been annotated for misconceptions.

Model MAP P@1
Randomly ordered 0.487 0.487
Coverage - tokens, synsetsexpanded×4 0.603 0.578
Retrieval - tokens, synsetsexpanded×4 0.644 0.625

Table 5: Test set results for identifying misconceptions.

(0.690 vs. 0.684), but the Coverage model had a
higher P@1 (0.706 vs. 0.647). These top two mis-
conception identification models were evaluated on
the test set. Table 5 shows that both models again
outperformed the random ordering baseline, and the
Retrieval model outperformed the Coverage model
(0.644 vs. 0.603 MAP, 0.625 vs. 0.578 P@1).

7 Aligning misconceptions to concepts

The goal of this component is to take the miscon-
ception sentences identified in a student essay and
align them to the core science concepts identified for
the domain. For example, a student misconception
like Earth’s plates cannot bend would be aligned to
a science concept like Mountains form when plate
material slowly bends over time.

7.1 Models
The model for misconception-concept alignment
takes a similar approach to that of the Retrieval
model for misconception identification. The align-
ment model applies lexical expansion to each word
in a core science concept, indexes the expanded con-
cepts with an information retrieval system, and scores
each concept for its relevance to a student misconcep-
tion by querying the index with the misconception
and returning the index’s score for that concept. For-
mally:

SCORE(c) = SCORElucene(m, EXPAND(c))

where m is the query misconception, c is the science
concept, and EXPAND and SCORElucene are defined
as in the Retrieval model for misconception identi-
fication. The concept with the highest score is the
concept that best aligns to the student misconception
according to the model.

For lexical expansion, we consider the same defini-
tions of EXPAND as for misconception identification:
tokens; tokens, synsets; tokens, synsetsexpanded;
and tokens, synsetsexpanded×4.
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Model MAP P@1
Randomly ordered 0.276 0.276
Alignment - Tokens 0.731 0.639
Alignment - Tokens, synsets 0.813 0.734
Alignment - tokens, synsetsexpanded 0.790 0.698
Alignment - Tokens, synsetsexpanded×4 0.762 0.639

Table 6: Development set results for aligning concepts to
misconceptions.

7.2 Evaluation

We again leverage the AAAS Science Assessments to
evaluate the misconception-concept alignment mod-
els. In addition to identifying key science ideas, and
the concepts and common misconceptions within
each idea, the AAAS Science Assessments provide
links between the misconceptions and the concepts.
Usually there is a single concept to which each mis-
conception is aligned, but the AAAS data aligns as
many as 16 concepts to a misconception in some
cases.

For the evaluation, we give the system one miscon-
ception from an idea, and the list of all concepts from
that idea, and ask the system to rank the concepts9.
If the system performs well, the concepts that are
aligned to the misconception should be ranked above
the other concepts. Accuracy at placing the aligned
concepts at the top of the ranked list is then measured
using mean average precision (MAP) and precision
at the first item (P@1).

The models were compared to a chance baseline:
the expected MAP and P@1 if the concept and mis-
conception sentences were ordered randomly. Ta-
ble 6 shows that on the development set, all models
outperformed the random ordering baseline. Lexi-
cal expansion with tokens and synsets achieved the
highest performance, 0.813 MAP and 0.734 P@1.
This model was evaluated on the test set, and Table 7
shows that the model again outperformed the random
ordering baseline, achieving 0.704 MAP and 0.611
P@1. Overall, these are promising results – given a
student misconception, the model’s first choice for a
concept to address the misconception is helpful more
than 60% of the time.

9As discussed in Section 6.2, there are on average 9.4 con-
cepts per item. This is not too far off from the 10-20 core con-
cepts we typically expect the tutor to extract for each domain.

Model MAP P@1
Randomly ordered 0.259 0.259
Alignment - Tokens, synsets 0.704 0.611

Table 7: Test set results for aligning concepts to miscon-
ceptions.

8 Recommending resources

The goal of this component is to take a set of student
misconceptions, the core science concepts to which
each misconception is aligned, and the pedagogical
ordering of the core science concepts, and recom-
mend digital resources (webpages) to address the
most important of the misconceptions. For example,
a student that believes that water evaporates into the
air only when the air is very warm might be directed
to websites about evaporation and condensation. The
recommended resources are intended to help the stu-
dent quickly locate the concept knowledge necessary
to correct each of their misconceptions.

8.1 Models

The intuition behind our model is simple: sentences
from recommended resources should contain the
same or lexically related terminology as both the
misconception sentences and their aligned concepts.
As a first approach to this problem, we focus on the
overlap between recommended sentences and the
misconception sentences, and use an information re-
trieval approach to build a resource recommender.

First, the user gives the model a set of domain
knowledge webpages, and we use an information re-
trieval system (Lucene) to index each sentence from
each of the webpages. (Note that we index all sen-
tences, not just core concept sentences.) Given a
student misconception, we query the index and iden-
tify the source URL for each sentence that is returned.
We then return the list of the recommended URLs,
keeping only the first instance of each URL if dupli-
cates exist. Formally:

SCORE(url) = max
s∈url

SCORElucene(m, s)

where url is a domain resource, s is a sentence from a
domain resource and m is the student misconception.
URLs are ranked by score and the top k URLs are
returned as recommendations.
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8.2 Evaluation

As a preliminary evaluation of the resource recom-
mendation model, we obtained student misconcep-
tion sentences that had been aligned to concepts in
a knowledge map of plate tectonics (Ahmad, 2009).
The concepts in the knowledge map were originally
drawn from 37 domain webpages, thus each concept
could serve as a link between a student misconcep-
tion and a recommended webpage. For evaluation,
we took all 11 misconceptions for a single student,
where each misconception had been aligned through
the concepts to on average 3.4 URLs. For each mis-
conception, we asked the recommender model to
rank the 37 domain URLs in order of their relevance
to the student misconception.

We expect the final interactive essay writing sys-
tem to return up to k = 5 resources for each mis-
conception, so we evaluated the performance of the
recommender model in terms of precision at five
(P@5). That is, of the top five URLs recommended
by the system, how many were also recommended
by the experts? Averaging over the 11 student mis-
conception queries, the current model achieves P@5
of 32%, an acceptable initial baseline as randomly
recommending resources would achieve only P@5
of 9%.

9 Discussion

In this article, we have presented our initial steps
towards an interactive essay writing system that can
help students identify and remedy misconceptions in
their science knowledge. The system relies on tech-
niques drawn from a variety of areas of natural lan-
guage processing research, including multi-document
summarization, textual entailment and information
retrieval. Each component has been evaluated inde-
pendently and demonstrated promising initial perfor-
mance.

A variety of challenges remain for this effort. The
core concept identification system performs well on
the plate tectonics domain that it was originally de-
veloped for, but poorer on more distant domains,
suggesting the need for more domain-independent
features. The model for sequencing science concepts
pedagogically uses only the most basic of word-based
features, and could potentially benefit from features
drawn from other research areas such as text readabil-

ity. The misconception identification and alignment
models perform well on the AAAS science assess-
ments but have not yet been evaluated on real student
essays, which may require moving from lexical cover-
age models to more sophisticated entailment models.
Finally, the recommender model considers only in-
formation about the misconception sentence (not the
aligned core concept nor the pedagogical ordering of
concepts) and recommends entire resources instead
of directing students to specifically relevant sentences
or paragraphs.

Perhaps the most important challenge for this work
will be moving from evaluating the components in-
dependently to a whole-system evaluation in the con-
text of a real essay writing task. We are currently
designing a study to gather data on students using the
system, from which we hope to derive information
about which components are most reliable or useful
to the students. This information will help guide our
research to focus on improving the components that
yield the greatest benefits to the students.
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Abstract

The SAVE Science project is an attempt to ad-
dress the shortcomings of current assessments
of science. The project has developed two vir-
tual worlds that each have a mystery or natu-
ral phenomenon requiring scientific explana-
tion; by recording students’ behavior as they
investigate the mystery, these worlds can be
used to assess their understanding of the scien-
tific method. Currently, however, the scoring
of the assessment depends either on manual
grading of students’ written responses, or, on
multiple choice questions. This paper presents
an automated grader that can combine with
SAVE Science’s virtual worlds to provide a
cheap mechanism for assessments of the abil-
ity to apply scientific methodology. In experi-
ments on over 300 middle school students, our
best automated grader improves by over 50%
relative to the closest system from previous
work in predicting grades supplied by human
judges.

1 Introduction

Education researchers criticize current standardized
tests of science on many grounds. First, they lack
context (Behrens et al., 2007), which complicates a
student’s task of applying classroom-based learning,
as the theory of situated cognition suggests (Brown
et al., 1989). Second, many have criticized such
tests for failing to engage students long enough to
apply their understanding to the question. Further-
more and perhaps worst of all, standardized tests fail
to assess scientific inquiry—the ability of students
to apply the scientific method—authentically rather

than as scientific content (National Research Coun-
cil, 2005; Singley and Taft, 1995).

We consider an assessment conducted by the
Situated Assessment using Virtual Environments
for Science Content and Inquiry (SAVE Science)
project (Ketelhut et al., 2010; Ketelhut et al., 2009),
whose long-term goal is to address the shortcomings
of current standardized tests of science. The assess-
ments from SAVE Science have produced an abun-
dance of data on how students interact with a vir-
tual world, when trying to conduct scientific inquiry.
Observing student behavior in virtual environments
offers the potential for new insights into both how
students learn and what they know. However, this
benefit can only be realized if we can make sense of
the stream of data and text produced by the students.

In this paper, we attempt to automate the process
of grading students in SAVE Science assessments, to
make the evaluations as cost-effective as standard-
ized tests. Unlike most previous systems for au-
tomated grading (Sukkarieh and Stoyanchev, 2009;
Sukkarieh et al., 2004; Higgins et al., 2004; Wang
et al., 2008), the data for this task includes a short
paragraph (usually 50-60 words) natural language
response stating a hypothesis and evidence in sup-
port of it. In addition, there is a wealth of relational
data about student behavior in a virtual environment.
We develop novel predictors for automatically grad-
ing the written responses using a wide variety of nat-
ural language features, as well as features from the
data on student behavior in the virtual world. On
student data from two virtual worlds, our best auto-
mated grader has correlations of r = 0.58 and 0.44
with human judgments, improving over the closest
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technique from previous work by 56% for the first
world, and by 120% for the second.

The rest of the paper is organized as follows.
The next section contrasts this project with previ-
ous work. Section 3 describes the SAVE Science
project and the student data it has produced. Section
4 details our automated grading models. Section 5
reports on experiments, and Section 6 concludes.

2 Previous Work

Wang et al. (2008) have previously conducted a
study on assessing creative problem-solving in sci-
ence education by automatically grading student es-
says. Our techniques improve substantially over
theirs, as we demonstrate empirically. In part, we
improve by including more sophisticated language-
processing features in our model than the unigram
and bigram features they use; as others have noted,
bag-of-words representations and latent semantic
indexing become less useful as word order and
causal relationships become important for judging
an essay’s quality (Malatesta et al., 2002; Wiemer-
Hastings et al., 2005). A secondary reason for our
improvement is that we also have access to non-
linguistic data about the students that we can mine
for additional patterns.

Most previous research on automated grading of
written text focuses on short, factual text (Wiemer-
Hastings et al., 1999; Mohler and Mihalcea, 2009;
Leacock and Chodorow, 2003; Sukkarieh and Stoy-
anchev, 2009; Sukkarieh et al., 2004; Mitchell et al.,
2002; Pulman and Sukkarieh, 2005), whereas SAVE
Science’s texts are only partly factual. Responses
are meant to convey a scientific explanation of a
mystery, and therefore, correct responses contain in-
ferences, observations of the world, and causal links
between observations and inferences.

Automatic systems for grading longer responses
typically grade essays for coherence and discourse
structure (Burstein et al., 2001; Higgins et al., 2004),
but these global discourse criteria are only partially
indicative of the quality of a student’s response to the
SAVE Science assessments. To be considered fully
correct in these tests, student responses must contain
factually correct information, as well as causal rela-
tionships that justify the student’s inferences, such
as “The balls don’t bounce outside because it’s cold,

and lower temperatures decrease pressure.”

3 Assessing Scientific Inquiry Using
Virtual Worlds

We now give a brief overview of SAVE Science,
which aims to complement (or even replace) cur-
rent standardized tests for evaluating students’ un-
derstanding of science. We first present the project’s
goals and methodology, and then describe the chal-
lenges involved in creating an automated evalua-
tion of student performance for this new assessment
paradigm.

3.1 The SAVE Science Project

SAVE Science (Ketelhut et al., 2010; Ketelhut et al.,
2009; Ketelhut et al., 2012) is a novel project for
evaluating students’ understanding of the scientific
method — problem identification, gathering data,
analyzing data, developing a hypothesis, and com-
municating results — by asking students to solve
a mystery in a virtual world through the applica-
tion of the scientific method to a content-based prob-
lem. Using immersive virtual environments for as-
sessments is a current area of focus among educa-
tion researchers (Clarke-Midura, 2010); SAVE Sci-
ence is unique in its attempt to assess understand-
ing of both inquiry as well as content. That is, the
test is designed to assess students’ ability to apply
their knowledge of the scientific inquiry processes
to a problem they have never seen before, but within
a content area they have just studied. To be suc-
cessful, students must explore a virtual environment,
collect appropriate data about it, and find evidence
that supports their inference about the cause of the
mystery. Part of the reasoning for a particular con-
clusion draws on scientific knowledge learned in the
classroom, but for these mysteries such knowledge
of scientific content is insufficient. Students must
also be able to explore the virtual world and create a
hypothesis about the cause of the problem, based on
their observations and analysis of collected data.

For this study, we concentrate on two virtual
worlds produced by the SAVE Science project team,
Basketball and Weather Trouble. Screenshots of
the two virtual worlds are shown in Figure 1. Stu-
dents are represented by an avatar, or virtual char-
acter, whom they can control in the virtual world
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Figure 1: Screenshots from SAVE Science’s virtual environments. Left: the Basketball module. Right: the Weather
Trouble module. The bar of icons along the bottom of the screen shows various tools that students may choose to use
in the world, including a map, compass, graphing tool, note pad, and instruments like a barometer and thermometer,
among others. Glowing green arrows indicate “objects” (sometimes including people) with which the student’s avatar
may interact, by making observations, by taking measurements, or through conversation.

with a mouse or key presses. When the test be-
gins, one character in the world informs the student
of a mystery that the student needs to explain. In
the Weather Trouble world, citizens of Scientopolis
are concerned with the lack of rain recently, and ask
the avatar to determine whether it will rain soon. In
the Basketball world, a basketball tournament staffer
is concerned that students cannot play basketball on
the outdoor playground, because the balls will not
bounce high enough outdoors, even though the same
balls bounce just fine indoors.

Once informed of the mission, the student
(through her or his avatar) explores the world, and
interacts with objects or other characters in the vir-
tual world by “colliding” with them. Interactions
with characters mostly involve the character telling
the avatar some part of the story of the world through
their eyes (e.g., “It hasn’t rained here in weeks; I
hope it rains soon!”). The conversation may yield
useful clues, or it may be “folk science” (e.g., “The
sheep are lying down, so it is probably going to rain
soon”). When the avatar interacts with an object, the
student can choose from a set of tools to determine
measurements of the object. Measurements that a
student deems interesting can be recorded in the stu-
dent’s clipboard, and a graphing tool allows students
to construct charts from the data in the clipboard.

Once students have finished exploring, collect-
ing data, and analyzing the data, they are asked to
communicate the results by writing a brief expla-
nation for the cause of the mystery for the world.

In addition, students are asked to provide what they
consider to be the top three pieces of evidence for
their explanation. Both the explanation and the
ranked evidence are written in freeform text, con-
sisting of 48.5 words on average for Basketball, and
62.4 for Weather Trouble. We refer to the expla-
nation and ranked evidence collectively as the stu-
dent’s freeform response. These texts are critical
components of the overall data about the student, as
they can be used to assess the student’s ability to
communicate findings.

3.2 Assessing the ability to make scientific
inquiries

The virtual worlds from SAVE Science provide an
abundance of data about each student’s ability to
apply the scientific method, as well as their un-
derstanding of content, but the current assessment
scheme involves either manual grading of freeform
responses, or multiple choice questions. The first
is problematic because of the effort and expense in-
volved; the second is problematic because of the dif-
ficulty in designing multiple choice questions that
accurately assess everything a student has learned
(Wang et al., 2008; Chang and Chiu, 2005; Singley
and Taft, 1995). The focus of this paper is to pro-
vide an automated way of assessing students’ ability
to perform scientific inquiry based on their behav-
ior in the virtual world and their freeform responses.
We first describe the current assessment mechanisms
available in SAVE Science’s data, which we then use
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Score Criteria

4 Provides a correct hypothesis with supporting
data gathered from within the world

3 Provides a correct hypothesis with only folk
or incorrect evidence

2 Provides a somewhat correct answer
1 Provides a hypothesis
0 No hypothesis, or nonsense

Table 1: Rubric for manual scoring of freeform re-
sponses.

Score Example

3 it’s because the air outside is more colder
than the air inside here the cold air causes
the air molecules to gather up toghter tight
toghter causeing the ball to deflate and have
less bounce . . .

1 the wieght isnt up to regulations but the bouce
is ok everyball i bouce it bouced according
to regulartion but almost every ball has the
weight of 1.25 . . .

Figure 2: Example portions of two freeform responses
from Basketball, presented as written by the students.

below as gold standards for automated predictors for
assessment.

Manual grading of the freeform responses uses a
rubric of integer scores from 0 to 4. Guidelines for
the rubric scores are shown in Table 1, and two ex-
ample responses are shown in Figure 2. Two anno-
tators, the first holding a PhD in education and the
second a PhD student in computer science, indepen-
dently judged each response, achieving a high inter-
annotator agreement — for Basketball, Cohen’s κ =
0.95, Pearson’s ρ = 0.98; and for Weather Trouble
κ = 0.8, ρ = 0.93. For our experiments, we use
the judgments of the first annotator, who helped de-
sign the virtual worlds and has experience in grading
student essays, but the choice of which annotator’s
judgments to use makes little difference to the re-
sults.

The multiple choice questions, which we call quiz
questions, consist of two types, as shown in Table
2. The first type, which we call contextualized ques-
tions, directly test students’ understanding of the sci-
entific issues that arise in the virtual environment

of the module. Non-contextualized questions are re-
lated to the topic of the module, but they can be an-
swered correctly using general scientific knowledge
rather than specific knowledge gleaned from explo-
ration of the virtual world. The non-contextualized
questions are taken from the benchmark exams of a
major urban school district.

4 Predictors for Scientific Inquiry Grades

We now focus on the task of building automated pre-
dictors for assessing students’ ability to make scien-
tific inquiries. To do this, we turn the grading task
into a classical machine learning problem, in which
the system must learn from a set of training data
(students and their grades) how to predict a grade
for new students included in separate test data. We
focus on two main types of models: ones that can
grade by predicting how many multiple-choice ques-
tions (contextualized, non-contextualized, or both)
a student will answer correctly, and ones that can
predict the manual grade assigned to a freeform re-
sponse.

Unlike typical automated-grading systems for
grading written or spoken natural language, our task
includes a large additional source of evidence for the
predictions: data about the students’ behavior in the
virtual world. Our prediction models therefore make
extensive use of both the freeform response and data
from the students’ behavior in the world, which we
refer to as world data.

4.1 Models
We use Support Vector Machines with Radial Ba-
sis Function kernels (RBF-SVM) (Pang-Ning et al.,
2006; Smola and Schölkopf, 1998) for learning
non-linear regression models of grading. Let S be
the set of students evaluated through SAVE Sci-
ence’s virtual environment, and let f : S → Rn be
a vector-valued feature function providing n real-
valued features for each student, based on the stu-
dent’s freeform response and behavior in the virtual
world. Let g : S → R be the target grading func-
tion, which provides a real-valued grade for each
student. The hypothesis spaceH for RBF-SVMs in-
cludes functions h : S → R of the form

h(s) =

m∑
i=1

αiK(xi, f(s)) + b (1)
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Contextualized Questions Non-Contextualized Questions

What variable would you change to cor-
rect this basketball problem?
1. Temperature

A. Make it 75◦F
B. Make it 55◦F
C. Make it 35◦F

2. Court Type
A. Concrete only
B. Wood only
C. Court Type makes little to no differ-

ence

3. Basketball used
A. Replace one Wade Park ball with one

Jordan Gym ball
B. Purchase a new set of balls for Wade

Park
C. New basketballs will not help this

problem

1. A child riding a bicycle notices that the tires are more in-
flated on hot days than on cold days, even though no air is
being added or removed. How can this be explained?
A. A higher temperature of the air in the tires causes the par-

ticles in the air to stick together and take up more space.
B. A higher temperature of the air in the tires causes the num-

ber of particles in the air to increase.
C. A higher temperature of the air in the tires causes the pres-

sure of the air to drop and the volume of the air to increase.
D. A higher temperature of the air in the tires causes both

the pressure and volume of the air to increase.

2. A sample of oxygen is being stored in a closed container
at a constant temperature. What will happen to the gas if
it is transferred to a container with a smaller volume?
A. Its weight will increase
B. Its weight will decrease
C. Its pressure will increase
D. The size of its particles will decrease

Table 2: Complete list of Basketball contextualized and non-contextualized quiz questions. Bold indicates the correct
answer.

where the xi are the support vectors, and K is the
RBF kernel function, given by:

K(x,x′) = exp(−γ‖x− x′‖2) (2)

Here, αi, b, γ ∈ R are parameters to be learned from
the training data. We use the Weka (Hall et al., 2009)
toolkit for running standard training and prediction
algorithms with the SVM.

We train models for four distinct prediction tasks,
each defined by a different grading function g(s):
1) g(s) is the manually-assessed grade on stu-
dent s’s freeform responses; 2) g(s) is the num-
ber of correctly-answered contextualized questions;
3) g(s) is the number of correctly-answered non-
contextualized questions; and 4) g(s) is the total
number of correctly-answered quiz questions (the
sum of g(s) from 2 and 3). We use the same feature
function f for all models, which we describe next.

4.2 World Features
From the database that records a student’s activity in
the immersive virtual environment, we extract fea-
tures describing the frequency and types of activi-
ties in which students engaged. For both modules,

we include features for the number of object interac-
tions, the number of distinct objects interacted with,
the total number of measurements made, the number
of measurements saved in the student’s clipboard,
and the number of graphs made. We also include
module-specific features: for example, in the Bas-
ketball assessment module, we counted how many
distinct basketballs were interacted with, how many
measurements were made using each type of tool
available in the Basketball world, whether a given
student created graphs of temperature inside vs. out-
side, or graphs of temperature vs. pressure, etc. In
total, the model contains 69 world features in the
Weather module, and 65 in the Basketball module.
All features conform to the pattern of counts over
particular types of actions the avatar might take. We
call the features from the virtual environment world
features.

We note that the relational data in this world is
large and complex, containing temporal and sequen-
tial information which these features currently ig-
nore. This feature set serves as an initial exploration
of the world data, but we fully expect that future in-
vestigation will improve on this representation. For
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this paper we are primarily interested in features of
the freeform responses, which we now turn to.

4.3 Natural Language Features

We investigate standard text mining features from
bag-of-words representations and Latent Semantic
Analysis, as well as a variety of features tailored to
the grading task. Spelling is a major problem for
this type of prediction task, but spelling-correctors
are investigated elsewhere (Kernighan et al., 1990)
and are not a focus of this research. We therefore
manually corrected spelling errors throughout the
texts before extracting features and conducting ex-
periments. No correction of grammar or punctuation
was performed.

4.3.1 Latent Semantic Analysis Features
After removing 34 common stopwords, we

extract a bag-of-words representation from the
freeform responses (Manning and Schütze, 1999).
We apply Latent Semantic Analysis (LSA) (Lan-
dauer and Dumais, 1997; Steyvers and Griffiths,
2006) to this set of features to produce a smaller
set of 72 latent features for Basketball, and 94 for
Weather Trouble, based on a threshold of retaining
90% of the variance in the data.

4.3.2 Features from Hidden Markov Models
LSA and other topic models identify latent struc-

ture based on document-level cooccurrence statis-
tics, but the “documents” in our data are short for
topic-modeling purposes, and we have less than
200 of them for each world. As a result, stan-
dard topic modeling techniques may have difficulty
identifying the appropriate structure. We therefore
also consider Hidden Markov Models (HMMs) (Ra-
biner, 1989), generative models which rely both on
cooccurrence within a sentence and on sequence in-
formation for determining model parameters. Fol-
lowing recent work by Huang et al. (2011) on
using HMMs to build representations, we esti-
mate parameters for a fully-connected HMM with
100 latent states over the freeform responses us-
ing Expectation-Maximization. We then decode the
HMM over the corpus to produce a Viterbi-optimal
latent state for each word. Finally, we use counts of
these 100 latent states to produce 100 new features
for each freeform response.

4.3.3 Detecting disengagement
A small number of students show little enthusi-

asm for the test, and their responses and general per-
formance are quite poor. Often their freeform re-
sponses are short, or they repeat the same text mul-
tiple times. We include three features that help iden-
tify such cases: the overall length of the response,
the number of times a full sentence is repeated ex-
actly, and the number of tokens that are repeated
across multiple sentences.

4.3.4 Ngram and Pattern Features
While HMM and LSA features help combat spar-

sity in the predictive model, they may ignore the
strong signal from a few expressions that are par-
ticularly important for a domain. By soliciting ad-
vice from domain experts, we selected important
unigrams, bigrams, and trigrams for each module,
and created features that count each of these. Like-
wise, we selected important two-word and three-
word sets, which we call loose patterns, that weakly
indicate that a student understood the problem, if
they all occur in the same response but not neces-
sarily near one another. Again, these words were se-
lected as a result of combination of empirical obser-
vations and expert domain knowledge from design-
ers. For instance, if a response contains the three
words “temperature,” “pressure,” and “because,” it
would match one of these loose patterns. For each
pattern, we create a feature to count the number of
matches in a response.

The selected patterns and ngrams both consist of
three kinds of words: ones that indicate types of
measurable phenomena or properties (e.g., “temper-
ature”), locations (e.g., “outside”), or causal or com-
parative words (e.g., “causes,” “higher,” “than,” or
“decrease”). Because the responses discuss numer-
ical observations like temperature and pressure val-
ues, we also allow a wildcard for matching any num-
ber as part of the loose patterns.

4.3.5 Semantic Features
We use the Senna1 semantic role labeling (SRL)

system (Collobert et al., 2011) to automatically iden-
tify predicate-argument relationships in the freeform
responses. In general, the SRL system is only able

1http://ml.nec-labs.com/senna/
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to identify predicate-argument structures in well-
crafted sentences, which on its own is a good indi-
cator that the student will do well in the evaluation.
In addition, we extract semantic features (SFs) that
count how often certain predicate-argument struc-
tures appear which are indicative of a good answer:

SF1 Count how often the freeform response con-
tains any predicate.

SF2 Count how often the response contains predi-
cates that involve causality, such as “causes” or
change-of-value predicates like “increase.”

SF3 Count how often measurement words (e.g.,
temperature, pressure) appear as arguments to
any predicate.

SF4 Count how often measurement words appear as
arguments to the predicates related to causality.

4.4 Feature Selection

We perform feature selection using a correlation-
based technique that tries to identify maximally-
relevant and minimally-redundant features (Hall,
1998; Deng and Moore, 1998). The algorithm eval-
uates the value of a subset of features by considering
the individual correlation between each feature and
the gold standard, as well as the correlation between
features. We use the default parameter settings for
feature selection, as specified in Weka.

5 Experiments

5.1 Experimental Setup

We use a dataset collected by the SAVE Science
project, consisting of the world data, freeform re-
sponses, and quiz answers from public middle-
school students in a major urban area of the United
States. 120 students completed the Weather Trou-
ble module, and 184 students completed Basket-
ball. After manually correcting spelling errors in
the freeform responses, we extracted features as de-
scribed above.

Following Wang et al. (2008), we evaluate our re-
gression models using Pearson correlation between
the predicted outcome and the gold standard out-
come. Four different gold standards are consid-
ered for each module: manually-assigned grades for

the freeform text, and three versions of the num-
ber of correctly-answered quiz questions (contextu-
alized only, non-contextualized only, and all). We
use a χ2 test with a threshold of p < 0.05 to deter-
mine statistical significance. We train and test mod-
els using 10-fold cross-validation to reduce variabil-
ity, and the results are averaged over the folds.

We evaluate several variants of our system, in-
cluding a World variant that only includes features
from the world data; an NLP variant that only in-
cludes features from the freeform responses; and a
combined World+NLP variant that includes all fea-
tures before feature selection is performed.

Our evaluation compares against the essay grad-
ing technique by Wang et al. Like ours, their sys-
tem uses RBF-SVM regression with default param-
eter settings as implemented in Weka, and like ours
the system is trained on student texts proposing so-
lutions to a science problem (in their case, a high
school chemistry problem). The system is trained
on human judgments of the quality of the student
answers. The major difference between our tech-
nique and theirs lies in the representation of the data;
Wang et al. use two types of features: unigrams, and
bigrams that occur at least five times during train-
ing. In our implementation of their technique, we
use a lower threshold for bigrams — they must oc-
cur at least twice. This is because we have less text
to work with, and the higher threshold yields too
few bigrams. Using the lower threshold improved
performance slightly, so we report only those results
below.

5.2 Results and Discussion

The full system for automatic grading is accurate,
across both worlds and all gold standards. Figure
3 shows the results of predicting human judgments
of the freeform responses, where the World+NLP
system achieves a correlation of 0.58 for Basket-
ball and 0.44 for Weather Trouble. The same sys-
tem achieves 0.55 and 0.54 on the World ques-
tions of Basketball and Weather Trouble, respec-
tively (Figures 4 and 5). Our best models are sta-
tistically significantly different from the Wang et al.
model (for predicting contextualized questions for
basketball: p = .009, χ2 = 6.87162; for grading
freeform responses: p ≈ 0, χ2 = 14.21725). Cor-
relations from World+NLP for other quiz types —
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Figure 3: Our NLP features dramatically improve predic-
tion over the Wang et al. model for grading freeform sci-
ence essays, by a margin of 0.21 on Basketball and 0.23
on Weather Trouble.
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Figure 4: The World+NLP model outperforms both
World and NLP, and substantially outperforms the Wang
et al. system.

non-contextualized and all questions — were some-
what lower, but still statistically significant (p =
.002, χ2 = 10.05986).

The language features are currently the major fac-
tor in the predictive models for automated grad-
ing. The NLP model substantially outperforms both
the simpler Wang et al. model and the World-only
model in predicting quiz answers for both worlds.
It achieves correlations that are statistically signifi-
cantly different from the baseline, for all gold stan-
dards and both worlds.

The story in the case of grading freeform essays
is similar. Our NLP model beats the Wang et al.
model and the World-only model. Our full model
World+NLP, however, outperforms the NLP model
by only a small fraction. Also, the Wang et al. model
performs slightly better than the World-only model
on freeform responses. For Basketball, the correla-
tion coefficient of their model is greater by 0.11 and
for Weather by 0.05. We believe that the NLP-based
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Figure 5: The NLP model substantially outperforms
World and Wang et al. on predicting quiz questions for
Weather Trouble, and the combined World+NLP model
achieves a 0.54 correlation for contextualized questions.

models, including Wang et al.’s, are outperforming
the World model because the current representation
of the World data fails to capture all of the pertinent
information from students’ behavior in the virtual
environments. Our plans for future work include the
development of features that can capture temporal
patterns in student activity.

Each type of language feature appears to pro-
vide a beneficial and complementary source of ev-
idence. We tested the model using only individual
subsets of the NLP features, such as HMM features
only, LSA features only, ngrams and loose patterns
only, and features from semantic role labeling only.
On their own, each set of features provides only a
small improvement over the mean predictor. When
combined with the world features, each subset of
the NLP features again provides only a small im-
provement over the World-only model. For exam-
ple, for predicting Basketball world quiz questions,
World features achieve r = 0.34, World+HMM and
World+LSA achieve 0.35, and World+(ngrams and
loose patterns) achieves 0.39. The relative ranking
of these subsets of features is not consistent across
different tasks; for Weather contextualized ques-
tions, World+HMM is best, and for Weather non-
contextualized questions, World+LSA is best. Fea-
tures selected by the feature selection algorithm also
indicate that the different types of language features
complement one another. The feature selection al-
gorithm for the World+NLP model selects some fea-
tures for every different type we presented, although
the HMM, LSA, loose pattern, and unigram fea-
tures dominate. We believe that the best procedure
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for developing grading systems for science essays
is therefore to construct a large number of possible
features using a variety of techniques, and then train
a model for a particular task and gold standard. In-
cluding significantly more varieties of features, per-
haps from additional kinds of language models or
NLP pipeline tools, is an important future direction
for further improving the grading accuracy.

While the accuracies of the models for contextu-
alized and non-contextualized questions are broadly
similar, the models themselves are not. For the con-
textualized questions, 4 important world behavior
features were deemed important and non-redundant
by the feature selection algorithm: the number of
distinct collisions, the number of people collided
with, the number of distinct objects (basketballs or
balloons) whose pressure was measured, and the
number of distinct temperature measurements that
were recorded into clipboards. The essential task
in this virtual world is to discover that a decrease
in the temperature of several gas systems (basket-
balls and balloons filled with air) is causing their
pressure to decrease. The model for the contex-
tualized questions thus includes variables that are
highly relevant to a student’s understanding of the
core problem in the world, which in turn indicates
that automated data mining techniques are capable
of identifying when students are learning to prac-
tice the scientific method, by observing student be-
havior. On the other hand, the model for the non-
contextualized questions includes only 2 world fea-
tures: The number of collisions made and number
of different objects whose circumference was mea-
sured. The first one is an indicator of the activity
level of a student and the second variable is an indi-
cator for whether the student has identified the prob-
lem (the basketballs are not bouncing because they
are deflated), but not for the underlying cause of
the problem (the outside temperature causes a drop
in pressure, which causes the basketball circumfer-
ence to decrease). Thus the model that predicts non-
contextualized questions very accurately has little
information about whether the student understood
the core problem of the world or not; instead, it has
information about whether the student is active in
the world. These observations lend some support to
the criticism that the standardized tests are not prop-
erly assessing inquiry.

Performance on the Weather Trouble module is
consistently lower than on Basketball. In part, this
reflects the increased difficulty of this world; human
inter-annotator agreement is a bit lower (κ = 0.8
vs. 0.95 on Basketball). However, another large
part of the difference is that the world features pro-
vide far less information in Weather Trouble — the
World-only model has less than half the correlation
on Weather than on Basketball, for all quiz ques-
tion types. We suspect that the cause is the nature
of the task on the Weather Trouble world, where
temporal information plays a bigger role as measure-
ments of air pressure and wind direction may change
over time. Investigating world features that can dis-
tinguish different patterns of student behavior over
time is an important area for further investigation.

6 Conclusion

Our automated grader uses a wide variety of NLP
pipeline tools to produce features for students’ es-
says on the answers to scientific mysteries. The
grader achieves significant correlation with human
judges and multiple choice quiz evaluations, sub-
stantially outperforming a simpler grader from prior
work. The findings of this research suggest that au-
thentic assessments of scientific inquiry through vir-
tual environments can be graded purely automati-
cally, like high stakes multiple choice tests. Ongoing
work on SAVE Science is investigating the differ-
ences in how students respond to standard multiple-
choice tests and tests based on virtual environments.
But the contextualized assessments from SAVE Sci-
ence provide evaluation of scientific inquiry that
multiple choice tests currently do not, and they can
now be graded just as cheaply.
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Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

Modeling coherence in ESOL learner texts

Helen Yannakoudakis
Computer Laboratory

University of Cambridge
United Kingdom

Helen.Yannakoudakis@cl.cam.ac.uk

Ted Briscoe
Computer Laboratory

University of Cambridge
United Kingdom

Ted.Briscoe@cl.cam.ac.uk

Abstract

To date, few attempts have been made to de-
velop new methods and validate existing ones
for automatic evaluation of discourse coher-
ence in the noisy domain of learner texts.
We present the first systematic analysis of
several methods for assessing coherence un-
der the framework of automated assessment
(AA) of learner free-text responses. We ex-
amine the predictive power of different coher-
ence models by measuring the effect on per-
formance when combined with an AA system
that achieves competitive results, but does not
use discourse coherence features, which are
also strong indicators of a learner’s level of at-
tainment. Additionally, we identify new tech-
niques that outperform previously developed
ones and improve on the best published result
for AA on a publically-available dataset of En-
glish learner free-text examination scripts.

1 Introduction

Automated assessment (hereafter AA) systems of
English learner text assign grades based on textual
features which attempt to balance evidence of writ-
ing competence against evidence of performance er-
rors. Previous work has mostly treated AA as a
supervised text classification or regression task. A
number of techniques have been investigated, in-
cluding cosine similarity of feature vectors (Attali
and Burstein, 2006), often combined with dimen-
sionality reduction techniques such as Latent Se-
mantic Analysis (LSA) (Landauer et al., 2003), and
generative machine learning models (Rudner and

Liang, 2002) as well as discriminative ones (Yan-
nakoudakis et al., 2011). As multiple factors influ-
ence the linguistic quality of texts, such systems ex-
ploit features that correspond to different properties
of texts, such as grammar, style, vocabulary usage,
topic similarity, and discourse coherence and cohe-
sion.

Cohesion refers to the use of explicit linguistic
cohesive devices (e.g., anaphora, lexical semantic
relatedness, discourse markers, etc.) within a text
that can signal primarily suprasentential discourse
relations between textual units (Halliday and Hasan,
1976). Cohesion is not the only mechanism of dis-
course coherence, which may also be inferred from
meaning without presence of explicit linguistic cues.
Coherence can be assessed locally in terms of tran-
sitions between adjacent clauses, parentheticals, and
other textual units capable of standing in discourse
relations, or more globally in terms of the overall
topical coherence of text passages.

There is a large body of work that has investi-
gated a number of different coherence models on
news texts (e.g., Lin et al. (2011), Elsner and Char-
niak (2008), and Soricut and Marcu (2006)). Re-
cently, Pitler et al. (2010) presented a detailed survey
of current techniques in coherence analysis of ex-
tractive summaries. To date, however, few attempts
have been made to develop new methods and vali-
date existing ones for automatic evaluation of dis-
course coherence and cohesion in the noisy domain
of learner texts, where spelling and grammatical er-
rors are common.

Coherence quality is typically present in marking
criteria for evaluating learner texts, and it is iden-
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tified by examiners as a determinant of the overall
score. Thus we expect that adding a coherence met-
ric to the feature set of an AA system would better
reflect the evaluation performed by examiners and
improve performance. The goal of the experiments
presented in this paper is to measure the effect a
number of (previously-developed and new) coher-
ence models have on performance when combined
with an AA system that achieves competitive results,
but does not use discourse coherence features.

Our contribution is threefold: 1) we present the
first systematic analysis of several methods for as-
sessing discourse coherence in the framework of
AA of learner free-text responses, 2) we identify
new discourse features that serve as proxies for the
level of (in)coherence in texts and outperform pre-
viously developed techniques, and 3) we improve
the best results reported by Yannakoudakis et al.
(2011) on the publically available ‘English as a Sec-
ond or Other Language’ (ESOL) corpus of learner
texts (to date, this is the only public-domain corpus
that contains grades). Finally, we explore the utility
of our best model for assessing the incoherent ‘out-
lier’ texts used in Yannakoudakis et al. (2011).

2 Experimental Design & Background

We examine the predictive power of a number of
different coherence models by measuring the effect
on performance when combined with an AA system
that achieves state-of-the-art results, but does not
use discourse coherence features. Specifically, we
describe a number of different experiments improv-
ing on the AA system presented in Yannakoudakis
et al. (2011); AA is treated as a rank preference
supervised learning problem and ranking Support
Vector Machines (SVMs) (Joachims, 2002) are used
to explicitly model the grade relationships between
scripts. This system uses a number of different lin-
guistic features that achieve good performance on
the AA task. However, these features only focus on
lexical and grammatical properties, as well as errors
within individual sentences, ignoring discourse co-
herence, which is also present in marking criteria for
evaluating learner texts, as well as a strong indicator
of a writer’s understanding of a language.

Also, in Yannakoudakis et al. (2011), experiments
are presented that test the validity of the system

using a number of automatically-created ‘outlier’
texts. The results showed that the model is vulner-
able to input where individually high-scoring sen-
tences are randomly ordered within a text. Failing to
identify such pathological cases makes AA systems
vulnerable to subversion by writers who understand
something of its workings, thus posing a threat to
their validity. For example, an examinee might learn
by rote a set of well-formed sentences and repro-
duce these in an exam in the knowledge that an AA
system is not checking for prompt relevance or co-
herence1.

3 Dataset & Experimental Setup

We use the First Certificate in English (FCE) ESOL
examination scripts2 (upper-intermediate level as-
sessment) described in detail in Yannakoudakis et al.
(2011), extracted from the Cambridge Learner Cor-
pus3 (CLC). The dataset consists of 1,238 texts be-
tween 200 and 400 words produced by 1,238 distinct
learners in response to two different prompts. An
overall mark has been assigned in the range 1–40.

For all experiments, we use a series of 5-fold
cross-validation runs on 1,141 texts from the exami-
nation year 2000 to evaluate performance as well as
generalization of numerous models. Moreover, we
identify the best model on year 2000 and we also test
it on 97 texts from the examination year 2001, previ-
ously used in Yannakoudakis et al. (2011) to report
the best published results. Validating the results on
a different examination year tests generalization to
some prompts not used in 2000, and also allows us to
test correlation between examiners and the AA sys-
tem. Again, we treat AA as a rank preference learn-
ing problem and use SVMs, utilizing the SVMlight

package (Joachims, 2002), to facilitate comparison
with Yannakoudakis et al. (2011).

4 Discourse Coherence

We focus on the development and evaluation of (au-
tomated) methods for assessing coherence in learner

1Powers et al. (2002) report the results of a related exper-
iment with the AA system e-Rater, in which experts tried to
subvert the system by submitting essays they believed would be
inaccurately scored.

2http://ilexir.co.uk/applications/clc-fce-dataset/
3http://www.cup.cam.ac.uk/gb/elt/catalogue/subject/custom

/item3646603/
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texts under the framework of AA. Most of the meth-
ods we investigate require syntactic analysis. As in
Yannakoudakis et al. (2011), we analyze all texts us-
ing the RASP toolkit (Briscoe et al., 2006)4.

4.1 ‘Superficial’ Proxies

In this section we introduce diverse classes of ‘su-
perficial’ cohesive features that serve as proxies for
coherence. Surface text properties have been as-
sessed in the framework of automatic summary eval-
uation (Pitler et al., 2010), and have been shown to
significantly correlate with the fluency of machine-
translated sentences (Chae and Nenkova, 2009).

4.1.1 Part-of-Speech (POS) Distribution
The AA system described in Yannakoudakis et

al. (2011) exploited features based on POS tag se-
quences, but did not consider the distribution of POS
types across grades. In coherent texts, constituent
clauses and sentences are related and depend on each
other for their interpretation. Anaphors such as pro-
nouns link the current sentence to those where the
entities were previously mentioned. Pronouns can
be directly related to (lack of) coherence and make
intuitive sense as cohesive devices. We compute the
number of pronouns in a text and use it as a shallow
feature for capturing coherence.

4.1.2 Discourse Connectives
Discourse connectives (such as but or because) re-

late propositions expressed by different clauses or
sentences. The presence of such items in a text
should be indicative of (better) coherence. We thus
compute a number of shallow cohesive features as
proxies for coherence, based on fixed lists of words
belonging to the following categories: (a) Addition
(e.g., additionally), (b) Comparison (e.g., likewise),
(c) Contrast (e.g., whereas) and (d) Conclusion (e.g.,
therefore), and use the frequencies of these four cat-
egories as features.

4.1.3 Word Length
The previous AA system treated script length as

a normalizing feature, but otherwise avoided such
‘superficial’ proxies of text quality. However, many
cohesive words are longer than average, especially
for the closed-class functional component of English

4http://ilexir.co.uk/applications/rasp/

vocabulary. We thus assess the minimum, maximum
and average word length as a superficial proxy for
coherence.

4.2 Semantic Similarity
We explore the utility of inter-sentential feature
types for assessing discourse coherence. Among the
features used in Yannakoudakis et al. (2011), none
explicitly captures coherence and none models inter-
sentential relationships. Incremental Semantic anal-
ysis (ISA) (Baroni et al., 2007) is a word-level dis-
tributional model that induces a semantic space from
input texts. ISA is a fully-incremental variation of
Random Indexing (RI) (Sahlgren, 2005), which can
efficiently capture second-order effects in common
with other dimensionality-reduction methods based
on singular value decomposition, but does not rely
on stoplists or global statistics for weighting pur-
poses.

Utilizing the S-Space package (Jurgens and
Stevens, 2010), we trained an ISA model5 using a
subset of ukWaC (Ferraresi et al., 2008), a large cor-
pus of English containing more than 2 billion tokens.
We used the POS tagger lexicon provided with the
RASP system to discard documents whose propor-
tion of valid English words to total words is less than
0.4; 78,000 documents were extracted in total and
were then preprocessed replacing URLs, email ad-
dresses, IP addresses, numbers and emoticons with
special markers. To measure local coherence we de-
fine the similarity between two sentences si and si+1

as the maximum cosine similarity between the his-
tory vectors of the words they contain. The overall
coherence of a text T is then measured by taking the
mean of all sentence-pair scores:

coherence(T ) =

∑n−1
i=1 maxk,j sim(sk

i , s
j
i+1)

n− 1
(1)

where sim(sk
i , s

j
i+1) is the cosine similarity between

the history vectors of the kth word in si and the
jth word in si+1, and n is the total number of
sentences6. We investigate the efficacy of ISA by
adding this coherence score, as well as the maximum

5The parameters of our ISA model are fairly standard: 1800
dimensions, a context window of 3 words, impact rate i =
0.0003 and decay rate km = 50.

6We exclude articles, conjunctions, prepositions and auxil-
iary verbs from the calculation of sentence similarity.
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sim value found over the entire text, to the vectors
of features associated with a text. The hypothesis
is that the degree of semantic relatedness between
adjoining sentences serves as a proxy for local dis-
course coherence; that is, coherent text units contain
semantically-related words.

Higgins et al. (2004) and Higgins and Burstein
(2007) use RI to determine the semantic similarity
between sentences of same/different discourse seg-
ments (e.g., from the essay thesis and conclusion, or
between sentences and the essay prompt), and assess
the percentage of sentences that are correctly clas-
sified as related or unrelated. The main differences
from our approach are that we assess the utility of se-
mantic space models for predicting the overall grade
for a text, in contrast to binary classification at the
sentence-level, and we use ISA rather than RI7.

4.3 Entity-based Coherence

The entity-based coherence model, proposed by
Barzilay and Lapata (2008), is one of the most pop-
ular statistical models of inter-sentential coherence,
and learns coherence properties similar to those em-
ployed by Centering Theory (Grosz et al., 1995).
Local coherence is modeled on the basis of se-
quences of entity mentions that are labeled with
their syntactic roles (e.g., subject, object). We con-
struct the entity grids using the Brown Coherence
Toolkit8,9 (Elsner and Charniak, 2011b), and use as
features the probabilities of different entity transi-
tion types, defined in terms of their role in adja-
cent sentences10. Burstein et al. (2010) show how
the entity-grid can be used to discriminate high-
coherence from low-coherence learner texts. The
main difference with our approach is that we eval-
uate the entity-grid model in the context of AA text
grading, rather than binary classification.

7We also used RI in addition to ISA, and found that it did
not yield significantly different results. In particular, we trained
a RI model with 2,000 dimensions and a context window of 3
on the same ukWaC data. Below we only report results for the
fully-incremental ISA model.

8https://bitbucket.org/melsner/browncoherence
9The tool does not perform full coreference resolution; in-

stead, coreference is approximated by linking entities that share
a head noun.

10We represent entities with specified roles (Subject, Object,
Neither, Absent), use transition probabilities of length 2, 3 and
4, and a salience option of 2.

4.4 Pronoun Coreference Model

Pronominal anaphora is another important aspect
of coherence. Charniak and Elsner (2009) present
an unsupervised generative model of pronominal
anaphora for coherence modeling. In their imple-
mentation, they model each pronoun as generated by
an antecedent somewhere in the previous two sen-
tences. If a ‘good’ antecedent is found, the probabil-
ity of a pronoun will be high; otherwise, the proba-
bility will be low. The overall probability of a text
is then calculated as the probability of the result-
ing sequence of pronoun assignments. In our ex-
periments, we use the pre-trained model distributed
by Charniak and Elsner (2009) for news text to esti-
mate the probability of a text and include it as a fea-
ture. However, this model is trained on high-quality
texts, so performance may deteriorate when applied
to learner texts. It is not obvious how to train such
a model on learner texts and we leave this for future
research.

4.5 Discourse-new Model

Elsner and Charniak (2008) apply a discourse-new
classifier to model coherence. Their classifier dis-
tinguishes NPs whose referents have not been pre-
viously mentioned in the discourse from those that
have been already introduced, using a number of
syntactic and lexical features. To model coher-
ence, they assign each NP in a text a label Lnp ∈
{new, old}11, and calculate the probability of a text
as Πnp:NPsP (Lnp|np). Again, we use the pre-
trained model distributed by Charniak and Elsner
(2009) for news text to find the probability of a text
following Elsner and Charniak (2008) and include it
as a feature.

4.6 IBM Coherence Model

Soricut and Marcu (2006) adapted the IBM model
1 (Brown et al., 1994) used in machine translation
(MT) to model local discourse coherence. The intu-
ition behind the IBM model in MT is that the use of
certain words in a source language is likely to trig-
ger the use of certain words in a target language.
Instead, they hypothesized that the use of certain
words in a sentence tends to trigger the use of cer-
tain words in an adjoining sentence. In contrast to

11NPs with the same head are considered to be coreferent.
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semantic space models such as ISA or RI (discussed
above), this method models the intuition that local
coherence is signaled by the identification of word
co-occurrence patterns across adjacent sentences.

We compute two features introduced by Soricut
and Marcu (2006): the forward likelihood and the
backward likelihood. The first refers to the likeli-
hood of observing the words in sentence si+1 condi-
tioned on si, and the latter to the likelihood of ob-
serving the words in si conditioned on si+1. We
extract 3 million adjacent sentences from ukWaC12,
and use the GIZA++ (Och and Ney, 2000) imple-
mentation of IBM model 1 to obtain the probabili-
ties of recurring patterns. The forward and backward
probabilities are calculated over the entire text, and
their values are used as features in our feature vec-
tors13. We further extend the above model and incor-
porate syntactic aspects of text coherence by train-
ing on POS tags instead of lexical items. We try to
model the intuition that local coherence is signaled
by the identification of POS co-occurrence patterns
across adjacent sentences, where the use of certain
POS tags in a sentence tends to trigger the use of
other POS tags in an adjacent sentence. We analyze
3 million adjacent sentences using the RASP POS
tagger and train the same IBM model to obtain the
probabilities of recurring POS patterns.

4.7 Lemma/POS Cosine Similarity
A simple method of incorporating (syntactic) as-
pects of text coherence is to use cosine similarity
between vectors of lemma and/or POS-tag counts in
adjacent sentences. We experiment with both: each
sentence is represented by a vector whose dimen-
sion depends on the total number of lemmas/POS-
types. The sentence vectors are weighted using
lemma/POS frequency, and the cosine similarity be-
tween adjacent sentences is calculated. The coher-
ence of a text T is then calculated as the average
value of cosine similarity over the entire text14:

coherence(T ) =

∑n−1
i=1 sim(si, si+1)

n− 1
(2)

12We use the same subset of documents as the ones used to
train our ISA model in Section 4.2.

13Pitler et al. (2010) have also investigated the IBM model to
measure text quality in automatically-generated texts.

14Pitler et al. (2010) use POS cosine similarity to measure
continuity in automatically-generated texts.

4.8 Locally-Weighted Bag-of-Words

The popular bag-of-words (BOW) assumption rep-
resents a text as a histogram of word occurrences.
While computationally efficient, such a represen-
tation is unable to maintain any sequential infor-
mation. The locally-weighted bag-of-words (LOW-
BOW) framework, introduced by Lebanon et al.
(2007), is a sequentially-sensitive alternative to
BOW. In BOW, we represent a text as a histogram
over the vocabulary used to generate that text. In
LOWBOW, a text is represented by a set of lo-
cal histograms computed across the whole text, but
smoothed by kernels centered on different locations.

More specifically, a smoothed characterization
of the local histogram is obtained by integrating a
length-normalized document with respect to a non-
uniform measure that is concentrated around a par-
ticular location µ ∈ [0, 1]. In accordance with the
statistical literature on non-parametric smoothing,
we refer to such a measure as a smoothing kernel.
The kernel parameters µ and σ specify the local his-
togram’s position in the text (i.e., where it is cen-
tered) and its scale (i.e., to what extent it is smoothed
over the surrounding region) respectively. In con-
trast to BOW or n-grams, which keep track of fre-
quently occurring patterns independent of their po-
sitions, this representation is able to robustly capture
medium and long range sequential trends in a text by
keeping track of changes in the histograms from its
beginning to end.

Geometrically, LOWBOW uses local smoothing
to embed texts as smooth curves in the multinomial
simplex. These curves summarize the progression
of semantic and/or statistical trends through the text.
By varying the amount of smoothing we obtain a
family of sequential representations possessing dif-
ferent sequential resolutions or scales. Low resolu-
tion representations capture topic trends and shifts
while ignoring finer details. High resolution repre-
sentations capture fine sequential details but make it
difficult to grasp the general trends within the text15.

Since coherence involves both cohesive lexical
devices and sequential progression within a text, we
believe that LOWBOW can be used to assess the se-
quential content and the global structure and coher-

15For more details regarding LOWBOW and its geometric
properties see Lebanon et al. (2007).
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ence of texts. We use a publically-available LOW-
BOW implementation16 to create local histograms
over word unigrams. For the LOWBOW kernel
smoothing function (see above), we use the Gaus-
sian probability density function restricted to [0, 1]
and re-normalized, and a smoothing σ value of 0.02.
Additionally, we consider a total number of 9 local
histograms (discourse segments). We further extend
the above model and incorporate syntactic aspects of
text coherence by using local histograms over POS
unigrams. This representation is able to capture se-
quential trends abstracted into POS tags. We try
to model the hypothesis that coherence is signaled
by sequential, mostly inter-sentential progression of
POS types.

Since each text is represented by a set of local
histrograms/vectors, and standard SVM kernels can-
not work with such input spaces, we use instead a
kernel defined over sets of vectors: the diffusion
kernel (Lafferty and Lebanon, 2005) compares lo-
cal histograms in a one-to-one fashion (i.e., his-
tograms at the same locations are compared to each
other), and has proven to be useful for related tasks
(Lebanon et al., 2007; Escalante et al., 2011). To the
best of our knowledge, LOWBOW representations
have not been investigated for coherence evaluation
(under the AA framework). So far, they have been
applied to discourse segmentation (AMIDA, 2007),
text categorization (Lebanon et al., 2007), and au-
thorship attribution (Escalante et al., 2011).

5 Evaluation

We examine the predictive power of each of the co-
herence models/features described in Section 4 by
measuring the effect on performance when com-
bined with an AA system that achieves state-of-the-
art results on the FCE dataset, but does not use dis-
course coherence features. In particular, we use the
system described in Yannakoudakis et al. (2011) as
our baseline AA system. Discourse coherence is a
strong indicator of thorough knowledge of a second
language and thus we expect coherence features to
further improve performance of AA systems.

We evaluate the grade predictions of our mod-
els against the gold standard grades in the dataset
using Pearson’s product-moment correlation coeffi-

16http://goo.gl/yQ0Q0

cient (r) and Spearman’s rank correlation coefficient
(ρ) as is standard in AA research (Briscoe et al.,
2010). Table 1 gives results obtained by augmenting
the baseline model with each of the coherence fea-
tures described above. In each of these experiments,
we perform 5-fold cross-validation17 using all 1,141
texts from the exam year 2000 (see Section 3).

Most of the resulting models have minimal ef-
fect on performance18. However, word length, ISA,
LOWBOWlex, and the IBM modelPOSf derived mod-
els all improve performance, while larger differ-
ences are observed in r. The highest performance
– 0.675 and 0.678 – is obtained with ISA, while the
second best feature is word length. The entity-grid,
the pronoun model and the discourse-new model do
not improve on the baseline. Although these mod-
els have been successfully used as components in
state-of-the-art systems for discriminating coherent
from incoherent news documents (Elsner and Char-
niak, 2011b), and the entity-grid model has also
been successfully applied to learner text (Burstein
et al., 2010), they seem to have minimal impact
on performance, while the discourse-new model de-
creases ρ by˜0.01. On the other hand, LOWBOWlex
and LOWBOWPOS give an increase in performance,
which confirms our hypothesis that local histograms
are useful. Also, the former seems to perform
slightly better than the latter.

Our adapted version of the IBM model – IBM
modelPOS – performs better than its lexicalized ver-
sion, which does not have an impact on perfor-
mance, while larger differences are observed in r.
Additionally, the increase in performance is larger
than the one obtained with the entity-grid, pro-
noun or discourse-new model. The forward ver-
sion of IBM modelPOS seems to perform slightly
better than the backward one, while the results are
comparable to LOWBOWPOS and outperformed by
LOWBOWlex. The rest of the models do not perform
as well; the number of pronouns or discourse con-
nectives gives low results, while lemma and POS co-
sine similarity between adjacent sentences are also

17We compute mean values of correlation coefficients by first
applying the r-to-Z Fisher transformation, and then using the
Fisher weighted mean correlation coefficient (Faller, 1981).

18Significance tests in averaged correlations are omitted as
variable estimates are produced, whose variance is hard to be
estimated unbiasedly.
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r ρ

0 Baseline 0.651 0.670
1 POS distr. 0.653 0.670
2 Disc. connectives 0.648 0.668
3 Word length 0.667 0.676
4 ISA 0.675 0.678
5 EGrid 0.650 0.668
6 Pronoun 0.650 0.668
7 Disc-new 0.646 0.662
8 LOWBOWlex 0.663 0.677
9 LOWBOWPOS 0.659 0.674

10 IBM modellexf 0.649 0.668
11 IBM modellexb 0.649 0.667
12 IBM modelPOSf 0.661 0.672
13 IBM modelPOSb 0.658 0.669
14 Lemma cosine 0.651 0.667
15 POS cosine 0.650 0.665
16 5+6+7+10+11 0.648 0.665
17 All 0.677 0.671

Table 1: 5-fold cross-validation performance on texts
from year 2000 when adding different coherence features
on top of the baseline AA system.

among the weakest predictors.
Elsner and Charniak (2011b) have shown that

combining the entity-grid with the pronoun,
discourse-new and lexicalized IBM models gives
state-of-the-art results for discriminating news docu-
ments and their random permutations. We also com-
bine these models and assess their performance un-
der the AA framework. Row 16 of Table 1 shows
that the combination does not give an improvement
over the individual models. Moreover, combining
all feature classes together in row 17 does not yield
higher results than those obtained with ISA, while ρ
is no better than the baseline.

In the following experiments, we evaluate the best
model identified on year 2000 on a set of 97 texts
from the exam year 2001, previously used in Yan-
nakoudakis et al. (2011) to report results of the fi-
nal best system. Validating the model on a different
exam year also shows us the extent to which it gen-
eralizes between years. Table 2 presents the results.
The published correlations on this dataset are 0.741
and 0.773 r and ρ respectively. Adding ISA on top
of the previous system significantly improves19 the

19Calculated using one-tailed tests for the difference between

r ρ

Baseline 0.741 0.773
ISA 0.749 0.790?

Table 2: Performance on the exam scripts drawn from the
examination year 2001. ? indicates a significant improve-
ment at α = 0.05.

published results on the 2001 texts, getting closer to
the upper-bound. The upper-bound on this dataset20

is 0.796 and 0.792 r and ρ respectively, calculated
by taking the average correlation between the FCE
grades and the ones provided by 4 senior ESOL ex-
aminers21. Table 3 also presents the average corre-
lation between our extended AA system’s predicted
grades and the 4 examiners’ grades, in addition to
the original FCE grades from the dataset. Again,
our extended model improves over the baseline.

Finally, we explore the utility of our best model
for assessing the publically available ‘outlier’ texts
used in Yannakoudakis et al. (2011). The previous
AA system is unable to downgrade appropriately
‘outlier’ scripts containing individually high-scoring
sentences with poor overall coherence, created by
randomly ordering a set of highly-marked texts. To
test our best system, we train an SVM rank prefer-
ence model with the ISA-derived coherence feature,
which can explicitly capture such sequential trends.
A generic model for flagging putative ‘outlier’ texts
– whose predicted score is lower than a predefined
threshold – for manual checking might be used as
the first stage of a deployed AA system. The ISA
model improves r and ρ by 0.320 and 0.463 respec-
tively for predicting a score on this type of ‘outlier’
texts and their original version (Table 4).

6 Analysis & Discussion

In the previous section, we evaluated various co-
hesion and coherence features on learner data, and
found different patterns of performance compared to
those previously reported on news texts (see Section
7 for more details). Although most of the models ex-
amined gave a minimal effect on AA performance,
ISA, LOWBOWlex, IBM modelPOSf and word length

dependent correlations (Williams, 1959; Steiger, 1980).
20See Yannakoudakis et al. (2011) for details.
21The examiners’ scores are also distributed with the FCE

dataset.
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r ρ

Baseline 0.723 0.721
ISA 0.727 0.736

Table 3: Average correlation between the AA model, the
FCE dataset grades, and 4 examiners on the exam scripts
from year 2000.

r ρ

Baseline 0.08 0.163
ISA 0.400 0.626

Table 4: Performance of the ISA AA model on outliers.

gave a clear improvement in correlation, with larger
differences in r. Our results indicate that coherence
metrics further improve the performance of a com-
petitive AA system. More specifically, we found the
ISA-derived feature to be the most effective contrib-
utor to the prediction of text quality. This suggests
that incoherence in FCE texts might be due to topic
discontinuities. Also, the improvement obtained by
LOWBOW suggests that patterns of sequential pro-
gression within a text can be useful: coherent texts
appear to use similar token distributions at similar
locations across different documents.

The word length feature was successfully used as
a proxy for coherence, perhaps because many cohe-
sive words are longer than average. However, such
a feature can also capture further aspects of texts,
such as lexical complexity, so further investigation
is needed to identify the extent to which it measures
different properties. On the other hand, the minimal
effect of the entity-grid, pronoun and discourse-new
model suggests that infelicitous use of pronominal
forms or sequences of entities may not be an issue
in FCE texts. Preliminary investigation of the scripts
showed that learners tend to repeat the same entity
names or descriptions rather than use pronouns or
shorter descriptions.

A possible explanation for the difference in per-
formance between the lexicalized and POS IBM
model is that the latter abstracts away from lexi-
cal information and thus avoids misspellings and
reduces sparsity. Also, our discourse connective
classes do not seem to have a predictive power. This
may be because our manually-built word lists do not
have sufficient coverage.

7 Previous Work

Comparatively few metrics have been investigated
for evaluating coherence in (ESOL) learner texts.
Miltsakaki and Kukich (2004) employ e-Rater (At-
tali and Burstein, 2006), an essay scoring system,
and show that Centering Theory’s Rough-Shift tran-
sitions (Grosz et al., 1995) contribute significantly to
the assessment of learner texts. Higgins et al. (2004)
and Higgins and Burstein (2007) use RI to deter-
mine the semantic similarity between sentences of
same/different discourse segments. Their model is
based on a number of different semantic similarity
scores and assesses the percentage of sentences that
are correctly classified as (un)related. Among their
results, they found that it is hard to beat the baseline
(as 98.1% of the sentences were annotated as ‘highly
related’) and identify sentences which are not related
to other ones in the same discourse segment. We
demonstrate that the related fully-incremental ISA
model can be used to improve AA grading accuracy
on the FCE dataset, as opposed to classifying the
(non-)relatedness of sentences.

Burstein et al. (2010) show how the entity-grid
can be used to discriminate high-coherence from
low-coherence learner texts. They augment this
model with additional features related to writing
quality and word usage, and show a positive effect
in performance for automated coherence prediction
of student essays of different populations. On the
FCE dataset used here, entity-grids do not improve
AA grading accuracy. This may be because the texts
are shorter or because grading is a more difficult task
than binary classification. Application of their aug-
mented entity-grid model to FCE texts would be an
interesting avenue for future research.

Foltz et al. (1998) examine local coherence in
textbooks and articles using Latent Semantic Anal-
ysis (LSA) (Landauer et al., 2003). They assess se-
mantic relatedness using vector-based similarity be-
tween adjacent sentences. They argue that LSA may
be more appropriate for comparing the relative qual-
ity of texts; for determining the overall text coher-
ence it may be difficult to set a criterion for the co-
herence value since it depends on a variety of dif-
ferent factors, such as the size of the text units to be
compared. Nevertheless, our results show that ISA,
a similar distributional semantic model with dimen-
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sionality reduction, improves FCE grading accuracy.
Barzilay and Lee (2004) implement lexicalized

content models that represent global text proper-
ties on news articles and narratives using Hidden
Markov Models (HMMs). In the HMM, states cor-
respond to distinct topics, and transitions between
states represent the probability of moving from one
topic to another. This approach has the advantage
of capturing the order in which different topics ap-
pear in texts; however, the HMMs are highly domain
specific and would probably need retraining for each
distinct essay prompt.

Soricut and Marcu (2006) use a log-linear model
that combines local and global models of coher-
ence and show that it outperforms each of the in-
dividual ones on news articles and accident reports.
Their global model is based on the document con-
tent model proposed by Barzilay and Lee (2004).
Their local model of discourse coherence is based
on the entity-grid (Barzilay and Lapata, 2008), as
well as on the lexicalized IBM model (see Section
4.6 above); we have experimented with both, and
showed that they have a minimal effect on grading
performance with the FCE dataset.

Elsner and Charniak (2008;2011a) apply a
discourse-new classifier and a pronoun coreference
system to model coherence (see Section 4) on dia-
logue and news texts. They found that combining
these models with the entity-grid achieves state-of-
the-art performance. We found that such a combina-
tion, as well as the individual models do not perform
well for grading the FCE texts.

Recently, Elsner and Charniak (2011a) proposed a
variation of the entity-grid intended to integrate top-
ical information. They use Latent Dirichlet Alloca-
tion (Blei et al., 2003) to learn topic-to-word distri-
butions, and model coherence by generalizing the bi-
nary history features of the entity-grid and comput-
ing a real-valued feature which represents the simi-
larity between an entity and the subject(s) of the pre-
vious sentence. Also, Lin et al. (2011) proposed a
model that assesses the coherence of a text based on
discourse relation transitions. The underlying idea
is that coherent texts exhibit measurable preferences
for specific intra- and inter-discourse relation order-
ing. They found their model to be complementary to
the entity-grid, as it encodes the notion of preferen-
tial ordering of discourse relations, and thus tackles

local coherence from a different perspective. Apply-
ing the above models to AA on learner texts would
also be an interesting avenue for future work.

8 Conclusion

We presented the first systematic analysis of a wide
variety of models for assessing discourse coherence
on learner data, and evaluated their individual per-
formance as well as their combinations for the AA
grading task. We adapted the LOWBOW model for
assessing sequential content in texts, and showed
evidence supporting our hypothesis that local his-
tograms are useful. We also successfully adapted
ISA, an efficient and incremental variant distribu-
tional semantic model, to this task. ISA, LOWBOW,
the POS IBM model and word length are the best in-
dividual features for assessing coherence.

A significant improvement over the AA system
presented in Yannakoudakis et al. (2011) and the
best published result on the FCE dataset was ob-
tained by augmenting the system with an ISA-based
local coherence feature. However, it is quite likely
that further experimentation with LOWBOW fea-
tures, given the large range of possible parameter
settings, would yield better results too.

We also explored the robustness of the ISA model
of local coherence on ‘outlier’ texts and achieved
much better correlations with the examiner’s grades
for these texts in the FCE dataset. This should facil-
itate development of an automated system to detect
essays consisting of high-quality but incoherent se-
quences of sentences.

All our results are specific to ESOL FCE texts and
may not generalize to other genres or ESOL attain-
ment levels. Future work should also investigate a
wider range of (learner) texts and further coherence
models, such as that of Elsner and Charniak (2011a)
and Lin et al. (2011).
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Abstract

To date, most work in grammatical error cor-
rection has focused on targeting specific er-
ror types. We present a probe study into
whether we can use round-trip translations ob-
tained from Google Translate via 8 different
pivot languages for whole-sentence grammat-
ical error correction. We develop a novel
alignment algorithm for combining multiple
round-trip translations into a lattice using the
TERp machine translation metric. We further
implement six different methods for extract-
ing whole-sentence corrections from the lat-
tice. Our preliminary experiments yield fairly
satisfactory results but leave significant room
for improvement. Most importantly, though,
they make it clear the methods we propose
have strong potential and require further study.

1 Introduction

Given the large and growing number of non-native
English speakers around the world, detecting and
correcting grammatical errors in learner text cur-
rently ranks as one of the most popular educational
NLP applications. Previously published work has
explored the effectiveness of using round-trip ma-
chine translation (translating an English sentence
to some foreign language F, called the pivot, and
then translating the F language sentence back to En-
glish) for correcting preposition errors (Hermet and
Désilets, 2009). In this paper, we present a pilot
study that explores the effectiveness of extending

∗cf. Good Applications for Crummy Machine Translation.
Ken Church & Ed Hovy. Machine Translation, 8(4). 1993

this approach to whole-sentence grammatical error
correction.

Specifically, we explore whether using the con-
cept of round-trip machine translation via multi-
ple—rather than single—pivot languages has the po-
tential of correcting most, if not all, grammatical
errors present in a sentence. To do so, we de-
velop a round-trip translation framework using the
Google Translate API. Furthermore, we propose a
novel combination algorithm that can combine the
evidence present in multiple round-trip translations
and increase the likelihood of producing a whole-
sentence correction. Details of our methodology are
presented in §3 and of the dataset we use in §4. Since
this work is of an exploratory nature, we conduct a
detailed error analysis and present the results in §5.
Finally, §6 summarizes the contributions of this pi-
lot study and provides a discussion of possible future
work.

2 Related Work

To date, most work in grammatical error detection
has focused on targeting specific error types (usu-
ally prepositions or article errors) by using rule-
based methods or statistical machine-learning clas-
sification algorithms, or a combination of the two.
Leacock et al. (2010) present a survey of the com-
mon approaches. However, targeted errors such as
preposition and determiner errors are just two of the
many types of grammatical errors present in non-
native writing. One of the anonymous reviewers for
this paper makes the point eloquently: “Given the
frequent complexity of learner errors, less holistic,
error-type specific approaches are often unable to
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disentangle compounded errors of style and gram-
mar.” Below we discuss related work that uses ma-
chine translation to address targeted errors and some
recent work that also focused on whole-sentence er-
ror correction.

Brockett et al. (2006) use information about mass
noun errors from a Chinese learner corpus to engi-
neer a “parallel” corpus with sentences containing
mass noun errors on one side and their corrected
counterparts on the other. With this parallel corpus,
the authors use standard statistical machine transla-
tion (SMT) framework to learn a translation (correc-
tion) model which can then be applied to unseen sen-
tences containing mass noun errors. This approach
was able to correct almost 62% of the errors found
in a test set of 150 errors. In our approach, we do not
treat correction directly as a translation problem but
instead rely on an MT system to round-trip translate
an English sentence back to English.

Park and Levy (2011) use a noisy channel model
to achieve whole-sentence grammar correction; they
learn a noise model from a dataset of errorful sen-
tences but do not rely on SMT. They show that the
corrections produced by their model generally have
higher n-gram overlap with human-authored refer-
ence corrections than the original errorful sentences.

The previous work that is most directly rele-
vant to our approach is that of Hermet and Désilets
(2009) who focused only on sentences containing
pre-marked preposition errors and generated a sin-
gle round-trip translation for such sentences via a
single pivot language (French). They then simply
posited this round-trip translation as the “correc-
tion” for the original sentence. In their evaluation
on sentences containing 133 unique preposition er-
rors, their round-trip translation system was able to
correct 66.4% of the cases. However, this was out-
performed by a simple method based on web counts
(68.7%). They also found that combining the round-
trip method with the web counts method into a hy-
brid system yielded higher performance (82.1%).

In contrast, we use multiple pivot languages to
generate several round-trip translations. In addition,
we use a novel alignment algorithm that allows us to
combine different parts of different round-trip trans-
lations and explore a whole new set of corrections
that go beyond the translations themselves. Finally,
we do not restrict our analysis to any single type of

error. In fact, our test sentences contain several dif-
ferent types of grammatical errors.

Outside of the literature on grammatical error de-
tection, our combination approach is directly related
to the research on machine translation system com-
bination wherein translation hypotheses produced
by different SMT systems are combined to allow the
extraction of a better, combined hypothesis (Ban-
galore et al., 2001; Rosti et al., 2007; Feng et al.,
2009). However, our combination approach is dif-
ferent in that all the round-trip translations are pro-
duced by a single system but via different pivot lan-
guages.

Finally, the idea of combining multiple surface
renderings with the same meaning has also been ex-
plored in paraphrase generation. Pang et al. (2003)
propose an algorithm to align sets of parallel sen-
tences driven entirely by the syntactic representa-
tions of the sentences. The alignment algorithm out-
puts a merged lattice from which lexical, phrasal,
and sentential paraphrases could simply be read off.
Barzilay and Lee (2003) cluster topically related
sentences into slotted word lattices by using mul-
tiple sequence alignment for the purpose of down-
stream paraphrase generation from comparable cor-
pora. More recently, Zhao et al. (2010) perform
round-trip translation of English sentences via dif-
ferent pivot languages and different off-the-shelf
SMT systems to generate candidate paraphrases.
However, they do not combine the candidate para-
phrases in any way. A detailed survey of paraphrase
generation techniques can be found in (Androut-
sopoulos and Malakasiotis, 2010) and (Madnani and
Dorr, 2010).

3 Methodology

The basic idea underlying our error correction tech-
nique is quite simple: if we can automatically gen-
erate alternative surface renderings of the meaning
expressed in the original sentence and then pick the
one that is most fluent, we are likely to have picked
a version of the sentence in which the original gram-
matical errors have been fixed.

In this paper, we propose generating such alter-
native formulations using statistical machine trans-
lation. For example, we take the original sentence E
and translate it to Chinese using the Google Trans-
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Original Both experience and books are very important about living.
Swedish Both experience and books are very important in live.
Italian Both books are very important experience and life.

Russian And the experience, and a very important book about life.
French Both experience and the books are very important in life.

German Both experience and books are very important about life.
Chinese Related to the life experiences and the books are very important.
Spanish Both experience and the books are very important about life.
Arabic Both experience and books are very important for life.

Figure 1: Illustrating the deficiency in using an n-gram language model to select one of the 8 round-trip translations
as the correction for the Original sentence. The grammatical errors in the Original sentence are shown in italics. The
round-trip translation via Russian is chosen by a 5-gram language model trained on the English gigaword corpus even
though it changes the meaning of the original sentence entirely.

late API. We then take the resulting Chinese sen-
tence C and translate it back to English. Since
the translation process is designed to be meaning-
preserving, the resulting round-trip translation E’
can be seen as an alternative formulation of the orig-
inal sentence E. Furthermore, if additional pivot lan-
guages besides Chinese are used, several alterna-
tive formulations of E can be generated. We use 8
different pivot languages: Arabic, Chinese, Span-
ish, French, Italian, German, Swedish, Russian. We
chose these eight languages since they are frequently
used in SMT research and shared translation tasks.
To obtain the eight round-trip translations via each
of these pivot languages, we use the Google Trans-
late research API.1

3.1 Round-Trip Translation Combination

Once the translations are generated, an obvious so-
lution is to pick the most fluent alternative, e.g.,
using an n-gram language model. However, since
the language model has no incentive to preserve the
meaning of the sentence, it is possible that it might
pick a translation that changes the meaning of the
original sentence entirely. For example, consider
the sentence and its round-trip translations shown
in Figure 1. For this sentence, a 5-gram language
model trained on gigaword picks the Russian round-
trip translation simply because it has n-grams that
were seen more frequently in the English gigaword
corpus.

Given the deficiencies in statistical phrase-based
translation, it is also possible that no single round-

1http://research.google.com/university/
translate/

trip translation fixes all of the errors. Again, con-
sider Figure 1. None of the 8 round-trip transla-
tions is error-free itself. Therefore, the task is more
complex than simply selecting the right round-trip
translation. We posit that a better approach will be
to combine the evidence of correction produced by
each independent translation model and increase the
likelihood of producing a final whole-sentence cor-
rection. Additionally, by engineering such a combi-
nation, we increase the likelihood that the final cor-
rection will preserve the meaning of the original sen-
tence.

In order to combine the round-trip translations,
we developed a heuristic alignment algorithm that
uses the TERp machine translation metric (Snover
et al., 2009). The TERp metric takes a pair of sen-
tences and computes the least number of edit opera-
tions that can be employed to turn one sentence into
the other.2 As a by-product of computing the edit
sequence, TERp produces an alignment between the
two sentences where each alignment link is defined
by an edit operation. Figure 2 shows an example of
the alignment produced by TERp between the orig-
inal sentence from Figure 1 and its Russian round-
trip translation. Note that TERp also allows shifting
words and phrases in the second sentence in order
to obtain a smaller edit cost (as indicated by the as-
terisk next to the word book which has shifted from
its original position in the Russian round-trip trans-
lation).

Our algorithm starts by treating the original sen-
tence as the backbone of a lattice. First, it cre-

2Edit operations in TERp include matches, substitutions, in-
sertion, deletions, paraphrase, synonymy and stemming.
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ates a node for each word in the original sentence
and creates edges between them with a weight of
1. Then, for each of the round-trip translations, it
computes its TERp alignment with the original sen-
tence and aligns it to the backbone based on the edit
operations in the alignment. Specifically, each in-
sertion, substitution, stemming, synonymy and para-
phrase operation lead to creation of new nodes that
essentially provide an alternative formulation for the
aligned substring from the backbone. Any duplicate
nodes are merged. Finally, edges produced by dif-
ferent translations between the same pairs of nodes
are merged and their weights added. Figure 3(a)
shows how our algorithm aligns the Russian round-
trip translation from Figure 1 to the original sentence
using the TERp alignment from Figure 2. Figure
3(b) shows the final lattice produced by our algo-
rithm for the sentence and all the round-trip transla-
tions from Figure 1.

-- and [I]
both -- the [S]

experience -- experience [M]
-- , [I]

and -- and [M]
books -- book [T] [*]

are -- a [S]
very -- very [M]

important -- important [M]
about -- about [M]

living -- life [Y]
. -- . [M]

Figure 2: The alignment produced by TERp between the
original sentence from Figure 1 and its Russian round-
trip translation. The alignment operations are indicated
in square brackets after each alignment link: I=insertion,
M=match, S=substitution, T=stemming and Y=WordNet
synonymy. The asterisk next to the work book denotes
that TERp chose to shift its position before computing an
edit operation for it.

3.2 Correction Generation

For each original sentence, we computed six possi-
ble corrections from the round-trip translations and
the combined lattice:

1. Baseline LM (B). The most fluent round-trip
translation out of the eight as measured by a
5-gram language model trained on the English

gigaword corpus.

2. Greedy (G). A path is extracted from the TERp
lattice using a greedy best-first strategy at each
node, i.e., at each node, the outgoing edge with
the largest weight is followed.

3. 1-Best (1): The shortest path is extracted
from the TERp lattice by using the OpenFST
toolkit.3. This method assumes that, like G, the
combined evidence from the round-trip trans-
lations itself is enough to produce a good final
correction and no external method for measur-
ing fluency is required.4

4. LM Re-ranked (L). An n-best (n=20) list is
extracted from the lattice using the OpenFST
toolkit and re-ranked using the 5-gram giga-
word language model. The 1-best reranked
item is then extracted as the correction. This
method assumes that an external method
of measuring fluency—the 5-gram language
model—can help to bring the most grammati-
cal correction to the top of the n-best list.

5. Product Re-ranked (P). Same as L except the
re-ranking is done based on the product of the
cost of each hypothesis in the n-best list and
the language model score, i.e., both the evi-
dence from the round-trip translations and the
language model is weighted equally.

6. Full LM Composition (C). The edge weights
in the TERp lattice are converted to probabil-
ities. The lattice is then composed with a tri-
gram finite state language model (trained on
a corpus of 100, 000 high-scoring student es-
says).5 The shortest path through the composed
lattice is then extracted as the correction. This
method assumes that using an n-gram language
model during the actual search process is better
than using it as a post-processing tool on an al-
ready extracted n-best list, such as for L and
P.

3http://www.openfst.org/
4Note that the edge weights in the lattice must be converted

into costs for this method (we do so by multiplying the weights
by −1).

5We adapted the code available at http://www.
ling.ohio-state.edu/˜bromberg/ngramcount/
ngramcount.html to perform the LM composition.
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No. of Errors Sentences Avg. Length
1 61 14.4
2 45 19.9
3 29 24.2
4 14 29.4

> 4 13 38.0

Table 1: The distribution of grammatical errors for the
162 errorful sentences.

Figure 3(c) shows these six corrections as computed
for the sentence from Figure 1.

4 Corpus

To assess our system, we manually selected 200
sentences from a corpus of essays written by non-
native English speakers for a college-level English
proficiency exam. In addition to sentences contain-
ing grammatical errors, we also deliberately sam-
pled sentences that contained no grammatical errors
in order to determine how our techniques perform
in those cases. In total, 162 of the sentences con-
tained at least one error, and the remaining 38 were
perfectly grammatical. For both errorful as well
as grammatical sentences, we sampled sentences of
different lengths (under 10 words, 10-20 words, 20-
30 words, 30-40 words, and over 40 words). The
162 errorful sentences varied in the number and type
of errors present. Table 1 shows the distribution of
the number of errors across these 162 sentences.

Specifically, the error types found in these sen-
tences included prepositions, articles, punctuation,
agreement, collocations, confused words, etc. Some
only contained a handful of straightforward errors,
such as “In recent day, transportation is one of the
most important thing to support human activity”,
where day and thing should be pluralized. On the
other hand, others were quite garbled to the point
where it was difficult to understand the meaning,
such as “Sometimes reading a book is give me in-
formation about the knowledge of life so that I can
prevent future happened but who knows that when it
will happen and how fastly can react to that hap-
pen.” During development, we noticed that the
round-trip translation process could not handle mis-
spelled words, so we manually corrected all spelling
mistakes which did not result in a real word.6

6A total of 82 spelling errors were manually corrected.

5 Evaluation

In order to evaluate the six techniques for generating
corrections, we designed an evaluation task where
the annotators would be shown a correction along
with the original sentence for which it was gener-
ated. Since there are 6 corrections for each of the
200 sentences, this yields a total of 1, 200 units for
pairwise preference judgments. We chose two anno-
tators, both native English speakers, each of whom
annotated half of the judgment units.

Given the idiosyncrasies of the statistical machine
translation process underlying our correction tech-
niques, it is quite possible that:

• A correction may fix some, but not all, of the
grammatical errors present in the original sen-
tence, and

• A correction may be more fluent but might
change the meaning of the original sentence.

• A correction may introduce a new disfluency,
even though other errors in the sentence have
been largely corrected. This is especially likely
to be the case for longer sentences.

Therefore, the pairwise preference judgment task
is non-trivial in that it expects the annotators to con-
sider two dimensions: that of grammaticality and of
meaning. To accommodate these considerations, we
designed the evaluation task such that it asked the
annotators to answer the following two questions:

1. Grammaticality. The annotators were asked
to choose between three options: “Original
sentence sounds better”, “Correction sounds
better” and “Both sound about the same”.

2. Meaning. The annotators were asked to choose
between two options: “Correction preserves
the original meaning” and “Correction changes
the original meaning”. It should be noted that
determining change in or preservation of mean-
ing was treated as a very strict judgment. Subtle
changes such as the omission of a determiner
were deemed to change the meaning. In some
cases, the original sentences were too garbled
to determine the original meaning itself.
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C > O C = O C < O
Meaning = 1 S D F
Meaning = 0 F F F

Table 2: A matrix illustrating the Success-Failure-Draw
evaluation criterion for the 162 errorful sentences. The
rows represent the meaning dimension (1 = meaning pre-
served, 0 = meaning changed) and the columns represent
the grammaticality dimension (C > O denotes correc-
tion being more grammatical than the original, C = O
denotes they are about the same and C < O denotes that
the correction is worse). Such a matrix is computed for
each of the six techniques.

5.1 Effectiveness

First, we concentrate our analysis on the original
sentences which contain at least one grammatical er-
ror. We aggregated the results of the pairwise pref-
erence judgments for each of the six specific correc-
tion generation techniques and applied the strictest
evaluation criterion by computing the following, for
each technique:

• Successes. Only those sentences for which
the correction generated by method is not only
more grammatical but also preserves the mean-
ing.

• Failures. All those sentences for which the cor-
rection is either less grammatical or changes
the original meaning.

• Draws. Those sentences for which the correc-
tion preserves the meaning but sounds about
the same as the original.

Table 2 shows a matrix of the six possible com-
binations of grammaticality and meaning for each
method and demonstrates which cells of the matrix
contribute to which of the above three measures:
Successes (S), Failures (F) and Draws (D).

In addition to the six techniques, we also posit an
oracle in order to determine the upper bound on the
performance of our round-trip translation approach.
The oracle picks the most accurate correction gen-
eration method for each individual sentence out of
the 6 that are available. For sentences where none of
the six techniques produce an adequate correction,
the oracle just picks the original sentence. Table 3

shows how the various techniques (including the or-
acle) perform on the 162 errorful sentences as mea-
sured by this criterion. Based on this criterion, the
greedy technique performs the best compared to the
others since it has a higher success rate (36%) and
a lower failure rate (31%). The oracle shows that
60% of the errorful sentences are fixed by at least
one of the six correction generation techniques. We
show examples of success and failure for the greedy
technique in Figure 4.

5.2 Effect of sentence length

From our observations on development data (not
part of the test set), we noticed that Google Trans-
late, like most statistical machine translation sys-
tems, performs significantly better on shorter sen-
tences. Therefore, we wanted to measure whether
the successes for the best method were biased to-
wards shorter sentences and the failures towards
longer ones. To do so, we measured the mean and
standard deviation of lengths of sentences compris-
ing the successes and failures of the greedy tech-
nique. Successful sentences had an average length
of approximately 18 words with a standard devia-
tion of 9.5. Failed sentences had an average length
of 23 words with a standard deviation of 12.31.
These numbers indicate that although the failures
are somewhat correlated with larger sentence length,
there is no evidence of a significant length bias.

5.3 Effect on grammatical sentences

Finally, we also carried out the same Success-
Failure-Draw analysis for the 38 sentences in our
test set that were perfectly grammatical to begin
with. The analysis differs from that of errorful sen-
tences in one key aspect: since the sentences are al-
ready free of any grammatical errors, no correction
can be grammatically better. Therefore, sentences
for which the correction preserves the meaning and
is not grammaticality worse will count as successes
and all other cases will count as failures. There are
no draws. Table 4 illustrates this difference and Ta-
ble 5 presents the success and failure rates for all six
methods. The greedy technique again performs the
best out of all six methods and successfully retains
the meaning and grammaticality for almost 80% of
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Method Success Draw Failure
Baseline LM (B) 21% (34) 9% (15) 70% (113)
Greedy (G) 36% (59) 33% (52) 31% (51)
1-best (1) 32% (52) 30% (48) 38% (62)
LM Re-ranked (L) 30% (48) 17% (27) 54% (87)
Product Re-ranked (P) 23% (37) 38% (61) 40% (64)
LM Composition (C) 19% (31) 12% (20) 69% (111)
Oracle 60% (97) 40% (65) -

Table 3: The success, draw and failure rates for the six correction generation techniques and the oracle as computed for
the 162 errorful sentences from the test set. The oracle picks the method that produces the most meaning-preserving
and grammatical correction for each sentence. For sentences that have no adequate correction, it picks the original
sentence. Numbers in parentheses represent counts.

Success

That’s why I like to make travel by using my own car.
That’s why I like to travel using my own car.
Having discuss all this I must say that I must rather prefer to be a leader than just a member.
After discussing all this, I must say that I would prefer to be a leader than a member.

Failure

And simply there is fantastic for everyone
All magical and simply there is fantastic for all
I hope that share a room with she can be certainly kindle, because she is likely me
and so will not be problems with she.
I hope that sharing a room with her can be certainly kindle, because it is likely that
I and so there will be no problems with it.

Figure 4: Two examples of success and failure for the Greedy (G) technique. Original sentences are shown first
followed by the corrections in bold. Grammatical errors in the original sentences are in italics.

the grammatical sentences.7

C > O C = O C < O
Meaning = 1 - S F
Meaning = 0 - F F

Table 4: A matrix illustrating the Success-Draw-Failure
evaluation criterion for the 38 grammatical sentences.
There are no draws and sentences for which corrections
preserve meaning and are not grammatically worse count
as successes. The rest are failures.

6 Discussion & Future Work

In this paper, we explored the potential of a novel
technique based on round-trip machine translation
for the more ambitious and realistic task of whole-
sentence grammatical error correction. Although the
idea of round-trip machine translation (via a single
pivot language) has been explored before in the con-
text of just preposition errors, we expanded on it sig-
nificantly by combining multiple round-trip transla-

7An oracle for this setup is uninteresting since it will simply
return the original sentence for every sentence.

Method Success Failure
Baseline LM (B) 26% (10) 74% (28)
Greedy (G) 79% (30) 21% (8)
1-best (1) 61% (23) 39% (15)
LM Re-ranked (L) 34% (13) 66% (25)
Product Re-ranked (P) 42% (16) 58% (22)
LM Composition (C) 29% (11) 71% (25)

Table 5: The success and failure rates for the six correc-
tion generation techniques as computed for the 38 gram-
matical sentences from the test set.

tions and developed several new methods for pro-
ducing whole-sentence error corrections. Our oracle
experiments show that the ideas we explore have the
potential to produce whole-sentence corrections for
a variety of sentences though there is clearly room
for improvement.

An important point needs to be made regard-
ing the motivation for the round-trip translation ap-
proach. We claim that this approach is useful not
just because it can produce alternative renderings of
a given sentence but primarily because each of those
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renderings is likely to retain at least some of mean-
ing of the original sentence.

Most of the problems with our techniques arise
due to the introduction of new errors by Google
Translate. One could use an error detection sys-
tem (or a human) to explicitly identify spans con-
taining grammatical errors and constrain the SMT
system to translate only these errorful spans while
still retaining the rest of the words in the sentence.
This approach should minimize the introduction of
new errors. Note that Google Translate does not
currently provide a way to perform such selective
translation. However, other open-source SMT sys-
tems such as Moses8 and Joshua9 do. Furthermore,
it might also be useful to exploit n-best translation
outputs instead of just relying on the 1-best as we
currently do.

As an alternative to selective translation, one
could simply extract the identified errorful spans and
round-trip translate each of them individually. For
example, consider the sentence: “Most of all, luck
is null prep no use without a hard work.” where the
preposition of is omitted and there is an extraneous
article a before “hard work”. With this approach,
one would simply provide Google Translate with the
two phrasal spans containing the errors, instead of
the entire sentence.

More generally, although we use Google Trans-
late for this pilot study due to its easy availability, it
might be more practical and useful to rely on an in-
house SMT system that trades-off translation quality
for additional features.

We also found that the language-model based
techniques performed quite poorly compared to the
other techniques. We suspect that this is due to the
fact that Google Translate already employs large-
order language models trained on trillions of words.
Using lower-order models trained on much smaller
corpora might simply introduce noise. However, a
detailed analysis is certainly warranted.

In conclusion, we claim that our preliminary ex-
ploration of large-scale round-trip translation based
techniques yielded fairly reasonable results. How-
ever, more importantly, it makes it clear that, with
additional research, these techniques have the poten-

8http://www.statmt.org/moses
9https://github.com/joshua-decoder

tial to be very effective at whole-sentence grammat-
ical error correction.
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Abstract

Incorrect usage of prepositions and determin-
ers constitute the most common types of er-
rors made by non-native speakers of English.
It is not surprising, then, that there has been
a significant amount of work directed towards
the automated detection and correction of such
errors. However, to date, the use of differ-
ent data sets and different task definitions has
made it difficult to compare work on the topic.
This paper reports on the HOO 2012 shared
task on error detection and correction in the
use of prepositions and determiners, where
systems developed by 14 teams from around
the world were evaluated on the same previ-
ously unseen errorful text.

1 Introduction

It is widely recognized that the correct usage of
determiners and prepositions in English is a ma-
jor problem area for non-native speakers of the lan-
guage.1 The issues here have been explored and
discussed extensively in the literature; an excellent
and up-to-date summary is available in (Leacock et
al., 2010). However, the various teams that have at-
tempted to tackle these problems so far have tended
to use slightly different task specifications, and dif-
ferent data sets for evaluation; this makes it very dif-

1We use the broad term ‘non-native speaker’, abbreviated
‘NNS’, in this paper; other work makes a distinction between
ESL (English as a Second Language) speakers (who live and
speak in a primarily English-speaking environment) or EFL
(English as a Foreign Language) speakers (who are learning En-
glish in a non-English-speaking country.

ficult to compare the results achieved using different
approaches.

To address this problem, the aim of the HOO 2012
Shared Task was to provide a forum for the compar-
ative evaluation of different approaches to the cor-
rection of these errors.2 The shared task provides a
common training dataset, a shared evaluation frame-
work, and a set of previously unseen test data.

These proceedings contain detailed reports by all
14 teams who participated in HOO 2012. The
present paper provides a summary of the task and its
evaluation, and a report on the results of that evalu-
ation.

Section 2 provides an overview of the task and the
timeline across which it was carried out; Section 3
provides details of the participating teams; Section 4
describes the training and test data in more detail;
Section 5 presents the results of the evaluation; and
Section 6 provides some concluding remarks and
discussion, reflecting on lessons learned.

2 The Task

Non-native speakers who are learning English find
prepositions and determiners particularly problem-
atic. The selection of the appropriate preposition in
a given context often appears to be a matter of id-
iom or convention rather than being governed by a
consistent set of rules; and selecting a determiner

2HOO stands for ‘Helping Our Own’, a reflection of the his-
torical origins of the exercise as an attempt to develop tools to
help researchers in natural language processing to write better
papers: see (Dale and Kilgarriff, 2010) for the background to
this enterprise and (Dale and Kilgarriff, 2011) for a report on
the pilot round of the task held in 2011.
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Team ID Group or Institution Subtasks Runs
CU Computer Laboratory, University of Cambridge, UK DRC 8
ET Educational Testing Service, New Jersey, USA DR 3
JU Jadavpur University, Kolkata, India DRC 1
KU Natural Language Processing Lab, Korea University, Seoul, Korea DRC 10
LE KU Leuven, Belgium DRC 2
NA NAIST, Japan DRC 8
NU National University of Singapore, Singapore DRC 1
TC Department of Computer Science and Statistics, Trinity College Dublin, Ireland DRC 10
TH NLPLAB, National Tsing Hua University, Hsinchu, Taiwan DRC 4
UD UKP Lab, Technische Universität Darmstadt, Germany DRC 3
UI Cognitive Computation Group, University of Illinois, USA DRC 10
UT Theoretical Computational Linguistics Group, University of Tübingen, Germany DRC 10
VA Valkuil.net, The Netherlands DRC 6
VT VTEX, Vilnius, Lithuania DRC 9

Table 1: Participating teams

depends on a complex of contextual factors which
is particularly challenging for those whose native
language does not make use of determiners. The
literature suggests that mistakes in the use of the
determiners and prepositions account for 20–50%
of grammar and usage errors; the extent to which
a learner has problems with determiners varies de-
pending on their native language, while the degree of
difficulty experienced with prepositions is less var-
ied (see Chapter 3 in (Leacock et al., 2010)).

For the shared task, we made use of data drawn
from the CLC FCE Dataset, a set of 1,244 exam
scripts written by candidates sitting the Cambridge
ESOL First Certificate in English (FCE) examina-
tion in 2000 and 2001, and made available by Cam-
bridge Universiy Press; see (Yannakoudakis et al.,
2011). This data is described in more detail below.

The version of the data we provided to teams as
training data consisted of the original text as written
by the examination subjects, so it contains many er-
rors besides the preposition and determiner errors; it
thus provides a quite realistic challenge, as opposed
to artificial data sets where the only errors present
are the particular errors of interest. The training data
we provided consisted of the raw, errorful texts, and
for each text file a set of gold-standard standoff an-
notations indicating the locations of the preposition
and determiner errors and their corrections, which
we extracted from the CUP data annotations.

The task consisted in attempting to generate sets
of standoff annotations that matched those in the

gold standard. Teams were to be evaluated on three
subtasks: detection, recognition and correction. The
first of these is a measure of a system’s success in
determining that something is wrong in a text and
that it requires fixing; the second requires also that
the precise extent of the error be identified, and the
correct type assigned; and the third requires that a
correction matching that in the gold standard be of-
fered. Scores on each of these subtasks were com-
puted for preposition and determiner errors com-
bined, and for preposition and determiner errors sep-
arately; thus, each participating system run could
generate up to nine distinct scores. In addition, we
also provided teams with detection, recognition and
correction scores for each of the six base error types
(see Table 2); some teams report on these statistics
in their individual reports.

The training data and evaluation tools were made
available on 27th January 2012; test data was re-
leased on April 6th 2012, with submissions of results
from teams due on April 13th 2012. Teams therefore
had 10 weeks to develop a system that could handle
the training data, and one week to provide results on
the test data.

3 The Participants

At the time we released the training data, 26 teams
registered interest in the task. The test data, re-
ceipt of which required a signed agreement with
Cambridge University Press, was requested by 15
teams; one of these teams subsequently withdrew
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Type Tag Original Correction
Replacement Preposition RT I could only travel on July I could only travel in July
Missing Preposition MT I am looking forward your reply I am looking forward to your reply
Unwanted Preposition UT I have booked a flight to home I have booked a flight home
Replacement Determiner RD wich was situeded on a seaside wich was situeded on the seaside
Missing Determiner MD I will give you all information I will give you all the information
Unwanted Determiner UD One of my hobbies is the photography One of my hobbies is photography

Table 2: Examples of the six base error types

from the competition. The 14 teams who completed
the shared task are listed in Table 1.3

4 The Data

4.1 Basic Statistics

The training data consisted of 1000 files drawn from
the publicly available FCE dataset. These were con-
verted from the native FCE format into the HOO
data format, which was slightly revised from the ver-
sion used in HOO 2011 (see (Dale and Kilgarriff,
2011)). The original data was marked up with all the
errors found by the CUP annotator, but we discarded
annotations of errors other than the six base types we
were interested in, and converted the remaining er-
rors into standoff annotations. The six types, with
examples of each, are shown in Table 2;4 Figure 1
shows a fragment of an FCE data file, and Figure 2
shows a standoff annotation example extracted from
this file in the HOO format.

Elements of some of these files were removed to
dispose of nested edits and other phenomena that
caused difficulties in the preprocessing of the data.5

The resulting set of training data comprised a total
of 374680 words, for an average of 375 words per
file.

The test data consisted of a further 100 previously
unseen files provided to us for this shared task by
CUP. These were processed in the same manner as
the training data. The test data comprised 18013
words, for an average of 180 words per file. Counts

3The ‘Subtasks’ column indicates which subtasks the team
took part in: detection (D), recognition (R) and correction (C).
The ‘Runs’ column is explained later.

4For the present exercise we used the preposition and deter-
miner error tags as provided in the CLE tagset. The full CLE
tagset is described in (Nicholls, 2003).

5This preprocessing step was not perfect, and we subse-
quently discovered it had introduced some noise into the data.

<p>
First I must say that most <#UT>of</#UT>
people don’t see any problems with
<#RV>growing|increasing</#RV>
<#RD>a|the</#RD> list of
<#UP>car’s|car</#UP> owners.
Some of them think that it shows how
<#SX>reach|rich</#SX> our country is.
</p>

Figure 1: A fragment of an FCE data file
<edit type="RD" index="0005"

file="0006" part="1"
start="427" end="428">

<original>a</original>
<corrections>

<correction>the</correction>
</corrections>

</edit>

Figure 2: A standoff error annotation

of the different error types in the training and test
data are provided in Table 3, demonstrating that the
error rate remained fairly constant across training
and test data. However, whereas the training data
included information on author’s first language (L1)
and age range, the L1 information was not present
in the test data, thus removing a potentially useful
feature that some teams may have hoped to exploit.

4.2 Revisions to the Gold-Standard Data
Note that Table 3 shows counts for two versions of
the gold-standard test data: the original version as
derived from the CUP-provided data set (‘Test A’),
and a revised version (‘Test B’) which incorporates
corrections to errors found in the annotations.

The evaluation process quickly revealed that there
appeared to be cases of annotation error in the orig-
inal test data. This concerned us because it meant
that system performance was being under-reported:
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Type # Training # Test A # Test B
UT 822 43 39
MT 1105 57 56
RT 2618 136 148
Prep 4545 236 243
UD 1048 53 62
MD 2230 125 131
RD 609 39 37
Det 3887 217 230
Total 8432 453 473
Words/Error 44.18 39.77 38.08

Table 3: Data statistics

in particular, systems were identifying real errors in
the source texts which had not been annotated in
the gold standard, and were consequently being pe-
nalised for finding spurious errors which were not in
fact spurious.

To address this problem, once teams had submit-
ted their results, we allowed a brief period where
teams could review the gold-standard data to iden-
tify possible corrections to that data. Table 4 shows
the number of revisions requested by each team, and
the number of these revisions that were accepted.
Note that there were a significant number of revi-
sions (99) that were requested by more than one
team, so the total count of revision requests is larger
than the actual number of revisions considered. Of
the total 357 requests, 205 were acted on, in some
cases not in the manner requested by the team; 152
requests led to no changes being made to the anno-
tations.

Note that the teams’ original sets of submitted ed-
its were compared against this revised gold standard,
so there was no sense in which a system’s behaviour
could be tuned to the test data. However, clearly
any given team might stand to benefit from iden-
tifying particular errors their system had identified
that were not in the gold standard, effectively tuning
the test data to system behaviour. Consequently, we
provide results below for both the original and the
revised data sets, and briefly discuss the impact of
these corrections.

5 Results

Each team was allowed to submit up to 10 sepa-
rate ‘runs’ over the test data, thus allowing them to

Team Requested Acted On
CU 51 30
ET 22 18
LE 5 5
NU 83 59
UI 151 54
UT 45 39
Totals 357 205

Table 4: Requests for corrections to the gold-
standard data

have different configurations of their systems evalu-
ated; the number of runs submitted by each team is
shown in Table 1. We report here only on the best-
performing runs from each team.

Teams were asked to indicate whether they had
used only publicly-available data to train their sys-
tems, or whether they had made use of privately-held
data: only the ET and CU teams used privately-held
data, and in the latter case only for a subset of their
runs. In the tabulated results provided here, reported
runs that involve privately-held data are marked with
an asterisk.

The results of the evaluation are provided here in
six tables. Tables 5 and 6 provide results for prepo-
sition and determiner errors combined; Tables 7 and
8 provide results for preposition errors only; and Ta-
bles 9 and 10 provide results for determiner errors
only. In each pair, the first table shows results before
the revisions described in Section 4.2 were carried
out, and the second table shows the results using the
revised gold-standard data. Each table shows preci-
sion, recall and F-score (computed as the harmonic
mean) for each of detection, recognition and correc-
tion; for each of these, the best score is shown in
bold.6 Note that team ET did not participate in the
correction subtask.

The scores for all teams improve as a consequence
of the revisions being made to the data. The result of
a paired t-test on the ‘before’ and ‘after’ combined
preposition and determiner scores across teams was
statistically significant (t = −3.17, df(12), p < .01);

6The precise definitions of these measures as imple-
mented in the evaluation tool, and further details on
the evaluation process, are provided in (Dale and Nar-
roway, 2012) and elaborated on at the HOO website at
www.correcttext.org/hoo2012.
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F-scores improved by a mean value of 2.32. The
same analyses for preposition scores also resulted
in significant improvement (t = −3.29, df(12),
p < .01), with a mean improvement in F-scores
of 2.6. A smaller (but still statistically significant)
improvement in determiner scores was also present
(t = −2.86, df(12), p < .05), with a mean improve-
ment in F-scores of 1.99.

There are also positive correlations between the
rankings before and after revisions. Pearson corre-
lation coefficients for the ‘before’ and ‘after’ scores
for prepositions and determiners combined, prepo-
sitions only, and determiners only (respectively) are
.993, .985 and .996. All correlation coefficients are
significant at p < .001, n = 13 (teams).

However, some systems improve more than oth-
ers. An obvious question to ask, then, is whether the
benefit that a team achieves is positively correlated
with the number of accepted corrections they pro-
posed; a calculation of Pearson’s correlation coeffi-
cient suggests that this is indeed the case (r = 0.821,
p = 0.044 (one-tailed)).7 This suggests, then, that
the ‘before’ results may be a more reliable indicator
of comparative performance.

6 Discussion and Conclusions

In this section, we make some observations on
lessons learned with regard to various aspects of the
shared task.

6.1 Data Acquisition
Data annotated with non-native speaker errors has
significant commercial value, and so is not easy
to find in the public domain. We were fortunate
to be able to take advantage of the recently-made-
available FCE dataset as training data, but this left
us with the problem of acquiring previously unseen
test data. To address this, we entered into negotia-
tion with Cambridge University Press with the aim
of acquiring some additional previously unreleased
data. We started this process in December 2011, but
it quickly became apparent that some of the legal
aspects would necessarily make this a slow process.

7Computed here on the combined preposition and deter-
miner scores, and taking account only of the five teams that
proposed corrections, these being UI, NU, LE, UT and CU. ET
was not included in this calculation since they did not submit to
the corrections subtask.

As a back-up plan, we informed teams that we might
have to fall back on some of the already-available
FCE data as test data; to this end, we asked teams
only to use versions and subsets of the FCE data that
we made directly available. We thus selected 1000
files from the 1200 that make up the public FCE data
set as training data, and reserved the remainder as a
source of possible test data.

This is clearly not an ideal situation; fortunately,
we finally signed agreements for the use of a new
set of FCE data in the week before the test data was
due to be released, but this was leaving things rather
tight. The moral here is that one needs to be confi-
dent of one’s data sources early on in the process.

6.2 Data Quality
As discussed above, it became apparent that there
were what appeared to be annotation errors in our
data. This is perhaps inevitable given the nature of
the source data, which was annotated by only one
annotator (subsequent to some prior automatic pro-
cessing). The issue of reliability of annotation in this
area has been noted by others (see, for example, the
discussion in Chapter 5 in (Leacock et al., 2010)).
Assuming that we agree an error is present—and this
is not always in itself straightforward—there is often
more than one way to correct that error; however,
the FCE annotation scheme does not permit multiple
possible corrections, so in the source data we used,
there was only ever one correction per error. Our
revision process identified a number of cases where
alternative corrections were equally acceptable, and
fortunately the HOO annotation scheme allowed us
to incorporate multiple possible corrections; but it’s
quite clear that we did not identify all cases where
multiple corrections were valid.8

This is a significant issue. If we cannot entirely
trust our gold-standard data, then we cannot place
too much trust in the results of evaluations carried
out using that data. Of course, annotation quality
is a problem in any task, but it may be more se-
vere in cases like the present one because the judge-
ments here are often less clear cut: whereas there
is rarely dispute as to whether a given string consti-
tutes a named entity, it is not always so clear that

8The HOO scheme also allows optional edits, but we did not
make use of these here since it complicates the scoring process;
see (Dale and Kilgarriff, 2011) for discussion.
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Detection Recognition Correction
Team Run P R F Run P R F Run P R F
CU 2 13.12 34.88 19.07 7 8.13 41.5 13.6 0 70.0 4.64 8.7
ET 1 33.59* 37.97* 35.65* 1 30.27* 34.22* 32.12* – – – –
JU 1 6.93 7.28 7.1 1 6.3 6.62 6.46 1 2.52 2.65 2.58
KU 0 4.61 49.23 8.43 0 2.67 28.48 4.88 0 1.45 15.45 2.65
LE 0 37.38 26.49 31.01 0 33.33 23.62 27.65 0 31.15 22.08 25.84
NA 3 40.19 28.04 33.03 3 36.39 25.39 29.91 3 29.43 20.53 24.19
NU 0 57.42 26.49 36.25 0 55.98 25.83 35.35 0 45.45 20.97 28.7
TC 9 5.33 25.61 8.82 9 4.18 20.09 6.92 9 2.66 12.8 4.41
TH 1 17.74 48.12 25.92 1 15.38 41.72 22.47 1 9.44 25.61 13.79
UD 2 8.94 31.13 13.88 2 5.51 19.21 8.57 2 1.2 4.19 1.87
UI 8 37.22 43.71 40.2 1 34.23 36.64 35.39 1 26.39 28.26 27.29
UT 6 37.46 25.39 30.26 7 32.01 23.18 26.89 7 21.95 15.89 18.44
VA 3 12.5 15.23 13.73 3 10.87 13.25 11.94 3 6.16 7.51 6.77
VT 5 10.6 5.08 6.87 5 10.14 4.86 6.57 5 8.76 4.19 5.67

Table 5: Results before revisions, all errors

Detection Recognition Correction
Team Run P R F Run P R F Run P R F
CU 2 14.04 35.73 20.16 7 8.69 42.49 14.43 6 5.73 28.54 9.54
ET 1 38.09* 41.23* 39.59* 1 35.55* 38.48* 36.95* – – – –
JU 1 8.19 8.25 8.22 1 7.56 7.61 7.59 1 3.15 3.17 3.16
KU 0 5.01 51.16 9.12 0 3.04 31.08 5.54 0 1.86 19.03 3.39
LE 0 41.12 27.91 33.25 0 36.45 24.74 29.47 0 34.27 23.26 27.71
NA 3 45.25 30.23 36.25 3 40.82 27.27 32.7 3 33.86 22.62 27.12
NU 0 70.33 31.08 43.11 0 69.38 30.66 42.52 0 61.72 27.27 37.83
TC 8 6.56 26.0 10.48 8 4.91 19.45 7.84 8 3.09 12.26 4.94
TH 1 19.2 49.89 27.73 1 17.33 45.03 25.03 1 10.82 28.12 15.63
UD 2 9.95 33.19 15.31 2 5.77 19.24 8.87 2 1.33 4.44 2.05
UI 2 43.56 42.92 43.24 1 38.97 39.96 39.46 1 32.58 33.4 32.99
UT 7 39.94 27.7 32.71 7 35.67 24.74 29.21 5 31.58 17.76 22.73
VA 3 13.22 15.43 14.24 3 11.59 13.53 12.49 3 7.25 8.46 7.8
VT 5 11.52 5.29 7.25 5 11.06 5.07 6.96 5 9.68 4.44 6.09

Table 6: Results after revisions, all errors

something is an error, or where that error should be
located. The incorporation of optional and multiple
corrections in the HOO framework was intended to
address this kind of problem, but the value of these
features is only delivered if the scheme is used dur-
ing annotation, rather than being applied after anno-
tation has already been carried out.

6.3 The Annotation Scheme and Evaluation
Tools

Given real non-native speaker data that contains a
wide range of errors other than those that we were
particularly concerned with in this shared task, we

were faced with three alternatives in how we pre-
pared the data for use in the task.

1. We could provide the data with all original er-
rors in place.

2. We could provide the data with all but the
preposition and determiner errors corrected.

3. We could provide the data with selected errors
corrected or replaced.

The problem with the first of these options, of
course, is that other errors that appear in the context
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Detection Recognition Correction
Team Run P R F Run P R F Run P R F
CU 2 14.88 59.32 23.79 2 9.99 39.83 15.97 0 61.11 4.66 8.66
ET 1 31.95* 42.37* 36.43* 1 27.16* 36.02* 30.97* – – – –
JU 1 6.1 7.63 6.78 1 5.42 6.78 6.03 1 3.05 3.81 3.39
KU 0 3.39 66.95 6.46 0 2.51 49.58 4.79 0 1.27 25.0 2.41
LE 0 32.81 17.8 23.08 0 27.34 14.83 19.23 0 25.78 13.98 18.13
NA 6 41.13 24.58 30.77 3 36.43 19.92 25.75 3 30.23 16.53 21.37
NU 0 56.99 22.46 32.22 0 53.76 21.19 30.4 0 41.94 16.53 23.71
TC 9 6.49 29.66 10.65 9 5.19 23.73 8.52 9 3.06 13.98 5.02
TH 1 17.39 59.32 26.9 1 14.16 48.31 21.9 1 9.19 31.36 14.22
UD 2 11.84 36.86 17.92 2 9.66 30.08 14.62 1 7.63 4.24 5.45
UI 1 38.21 45.34 41.47 5 31.05 40.25 35.06 1 20.36 24.15 22.09
UT 2 39.35 25.85 31.2 7 35.76 22.88 27.91 0 25.45 11.86 16.18
VA 0 13.44 14.41 13.91 0 11.46 12.29 11.86 0 7.51 8.05 7.77
VT 7 12.24 2.54 4.21 7 12.24 2.54 4.21 7 12.24 2.54 4.21

Table 7: Results before revisions, preposition errors only

Detection Recognition Correction
Team Run P R F Run P R F Run P R F
CU 2 15.41 59.43 24.47 2 10.63 40.98 16.88 0 66.67 4.92 9.16
ET 1 35.14* 45.08* 39.5* 1 32.27* 41.39* 36.27* – – – –
JU 1 7.12 8.61 7.79 1 6.44 7.79 7.05 1 3.73 4.51 4.08
KU 0 3.67 70.08 6.98 0 2.9 55.33 5.51 0 1.7 32.38 3.23
LE 0 35.16 18.44 24.19 0 29.69 15.57 20.43 0 28.13 14.75 19.35
NA 6 48.23 27.87 35.32 6 41.84 24.18 30.65 6 33.33 19.26 24.42
NU 0 72.04 27.46 39.76 0 70.97 27.05 39.17 0 60.22 22.95 33.23
TC 8 7.72 29.92 12.27 8 5.92 22.95 9.41 9 3.34 14.75 5.45
TH 1 18.76 61.89 28.79 1 16.27 53.69 24.98 1 10.68 35.25 16.4
UD 2 12.65 38.11 19.0 2 10.2 30.74 15.32 1 9.16 4.92 6.4
UI 1 41.43 47.54 44.27 1 37.14 42.62 39.69 1 26.79 30.74 28.63
UT 2 41.94 26.64 32.58 2 39.35 25.0 30.58 0 35.45 15.98 22.03
VA 0 14.23 14.75 14.49 0 12.65 13.11 12.88 0 8.7 9.02 8.85
VT 7 16.33 3.28 5.46 7 16.33 3.28 5.46 7 16.33 3.28 5.46

Table 8: Results after revisions, preposition errors only

of a preposition or determiner error could confuse a
system focussed only on preposition or determiner
errors; if the surrounding context contains errors,
then it cannot be relied upon to deliver the kinds
of features that one would expect to find in well-
formed text. To partially address this, many teams
ran a spelling correction process on the texts prior
to applying their techniques; but this only catches a
small proportion of the potential problems.

However, the second option has the opposite
problem: by removing all the other errors from the
text, we would be providing a very artificial dataset
where one assumes some other process has fixed all

the other errors before the errors of interest here
are addressed. While there are some types of er-
rors that might sensibly be addressed before others
in a pipeline, in general this is not a very plausible
model; any real system is going to have to address
noisy data containing many different kinds of errors
simultaneously.

A third alternative, that of selectively removing
or correcting errors, is something of a middle road,
and has been used in other work using the CLC data:
in particular, Gamon (2010) removes from the data
sentences where some other error appears immedi-
ately next to a preposition or determiner error.
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Detection Recognition Correction
Team Run P R F Run P R F Run P R F
CU 6 7.8 49.31 13.48 6 6.86 43.32 11.84 6 5.25 33.18 9.07
ET 0 51.67* 28.57* 36.8* 0 50.83* 28.11* 36.2* – – – –
JU 1 7.73 6.45 7.04 1 7.73 6.45 7.04 1 1.66 1.38 1.51
KU 0 12.85 10.6 11.62 0 6.7 5.53 6.06 0 6.15 5.07 5.56
LE 0 40.41 35.94 38.05 0 37.31 33.18 35.12 0 34.72 30.88 32.68
NA 1 37.43 32.26 34.65 1 36.36 31.34 33.66 1 28.88 24.88 26.73
NU 0 57.76 30.88 40.24 0 57.76 30.88 40.24 0 48.28 25.81 33.63
TC 3 8.68 8.76 8.72 3 7.76 7.83 7.8 3 4.11 4.15 4.13
TH 1 17.69 34.56 23.4 1 17.69 34.56 23.4 1 9.91 19.35 13.1
UD 2 6.41 24.88 10.19 1 1.98 6.45 3.03 0 0.0 0.0 0.0
UI 0 40.0 37.79 38.86 0 38.05 35.94 36.97 0 35.61 33.64 34.6
UT 5 34.38 25.35 29.18 5 31.87 23.5 27.06 6 25.75 19.82 22.4
VA 3 11.04 15.21 12.79 3 10.37 14.29 12.02 3 5.02 6.91 5.81
VT 5 9.82 7.37 8.42 5 9.82 7.37 8.42 5 7.98 5.99 6.84

Table 9: Results before revisions, determiner errors only

Detection Recognition Correction
Team Run P R F Run P R F Run P R F
CU 6 8.53 51.09 14.63 6 7.37 44.1 12.63 6 5.91 35.37 10.13
ET 0 57.5* 30.13* 39.54* 0 56.67* 29.69* 38.97* – – – –
JU 1 9.39 7.42 8.29 1 9.39 7.42 8.29 1 2.21 1.75 1.95
KU 0 14.53 11.35 12.75 0 6.7 5.24 5.88 0 6.15 4.8 5.39
LE 0 44.56 37.55 40.76 0 40.93 34.5 37.44 0 38.34 32.31 35.07
NA 1 41.18 33.62 37.02 1 39.57 32.31 35.58 1 33.16 27.07 29.81
NU 0 68.1 34.5 45.8 0 68.1 34.5 45.8 0 62.93 31.88 42.32
TC 8 5.17 20.96 8.3 3 7.31 6.99 7.14 8 2.8 11.35 4.49
TH 1 19.34 35.81 25.11 1 19.34 35.81 25.11 1 11.08 20.52 14.4
UD 1 8.07 24.89 12.19 1 1.98 6.11 2.99 0 0.0 0.0 0.0
UI 0 43.9 39.3 41.47 2 45.98 34.93 39.7 0 41.46 37.12 39.17
UT 5 39.38 27.51 32.39 5 35.63 24.89 29.31 6 30.54 22.27 25.76
VA 3 11.71 15.28 13.26 3 10.7 13.97 12.12 3 6.02 7.86 6.82
VT 5 9.82 6.99 8.16 5 9.82 6.99 8.16 5 7.98 5.68 6.63

Table 10: Results after revisions, determiner errors only

In the end, we opted for the first alternative here,
on the grounds that this is the best approximation to
the real task of non-native speaker error correction.
The third alternative would also have been possible,
but we were concerned about the impact on the size
of our test data set that would result from carrying
out this process across the board. However, in the re-
vision step described in Section 4.2, we did remove
instances of a particular error type, where a preposi-
tion error was immediately followed by a verb error;
consider the following sentence and its correction.

(1) a. What do you do for trying to save the wild

life?
b. What do you do to try to save the wild life?

The compound nature of these errors meant that
teams were unlikely to correct them; and it might be
argued that they are not preposition errors in the con-
ventional sense. However, we did not remove these
instances uniformly, so some still remain in the test
data.

An orthogonal issue with regard to the HOO an-
notation scheme is that we require precise identifi-
cation of error locations and accurate specification
of these locations at a character-offset level in our
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standoff edit notation. It is often inaccuracies at
this level that contribute to the differences between a
team’s detection score and the corresponding recog-
nition score. While precise character offset infor-
mation is important for some error correction tasks
(for example, one would not want an automated cor-
rector to insert corrections misplaced by one charac-
ter), arguably it is too strict in the present circum-
stances. Dahlmeier and Ng (2012) propose an al-
ternative evaluation scheme which, along with other
properties, overcomes this by operating in terms of
tokens rather than character offsets.

6.4 Summary

Overall, we were immensely pleased with the level
of interest in this shared task. The HOO 2012 train-
ing data and evaluation tools are publicly available,
so interested parties who did not take part in the
shared task can still try their hand retrospectively;
unfortunately, our contract with CUP means that the
test data used in this round is not publicly available.
Our future plans include packaging a subset of the
initially held-out public FCE data set as a new test
set, with the aim of establishing a standardised train-
ing and testing setup in the same way as Section 23
of the Wall Street Journal corpus is conventionally
used as a test set. We have strongly encouraged the
use of publicly available data sets, and have asked
teams to be as detailed as possible in their reports in
the interests of replicability; we hope this will make
it possible for new entrants to the area to get up to
speed quickly.

Of course, the FCE data also supports work on
many other kinds of errors. We expect to address
subsets of these in future HOO rounds.
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Abstract

We describe a study aimed at measuring the
use of factual information in test-taker essays
and assessing its effectiveness for predicting
essay scores. We found medium correlations
with the proposed measures, that remained
significant after the effect of essay length was
factored out. The correlations did not dif-
fer substantionally between a simple, rela-
tively robust measure vs a more sophisticated
measure with better construct validity. Impli-
cations for development of automated essay
scoring systems are discussed.

1 Introduction

Automated scoring of essays deals with various as-
pects of writing, such as grammar, usage, mecha-
nics, as well as organization and content (Attali
and Burstein, 2006). For assessment of content,
the focus is traditionally on topical appropriateness
of the vocabulary (Attali and Burstein, 2006; Lan-
dauer et al., 2003; Louis and Higgins, 2010; Chen
et al., 2010; De and Kopparapu, 2011; Higgins et
al., 2006; Ishioka and Kameda, 2006; Kakkonen et
al., 2005; Kakkonen and Sutinen, 2004; Lemaire
and Dessus, 2001; Rosé et al., 2003; Larkey, 1998),
although recently other aspects, such as detection
of sentiment or figurative language, have started to
attract attention (Beigman Klebanov et al., 2012;
Chang et al., 2006).

The nature of factual information used in an es-
say has not so far been addressed, to our knowledge;
yet a misleading premise, insufficient factual basis,

or an example that flies in the face of the reader’s
knowledge clearly detract from an essay’s quality.

This paper presents a study on assessing the use
of factual knowledge in argumentative essays on ge-
neral topics written for a graduate school entrance
exam. We propose a definition of fact, and an opera-
tionalization thereof. We find that the proposed mea-
sure has positive medium-strength correlation with
essay grade, which remains significant after the im-
pact of essay length is factored out. In order to
quantify which aspects of the measure drive the ob-
served correlations, we gradually relax the measure-
ment procedure, down to a simple and robust proxy
measure. Surprisingly, we find that the correlations
do not change throughout the relaxation process. We
discuss the findings in the context of validity vs re-
liability of measurement, and point out implications
for automated essay scoring.

2 What is a Fact?

To help articulate the notion of fact, we use the fol-
lowing definition from a seminal text in argumenta-
tion theory: “... in the context of argumentation, the
notion of fact is uniquely characterized by the idea
that is held of agreements of a certain type relating
to certain data, those which refer to an objective rea-
lity, and, in Poincare’s words, designate essentially
“what is common to several thinking beings, and
could be common to all” (Perelman and Olbrechts-
Tyteca, 1969, 67). Factuality is thus a matter of se-
lecting certain kinds of data and securing a certain
type of agreement over those data.

Of the different statements that refer to objec-
tive reality, the term facts is used to “designate ob-
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jects of precise, limited agreement” (Perelman and
Olbrechts-Tyteca, 1969, 69). These are contrasted
with presumptions – statements connected to what
is normal and likely (ibid.). We suggest that the dis-
tinctions in the scope of the required agreement can
be related to the referential device used in a state-
ment: If the reference is more rigid (Kripke, 1980),
that is, less prone to change in time and to inde-
terminacy of the boundaries, the scope of the ne-
cessary agreement is likely to be more precise and
limited. With proper names prototypically being the
most rigid designators, we will focus our efforts on
statements about named entities.1

Perhaps the simplest model of the universal au-
dience is an encyclopedia – a body of knowledge
that is verified by experts, and is, therefore, “com-
mon to several thinking beings, and could be com-
mon to all” by virtue of the authority of the experts
and the wide availability of the resource. However,
many facts known to various groups of people that
could be known to all are absent from any encyclo-
pedia. The knowledge contained in the WWW at
large, reaching not only statements explicitly con-
tributed to an encyclopedia but also those made by
people on their blogs – is perhaps as close as it gets
to a working model of the universal audience.

Recent developments in Open Information Ex-
traction make it possible to tap into this vast know-
ledge resource. Indeed, fact-checking is one of the
applications the developers of OpenIE have in mind
for their emergent technology (Etzioni et al., 2008).

3 Open Information Extraction

Traditionally, the goal of an information extrac-
tion system is automated population of structured
databases of events or concepts of interest and their
properties by analyzing large corpora of text (Chin-
chor et al., 1993; Onyshkevych, 1993; Grishman and
Sundheim, 1995; Ravichandran and Hovy, 2002;
Agichtein and Gravano, 2000; Davidov and Rap-
poport, 2009).

1For example, Barack Obama picks out precisely one per-
son, and the same one in 2010 as it did in 1990. In contrast, the
current US president picks out different people every 4-8 years.
For indeteminacy of boundaries, consider a statement like US
officials are wealthy. To determine its truth, one must first se-
cure agreement on acceptable referents of US officials.

In contrast, the recently proposed Open Informa-
tion Extraction paradigm aims to detect related pairs
of entities without knowing in advance what kinds of
relations exist between entities in the source data and
without any seeding (Banko and Etzioni, 2008). The
possibility of such extraction in English is attributed
by the authors to a small number of syntactic pat-
terns that realize binary relations between entities.
In particular, they found that almost 40% of such re-
lations are realized by the argument-verb-argument
pattern (henceforth, AVA) (see Table 1 in Banko and
Etzioni (2008)).

The TextRunner system (Banko and Etzioni,
2008) is trained using a CRF classifier on S-V-O
tuples from a parsed corpus as positive examples,
and tuples that violate phrasal structure as negative
ones. The examples are described using features
that do not require parsing or semantic role labe-
ling. Features include part-of-speech tags, regular
expressions (detecting capitalization, punctuation,
etc.), context words belonging to closed classes, and
conjunctions of features occurring in adjacent posi-
tions within six words of the current word.

TextRunner achieves P=0.94, R=0.65, and F-
Score=0.77 on the AVA pattern (Banko and Etzioni,
2008). We note that all relations in the test sen-
tences involve a predicate connecting two named en-
tities, or a named entity and a date.2 The authors
kindly made available to us for research purposes a
database of about 2 bln AVA extractions produced
by TextRunner; this database was used in the expe-
riments reported below.

4 Data

We randomly sampled essays written on 10 diffe-
rent prompts, 200 essays per prompt. Essays are
graded on the scale of 1-6; the distribution of grades
is shown in table 1.

Grade 1 2 3 4 5 6
% 0.6 4.9 23.5 42.6 23.8 4.7

Table 1: The distribution of grades for 2,000 essays.

2http://www.cs.washington.edu/research/knowitall/hlt-
naacl08-data.txt
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5 Building Queries from Essays

We define a query as a 3-tuple <NE,?,NP>,3 where
NE is a named entity and NP is a noun phrase from
the same or neighboring sentence in a test-taker es-
say (the selection process is described in section
5.2). We use the pattern of predicate matches against
the TextRunner database to assess the degree and the
equivocality of the connection between NE and NP.

5.1 Named Entities in Test-Taker Essay

We use the Stanford Named Entity Recognizer
(Finkel et al., 2005) that tags named entities as peo-
ple, locations, organizations, and miscellaneous. We
annotated a sample of 90 essays for named entities;
the sample yielded 442 tokens, which we classified
as shown in Table 2. The Enamex classes (people,
locations, organizations) account for 58% of all the
entities in the sample. The recognizer’s recall of
people and locations is excellent (though they are
not always classified correctly – see caption of Ta-
ble 2), although test-taker essays feature additional
entity types that are not detected as well.

Category Recall Examples
Location 0.98 Iraq, USA
Person 0.96 George W. Bush, Freud
Org. 0.87 Guggenheim Foundation
Gov. 0.79 No Child Left Behind
Awards 0.79 Nobel Prize
Events 0.68 Civil War, World War I
Sci & Tech 0.59 GPS, Windows 3.11
Art 0.44 Beowulf, Little Women

Table 2: Recall of the Stanford NER by category. Note
that an entity is counted as recalled as long as it is iden-
tified as belonging to any NE category, even if it is mis-
classified. For example, Freud is tagged as location, but
we count it towards the recall of people.

In terms of precision, we observed that the tagger
made few clear mistakes, such as tagging sentence-
initial adverbs and their mis-spelled versions as
named entities (Eventhough, Afterall). The bulk of

3We do not attempt matching the predicate, as (1) in many
cases there is no clearly lexicalized predicate (see the discussion
of single step patterns in section 5.2) and (2) adding a predicate
field would make matches against the database sparser (see sec-
tion 6.1).

the 96 items over-generated by the tagger are in the
“grey area” – while we haven’t marked them, they
are not clearly mistakes. A common case are names
of national and religious groups, such as Muslim
or Turkish, or capitalizations of otherwise common
nouns for emphasis and elevation, such as Arts or
Masters. Given our objective to ground the queries
in items with specific referents, these are less sui-
table. If all such cases are counted as mistakes, the
tagger’s precision is 82%.

5.2 Selection of NPs

We employ a grammar-based approach for selecting
NPs. We use the Stanford dependency parser (de
Marneffe et al., 2006; Klein and Manning, 2003) to
determine dependency relations.

In order to find out which dependency paths con-
nect between named entities and clearly related NPs
in essays, we manually marked concepts related to
95 NEs in 10 randomly sampled essays. We marked
210 query-able concepts in total. The resulting 210
dependency paths were classified according to the
direction of the movement.

Out of the 210 paths, 51 (24%) contain a single
upward or downard step, that is, are cases where
the NE is the head of the constituent in which the
NP is embedded, or the other way around. Some
examples are shown in Figure 1. Note that the pre-
dicate connecting NE and NP is not lexicalized, but
the existence of connection is signaled by the close-
knit grammatical pattern.

The most prolific family of paths starts with an
upward step, followed by a sequences of 1-4 down-
wards steps; 71 (34%) of all paths are of this type.
Most typically, the first upward move connects the
NE to the predicate of which it is an argument, and,
down from there, to either the head of another argu-
ment (↑↓) or to an argument’s head’s modifier (↑↓↓).
These are explicit relations, where the relation is
typically lexicalized by the predicate.

We expand the context of extraction beyond a sin-
gle sentence only for NEs classified as PERSON. We
apply a gazetteer of private names by gender from
US Census 2010 to expand a NE of a given gen-
der with the appropriate personal pronouns; a word
that is a part of the original name (only surname, for

4NE=Kroemer; NP=Heterojunction Bipolar Transitor
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↓ a Nobel Prize in a science field

↓ Chaucer, in the 14 century, ...

↑ the prestige of the Nobel Prize

↑ Kidman’s talent

↑↓ Kroemer received the Nobel Prize

↑↓↓ Kroemer received the Nobel Prize for his work
on the Heterojunction Bipolar Transitor4

Figure 1: Examples of dependency paths used for query
construction.

example), is also considered an anaphor and a can-
didate for expansion. We expand the context of the
PERSON entity as long as the subsequent sentence
uses any of the anaphors for the name. This way, we
hope to capture an extended discussion of a named
entity and construct queries around its anaphoric
mentions just as we do around the regular, NE men-
tion. A name that is not predominantly male or fe-
male is not expanded with personal pronouns. Ta-
ble 3 shows the distribution of queries automatically
generated from the sample of 2,000 essays.

↑ 2,817 15.9%
↓ 798 4.5%
↑↑ 813 4.6%
↓↓ 372 2.1%
↑↓ 4,940 27.8%
↑↓↓ 2,691 15.1%
↑↓↓↓ 1,568 8.8%
↑↑↓ 3,772 21.2%
total 17,771 100%

Table 3: Distribution of queries by path type.

6 Matching and Filtering Queries

6.1 Relaxation for improved matching

To estimate the coverage of the fact repository with
respect to the queries extracted from essays, we sub-
mit each query to the TextRunner repository in the
<NE,?,NP> format and record the number of times
the repository returned any matches at all. The per-
centage of matched queries is 21%. To increase the

chances of finding a match, we process the NP to re-
move determiners and pre-modifiers of the head that
are very frequent words, such as removing a very
from a very beautiful photograph.

Additionally, we produce three variants of the NP.
The first, NP1, contains only the sequence of nouns
ending with the head noun; in the example, NP1

would be photograph. The second variant, NP2,
contains only the word that is rarest in the whole
of NP. All capitalized words are given the lowest
frequency of 1. Thus, if any of the NP words are
capitalized, the NP2 would either contain an out of
vocabulary word to the left of the first capitalized
word, or the leftmost capitalized word. This means
that names would typically be split such that only the
first name is taken. For example, the NP the author
Orhan Phamuk would generate NP2 Orhan. When
no capitalized words exist, we take the rarest one,
thus a NP category 3 hurricane would yield NP2

hurricane. The third variant only applies to NPs
with capitalized parts, and takes the rightmost capi-
talized word in the query. Thus, the NP the actress
Nicole Kidman would yield NP3 Kidman.

Applying these procedures to every NP inflates
the number of actual queries posed to the TextRun-
ner repository by almost two-fold (31,211 instead of
17,771), while yielding a 50% increase in the num-
ber of cases where at least one variant of the original
query had at least one match against the repository
(from 21% to 35%).

6.2 Match-specific filters

In order to zero in on matches that correpond to fac-
tual statements and indeed pertain to the queried ar-
guments, we implement a number of filters.

Predicate filters

We filter out modal and hedged predicates, using
lists of relevant markers. We remove predicates like
might turn out to be or possibly attended, as well as
future tense predicates (marked with will).

Argument filters

For matches that passed the predicate filters, we
check the arguments. Let mARG be the actual
string that matched ARG (ARG ∈{NE,NP}). Let
EC (Essay Context) refer to source sentence(s) in
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the essay.5 We filter out the following matches:

• Capitalized words follow ARG in mARG that
are not in EC;

• >1 capitalized or rare words precede ARG in
mARG that are not in EC and not honorifics;

• mARG is longer than 8 words;

• More than 3 words follow ARG in mARG.

The filters target cases where mARG is more spe-
cific than ARG, and so the connection to ARG might
be tenuous, such as ARG=Harriet Beecher Stowe,
mARG = Harriet Beecher Stowe Center.

6.3 Filters based on overall pattern of matches

6.3.1 Negation filter
For all matches for a given query that passed the

filters in section 6.2, we tally positive vs negative
predicates.6 If the ratio of negative to positive is
above a threshold (we use 0.1), we consider the
query an unsuitable candidate for being “potentially
common to all,” and therefore do not credit the au-
thor with having mentioned a fact.

This criterion of potential acceptance by a uni-
versal audience fails a query such as <Barack
Obama,?,US citizen>, based on the following pat-
tern of matches:

Count Predicate
10 is not
4 is
2 was always
1 is really
1 isn’t
1 was not

In a similar fashion, an essay writer’s statement
that “The beating of Rodney King in Los Angeles
... made for tense race relations” is not quite in ac-
cord with the 16 hits garnered by the statement “The
Los Angeles riots were not caused by the Rodney
King verdict,” against other hits with predicates like
erupted after, occurred after, resulted from, were
sparked by, followed.

5A single sentence, unless anaphor-based expansion was
carried out; see section 5.2.

6We use a list of negation markers to detect those.

Somewhat more subtly, the connection between
Albert Einstein and atomic bomb, articulated as “For
example, Albert Einstein’s accidental development
of the atomic bomb has created a belligerent tech-
nological front” by a test-taker, is opposed by 6 hits
with the predicate did not build against matches with
predicates such as paved the way to, led indirectly
to, helped in, created the theory of. The conflicting
accounts seem to reflect a lack of consensus on the
degree of Einstein’s responsibility.

The cases above clearly demonstrate the implica-
tions of the argumentative notion of facts used in
our project. Facts are statements that the audience is
prepared to accept without further justification, dif-
ferently from arguments, and even from presump-
tions (statements about what is normal and likely),
for which, as Perelman and Olbrechts-Tyteca (1969)
observe, “additional justification is beneficial for
strengthening the audience’s adherence.” Certainly
in the Obama case and possibly in others, a different
notion of factuality, for example, a notion that em-
phasizes availability of legally acceptable suppor-
ting evidence, would have led to a different result.
Yet, in an ongoing instance of argumentation, the
mere need to resort to such a proof is already a sign
that the audience is not prepared to accept a state-
ment as a fact.

6.4 Additional filters

We also implemented a number of filters aimed at
detecting excessive diversity in the matches, which
could suggest that there is no clear and systema-
tic relation between the NE and the NP. The filters
are conjunctions of thresholds operating over mea-
sures such as purity of matches (percentage of exact
matches in NE or NP), degree of overlap of non-pure
matches with the context of the query in the essay,
clustering of the predicates (recurrence of the same
predicates across matches), general frequencies of
NE and NP.

7 Evaluation

7.1 Manual check of queries

A manual check of a small subset of queries was ini-
tially intended as an interim evaluation of the query
construction process, to see how often the produced
queries are deficient candidates for later verification.
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However, we also decided to include a human fact-
check of the queries that were found to be verifiable,
to see the kinds of factual mistakes made in essays.

A research assistant was asked to classify 500
queries into Wrong (the NE and NP are not
related in the essay), Trivial (almost any NE
could be substituted, as in <WWI,?, Historians>),
Subjective (<T.S.Eliot,?,the most frightening poet
of all time>), VC – verifiable and correct, VI – veri-
fiable and incorrect. Table 4 shows the distribution.

W T S VC VI
18% 13% 13% 54% 2%

Table 4: The distribution of query types for 500 queries.

Queries classified as Wrong (18%) mostly cor-
respond to parser mistakes. Trivial and Subjective
queries, while not attributing to the author connec-
tions that she has not made, are of questionable value
as far as fact-checking goes. Perhaps the most sur-
prising figure is the meager amount of verifiable and
incorrect queries. Examples of relevant statements
from essays include (NE and NP are boldfaced):

• For example, Paul Gaugin who was a sucess-
ful business man, with a respectable wife and
family, suddenly gave in to the calling of the
arts and left his life. (He was a failing busi-
nessman immediately before leaving family.)

• For example, in Jane Austin’s Little Women,
she portrays the image of a lovely family and
the wonders of womenhood. (The book is by
Louisa May Alcott.)

• This occurrence can be seen with the Rod-
ney King problem in California during the late
1980’s. (The Rodney King incident occurred
on March 3, 1991).

• We see the philosophers Aristotle, Plato,
Socrates and their practical writings of the
political problems and issues of the day.
(Socrates is not known to have left writings.)

First, we observe that factual mistakes are rare.
Furthermore, they seem to pertain to one in a series
of related facts, most of which are correct and testify

to the author’s substantial knowledge about the mat-
ter – consider Paul Gaugin’s biography or the con-
tents of “Little Women” in the examples above. It
is therefore unclear how detrimental the occasional
factual “glitches” are to the quality of the essay.

8 Application to Essay Scoring

We show Pearson correlations between human
scores given to essays and a number of characte-
ristics derived from the work described here, as well
as the partial correlations when the effect of essay
length is factored out. We calculated both the cor-
relations using raw numbers and on a logarithmic
scale, with the latter generally producing higher cor-
realtions. Therefore, we are reporting the correla-
tions between grade and the logarithm of the rele-
vant characteristic. The characteristics are:

#NE The number of NE tokens in an essay.

#Queries The number of queries generated by the
system from the given essay (as described in
section 5.2).

#Matched Queries The number of queries for
which a match was found in the TextRunner
database. If the original query or any of its ex-
pansion variants (see section 6.1) had matches,
the query contributes a count of 1.

#Filtered Matches The number of queries that
passed the filters introduced in section 6. If the
original query or any of its expansion variants
passed the filters, the query contributes a count
of 1.

Table 5 shows the results. First, we find that all
correlations are significant at p=0.05, as well as the
partial correlations exluding the effect of length for 7
out of 10 prompts. All correlations are positive, that
is, the more factual information a writer employs in
an essay, the higher the grade – beyond the oft re-
ported correlations between the grade and the length
of an essay (Powers, 2005).

Second, we notice that all characteristics – from
the number of named entities to the number of fil-
tered matches – produce similar correlation figures.

Third, there are large differences between average
numbers of named entities per essay across prompts.
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Prompt NE Pearson Corr. with Grade Partial Corr. Removing Length
#NE #Q #Mat. # Filt. #NE #Q #Mat. # Filt.

P1 280 0.144 0.154 0.182 0.185 0.006 0.019 0.058 0.076
P2 406 0.265 0.259 0.274 0.225 0.039 0.053 0.072 0.069
P3 452 0.245 0.225 0.188 0.203 0.049 0.033 0.009 0.051
P4 658 0.327 0.302 0.335 0.327 0.165 0.159 0.177 0.160
P5 704 0.470 0.477 0.473 0.471 0.287 0.294 0.304 0.305
P6 750 0.429 0.415 0.388 0.373 0.271 0.242 0.244 0.257
P7 785 0.470 0.463 0.479 0.469 0.302 0.302 0.341 0.326
P8 838 0.423 0.390 0.406 0.363 0.264 0.228 0.266 0.225
P9 919 0.398 0.445 0.426 0.393 0.158 0.209 0.233 0.219
P10 986 0.455 0.438 0.375 0.336 0.261 0.257 0.170 0.175
AV. 678 0.363 0.357 0.353 0.335 0.180 0.180 0.187 0.186

Table 5: Pearson correlation and partial correlation removing the effect of length between a number of characteristics
(all on a log scale) and the grade. The second column shows the total number of identified named entities in the
200-essay sample from the given prompt. The prompts are sorted by the second column.

Generally, the higher the number, the better the num-
ber of named entities in the essay predicts its grade
(the more NEs the higher the grade). This suggests
that the use of named entities might be relatively
irrelevant for some prompts, and much more rele-
vant for others. For example, prompt P10 reads
“The arts (painting, music, literature, etc.) reveal
the otherwise hidden ideas and impulses of a soci-
ety,” thus practically inviting exemplification using
specific works of art or art movements, while suc-
cess with prompt P1 – “The human mind will al-
ways be superior to machines because machines are
only tools of human minds” – is apparently not as
dependent on named entity based exemplification.
Excluding prompts with smaller than average total
number of named entities (<678), the correlations
average 0.40-0.44 across the various characteristics,
with partial correlations averaging 0.25-0.26.

9 Discussion and Conclusion

9.1 Summary of the main result

In this article, we proposed a way to measure the
use of factual information in text-taker essays. We
demonstrated that the use of factual information is
indicative of essay quality, observing positive corre-
lations between the count of instances of fact-use in
essays and the grade of the essay, beyond what can
be attributed to a correlation between the total num-
ber of words in an essay and the grade.

9.2 What is driving the correlations?

We also investigated which of the components of
the fact-use measure were responsible for the ob-
served correlations. Specifically, we considered (a)
the number instances of fact-use that were verified
against a database of human-produced assertions,
filtered for controversy and excessive diversity; (b)
the number of instances of fact-use that were verified
against the database, without subsequent filtering;
(c) the number of instances of fact-use identified in
an essay (without checking against the database); (d)
the number of named entities used in an essay (with-
out constructing queries around the entity). These
steps correspond to a gradual relaxation of the full
fact-checking procedure all the way to a proxy mea-
sure that counts the number of named entities.

We observed similar correlations throughout the
relaxation procedure. We therefore conclude that the
number of named entities is the driving force behind
the correlations, with no observed effect of the query
construction and verification procedures.7 This re-
sult could be explained by two factors.

First, a manual check of 500 queries showed that
factual mistakes are rare – only 2% of the queries
corresponded to factually incorrect statements. Fur-
thermore, mistakes were often accompanied by the

7While the trend is in the direction of an increase in Pearson
correlations from (a) to (d), the differences are not statistically
significant.
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test-taker’s use of additional facts about the same en-
tity which were correct; this might alleviate the im-
pact of a mistake in the eyes of a grader.

Second, the query verification procedure applied
to only about 35% of the queries – those for which
at least one match was found in the database, that
is, 65% of the queries could not be assessed using
the database of 2 bln extractions. The verification
procedure is thus much less robust than the proce-
dure for detecting named entities, which performs at
above >80% recall and precision.

9.3 Implications for automated scoring

Our results suggest that essays on a general topic
written by adults for a high-stakes exam contain
few incorrect facts, so the potential for a full fact-
checking system to improve correlations with grades
beyond merely detecting the potential for a factual
statement using a named entity recognizer is not
large. While a measure based on the number of
“verified” facts found in an essay demonstrated a
significant correlation with human scores beyond
the contribution of essay length, a simpler measure
based only on the number of named entities in the
essay demonstrated a similar relationship with hu-
man scores.

Given the similarity in the two features’ empiri-
cal usefulness, it would seem that the feature that
counts the number of named entities in an essay is a
better candidate, due to its simplicity and robustness.
However, there is another perspective from which a
feature based only on the number of named entities
in an essay may be less suitable for use in scoring:
the perspective of construct validity, the degree to
which a test (or, in this case, a scoring system) ac-
tually measures what it purports to. As mentioned
above, the number of named entities in an essay is,
at best, a proxy measure,8 roughly indicative of the
referencing of factual statements in support of an ar-
gument within an essay. Because the measure itself
is not directly sensitive to how named entities are
used in the essay, though, even entities with no con-
nection to the essay topic would tend to contribute
to the score, and the measure is therefore vulnerable
to manipulation by test-takers.

8For a discussion of proxes vs trins in essay grading, see
(Page and Petersen, 1995).

An obvious strategy to exploit this scoring mecha-
nism would be to simply include more named enti-
ties in an essay, either interspersing them randomly
throughout the text, or including them in long lists of
examples to illustrate a single point. Such a blatant
approach could potentially be detected by the use of
a filter or advisory (Higgins et al., 2006; Landauer
et al., 2003) designed to identify anomalous writing
strategies. However, there could be more subtle ap-
proaches to exploiting such a feature. For example,
it is possible that test-takers might be inclined to in-
crease their use of named entities by adducing more
facts in support of an argument, and would go be-
yond the comfort zone of their actual factual know-
ledge, thus making more factual mistakes. Test gam-
ing strategies have been recognized as a threat to au-
tomated scoring systems for some time (Powers et
al., 2001), and there is evidence based on test tak-
ers’ own self-reported behavior that this threat is real
(Powers, 2011). This is one major reason why large-
scale operational testing programs (such as GRE or
TOEFL) use automated essay scoring only in com-
bination with human ratings. In sum, the degree to
which a linguistic feature is predictive of human es-
say scores is not the only criterion for evaluation; the
washback effects of using the feature (on writing be-
havior and on instruction) must also be considered.

The second finding of this study is that the ef-
fectiveness of fact-checking for essay assessment is
compromised by the limited coverage of the wealth
of factual statements made by essay writers, with
only 35% of queries garnering any hits at all in a
large general-purpose database of assertions. It is
possible, however, that OpenIE technology can be
used to collect more focused repositories on specific
topics, such as the history of the American Civil
War, which could be used to assess responses to
tasks related to that particular subject matter. This
is one of the directions of our future research.
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Abstract

We report two new approaches for building
scoring models used by automated speech
scoring systems. First, we introduce the Cu-
mulative Logit Model (CLM), which has been
widely used in modeling categorical outcomes
in statistics. On a large set of responses
to an English proficiency test, we systemati-
cally compare the CLM with two other scor-
ing models that have been widely used, i.e.,
linear regression and decision trees. Our ex-
periments suggest that the CLM has advan-
tages in its scoring performance and its robust-
ness to limited-sized training data. Second, we
propose a novel way to utilize human rating
processes in automated speech scoring. Ap-
plying accurate human ratings on a small set
of responses can improve the whole scoring
system’s performance while meeting cost and
score-reporting time requirements. We find
that the scoring difficulty of each speech re-
sponse, which could be modeled by the degree
to which it challenged human raters, could
provide a way to select an optimal set of re-
sponses for the application of human scor-
ing. In a simulation, we show that focusing
on challenging responses can achieve a larger
scoring performance improvement than sim-
ply applying human scoring on the same num-
ber of randomly selected responses.

1 Introduction

Automated assessment is a process by which com-
puter algorithms are used to score test-taker inputs,
which could be essays, short-text descriptions, read-
aloud sentences, or spontaneous speech responses
to open-end questions. Until recently, human scor-
ing has been predominantly used for scoring these

types of inputs. Several limitations of the human
scoring process have been identified in previous re-
search (Bennett, 2006). First, the human scoring
process is influenced by many hidden factors, such
as human raters’ mood and fatigue conditions. In
addition, human raters may not strictly follow the
rubrics designed to guide the scoring process in their
practical scoring sessions. Furthermore, human rat-
ing is also an expensive and slow process, especially
for large-scale tests.

There has been an increasing number of studies
concerning the use of speech processing and natu-
ral language processing (NLP) technologies to auto-
matically score spoken responses (Eskenazi, 2009).
In these machine scoring systems, a set of features
related to multiple aspects of human speaking capa-
bilities, e.g., fluency, pronunciation, intonation, vo-
cabulary usage, grammatical accuracy, and content,
is extracted automatically. Then, statistical mod-
els, such as the widely used linear regression mod-
els, classification and regression trees (CART), are
trained based on human ratings and these features.
For new responses, the trained statistical models are
applied to predict machine scores.

The performance of current automated speech
scoring systems, especially for spontaneous speech
responses, still lags markedly behind the perfor-
mance of human scoring. To improve the perfor-
mance of automated speech scoring, an increas-
ing number of research studies have been under-
taken (Jang, 2009; Chen and Zechner, 2011; Chen
and Yoon, 2011). However, these studies have
mostly focused on exploring additional speech fea-
tures, not on building alternative scoring models.
Hence, in this paper, we will report on two new lines
of research focusing on the scoring model part of au-
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tomated speech scoring systems. In particular, we
will introduce the Cumulative Logit Model (CLM),
which is not widely used in NLP, and compare it sys-
tematically with other widely-used modeling meth-
ods. In addition, we will propose a hybrid scoring
system inspired by the recent trend of involving hu-
man computation in machine learning tasks (Quinn
et al., 2010), which consists of both human scoring
and machine scoring to achieve a balance of scoring
accuracy, speed, and cost.

The remainder of the paper is organized as fol-
lows: Section 2 reviews the previous research ef-
forts; Section 3 describes both the test from which
our experimental data were collected and the auto-
mated speech scoring system; Section 4 introduces
the Cumulative Logit Model (CLM) and reports a
systematic comparison with two other widely used
modeling approaches; Section 5 proposes using both
human scoring and machine scoring to achieve a
trade-off between scoring accuracy, speed, and cost,
and shows a simulation. Finally, Section 6 con-
cludes the paper and describes our plans for future
research.

2 Related Work

In the language testing field, it is critical how easily a
score can be interpreted by test takers and stakehold-
ers. Therefore, “white-box” machine learning meth-
ods (mostly from the field of statistics) are favored
over black-box systems (e.g., neural networks) and
widely used in automated scoring systems. For ex-
ample, SRI’s EduSpeak system (Franco et al., 2010)
used a decision-tree model to automatically produce
a speaking score from a set of discrete score la-
bels. Linear Discrimination Analysis (LDA) has
been used in pronunciation evaluation (Hacker et
al., 2005). In a speech scoring system described by
Zechner et al. (2009), a linear regression (LR) model
was used to predict human scores.

Applying linear regression, which is designed for
continuous outcomes, on ordinal outcomes, such as
discrete human rated scores, is questioned by some
statisticians.

A linear regression model does not ex-
ploit the fact that the scores can assume
only a limited number of values and hence
may provide inefficient approximations to

essay scores obtained by raters. Conse-
quently, estimation based on a model that
assumes that the response is categorical
will be more accurate than linear regres-
sion. A cumulative logit model, some-
times called a proportional odds model, is
one such model (Haberman and Sinharay,
2010).

The CLM was compared systematically with an
ordinary linear regression model in terms of au-
tomated essay scoring (Haberman and Sinharay,
2010). Based on their experiment on a large variety
of TOEFL prompts, they suggested that the CLM
should be considered a very attractive alternative to
regression analysis.

In recent years, a new trend of research in the ma-
chine learning field is to use human computation to
provide additional help, especially on difficult tasks.
For example, after the ESP game (Von Ahn, 2006),
an increasing number of human computation based
games emerged to use a large number of human par-
ticipants to solve many machine learning problems,
such as human identification for image processing
and sentiment annotation in natural language pro-
cessing (NLP). Quinn and Bederson (2011) review
research in this area. Furthermore, Quinn et al.
(2010) proposed a hybrid mechanism to integrate
both human computation and machine learning to
achieve a balance between speed, cost, and quality.

In this paper, we will follow the advances in the
two directions mentioned above, including using
CML as a modeling method and obtaining comple-
mentary computing by integrating machine scoring
with human scoring to further improve the scoring
models in automated speech scoring systems.

3 Data and Automated Scoring System

3.1 Data
AEST is a large-scale English test for assessing test-
takers’ English proficiency in reading, writing, lis-
tening, and speaking. The data used in our exper-
iments was collected from operational AEST tests.
In each test session, test takers were required to re-
spond to six speaking test questions to provide in-
formation or express their opinions.

Each spoken response was assigned a score in the
range of 1 to 4, or 0 if the candidate either made no
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attempt to answer the item or produced a few words
totally unrelated to the topic. Each spoken response
could also receive a “technical difficulty” (TD) label
when technical issues may have degraded the audio
quality to such degree that a fair evaluation was not
possible. Note that in the experiments reported in
this paper, we excluded both 0 and TD responses
from our analyses. The human scoring process used
the scoring rules designed for the AEST test. From
a large pool of certified human raters, two human
raters were randomly selected to score each response
in parallel. If two raters’ scores had a discrepancy
larger than one point, a third rater with more expe-
rience in human scoring was asked to give a final
score. Otherwise, the final scores used were taken
from the first human rater in each rater pair.

The Pearson correlation r among human raters
was calculated as 0.64. The second human scores
had a correlation of 0.63 to the final scores while the
first human scores had a correlation of 0.99. This
is due to the fact that only in about 2% of the cases,
two human scores have a discrepancy larger than one
point. Table 1 describes the data size and final score
distribution of the four score levels.

N 1(%) 2(%) 3(%) 4 (%)
49813 4.56 37.96 47.74 9.74

Table 1: Human score distribution of the AEST datasets

3.2 Automated scoring system
To automatically score spontaneous speech, we used
the method proposed in Chen et al. (2009). In this
method, a speech recognizer is used to recognize
non-native speech and a forced alignment is con-
ducted based on the obtained recognition hypothe-
ses. From the recognition and alignment outputs,
a number of features were extracted from multi-
ple aspects, such as the timing profiles, recogni-
tion confidence scores, alignment likelihoods, etc.
For speech recognition and forced alignment, we
used a gender-independent, fully continuous Hid-
den Markov Model (HMM) speech recognizer. Our
ASR system was trained from about 800 hours of
non-native speech data and its corresponding word
transcriptions. We extracted the following two types
of features, including (1) fluency and intonation
features based on the speech recognition output as

described in Xi et al. (2008) and (2) pronuncia-
tion features that indicated the quality of phonemes
and phoneme durations as described in Chen et al.
(2009).

4 A comparison of three machine learning
methods in automated speech scoring

We will briefly introduce CLM and then compare
it with two other widely used scoring methods, i.e.,
linear regression and CART. In most of the related
previous investigations, several machine learning al-
gorithms were compared using a fixed number of in-
stances. However, as shown in recent studies, such
as Rozovskaya and Roth (2011), judging an algo-
rithm requires consideration of the impact of the size
of the training data set. Therefore, in our exper-
iment, we compared three algorithms on different
sizes of training samples.

Let the response’s holistic score be Y = 1, 2, ...J
(J is 4 in our study on the AEST data) and let the
associated probabilities be π1, π2, ...πJ . Therefore
the probability of a predicted score is not larger than
j

P (Y ≤ j) = π1 + π2 + ...+ πj (1)

The logit of this probability can be estimated as

log
P (Y ≤ j)

1− P (Y ≤ j)
= αj +

K∑
k=1

βkXk (2)

where K is the number of speech features. We can
see that a CLM contains K βs where each β is asso-
ciated with one feature. In addition, for each score j,
there is an intercept αj . The CLM is a special case
of multinomial logistic regression, which is named
Maximum Entropy (MaxEnt) model (Berger et al.,
1996) and is well known by NLP researchers. In
CLM, the ranking order of the labels being predicted
is emphasized. However, in MaxEnt models, there
is no assumption about the relationship of the labels
being predicted.

For CLM, we used the Ye’s VGAM R pack-
age (Yee, 2010) as our implementation. For or-
dinary linear regression and CART methods, we
used corresponding implementations in the WEKA
toolkit (Hall et al., 2009), i.e., lm and J48 tree,
through the RWeka package (Hornik et al., 2009)
so that we could run these three algorithms inside R.
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From the available speech features, we first
run an inter-correlation analysis among these fea-
tures. Then, two feature selection approaches imple-
mented in the caret R package (Kuhn, 2008) were
used to select useful features from about 80 fea-
tures. First, all feature-pairs whose inter-correlation
was higher than 0.80 were analyzed and one feature
for each pair was removed. Next, a recursive fea-
ture elimination (RFE) based on a linear regression
model was utilized to reduce the feature size to just
20.

Using a stratified sampling based on the final
scores, the whole data set was split into a training set
(with 44, 830 instances) and a test set (with 4, 980
instances). Then, on a log10 scale, we tried using
increasing number of training samples from 100 to
104.5. For each training data set size, we randomly
selected the size of training samples from the train-
ing set, built the three models, and evaluated the
models on the entire test data. For each data set size,
such process was repeated 10 times. The evaluation
result is the averaged values from these 10 iterations.
We repeated the same experiment on the top 5, 10,
15, and 20 features. The evaluation metrics include
widely used measures in the field of automated scor-
ing, including Pearson correlation r and quadratic
weighted Kappa κ (hereafter weighted κ) between
the machine predicted scores and human final scores
in this data set.

Figure 1 shows the Pearson r and weighted κ val-
ues of the three methods vs. an increasing numbers
of training samples. We find that the CLM always
has the highest weighted κ value among these three
methods for each data size level. The CART per-
forms poorly, especially facing a limited number of
training samples. However, when the training data
size is large enough, the performance gap between
the CART and other regression models becomes
smaller. For two regression models, when work-
ing on 20 features, both Pearson r and weighted κ
values plateaued after reaching 1000 training sam-
ples. More importantly, we find that the CLM still
can provide a quite high value of weighted κ even
just using 100 training samples. This is very impor-
tant for automated assessments in cases where there
are not enough pre-test responses to fully train the
scoring model. When using other feature selections
(5, 10, and 15), we also observed the same trend as

shown in the Figure 1.
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Figure 1: Weighted κ and Pearson correlation r of LR,
CART, and CLM vs. an increasing number of training
samples when using 20 features.

5 Utilizing human computation to support
automated speech scoring

On spontaneous speech responses, the performance
of automated scoring still lags behind human rat-
ings. For example, on the test set (4, 098 samples),
among human raters both the Pearson r and the
weighted κ values are about 0.6, much higher than
the best automated scoring results we saw in the pre-
vious section (around 0.5). There are many possi-
ble reasons for such a big performance gap between
automated speech scoring and human scoring. For
example, the automated features’ lack of a measure-
ment of content accuracy and relevance might pro-
vide an explanation for part of the performance gap.
As a result, to our knowledge, there has not been any
commercial application of automated speech scoring
on high-stakes speaking tests to open-ended ques-
tions.

To further improve the speech scoring system’s
performance, inspired by Quinn et al. (2010), we
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propose to include human computation — human
rating of speech responses — in the automated
speech scoring system. Previously, there have been
some efforts to use human computation in auto-
mated speech scoring systems. For example, it is
well known that human scores were used to train au-
tomated scoring models. For essay scoring, an auto-
mated scoring system, e-rater, has been used to val-
idate the human rating process (Enright and Quin-
lan, 2010). One advantage of using both human and
e-rater to score is that about 10% of human rating
requests for double-scoring required in operational
essay scoring could be saved. However, there has
been no previous work investigating the joint use of
human scoring and machine scoring. By using these
two scoring methods together, we hope to achieve a
balance among scoring accuracy, speed, and cost.

From a total of N test responses, we need ask
humans to score m, where m << N . Therefore,
an important question concerning the joint use of
human scoring and machine scoring is how to find
these m responses so that the expensive and slow
human scoring process can provide a large perfor-
mance gain. In this paper, we will report our prelim-
inary research results of focusing on the responses
challenging to machine scoring process.

Since the responses used in this paper were se-
lected to be double-scored responses from a very
large pool of AEST responses, we use the rating
condition of each doubly-scored response to pre-
dict how challenging any given response is. For
speech responses for which two human raters gave
different holistic scores, we assumed that these re-
sponses were not only difficult to score for human
beings, but also for the machine learning method,
which has been trained from human scores in a su-
pervised learning way. We call the responses on
which two human raters agreed easy-case responses
and the responses on which two human raters dis-
agreed hard-case ones. Table 2 reports on the appli-
cation of trained automated speech assessment sys-
tems to these two types of responses. From the en-
tire testing set, human raters agreed on 3, 128 re-
sponses, but disagreed on 1, 852 responses. From
the training set described in the previous section,
we randomly sampled 1, 000 responses to train a
CLM model using those 20 features used in Sec-
tion 4. Then, the trained CLM model was evalu-

ated on these two types of responses, respectively.
Table 2 reports the evaluation metrics averaged on
20 trials of using different training set portions. We
can clearly see that the machine scoring has a sig-
nificantly better performance on the easy-case re-
sponses than the hard-case responses. Therefore, it
is natural to focus expensive/slow human computa-
tion efforts on these hard-case responses.

metric easy-case hard-case
agreement(%) 68.16 48.08
r 0.594 0.377
weighted κ 0.582 0.355

Table 2: Evaluation of automated speech assessment sys-
tems on two types of speech responses. For the responses
on which two human raters agreed, the machine has a sta-
tistically significantly better performance.

Suppose that we can obtain the type of each re-
sponse, hard-case vs. easy-case, in some way, we
then can focus our human scoring efforts on hard-
case responses only since machine scoring performs
much worse on them. Figure 2 depicts the re-
sults of one trial of using human scoring to replace
an increasing number of machine scores. Among
4, 980 responses in the test set, the blue curve shows
the weighted κ values after replacing an increasing
number of machine scores with human scores. Here,
we used the scores provided by the second rater from
each rater pair. This set of human scores had a Pear-
son r of 0.626 with the final scores. We also re-
placed the same number of responses, but without
distinguishing easy- and hard-case responses by the
corresponding human scores. The results are shown
in the red curve. We can observe that the weighted
κ values increased from about 0.50, which was ob-
tained by using only machine scoring, to about 0.58
by asking humans to score all hard-case responses,
about 33% of all responses. Among the two meth-
ods to select the responses for using human scoring,
we can clearly see that the strategy of focusing on
hard-case responses can achieve higher weighted κ
when spending the same amount of human efforts as
the strategy of randomly selecting responses.

6 Discussions

In this paper, we reported on two experiments for
improving the scoring model in automated sponta-
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Figure 2: Weighted κ values when using human rating
results to replace machine-predicted scores on hard-case
responses or a similar number of responses that are ran-
domly selected.

neous speech assessment. In the first experiment, we
systematically compared a new modeling method,
Cumulative Logit Model (CLM), which has been
widely used in statistics, with other two widely used
modeling methods, linear regression and CART.
We compared these three modeling methods on
a large test data set (containing 4, 980 responses)
and evaluated these methods on a series of train-
ing data sizes. The experimental results suggest
that the CLM model consistently achieves the best
performance (measured in Pearson r and quadratic
weighted κ between the predicted scores and human
rated scores). More importantly, we find that the
CLM can work quite well even when just using hun-
dreds of responses in the training stage. This finding
is especially important for building scoring models
when pre-test data is limited.

Although automated scoring has been designed to
overcome several disadvantages of the human rating
process, our experiments are meant to initiate sci-
entific debate on how best to combine the strengths
of human and automated scoringto achieve an opti-

mal compromise of scoring accuracy, cost, and time.
At least for current automated scoring systems for
spontaneous speech, the machine performance lags
behind the reliability of the human rating process.
We also found that the automated system performed
worse on hard-case responses on which even two hu-
man raters did not agree. In a simulation study, we
showed that jointly using human scoring and ma-
chine scoring can further improve the scoring per-
formance obtained by just using automated speech
scoring. By focusing human scoring, which is ex-
pensive, slow, but more accurate, on a set of re-
sponses specially selected from the entire set of re-
sponses, we can achieve larger gains of scoring per-
formance than randomly assigning the same amount
of responses for human scoring. Therefore, from an
engineering point of view of building more accurate
scoring systems, it is promising to design a hybrid
system consisting of both human scoring and ma-
chine scoring.

For future research, given the automated speech
scoring system’s large performance variation on two
types of responses, it is worthwhile finding a reli-
able way to automatically predict a responses’ con-
dition, i.e., whether it is hard or easy to score for
humans or for machines. We need to consider both
proficiency features we used in this paper and other
features measuring audio quality. Finding such in-
formation can help us decide when to use machine
scoring and when to rely on human raters. In addi-
tion, other applications of human computation, such
as asking humans to adjust machine predicted scores
or using human rated scores accumulated in scoring
operations to routinely update the machine scoring
system will be explored.
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Abstract 

Paraphrasing is an important aspect of language 

competence; however, EFL learners have long 

had difficulty paraphrasing in their writing 

owing to their limited language proficiency. 

Therefore, automatic paraphrase suggestion 

systems can be useful for writers. In this paper, 

we present PREFER
1
, a paraphrase reference 

tool for helping language learners improve their 

writing skills. In this paper, we attempt to 

transform the paraphrase generation problem 

into a graphical problem in which the phrases 

are treated as nodes and translation similarities 

as edges. We adopt the PageRank algorithm to 

rank and filter the paraphrases generated by the 

pivot-based paraphrase generation method. We 

manually evaluate the performance of our 

method and assess the effectiveness of 

PREFER in language learning. The results 

show that our method successfully preserves 

both the semantic meaning and syntactic 

structure of the query phrase. Moreover, the 

students’ writing performance improve most 

with the assistance of PREFER.  

1. Introduction 

Paraphrasing, or restating information using 

different words, is an essential part of productive 

language competence (Fuchs, 1980; Mel’čuk, 1992; 

Martinot, 2003). However, EFL learners have 

difficulty paraphrasing in their writing partly 

                                                 
1
 http://140.114.89.231/PREFER 

because of their insufficient lexical knowledge 

(Abasi et al. 2006; Chandrasoma et al. 2004). If 

they are provided with direct and substantial 

support while writing, they may be able to express 

their thoughts more fluently. Unfortunately, few 

paraphrase reference tools have been developed to 

provide instant assistance to learners in their 

writing process. In the light of the pressing need 

for paraphrase reference tools, we develop 

PREFER, a paraphrasing assistant system to help 

EFL learners vary their expression during writing.  

Over the past decade, paraphrasing techniques 

have played an important role in many areas of 

Natural Language Processing, such as machine 

translation, and question answering. However, very 

few studies have been conducted concerning the 

application of automatic paraphrase generation 

techniques in language learning and teaching.  

In this paper, we treat the paraphrase generation 

problem as a graph-related problem. We adopt the 

PageRank algorithm (Page et al., 1999) to generate 

paraphrases based on the assumption that a page 

with more incoming links is likely to receive a 

higher rank. Meanwhile, a page which is linked by 

a higher ranked page should transitively be ranked 

higher. We take advantage of transitivity of 

relevance to rank and filter the paraphrases 

generated by the pivot-based method (i.e., phrase 

are treated as paraphrases if they share the same 

translations) of Bannard and Callison-Burch 

(2005).  

The advantage of the pivot approach is that the 

generated paraphrases are exactly semantically 

equivalent to the query phrase. However, its 
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quality of the paraphrases highly correlates with 

that of the techniques of bilingual alignment. To 

overcome such limitation, we use the PageRank 

algorithm to refine the generated paraphrases. In 

other words, we leverage the PageRank algorithm 

to find more relevant paraphrases that preserve 

both meaning and grammaticality for language 

learners. The results of a manual evaluation and a 

system assessment show that our approach and 

system perform well. 

2. Related Work 

A number of studies have investigated EFL leaners’ 

paraphrase competence. For example, Campbell 

(1987) reveals that language proficiency 

significantly affects paraphrasing competence. 

McInnis (2009) reports that paraphrasing task is 

more difficult for L2 students than that for L1 

students. According to Milicevic (2011), L2 

learners propose less valid paraphrases than native 

speakers. These findings indicate that EFL students 

have problems in paraphrasing. In view of this, we 

develop PREFER, a paraphrase reference tool, for 

helping English learners with their writing. 

Paraphrase generation, on the other hand, has 

been an area of active research and the related 

work has been thoroughly surveyed in 

Androutsopoulos and Malakasiotis (2010) as well 

as in Madnani and Dorr (2010). In the rest of this 

section, we focus on reviewing the methods related 

to our work.  

One prominent approach to paraphrase 

generation is based on bilingual parallel corpora. 

For example, Bannard and Callison-Burch (2005) 

propose the pivot approach to generate phrasal 

paraphrases from an English-German parallel 

corpus. With the advantage of its parallel and 

bilingual natures of such a corpus, the output 

paraphrases do preserve semantic similarity. 

Callison-Burch (2008) further places syntactic 

constraints on generated paraphrases to improve 

the quality of the paraphrases. In this paper, we 

generate paraphrases adopting the pivot-based 

method proposed by Bannard and Callison-Burch 

(2005) in the first round. Then we use a 

graph-based approach to further ensure paraphrase 

candidates preserve both meaning and 

grammaticality. 

In a study more closely related to our work, 

Kok and Brockett (2010) take a graphical view of 

the pivot-based approach. They propose the Hitting 

Time Paraphrase algorithm (HTP) to measure 

similarities between phrases. The smaller the 

number of steps a random walker goes from one 

node to the other, the more likely these two nodes 

are paraphrases. The main difference between their 

work and ours lies in the definition of the graph. 

While they treat multilingual phrases as nodes, we 

treat only English phrases as nodes. Besides, we 

define the edges between nodes as semantic 

relation instead of bilingual alignment. 

In contrast to the previous work, we present a 

graph-based method for refining the paraphrases 

generated by the pivoting approach. Our goal is to 

consolidate the relation between paraphrases to 

provide learners with more and better paraphrases 

which are helpful in expanding their lexical 

knowledge. 

3. Graph-Based Paraphrase Generation 

In this section, we describe how we use the 

PageRank algorithm to rank and filter the 

paraphrases generated by the pivot-based method. 

3.1 Graph Construction 

We first exploit the pivot-based method proposed 

by Bannard and Callison-Burch (2005) to populate 

our graph G using of candidate paraphrases 

cP={             } from a bilingual parallel 

corpus B for a query phrase q. Each phrase in cP is 

also represented as a node in G. Note that the 

query phrase q is excluded from cP.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  A simple graph G. Note that the cp1 and 
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 is the paraphrase of q 
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q 

cP 

𝑐𝑝 
   𝑐𝑝 

   

𝑐𝑝  
𝑐𝑝 

   

81



 

 

Graph G only contains the paraphrases cpi 

whose probabilities are higher than a certain 

threshold ε
2
 as nodes. In addition, each cpi is 

linked to the query phrase q with edge e which is 

weighted by the probability  (   | ). Furthermore, 

we establish the edges among the phrases in cP. 

An example graph is shown in Figure 1. By 

repeating the previous steps, for each phrase cp1, 

cp2,... in cP, we find their corresponding 

paraphrases,    
     

 
  

    
    and 

    
     

 
  

    
   …., and discard the 

paraphrases that are not in cP. Once the phrases are 

linked with their paraphrases, the graph G is 

created.  

In this paper, we also place a constraint that a 

paraphrase of a phrase q must neither be a 

substring nor a superstring of q. These strings are 

usually aligned with the same foreign language 

phrase while they are not paraphrases at all. For 

example, “play an important” and “play an 

important role in” are excluded for “play an 

important role”. This has the effect of reducing 

some of the noise generated by the pivot-based 

method.   

3.2 Graph-Based Paraphrase Generation 

We then refine the generated paraphrases adopting 

the PageRank algorithm proposed by Page et al. 

(1999). Consider a graph consisting of a set of 

webpages on the Web V and a set of hyperlinks E. 

The PageRank algorithm assigns a value PR to 

each webpage as their importance measurement. 

The PR value of a certain page u is defined 

iteratively as the following equation: 

  ( )   ∑
  ( )

 ( )
                   ( )

    

 

where Bu is a set of pages linked to u and L(.) 

denotes the number of outbound links from a page 

v.  

Intuitively, by using formula (1) iteratively, we 

are able to calculate the PR values for all nodes 

and thus extract relatively important paraphrases. 

However, the original PageRank algorithm does 

not take the weight of each edge into consideration. 

That is, the PageRank algorithm treats all links 

equally when distributing rank scores. Treating all 

links equally in paraphrase generation task might 

                                                 
2
 We set ε to be 0.01. 

lose some linguistic properties. For this, we 

consider the importance of edges of the nodes and 

weight the edges based on the paraphrase 

probability in the pivot-based approach using 

 (      )  ∑ ( |  ) ( |  )

 

      ( )  

Formula (2) represents the probability that the 

phrase u is the paraphrase of the phrase v. f refers 

to shared translations of v and u. Then for each 

iteration of the PageRank calculation, we reassign 

the PR value for all u in V to be PR’(u) as:  

   ( )   ∑
 (   )  ( )

 ( )
           ( )

    

 

Instead of treating all edges equally, formula (3) 

integrates the weights of inbound link and 

outbound link edges (see Section 4 for the 

performance differences with and without 

weighting edges). 

4. Results 

In this section, we first present our experimental 

setting. Then evaluation results are reported. 

4.1 Experimental Setting 

In this paper, word alignments were produced by 

Giza++ toolkit (Och and Ney, 2003) over a set of 

Danish-English section (containing 1,236,427 

sentences) of the Europarl corpus, version 2 

(Koehn, 2002).  

We compared our graph-based approach with a 

strong baseline, the pivot-based method with 

syntactic constraint (SBP) (Callison-Burch, 2008) 

utilizing the same Danish-English corpus. We also 

investigate the contribution of adding the edge 

weights to the PageRank algorithm by building 

two models, PR representing the method of the 

PageRank algorithm without weights and PRw 

representing the method of the weighted PageRank 

algorithm, for comparison.   

To assess the performance of our method, we 

conducted a manual evaluation. We asked an 

experienced English lecturer to randomly select 

100 most commonly used and meaningful phrases 

from 30 research articles in the discipline of 

Computer-Assisted Language Learning (CALL). A 

total of 88 unique phrases were used as our test set 

for evaluation excluding 12 phrases not existing in 

the Europarl corpus. For each phrase, we extracted 
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the corresponding candidate paraphrases and chose 

top 5 for evaluation. Two raters, provided with a 

simplified scoring standard used by Callison-Burch 

(2008), manually evaluate the accuracy of the top 

ranked paraphrases of each phrase by score 0, 1 

and 2. It is worth noting that the raters were asked 

to score each paraphrase candidate by considering 

its appropriateness in various contexts. In this 

evaluation, we strictly deemed a paraphrase to be 

correct if and only if both raters scored 2.  The 

inter-annotator agreement was 0.63.   

The coverage was measured by the number of 

correct answers within top 5 candidates. The 

precision was measured by the number of correct 

answers within the returned answers. 

On the other hand, to assess the effectiveness of 

PREFER in language learning, we carried out an 

experiment with 55 Chinese-speaking EFL college 

freshmen, who had at least six years of formal 

instruction from junior to senior high schools and 

were estimated to be at the intermediate level 

regarding their overall English competence. The 

students were randomly divided into three groups. 

They were asked to paraphrase seven short 

paragraphs in the pre-test with no system support, 

and then paraphrase another seven short 

paragraphs in the post-test using three different 

tools: PREFER (P), LONGMAN Dictionary of 

Contemporary English Online (L), and 

Thesaurus.com (T). A total of 22 default phrases 

(http://140.114.75.22/share/examples.htm) were 

embedded in the paragraphs in the pre- and 

post-tests, targeted at comparing the quality and 

quantity of students’ paraphrasing performance. 
Students were not restricted to paraphrase these 

embedded phrases. Instead, they were encouraged 

to replace any possible phrases or even restructure 

sentences. We had two experienced native-speaker 

TESL (Teaching English as a Second Language) 

lecturers to score the students’ paraphrasing 

performance. 

4.2 Experimental Results 

4.2.1 Manual Evaluation 

As shown in Table 1, PRw achieved both good 

precision and coverage. Moreover, PR and PRw 

performed better than SBP in both coverage and 

precision. Also, the result that the performance of 

PRw is better than that of PR implies that PRw is 

able to generate more semantically and 

syntactically correct paraphrases. However, the 

precision of 0.19 indicates that there is still room to 

improve the paraphrase generation model.  

 

 

 

  PR PRw SBP 

Coverage 0.17 0.18 0.07 

Precision 0.17 0.19 0.10 

Table 1: The measurement of paraphrases. 

 
Additionally, Mean Reciprocal Rank (MRR) is 

also reported. Here, MRR is defined as a measure 

of how much effort needed to locate the first 

appropriate paraphrase for the given phrase in the 

ranked list of paraphrases. The MRR score of PRw 

(0.53) outperformed PR (0.51) and SBP (0.47). It 

demonstrated that the PRw model facilitates the 

high ranking of good paraphrases (i.e., paraphrases 

with meaning and grammaticality preserved would 

be ranked high).  

4.2.2. Evaluation on Language Learning  

The second evaluation is to assess the effectiveness 

of PREFER applied to CALL. We used a 

comparison method to measure the extent to which 

EFL learners achieved good performance in 

paraphrasing.  

 
Table 2. Comparison of paraphrasing performance 

among students using three different reference tools.  

 

As seen in the first row of Table 2, the students’ 

writing performance improved most with the 

assistance of PREFER (i.e., group P), compared 

with group L and group T. We further analyzed 

and compared the number of the rephrased phrases 

and the correct paraphrases, and the rate of 

    P L T 

improvement of paraphrasing 

task 
38.2% -31.6% -6.2% 

all 

paraphrasable 

phrases 

rephrased 38.4% -23.2% 9.5% 

correct 53.3% -17.5% 4.6% 

correctness rate  7.9% 4.9% -3.1% 

22 default 

phrases 

rephrased 68% -16% 28% 

correct 100% -5% 31% 

correctness rate 13.6% 7.9% 1.5% 
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correctness students achieved using different 

reference tools among our testing paraphrase 

candidates (see the middle and bottom panels of 

Table 2). Obviously, the students consulting 

PREFER achieved substantial paraphrasing 

improvement in all three aspects of both all and 

default phrases. But the other two groups seemed 

unable to manage well the paraphrasing task with 

traditional way of phrase information. This limited 

information seems insufficient to enable students 

to familiarize themselves with proper usages of 

phrases which might lead to improper 

paraphrasing. 

In short, PREFER outperformed the other two 

reference tools in assisting EFL learners in their 

paraphrasing task. 

5. Conclusion and Future Work   

In this paper, we treat the paraphrase generation 

problem as a graphical problem. We utilize the 

PageRank algorithm to rank and filter the 

paraphrases generated using the pivot-based 

method. The results show that our method 

significantly produces better paraphrases in both 

precision and coverage compared with the 

syntactically-constrained pivot method of 

Callison-Burch (2008). Additionally, PREFER 

does benefit learners’ writing performance. 

 In order to conduct a more comprehensive 

evaluation, we plan to adapt the in-context 

evaluation metric introduced by Callison-Burch et. 

al (2008). A larger test set would be generated 

manually to evaluate the performance of our 

paraphrase system. In addition, we will implement 

various kinds of baseline systems such as Kok and 

Brockett (2010) and Chan et al. (2011) to provide a 

more competitive comparison. 

Many avenues exist for future research and 

improvement. For example, we would like to 

extend paraphrasing consecutive n-gram phrases to 

inconsecutive ones such as ones with incomplete 

transitive verbs (e.g., “provide someone with 

something”). Besides, we are interested in 

weighting edges using syntactic and semantic 

relation in our graph-based method to further 

improve the quality of generated paraphrases. 
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Abstract 

This paper presents an exploration into auto-
mated content scoring of non-native sponta-
neous speech using ontology-based 
information to enhance a vector space ap-
proach. We use content vector analysis as a 
baseline and evaluate the correlations between 
human rater proficiency scores and two co-
sine-similarity-based features, previously used 
in the context of automated essay scoring. We 
use two ontology-facilitated approaches to 
improve feature correlations by exploiting the 
semantic knowledge encoded in WordNet: (1) 
extending word vectors with semantic con-
cepts from the WordNet ontology (synsets); 
and (2) using a reasoning approach for esti-
mating the concept weights of concepts not 
present in the set of training responses by ex-
ploiting the hierarchical structure of WordNet. 
Furthermore, we compare features computed 
from human transcriptions of spoken respons-
es with features based on output from an au-
tomatic speech recognizer. We find that (1) 
for one of the two features, both ontologically 
based approaches improve average feature 
correlations with human scores, and that (2) 
the correlations for both features decrease on-
ly marginally when moving from human 
speech transcriptions to speech recognizer 
output. 

1 Introduction 

Currently, automated speech scoring systems 
mainly utilize features related to the acoustic as-
pects of a spoken response of a test taker, for ex-
ample, fluency, pronunciation, and prosody 
features (Cucchiarini et al., 2000, 2002; Franco et 
al., 2010; Zechner et al., 2009). In terms of the 

content aspect of speech, for highly predictable 
speech, such as reading a passage aloud, scoring of 
content reduces to measuring the reading accuracy 
of the read passage which is typically achieved by 
computing the string edit distance between the tar-
get passage and the actual text read by the test tak-
er, using the speech recognizer hypothesis as a 
proxy (Alwan et al., 2007; Balogh et al., 2007). For 
high entropy speech whose content is difficult to 
predict such as spontaneous speech in this study, 
on the other hand, content scoring has not been 
investigated much so far, mostly due to the diffi-
culty of obtaining accurate word hypotheses for 
spontaneous non-native speech by Automated 
Speech Recognition (ASR) systems. 

In this paper, we use spoken responses from an 
English language spoken proficiency test where 
candidates, all non-native speakers of English, re-
spond to four different prompts1 with a speaking 
time of one minute per response. 

For this study, we decide to use a baseline ap-
proach for content scoring of spontaneous speech 
that was previously employed for a similar task in 
the context of automated essay scoring (Attali & 
Burstein, 2006), namely Content Vector Analysis 
(CVA) where every document is represented as a 
vector of word weights, based on their frequencies 
in a document or document collection. However, 
there are two issues with the CVA vector of words 
representation that we want to address with this 
study: (1) Similar words are treated in isolation and 
not grouped together. Words with similar meaning 
should be treated in the same way in an automated 
scoring system, so grouping word synonyms into 
semantic concepts can help with this issue. (2) The 
vector of word representation is based on an exist-

                                                             
1 Prompts are test tasks assigned to test takers to elicit spoken 
responses. 
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ing corpus of training documents. When encoun-
tering a word or concept in a test document that is 
not contained in the training set, it is difficult to 
decide the relevance of that word or concept.  

We propose to use ontology-facilitated ap-
proaches as solutions to these two issues, aiming at 
enriching speech content representations to im-
prove speech content scoring.  Specifically, to ad-
dress issue (1), we represent speech content by 
concept-level vectors, using the synsets (lists of 
synonymous words) of the WordNet ontology 
(Fellbaum, 1998; WordNet 3.0, 2010). As for issue 
(2), we expand the vector representation by infer-
ring the importance (weight) of concepts not pre-
sent in the training vectors based on their path 
distance to known concepts or words in the hierar-
chical structure of the WordNet ontology. 

Since we only look at the content aspect of 
speech without considering the acoustic features in 
this study, we work on speech transcripts exclu-
sively, both from human transcribers as well as 
from a state-of-the-art automated speech recogni-
tion system, and compare results between the ideal 
human transcripts and the imperfect transcripts 
generated by the speech recognizer. For the pur-
pose of simplified illustration, speech transcripts 
are often referred to as “documents” in the paper as 
they are a special type of textual documents. 

The remainder of this paper is organized as fol-
lows: in Section 2, we review related research in 
content scoring of texts, particularly student es-
says; Section 3 describes the data set we use for 
this study and the ASR system; and Section 4 pre-
sents the ontologically-facilitated methods we are 
using in detail. In Section 5, we present our exper-
iments along with their results, followed by a dis-
cussion in Section 6, and we conclude the paper 
with a summary and outlook in Section 7. 

2 Related Work  

There have been some effective approaches for test 
takers’ written responses in language tests, namely 
in the area of Automated Essay Scoring (AES). 

AES has employed content vector analysis, i.e., 
vectors of words to represent text, for example, the 
e-rater system (Burstein, 2003; Attali & Burstein, 
2006) and the experimental system in Larkey and 
Croft (2003). Representations in the BETSY sys-
tem (Bayesian Essay Test Scoring System) also 
involve words, such as the frequency of content 

words, and also include specific phrases as well 
(Dikli, 2006). AES has also used latent concepts 
for text representation, such as the Intelligent Es-
say Assessor system (Landauer et al., 2003). The 
latent concepts are generated by a statistical ap-
proach called Latent Semantic Analysis (LSA), 
which constructs a semantic vector space and pro-
jects essays to the new space.  

Representing texts by vectors of words has also 
been a common practice in many research areas 
beyond AES, including information retrieval (Sal-
ton et al., 1975; Croft et al., 2010). One of its 
weaknesses, however, is its difficulty in addressing 
issues such as synonyms and related terms. Differ-
ent words, such as lawyer, attorney, counsel etc. 
can share similar meaning, while in a word vector 
representation they are treated as different dimen-
sions; however, because they are conceptually sim-
ilar, it makes more sense to group them into the 
same vector dimension. Ontologies are in a good 
position to resolve this issue because they organize 
words and terms under structured concepts, group 
terms with similar meaning together and also 
maintain various semantic relations between con-
cepts. Therefore, text can be represented on a con-
cept level by using ontology concepts as features. 
Recognizing concepts in documents can further 
reveal semantic relations between documents 
(Hotho et al., 2003a), thus can facilitate further 
text-related tasks such as clustering, information 
retrieval, as well as our speech scoring task. This 
type of representation has been tried in several 
studies (e.g., Hotho et al., 2003a; Hotho et al., 
2003b; Bloehdorn & Hotho, 2004).  

Hotho et al. (2003a; 2003b) use ontology con-
cepts to represent text and use the representation 
for document clustering. The studies employ the 
WordNet ontology, a general domain ontology. 
The experiments test three parameters of using an 
ontology for text representation: (1) whether con-
cept features should be used alone or replace word 
features or be used together with word features; (2) 
word sense disambiguation strategies when using 
concepts; and (3) investigating the optimal level of 
word generalization in terms of the hierarchical 
structure of the ontology, i.e., how general the con-
cepts should be. Some options of the first two pa-
rameters will be implemented and tested in our 
experiment design below.  

The vector representation approach of text doc-
uments, either using words or concepts, can be 
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used to measure the content similarity between 
essays. E-rater, for example, measures the similari-
ty between test essays and training essays by com-
puting the cosine similarity of their word vectors 
and by generating two content features based on 
this similarity metric. It uses multiple regression as 
its final scoring model, using both content features, 
as well as features related to other aspects of the 
essay, such as grammar and vocabulary usage 
(Burstein, 2003; Attali & Burstein, 2006). Intelli-
gent Essay Assessor also employs cosine similarity 
between to-be-scored essays and training essays as 
basis of one content feature, and models the scor-
ing process by normalization and regression analy-
sis (Landauer et al., 2003). The IntelliMetric 
system uses a nonlinear and multidimensional 
modeling approach to reflect the complexity of the 
writing process as opposed to the general linear 
model (Dikli, 2006). Larkey and Croft (2003) em-
ploy Bayesian classifiers for modeling, which is a 
type of text categorization technique. It treats essay 
scoring as a text categorization task, the purpose of 
which is to classify essays into score categories 
based on content features (i.e., if the scores range 
from 1-4, then there are four score categories). 
    Zechner and Xi (2008) report on experiments 
related to scoring of spontaneous speech responses 
where content vector analysis was used as one of 
several features in scoring models for two different 
item types. They found that while these content 
features performed reasonably well by themselves, 
they were not able to increase the overall scoring 
model performance over a baseline that did not use 
content features.  
    This paper will use CVA as a baseline for our 
experiment and investigate two ontology-based 
approaches to enhance the content representation 
and improve content feature performance. 

3 Data  

We use data from a test for English proficiency for 
non-native speakers of English. Candidates are 
asked to provide spontaneous speech responses to 
four prompts, with each of the responses being one 
minute in length. The four prompts are all integrat-
ed prompts, meaning candidates are first given 
some materials to read or listen and then are asked 
to respond with their opinions or arguments to-
wards the materials. The responses are scored ho-
listically by human raters on a scale of 1 to 4, 4 

being the highest score. For holistic scoring, the 
human raters use a speech scoring rubric as the 
guideline of expected performance on aspects such 
as fluency, pronunciation, and content for each 
score level. 

Our data set contains 1243 speech samples in to-
tal as responses to four different prompts, obtained 
from 327 speakers (note that not all speakers re-
sponded to all prompts). Each response is verbatim 
transcribed by a human transcriber. The responses 
are grouped by their prompts since our experi-
ments are prompt-specific. For responses of each 
prompt, we randomly split the responses into a 
training set (44%) and a test set (56%), making 
sure that response scores are distributed in a simi-
lar proportion in both training and test sets. Each 
response is considered as a single document here. 
Table 1 shows the size of the two data sets. 
Prompt Training Set Test Set Total 
A 143 176 319 (4/79/158/78) 
B 140  168 308 (7/86/146/69) 
C 139  172 311 (4/74/154/79) 
D 137  168 305 (8/75/141/81) 
Table 1. Size of training and test data sets. The numbers 
in parentheses are the number of documents on score 
levels 1-4. 
 

The training set is used for generating repre-
sentative vectors of a prompt on different score 
levels, which are to be compared with test docu-
ments. The test set is primarily used to compute 
content features for test documents and examine 
performance of approaches under different exper-
iment setups. 

Besides human transcriptions of the speech files, 
we also obtained ASR output of the files, in order 
to examine performance of the proposed approach-
es on imperfect output, in a fully automated opera-
tional scenario where no human transcribers would 
be in the loop. Since the training set is used for 
deriving representative vectors for the four differ-
ent prompts and we would like to generate accurate 
vectors based on human transcriptions, we do not 
use a separate training set for ASR data. Thus, we 
only obtain corresponding ASR output for the test 
set of each prompt. 

The ASR system we use for our experiments in 
this paper is a state-of-the-art gender-independent 
continuous density Hidden Markov Model speech 
recognizer, trained on about 30 hours of non-native 
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spontaneous speech. Its word error rate on the test 
set used here is about 12.8%. 

4 Method  

We employ one baseline approach for word-level 
features and two experimental approaches for con-
cept-level features to examine the effect of the 
WordNet ontology and concept-level features on 
content feature correlations. 

4.1 Baseline Approach: Content Vector 
Analysis (CVA) 

We decide to use the two content features used by 
e-rater based on CVA analysis, called “max.cos” 
and “cos.w4” here (Attali & Burstein, 2006). The 
assumption behind this approach is that essays 
with similar human scores contain similar words; 
thus, they should share similar vector representa-
tions in CVA. For our data, this assumption is held 
for the spoken test documents in the same way. 
Moreover, we conjecture this assumption is mostly 
true for high score responses as opposed to low 
score responses, because we expect high vocabu-
lary uniformity in high score responses and more 
irrelevant and more diverse vocabulary in low 
score responses.  

Before feature computation, some preprocessing 
is conducted on the speech transcripts. For each 
prompt, we group its training set into four groups 
according to their score levels (“score-level docu-
ments”). Then we use the score-level documents of 
each prompt to generate a super vector as a repre-
sentation for documents on this score level of this 
specific prompt. As a result, we have four score-
level vectors under each prompt, generated from 
their training sets. While the score-level training 
vectors are produced using multiple documents of 
the same score level, vectors of test documents are 
generated on an individual document level. Given 
a test document that needs to be scored, we first 
convert it into the vector representation. Then we 
are ready to compute the two content features. 
Equation 1 provides the exact formula for the co-
sine similarity measure used in all of our methods. 

(1)	   	  

where n is the number of words and/or concepts in 
the score-level vector (from the training set docu-
ments),   w!",!  are the word or concept weights of a 
score-level vector and w!,! are the word or concept 
weights of a test document (response transcrip-
tion). !!,! are computed by term frequency and !!",! 
are computed in the same way after concatenating 
documents of the same score level as one large 
document. 

The max.cos feature. This feature measures 
which score level of documents the test document 
is most similar to in vector space by computing the 
cosine similarity with each score-level vector and 
then selecting the score level which has the largest 
cosine similarity to the test vector as feature value. 
Thus, this feature assumes integer values from 1 to 
4 only. 

The cos.w4 feature2.  This feature measures con-
tent similarity between the test document and the 
best quality documents in vector space. Since score 
4 is the highest level in our data set of spoken re-
sponses, we compute the cosine similarity between 
the test vector and the score level 4 vector as an 
indicator of how similar the test document is to the 
speech content of the test takers with highest profi-
ciency.  

The two features are evaluated based on their 
Pearson r correlation to human assigned scores. 
We evaluate the features in all experiments, as a 
way to observe how the two features’ predictive-
ness varies among different experiment setups. 
Note that since the max.cos feature assumes inte-
ger values but the cos.w4 feature is real valued, we 
expect correlations to be higher for cos.w4 due to 
this difference, all other things being equal. 

4.2 Ontology-facilitated Approaches 

We use two ontology-facilitated document repre-
sentation approaches, which represent documents 
based on the WordNet ontology. The first approach 
matches words in a document to concepts and rep-
resents documents by vectors of concepts, whereas 
the second one addresses the unknown word issue 
by inferring their weight based on the structure of 
the WordNet ontology. 

                                                             
2 The feature is referred to as “cos.w/6” in Attali and Burstein 
(2006) because there are usually 6 score levels, while here our 
data has 4 score levels therefore it is written as “cos.w4”. 
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4.2.1 Ontology-facilitated representation ap-
proach 

This representation uses concepts instead of the 
words as elements in the document vectors. Given 
a document, we map words in the document to 
concepts, using the synsets in WordNet. For exam-
ple, chance and opportunity are different words, 
however they belong to the same WordNet synset 
(‘opportunity.n.01’). This concept-level representa-
tion groups words of similar meaning in the same 
vector dimension, thus making the vector space 
more succinct and semantically meaningful. The 
weighting scheme of concepts follows the one in 
the CVA approach. In this study, we focus on sin-
gle words and match them to WordNet synsets; in 
future work, we consider matching multi-word ex-
pressions to ontologies like Wikipedia (Wikipedia, 
2011). Experiments show that including words and 
their corresponding WordNet synsets as vector 
dimensions has better performance than only in-
cluding WordNet synsets for text clustering tasks 
(Hotho et al., 2003a) and the same result also oc-
curs in our preliminary experiments. Therefore, we 
include both WordNet synsets and words in the 
vector representation. 

4.2.2 Ontology-facilitated reasoning approach 

This approach is based on the ontology-facilitated 
representation and goes further to resolve the un-
known word issue, i.e., handling words in test doc-
uments that have not been seen in the training 
documents. 

First, test documents are converted to vectors of 
concepts plus words. If a concept in the test vector 
does not appear in the score level vector, its weight 
therefore is unknown, as well. We then estimate its 
weight based on structural information contained 
in the WordNet ontology. More specifically, given 
an unknown concept in the test document, we find 
the N most similar concepts to that unknown con-
cept from the set of all concepts contained in the 
score level vector. We use a WordNet-based simi-
larity estimate to measure similarity between con-
cepts, namely the edge-based Path Similarity, 
which measures the length of a path from one con-
cept to another concept in WordNet by computing 
the inverse of the shortest path between the two 
concepts (Pedersen et al., 2004). We submit that 
the estimated weight of the unknown concept in 

the test document vector should be close to the 
weights of its most similar concepts in the score 
level vector derived from the training documents. 
From this assumption, we propose estimating the 
unknown concept’s weight by averaging the 
weights of the N most similar concepts: 

(2) !!"#!( !!)/!!
!!!   

with N denoting the number of similar concepts in 
a score level vector,    w! denoting the weights of 
these similar concepts, and w!"# standing for the 
resulting concept weight for the unknown concept 
in a test document. 

For example, a test document may be “so radio 
also create a great impact on this uh people com-
munication”. The words are matched to WordNet 
concepts, and we find that the concept synset ‘im-
pact.n.01’ is an unknown concept to the score level 
4 vector. From the dimensions of the score level 4 
vector we find these three most similar concepts to 
the unknown concept: ‘happening.n.01’, 
‘event.n.01’, and ‘change.n.01’. We now can aver-
age the weights of these three concepts in the 
score-level vector to use it as a weight estimate for 
the unknown concept ‘impact.n.01’. 

We want to note that while this approach can es-
timate weights for test document words or con-
cepts contained in WordNet (but not in the training 
vectors), it cannot handle words that are not in-
cluded in WordNet at all, such as many proper 
names, foreign words, etc. To address the latter as 
well, we would have to use a much larger and 
more comprehensive ontology, e.g., the online en-
cyclopedia Wikipedia. 

5 Experiments and Results 

We design experiments according to the above ap-
proaches. The first experiment group is the base-
line system using two features employed by e-
rater, max.cos and cos.w4. The second and third 
experiment groups implement the two ontology-
facilitated approaches, respectively. We first run 
CVA and compare several different parameter set-
ups to optimize them for further experiments. 

5.1 Parameter Optimization in CVA Experi-
ments 

For the CVA method, we need to decide (1) which 
term weighting scheme to use, and (2) whether or 
not to use a list of stopwords to exclude common 
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non-content words such as determiners or preposi-
tions from consideration. We compare five com-
monly used term weighting schemes, each one 
with or without using a stoplist, based on averaged 
correlations with human scores across all four 
prompts. The best results are obtained for the 
weighting scheme (TF/EDL)*IDF, where TF is the 
frequency of a term in a document, EDL is the Eu-
clidean document length3, and IDF is the inverse 
document frequency of a term based on a collec-
tion of documents. For this scheme, as for most 
others, there is almost no difference between using 
vs. not using a stoplist and we decide to use a 
stoplist for our experiments based on the tradition 
in the field. The selected term weighting scheme is 
applied in the same way for both the score-level 
vectors as well as the test document vectors. 

5.2 Experiment Groups 

5.2.1 Group 1: CVA 

As described above, we first convert the training 
sets to score level vectors and the test documents 
into test vectors with the TF/EDL*IDF weighting, 
and compute the max.cos and cos.w4 features for 
each test document.  

5.2.2 Group 2: Ontology-facilitated Representa-
tion 

We first match words in documents to WordNet 
concepts. There are several ways to achieve this 
(Hotho et al., 2003a). Given a word, it may corre-
spond to multiple concepts in WordNet, in which 
each possibility is called a “sense” in WordNet, 
and we need to decide which sense to use.  

WordNet-Sense-1. In this study we employ a 
simple word sense disambiguation method by us-
ing the first sense returned by WordNet. We send a 
word to WordNet synset search function, which 
returns all synstes of the word, and we select to use 
the first result because it is also the most frequently 
used sense for the word. 

After obtaining the senses and concepts for the 
words, the training sets and test documents are 

                                                             
3 Given a vector of raw term frequencies (rtf!, rtf!,… , rtf!), 
its Euclidean length is computed in this way:   

!"#!
!

!

!!!

 

converted to vectors of WordNet concepts plus 
words, using TF/EDL*IDF weighting, the same 
one used by the CVA approach. We compute the 
max.cos and cos.w4 features in the same way as 
for the baseline CVA method.  

5.2.3 Group 3: Ontology-facilitated Reasoning 

This approach, called here “WordNet-Reasoning”, 
also extracts vectors of WordNet concepts plus 
words with the same term weighting scheme as 
before. For matching words to concepts, we still 
employ the WordNet–Sense-1 sense selection 
method. For unknown concepts, which appear in a 
test vector but not in any score level vectors, we 
infer their weights by using the reasoning approach 
proposed in section 4.2.2 with N=5 as the number 
of most similar concepts to the unknown concept4, 
located in the WordNet hierarchy. The score level 
vectors are expanded by the inferred unknown 
concepts. When we obtain the expanded score lev-
el vectors, we compute the two content features 
from the vectors in the same way as before, and 
finally calculate feature correlations with human 
scores. 

5.3 Results 

We run the three experiment groups on human and 
ASR transcriptions respectively and obtain the 
max.cos and cos.w4 feature values of test docu-
ments in the experiments. As stated in 4.1, we 
compute the correlations between the two features 
and the human assigned scores for evaluating the 
approaches. 

Tables 2 and 3 (next page) list correlations of 
the two content features with human scores under 
different experiment setups. Significant differences 
on individual prompts between correlations of the 
two WordNet-based methods WordNet-Sense-1 
and WordNet-Reasoning and the CVA baseline are 
denoted with * (p<0.05) and ** (p<0.01). 
 

                                                             
4 We manually inspected some of the similar concepts of the 
unknown concepts and found the first 5 similar concepts were 
relevant to the unknown concepts, and thus made the decision 
of N=5. 
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Prompt Hum, CVA Hum, WordNet-
Sense-1 

Hum, Word-
Net-Reasoning 

ASR, CVA ASR, Word-
Net-Sense-1 

ASR, Word-
Net-Reasoning 

A 0.320 0.333 0.038** 0.293 0.286 0.014** 
B 0.348 0.352 0.350 0.308 0.338 0.339 
C 0.366 0.373 0.074** 0.396 0.386 0.106** 
D 0.343 0.323 0.265 0.309 0.309 0.265 
Average 0.344 0.345 0.182 0.327 0.330 0.181 

Table 2. Correlations between the max.cos feature and human scores (Hum=using human transcriptions; ASR=using 
ASR hypotheses). 
 

Prompt Hum, CVA Hum, WordNet-
Sense-1 

Hum, Word-
Net-Reasoning 

ASR, CVA ASR, Word-
Net-Sense-1 

ASR, Word-
Net-Reasoning 

A 0.427 0.429 0.434 0.409 0.416 0.411 
B 0.295 0.303 0.327* 0.259 0.278 0.292* 
C 0.352 0.385* 0.402** 0.338 0.366 0.380** 
D 0.368 0.385 0.389 0.360 0.379 0.374 
Average 0.360 0.376 0.388 0.342 0.360 0.364 

Table 3. Correlations between the cos.w4 feature and human scores (Hum=using human transcriptions; ASR=using 
ASR hypotheses)
 

6 Discussion 

6.1 Results on Human Transcriptions 

On human transcriptions, Table 2 shows that the 
max.cos feature correlations increase, albeit not 
significantly, when using the method WordNet–
Sense-1 on all prompts except for prompt D but 
decrease sometimes significantly when using the 
WordNet-Reasoning approach. 

The cos.w4 feature correlations, on the other 
hand, exhibit constant increases on all four 
prompts when using WordNet-Sense-1 and the 
increase on prompt C is significant. The average 
correlations further increase for all prompts when 
using WordNet-Reasoning and the increase is sig-
nificant on prompts B and C (Table 3).  

6.2 Results on ASR Output 

On the ASR output, for the max.cos feature, the 
average correlation barely changes when using the 
WordNet-Sense-1 method but decreases when us-
ing WordNet-Reasoning with significant decrease 
on prompts A and C (Table 2).  

For the cos.w4 feature, however, WordNet-
Sense-1 improves correlations on all four prompts 
with 0.018 correlation increase on average but in-
creases are not statistically significant on a prompt 
level. WordNet-Reasoning does not further im-
prove correlations much beyond the correlations of 
WordNet-Sense-1, with a further 0.004 increase in 

average correlation. Compared to CVA, though, 
correlations for WordNet-Reasoning are signifi-
cantly higher on prompts B and C (Table 3). 

6.3 Overall Discussion 

Based on these observations, we find that for 
cos.w4, the WordNet-Sense-1 approach can im-
prove average correlations compared to the CVA 
baseline on both ASR and human transcriptions. 
Hence, the extension of the document vectors by 
WordNet synsets has a positive impact on the ac-
curacy of content scoring of the spoken responses 
by non-native speakers. 

Again looking at the cos.w4 feature, while the 
WordNet Reasoning approach works well on hu-
man transcriptions to further improve correlations 
compared to WordNet-Sense-1, it does not consist-
ently improve correlations on ASR output. This 
may indicate that WordNet-Reasoning is more sen-
sitive to ASR errors than WordNet-Sense-1. 

For the max.cos feature, the correlation of 
WordNet-Reasoning decreases significantly from 
WordNet-Sense-1 on prompts A and C for both 
human and ASR transcriptions; moreover, in the 
WordNet-Reasoning approach the max.cos correla-
tions vary greatly on the four prompts (Table 2). 
We conjecture that one reason for this finding may 
lie in the rather small sample size of the data set, as 
this is an exploratory study, and the differences 
across prompts may be smaller when using a sub-
stantially larger data set. 
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Comparing the average reduction in correlation 
between human and ASR transcriptions, we find an 
absolute drop in correlations of 0.017 between the 
CVA baseline for the max.cos and of 0.019 for the 
cos.w4 feature. Looking at the WordNet-Sense-1 
approach for the cos.w4 feature, the average corre-
lation of 0.376 for human transcriptions is reduced 
by 0.016 to 0.360 for ASR hypotheses. Hence, we 
observe that the imperfect speech recognition out-
put does not cause a major degradation for this 
content feature; the degradations observed are all 
in the range of 5% relative (the ASR word error 
rate on the test set is about 13%.) 

Overall, the ontology-facilitated approaches are 
effective for the cos.w4 feature and seem to be less 
appropriate for the max.cos feature. We conjecture 
that the characteristics of the max.cos feature may 
be the reason for the poor performance of the on-
tology-facilitated approaches on this feature. To 
compute this feature, we need to compare a test 
vector with vectors for each score level, and it is 
assumed that these vectors are representative vec-
tors for documents at these score levels. In reality 
though, while the score level 4 vector is quite a 
good representative for the prompt topic (highest 
proficiency speakers), score level vectors of less 
proficient speakers are less uniform and more di-
verse. The reason is that there are only a few ways 
to appropriately represent the correct topic in a 
good quality spoken response but there can be 
many different ways of generating responses that 
are not on topic. For example, the score level 1 
vector contains vectors generated from score 1 
documents, whose words are considered mostly 
irrelevant for the prompt. Then, given a test docu-
ment, which also contains irrelevant words for the 
prompt but with little overlap to the level 1 score 
vector, the similarity between them would be very 
small. Thus, any ontological approach has to face 
this heterogeneous distribution of words in the 
score level vectors for responses with lower scores; 
any semantic generalizations are inherently more 
difficult compared to those on higher scoring re-
sponses. For the cos.w4 feature, in contrast, only 
score level 4 vectors are used, and this problem 
does not surface here. 

Finally, we observe that average correlations of 
both features based on ASR hypotheses (except for 
WordNet-Reasoning for the max.cos feature) fall 
in the range of 0.32-0.37. This range is well in line 
with our better performing features in other dimen-

sions of spontaneous speech responses, e.g., fluen-
cy, pronunciation, and prosody. 

7 Conclusion and Future Work 

In this paper, we propose using ontology-
facilitated approaches for content scoring of non-
native spontaneous speech due to specific merits of 
ontologies. Two ontology-facilitated approaches 
are proposed and evaluated, and their results are 
compared against a CVA baseline. The results in-
dicate that the ontology approaches can improve 
content feature correlations in some circumstances. 
As a summary, concept-level features and reason-
ing-based approaches work well on the cos.w4 
content feature where test documents are compared 
against a vector representing all training set docu-
ments with the highest human score. 

For future work, we plan to investigate more so-
phisticated reasoning approaches. For this study, 
we use a simple averaging method to infer the con-
cept importance based on hierarchy-inferred simi-
larity metrics. As a next step, we plan to infer 
weights according to different similarity metrics 
and differential weighting of the N closest terms. 
Another avenue for future research is to employ 
different ontologies, for example, Wikipedia, 
which contains more concepts and entities than 
WordNet and has a structure that has grown more 
organically and less from first principles.  Wikipe-
dia also has a larger pool of multi-word expres-
sions and we would like to explore how 
representations based on the Wikipedia ontology 
affects automated speech scoring performance. 

References  
Alwan, A., Bai, Y., Black, M., Casey, L., Gerosa, M., 

Heritage, M., & Wang, S. (2007). A system for tech-
nology based assessment of language and literacy in 
young children: The role of multiple information 
sources. Proceedings of the IEEE International 
Workshop on Multimedia signal Processing, Greece. 

Attali, Y., & Burstein, J. (2006). Automated essay scor-
ing with e-rater® V. 2. The Journal of Technology, 
Learning and Assessment, 4(3).  

Balogh, J., Bernstein, J., Cheng, J., & Townshend, B.  
(2007). Automatic evaluation of reading accuracy: 
Assessing machine scores. Proceedings of the ISCA-
SLaTE-2007 Workshop, Farmington, PA, October. 

Bloehdorn, S., & Hotho, A. (2004). Boosting for text 
classification with semantic features. Workshop on 
mining for and from the semantic web at the 10th 

93



ACM SIGKDD conference on knowledge discovery 
and data mining (KDD 2004).  

Burstein, J. (2003). The E-rater® scoring engine: Au-
tomated essay scoring with natural language pro-
cessing. In M. D. Shermis, Burstein, J.C. (Ed.), 
Automated essay scoring: A cross-disciplinary per-
spective (pp. 113-121). Mahwah, NJ: Lawrence Erl-
baum Associates, Inc. 

Croft, W. B., Metzler, D., & Strohman, T. (2010). 
Search engines: Information retrieval in practice. 
Boston, MA: Addison-Wesley. 

Cucchiarini, C., Strik, H., & Boves, L. (2000). Quantita-
tive assessment of second language learners’ fluency 
by means of automatic speech recognition technolo-
gy. Journal of the Acoustical Society of America, 
107(2), 989-999. 

Cucchiarini, C., Strik, H., & Boves, L. (2002). Quantita-
tive assessment of second language learners' fluen-
cy: Comparisons between read and spontaneous 
speech. Journal of the Acoustical Society of Ameri-
ca, 111(6), 2862-2873. 

Dikli, S. (2006). An overview of automated scoring of 
essays. The Journal of Technology, Learning and As-
sessment, 5(1), 1-35. 

Fellbaum, C. (Ed.). (1998). WordNet: An electronic 
lexical database. Cambridge, MA: The MIT press. 

Franco, H., Bratt, H., Rossier, R., Gadde, V. R., 
Shriberg, E., Abrash, V., & Precoda, K. (2010). 
EduSpeak: A speech recognition and pronunciation 
scoring toolkit for computer-aided language  learn-
ing applications. Language Testing, 27(3), 401-418. 

Hotho, A., Staab, S., & Stumme, G. (2003a). Ontologies 
improve text document clustering. Proceedings of the 
Third IEEE International Conference on Data Min-
ing (ICDM’03).  

Hotho, A., Staab, S., & Stumme, G. (2003b). Text clus-
tering based on background knowledge (Technical 
report, no.425.): Institute of Applied Informatics and 
Formal Description Methods AIFB, University of 
Karlsruche. 

Landauer, T. K., Laham, D., & Foltz, P. W. (2003). Au-
tomated scoring and annotation of essays with the In-
telligent Essay Assessor. In M. D. Shermis, Burstein, 
J.C. (Ed.), Automated essay scoring: A cross-
disciplinary perspective (pp. 87–112). Mahwah, NJ: 
Lawrence Erlbaum Associates, Inc. 

Larkey, L. S., & Croft, W. B. (2003). A Text Categori-
zation Approach to Automated Essay Grading. In M. 
D. Shermis & J. C. Burstein (Eds.), Automated Essay 
Scoring: A Cross-discipline Perspective: Mahwah, 
NJ, Lawrence Erlbaum. 

Pedersen, T., Patwardhan, S., & Michelizzi, J. (2004). 
WordNet:: Similarity: measuring the relatedness of 
concepts. Proceedings of the Fifth Annual Meeting of 
the North American Chapter of the Association for 
Computational Linguistics (NAACL-04).  

Salton, G., Wong, A., & Yang, C. S. (1975). A vector 
space model for automatic indexing. Communica-
tions of the ACM, 18(11), 613-620. 

Wikipedia: The free encyclopedia (2011). FL: Wiki-
media Foundation, Inc. Retrieved Apr 26, 2012, from 
http://www.wikipedia.org 

WordNet 3.0 Reference Manual. (2010). Retrieved Apr 
26, 2012 from 
http://wordnet.princeton.edu/wordnet/documentation/ 

Zechner, K., Higgins, D., Xi, X, & D. M. Williamson 
(2009). Automatic scoring of non-native spontaneous 
speech in tests of spoken English. Speech Communi-
cation, 51(10), 883-895. 

Zechner, K., & X. Xi (2008). Towards Automatic Scor-
ing of a Test of Spoken Language with Heterogene-
ous Task Types. Proceedings of the ACL Workshop 
on Innovative Use of NLP for Building Educational 
Applications, Columbus, OH, June.  

 

94



The 7th Workshop on the Innovative Use of NLP for Building Educational Applications, pages 95–104,
Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

Predicting Learner Levels for Online Exercises of Hebrew

Markus Dickinson, Sandra Kübler, Anthony Meyer
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Abstract

We develop a system for predicting the level of
language learners, using only a small amount
of targeted language data. In particular, we
focus on learners of Hebrew and predict level
based on restricted placement exam exercises.
As with many language teaching situations, a
major problem is data sparsity, which we ac-
count for in our feature selection, learning al-
gorithm, and in the setup. Specifically, we de-
fine a two-phase classification process, isolat-
ing individual errors and linguistic construc-
tions which are then aggregated into a second
phase; such a two-step process allows for easy
integration of other exercises and features in
the future. The aggregation of information
also allows us to smooth over sparse features.

1 Introduction and Motivation

Several strands of research in intelligent computer-
assisted language learning (ICALL) focus on deter-
mining learner ability (Attali and Burstein, 2006;
Yannakoudakis et al., 2011). One of the tasks, de-
tecting errors in a range of languages and for a range
of types of errors, is becoming an increasingly popu-
lar topic (Rozovskaya and Roth, 2011; Tetreault and
Chodorow, 2008); see, for example, the recent HOO
(Helping Our Own) Challenge for Automated Writ-
ing Assistance (Dale and Kilgarriff, 2011). Only
rarely has there been work on detecting errors in
more morphologically-complex languages (Dickin-
son et al., 2011).

In our work, we extend the task to predicting the
learner’s level based on the errors, focusing on He-

brew. Our system is targeted to be used in a uni-
versity setting where incoming students need to be
placed into the appropriate language level—i.e., the
appropriate course—based on their proficiency in
the language. Such a level prediction system for He-
brew faces a number of challenges: 1) unclear cor-
respondence between errors and levels, 2) missing
NLP resources, and, most critically, 3) data sparsity.

Placing learners into levels is generally done by
a human, based on a written exam (e.g. (Fulcher,
1997)). To model the decision process automati-
cally, we need to understand how the types of er-
rors, as well as their frequencies, correspond to
learner levels. There is only little work investigat-
ing this correspondence formally (see (Hawkins and
Filipović, 2010; Alexopoulou et al., 2010) for dis-
cussion) and only on error-annotated English learner
corpora. For this reason, we follow a data-driven
approach to learn the correspondence between er-
rors and levels, based on exercises from written
placement exams. Although the exact exercises will
vary across languages and language programs, the
methodology is widely applicable, as developing
a small set of exercises requires minimal effort—
effort already largely expended for paper exams.
Currently, we focus on an exercise in which the
learner has to order a set of words into a grammat-
ical sentence. Our goal is to move towards freer
language production and to analyze language pro-
ficiency through more variables, but, in the interest
of practicality, we start in a more restricted way.

For lesser-resourced languages, there is generally
little data and few NLP resources available. For He-
brew, for example, we must create our own pool of
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learner data, and while NLP tools and resources ex-
ist (Goldberg and Elhadad, 2011; Yona and Wintner,
2008; Itai and Wintner, 2008), they are not adapted
for dealing with potentially ill-formed learner pro-
ductions. For this reason, we are performing linguis-
tic analysis on the gold standard answers to obtain
optimal linguistic analyses. Then, the system aligns
the learner answer to the gold standard answer and
determines the types of deviations.

Since Hebrew is a less commonly taught language
(LCTL), we have few placement exams from which
to learn correspondences. Compounding the data
sparsity problem is that each piece of data is com-
plex: if a learner produces an erroneous answer,
there are potentially a number of ways to analyze it
(cf. e.g. (Dickinson, 2011)). An error could feature,
for instance, a letter inserted in an irregular verb
stem, or between two nouns; any of these proper-
ties may be relevant to describing the error (cf. how
errors are described in different taxonomies, e.g.
(Dı́az-Negrillo and Fernández-Domı́nguez, 2006;
Boyd, 2010)). Specific error types are unlikely to
recur, making sparsity even more of a concern. We
thus need to develop methods which generalize well,
finding the most useful aspects of the data.

Our system is an online system to be used at the
Hebrew Language Program at our university. The
system is intended to semi-automatically place in-
coming students into the appropriate Hebrew course,
i.e., level. As with many exams, the main purpose is
to “reduce the number of students who attend an oral
interview” (Fulcher, 1997).

2 The Data

Exercise type We focus on a scrambled sentence
exercise, in which learners are given a set of well-
formed words and must put them into the correct or-
der. For example, given (1), they must produce one
of the correct choices in (2). This gives them the
opportunity to practice skills in syntactic ordering.1

(1) barC beph dibrw hybrit ieral la tmid

(2) a. la
not

tmid
always

dibrw
spoke

beph
in-the-language

hybrit
the-Hebrew

barC
in-land-of

ieral
Israel

.

.
1We follow the transliteration scheme of the Hebrew Tree-

bank (Sima’an et al., 2001).

‘They did not always speak in the He-
brew language in the land of Israel.’

b. barC ieral la dibrw tmid beph hybrit .

c. la tmid dibrw barC ieral beph hybrit .

(3) barC ieral la tmid dibrw beph hybriM .

Although the lexical choice is restricted—in that
learners are to select from a set of words—learners
must write the words. Thus, in addition to syntactic
errors, there is possible variation in word form, as in
(3), where hybrit is misspelled as hybriM.

This exercise was chosen because: a) it has been
used on Hebrew placement exams for many years;
and b) the amount of expected answers is con-
strained. Starting here also allows us to focus less
on the NLP preprocessing and more on designing
a machine learning set-up to analyze proficiency.
It is important to note that the proficiency level is
determined by experts looking at the whole exam,
whereas we are currently predicting the proficiency
level on the basis of a single exercise.

Placement exams The data for training and test-
ing is pooled from previous placement exams at our
university. Students who intend to take Hebrew have
in past years been given written placement exams,
covering a range of question types, including scram-
bled sentences. The learners are grouped into the
first to the sixth semester, or they test out. We are
using the following levels: the first four semesters
(100, 150, 200, 250), and anything above (300+).

We use a small set of data—38 learners covering
128 sentences across 11 exercises—all the data that
is available. While this is very small, it is indicative
of the type of situation we expect for resource-poor
languages, and it underscores the need to develop
methods appropriate for data-scarce situations.

(Manual) annotation For each of the 11 unique
exercises, we annotate an ordered list of correct an-
swers, ranked from best to worst. Since Hebrew pos-
sesses free word order, there are between 1 and 10
correct answers per exercise, with an average of 3.4
gold standard answers. The sentences have between
8 and 15 words, with an average of 9.7 words per ex-
ercise. This annotation concerns only the gold stan-
dard answers. It requires minimal effort and needs
to be performed only once per exercise.
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T09: SURFACE qnw
SEGMENTATION (VB-BR3V qnw)
PRE_PARTICLES -
MAIN_WORD:

INDICES 0,1,2,
TAG VB-BR3V
BINYAN PAAL
INFL_PREFIX -
STEM 0,1,
ROOT 0,1,h,
INFL_SUFFIX 2,

PRO_SUFFIX -

Figure 1: An example annotated word for qnw (‘bought’),
token T09 in one particular exercise

To annotate, we note that all the correct answers
share the same set of words, varying in word or-
der and not in morphological properties. Thus,
we store word orders separately from morphologi-
cal annotation, annotating morphology once for all
possible word orders. An example of morpholog-
ical annotation is given in fig. 1 for the verb qnw
(‘bought’). Segmentation information is provided
by referring to indices (e.g., STEM 0,1), while TAG
and BINYAN provide morphosyntactic properties.

Since the annotation is on controlled, correct data,
i.e., not potentially malformed learner data, we can
explore automatically annotating exercises in the fu-
ture, as we expect relatively high accuracy.

3 System overview

The overall system architecture is given in fig. 2; the
individual modules are described below. In brief,
we align a learner sentence with the gold standard;
use three specialized classifiers to classify individ-
ual phenomena; and then combine the information
from these classifiers into an overall classifier for the
learner level. This means the classification is per-
formed in two phases: the first phase looks at indi-
vidual phenomena (i.e., errors and other properties);
the second phase aggregates all phenomena of one
learner over all exercises and makes a final decision.

4 Feature extraction

To categorize learners into levels, we first need to ex-
tract relevant information from each sentence. That
is, we need to perform a linguistic and/or error anal-
ysis on each sentence, which can be used for classi-

Learner
sentence

(L)

Alignment

Gold
standard
answers

(G1 . . . G2)

Feature
extraction

Intertoken
errors

Intratoken
errors

Global
features

Intra-
Classifier

Inter-
Classifier

Global-
Classifier

Classified
intra

vectors

Classified
inter

vectors

Classified
global
vectors

Learner
classifier

L↔ Gi

Figure 2: Overall system architecture (boxes = system
components, circles = data)

fication (sec. 5). Although we extract features for
classification, this analysis could also be used for
other purposes, such as providing feedback.

4.1 Phenomena of interest

We extract features capturing individual phenom-
ena. These can be at the level of individual words,
bigrams of words, or anything up to a whole sen-
tence; and they may represent errors or correctly-
produced language. Importantly, at this stage, each
phenomenon is treated uniquely and is not combined
or aggregated until the second phase (see sec. 5).

While features can be based on individual phe-
nomena of any type, we base our extracted features
largely upon learner errors. Errors have been shown
to have a significant impact on predicting learner
level (Yannakoudakis et al., 2011). To detect errors,
we align the learner sentence with a gold standard
and extract the features. Although we focus on er-
rors, we model some correct language (sec. 4.3.3).

4.2 Token alignment

With a listing of correct answers, we align the
learner sentence to the answer which matches best:
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We iterate over the correct answers and align learner
tokens with correct tokens, based on the cost of map-
ping one to the other. The aligned sentence is the
one with the lowest overall cost. The cost between a
source token ws and target token wt accounts for:

1. Levenshtein distance between ws & wt (Lev)

2. similiarity between ws & wt (longest common
subsequence (LCSq) & substring (LCSt))

3. displacement between ws & wt (Displ)

This method is reminiscent of alignment ap-
proaches in paraphrasing (e.g. (Grigonytè et al.,
2010)), but note that our problem is more restricted
in that we have the same number of words, and in
most cases identical words. We use different dis-
tance and similarity metrics, to ensure robustness
across different kinds of errors. The third metric is
the least important, as learners can shift tokens far
from their original slot, and thus it is given a low
weight. The only reason to use it at all is to distin-
guish cases where more than one target word is a
strong possibility, favoring the closer one.

The formula for the cost between source and tar-
get words ws and wt is given in (4), where the dis-
tance metrics are averaged and normalized by the
length of the target word wt. This length is also used
to convert the similarity measures into distances, as
in (5). We non-exhaustively tested different weight
distributions on about half the data, and our final set
is given in (6), where slightly less weight is given
for the longest common substring and only a minor
amount for the displacement score.

(4) cost(ws, wt) = θ1Displ(ws, wt) +
θ2Lev(ws,wt)+θ3dLCSq(ws,wt)+θ4dLCSt(ws,wt)

3×len(wt)

(5) dLCS(ws, wt) = len(wt)− LCS(ws, wt)

(6) θ1 = 0.05; θ2 = 1.0; θ3 = 1.0; θ4 = 0.7

In calculating Levenshtein distance, we hand-
created a small table of weights for insertions, dele-
tions, and substitutions, to reflect likely modifica-
tions in Hebrew. All weights can be tweaked in the
future, but we have observed good results thus far.

The total alignment is the one which minimizes
the total cost (7). A is an alignment between the
learner sentence s and a given correct sentence t.
Alignments to NULL have a cost of 0.6, so that
words with high costs can instead align to nothing.

(7) align = arg minA
∑

(ws,wt)∈A cost(ws, wt)

4.3 Extracted features
We extract three different types of features; as these
have different feature sets, we correspondingly have
three different classifiers, as detailed in sec. 5.1.
They are followed by a fourth classifier that tallies
up the results of these three classifiers.

4.3.1 Intra-token features
Based on the token alignments, it is straightfor-

ward to calculate differences within the tokens and
thus to determine values for many features (e.g., a
deleted letter in a prefix). We calculate such intra-
token feature vectors for each word-internal error.

For instance, consider the learner attempt (8b) for
the target in (8a). We find in the learner answer two
intra-token errors: one in hmtnwt (cf. hmtnh), where
the fem.pl. suffix -wt has been substituted for the
fem.sg. ending -h, and another in hnw (cf. qnw),
where h has been substituted for q. These two errors
yield the feature vectors presented as example cases
in table 1.

(8) a. haM
Q

hN
they.FEM

eilmw
paid

hrbh
much

ksP
money

bebil
for

hmtnh1

the-gift
ehN
which-they.FEM

qnw2

bought
?
?

‘Did they pay much money for the gift
that they bought?’

b. haM hN eilmw hrbh ksP bebil hmtnwt1
ehN hnw2 ?

Features 1 and 11 in table 1 are the POS tags of the
morphemes preceding and following the erroneous
morpheme, respectively. The POS tag of the mor-
pheme containing the error is given by feature 2, and
its person, gender, and number by feature 3. The re-
maining features describe the error itself (f. 6–8), as
well as its word-internal context, i.e., both its left (f.
4–5) and right (f. 9–10) contexts.

The context features refer to individual character
slots, which may or may not be occupied by actual
characters. For example, since the error in hmtnwt
is word-final, its two right-context slots are empty,
hence the ‘#’ symbol for both features 9 and 10.

The feature values for these character slots are
generally not literal characters, but rather abstract la-
bels representing various categories, most of which
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Features hnw hmtnwt
1. Preceding POS PRP H
2. Current POS VB NN
3. Per.Gen.Num. 3cp -fs
4. Left Context (2) # R2
5. Left Context (1) # R3
6. Source String h wt
7. Target String q h
8. Anomaly h→q wt→h
9. Right Context (1) R2 #

10. Right Context (2) INFL-SFX #
11. Following POS yyQM REL

Table 1: Intra-token feature categories

are morphological in nature. In hmtnwt, for exam-
ple, the two left-context characters t and n are the
second and third radicals of the root, hence the fea-
ture values R2 and R3, respectively.

4.3.2 Inter-token features
The inter-token features encode anomalies whose

scope is not confined to a particular token. Such
anomalies include token displacements and missing
tokens. We again use the Levenshtein algorithm to
detect inter-token anomalies, but we disable the sub-
stitution operation here so that we can link up corre-
sponding deletions and insertions to yield “shifts.”

For example, suppose the target is A B C D, and
the learner has D A B C. Without substitutions, the
minimal cost edit sequence is to delete D from the
beginning of the learner’s input and insert D at the
end. Merging the two operations results in a D shift.

The learner sentence in (9b) shows two inter-
token anomalies with respect to the target in (9a).
First, the learner has transposed the two tokens in
sequence 1, namely the verb dibrw (‘speak-PAST’)
and the adverb tmid (‘always’). Second, sequence 2
(the PP beph hybrit, ‘in the Hebrew language’) has
been shifted from its position in the target sentence.

(9) a. barC
in-land-of

ieral
Israel

la
not

dibrw1

speak-PAST

tmid1

always
beph2

in-the-language
hybrit2
the-Hebrew

.

.
b. barC ieral beph2 hybrit2 la tmid1

dibrw1 .

Table 2 presents the inter-token feature vectors
for the two anomalies in (9b). After Anomaly,

Features Seq. 1 Seq. 2
1. Anomaly TRNS SHFT
2. Sequence Label RB↔VP PP
3. Head Per.Gen.Num. 3cp ---
4. Head POS.(Binyan) VB.PIEL IN
5. Sequence-Initial POS VB IN
6. Sequence-Final POS RB JJ
7. Left POS (Learner) RB NNP
8. Right POS (Learner) IN RB
9. Left POS (Target) RB RB

10. Right POS (Target) IN yyDOT
11. Sequence Length 2 2
12. Normalized Error Cost 0.625 0.250
13. Sent-Level@Rank 200@2 200@2

Table 2: Inter-token feature categories

the next three features provide approximations of
phrasal properties, e.g., the phrasal category and
head, based on a few syntactically-motivated heuris-
tics. Sequence Label identifies the lexical or phrasal
category of the shifted token/token-sequence (e.g.,
PP). Note that sequence labels for transpositions are
special cases consisting of two category labels sep-
arated by an arrow. Head Per.Gen.Num and Head
POS.(Binyan) represent the morphosyntactic prop-
erties of the sequence’s (approximate) head word,
namely its person, gender, and number, and its POS
tag. If the head is a verb, the POS tag is followed by
the verb’s binyan (i.e., verb class), as in VB.PIEL.

The cost feature, Normalized Error Cost, is com-
puted as follows: for missing, extra, and transposed
sequences, the cost is simply the sequence length
divided by the sentence length. For shifts, the se-
quence length and the shift distance are summed
and then divided by the sentence length. Sent-
Level@Rank indicates both the difficulty level of the
exercise and the word-order rank of target sentence
to which the learner sentence has been matched.

4.3.3 Global features
In addition to errors, we also look at global fea-

tures capturing global trends in a sentence, in order
to integrate information about the learner’s overall
performance on a sentence. For example, we note
the percentage of target POS bigrams present in the
learner sentence (POS recall). Table 3 presents the
global features. The two example feature vectors are
those for the sentences (8b) and (9b) above.
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Features Ex. (8b) Ex. (9b)
1. POS Bigram Recall 2.000 1.273
2. LCSeq Ratio 2.000 1.250
3. LCStr Ratio 1.200 0.500
4. Relaxed LCStr Ratio 2.000 0.500
5. Intra-token Error Count 1.500 0.000
6. Inter-token Error Count 0.000 1.500
7. Intra-token Net Cost 1.875 0.000
8. Norm. Aggregate Displ. 0.000 0.422
9. Sentence Level 200 200

Table 3: Global feature categories

Except for feature 9 (Sentence Level), every fea-
ture in table 3 is multiplied by a weight derived from
the sentence level. These weights serve either to pe-
nalize or compensate for a sentence’s difficulty, de-
pending on the feature type. Because features 1–
4 are “positive” measures, they are multiplied by
a factor proportional to the sentence level, namely
l = 1. . . 4, whose values correspond directly to the
levels 150–300+, respectively. Features 5–8, in con-
trast, are “negative” measures, so they are multiplied
by a factor inversely proportional to l, namely 5−l

4 .
Among the positive features, LCSeq looks for the

longest common subsequence between the learner
sentence and the target, while LCStr Ratio and Re-
laxed LCStr Ratio both look for longest common
substrings. However, Relaxed LCStr Ratio allows
for token-internal anomalies (as long as the token it-
self is present) while LCStr Ratio does not.

As for the negative features, the two Error Count
features simply tally up the errors of each type
present in the sentence. The Intra-token Net Cost
sums over the token-internal Levenshtein distances
between corresponding learner and target tokens.
Normalized Aggregate Displacement is the sum of
insertions and deletions carried out during inter-
token alignment, normalized by sentence length.

5 Two-phase classification

To combine the features for individual phenomena,
we run a two-phase classifier. In the first phase, we
classify each feature vector for each phenomenon
into a level. In the second phase, we aggregate over
this output to classify the overall learner level.

We use two-phase classification in order to: 1)
modularize each individual phenomenon, mean-

ing that new phenomena are more easily incorpo-
rated into future models; 2) better capture sparsely-
represented phenomena, by aggregating over them;
and 3) easily integrate other exercise types simply
by having more specialized phase 1 classifiers and
by then integrating the results into phase 2.

One potential drawback of two-phase classifica-
tion is that of not having gold standard annotation of
phase 1 levels or even knowing for sure whether in-
dividual phenomena can be classified into consistent
and useful categories. That is, even if a 200-level
learner makes an error, that error is not necessarily a
200-level error. We discuss this next.

5.1 Classifying individual phenomena
With our three sets of features (sec. 4), we set up
three classifiers. Depending upon the type, the ap-
propriate classifier is used to categorize each phase
1 vector. For classification, every phase 1 vector is
assigned a single learner level. However, this as-
sumes that each error indicates a unique level, which
is not always true. A substitution of i for w, for ex-
ample, may largely be made by 250-level (interme-
diate) learners, but also by learners of other levels.

One approach is to thus view each phenomenon as
mapping to a set of levels, and for a new vector, clas-
sification predicts the set of appropriate levels, and
their likelihood. Another approach to overcome the
fact that each uniquely-classified phenomenon can
be indicative of many levels is to rely on phase 2
to aggregate over different phenomena. The advan-
tage of the first approach is that it makes no assump-
tions about individual phenomena being indicative
of a single level, but the disadvantage is that one
may start to add confusion for phase 2 by includ-
ing less relevant levels, especially when using little
training data. The second approach counteracts this
confusion by selecting the most prototypical level
for an individual phenomenon (cf. criterial features
in (Hawkins and Buttery, 2010)), giving less noise
to phase 2. We may lose important non-best level
information, but as we show in sec. 6, with a range
of classifications from phase 1, the second phase can
learn the proper learner level.

In either case, from the perspective of training,
an individual phenomenon can be seen, in terms of
level, as the set of learners who produced such a phe-
nomenon. We thus approximate the level of each
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Feature type Feature type
1. 100-level classes 7. Intra-token error sum
2. 150-level classes 8. Inter-token error sum
3. 200-level classes 9. Sentences attempted
4. 250-level classes 10. 250-level attempts
5. 300-level classes 11. 300-level attempts
6. Composite error

Table 4: Feature categories for learner level prediction

phenomenon by using the level of the learner from
the gold standard training data. This allows us not to
make a theoretical classification of phenomena (as
opposed to taxonomically labeling phenomena).

5.2 Predicting learner level
We aggregate the information from phase 1 classifi-
cation to classify overall learner levels. We assume
that the set of all individual phenomena and their
quantities (e.g., proportion of phenomena classified
as 200-level in phase 1) characterize a learner’s level
(Hawkins and Buttery, 2010). The feature types
are given in table 4. Features 1–6 are discussed in
sec. 6.1; features 7–8 are (normalized) sums; and the
rest record the number of sentences attempted, bro-
ken down by intended level of the sentence. Lower-
level attempts are not included, as they are the same
values for nearly all students. When we incorporate
other exercise types in the future, additional features
can be added—and the current features modified—
to fold in information from those exercise types.

An example To take an example, one of our
(300+) learners attempts four sentences, giving four
sets of global features, and makes four errors, for
a total of eight phase 1 individual phenomena. One
phenomenon is automatically classified as 100-level,
one as 150, four as 200, one as 250, and one as 300+.
Taking the 1-best phase 1 output (see section 6.3),
the phase 2 vector in this case is as in (10a), corre-
sponding directly to the features in table 4.

(10) a. 0.25, 0.25, 1.00, 0.25, 0.25, 2.00, 0.50,
0.50, 4, 1, 0

b. 0.25, 0.00, 1.00, 0.25, 0.00, 1.625, 0.00,
0.50, 4, 1, 0

In training, we find a 300+-level learner with a
very similar vector, namely that of (10b). Depending

upon the exact experimental set-up (e.g., k2 = 1,
see section 6.3), then, this vector helps the system to
correctly classify our learner as 300+.

6 Evaluation

6.1 Details of the experiments
We use TiMBL (Daelemans et al., 2010; Daelemans
et al., 1999), a memory-based learner (MBL), for
both phases. We use TiMBL because MBL has been
shown to work well with small data sets (Banko and
Brill, 2001); allows for the use of both text-based
and numeric features; and does not suffer from a
fragmented class space. We mostly use the default
settings of TiMBL—the IB1 learning algorithm and
overlap comparison metric between instances—and
experiment with different values of k.

For prediction of phenomenon level (phase 1) and
learner level (phase 2), the system is trained on data
from placement exams previously collected in a He-
brew language program, as described in sec. 2. With
only 38 learners, we use leave-one-out testing, train-
ing on the data from the 37 other learners in order
to run a model on each learner’s sentences. All of
phase 1 is completed (i.e., automatically analyzed)
before training the phase 2 models. As a baseline,
we use the majority class (level 150); choosing this
for all learners gives an accuracy of 34.2% (13/38).2

Phase 1 probability distributions Because
TiMBL retrieves all neighbor with the k nearest
distances rather than the k nearest neighbors, we
can use the number of neighbors in phase 1 to adjust
the values of, e.g., 150-level classes. For example,
the output from phase 1 for two different vectors
might be as in (11). Both have a distribution of 2

3
150-level and 1

3 200-level; however, in one case,
this is based on 6 neighbors, whereas for the other,
there are 12 neighbors within the nearest distance.

(11) a) 150:4, 200:2 b) 150:8, 200:4

With more data, we may have more confidence
in the prediction of the second case. The classes
features (fx) of table 4 are thus calculated as in
(12), multiplying counts of each class (c(x)) by their
probabilities (p(x)).

2We are aware that the baseline is not very strong, but the
only alternative would be to use a classifier since we observed
no direct correlation between level and number of errors.
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k Intra Inter Global Overall
1 28.1% 38.6% 34.4% 34.7%
3 34.2% 44.6% 44.6% 41.9%
5 34.2% 37.1% 36.7% 36.3%

Table 5: Phase 1 accuracies

(12) fx =
∑

phase1

c(x)p(x)

The Composite error feature combines all classes
features into one score, inversely weighing them by
level, so that more low-level errors give a high value.

6.2 Predicting phenomena levels
We first evaluate phase 1 accuracy, as in table 5. Us-
ing k = 3 gives the best phase 1 result, 41.9%. We
evaluate with respect to the single-best class, i.e.,
the level of the learner of interest. Accuracy is the
percentage of correctly-classified instances out of all
instances. We assume an instance is classified cor-
rectly if its class corresponds to the learner level.

Accuracy is rather low, at 41.9%. However, we
must bear in mind that we cannot expect 100% accu-
racy, given that individual phenomena do not clearly
belong to a single level. Intra-token classification is
lowest, likely due to greater issues of sparsity: ran-
dom typos are unlikely to occur more than once.

6.3 Predicting learner level
For the second phase, we use different settings for
phase 1 instances. The results are shown in table 6.
The overall best results are reached using single-best
classification for phase 1 and k = 1 for phase 2, giv-
ing an accuracy of 60.5%. Note that the best result
does not use the best performing setting for phase 1
but rather the one with the lowest performance for
phase 1. This shows clearly that optimizing the two
phases individually is not feasible. We obtain the
same accuracy using k = 5 for both phases.

Since we are interested in how these two settings
differ, we extract confusion matrices for them; they
are shown in table 7. The matrices show that the in-
herent smoothing via the k nearest neighbors leads
to a good performance for lower levels, to the ex-
clusion of levels higher than 200. The higher lev-
els are also the least frequent: the k1 = 5/k2 = 5
case shows a bias towards the overall distribution of
levels, whereas the 1-best/k2 = 1 setting is more

Phase 1
1-best k1 = 1 k1 = 3 k1 = 5

Ph
as

e
2 Max 42.1 47.4 57.9 42.1

k2 = 1 60.5 57.9 36.8 39.5
k2 = 3 42.1 44.7 44.7 42.1
k2 = 5 39.5 42.1 44.7 60.5

Table 6: Phase 2 accuracies for different phase 1 settings

System
1-best 100 150 200 250 300+ Acc.

G
ol

d

100 6 1 6/7
150 2 7 3 1 7/13
200 2 7 1 1 7/11
250 1 1 0/2

300+ 1 1 3 3/5

k=5 100 150 200 250 300+ Acc.

G
ol

d

100 5 2 5/7
150 2 9 2 9/13
200 2 9 9/11
250 2 0/2

300+ 1 4 0/5

Table 7: Classification confusion matrices

likely to guess neighboring classes. In order to better
account for incorrect classifications which are close
to the correct answer (e.g., 250 for 200), we also
calculated weighted kappa for all the results in ta-
ble 6. Based on kappa, the best result is based on
the setting k1 = 1/k2 = 1 (0.647), followed by
1-best/k2 = 1 (0.639). The weighted kappa for
k1 = 5/k2 = 5 is significantly lower (0.503).

We are also interested in whether we need such
a complex system: phase 1 can outputs a distribu-
tion of senses (k1 = n), or we can use the single
best class as input to phase 2 (1-best). In a different
vein, phase 2 is a machine learner (k2 = n) trained
on phase 1 classified data, but could be simplified
to take the maximum phase 1 class (Max). The re-
sults in table 6 show that using the single-best result
from phase 1 in combination with k2 = 1 provides
the best results, indicating that phase 2 can properly
aggregate over individual phenomena (see sec. 5.1).
However, for all other phase 2 settings, adding the
distribution over phase 1 results increases accuracy.
Using the maximum class rather than the machine
learner in phase 2 generally works best in combina-
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tion with more nearest neighbors in phase 1, provid-
ing a type of smoothing. However, using the maxi-
mum has an overall detrimental effect.

While the results may not be robust enough to de-
ploy, they are high, given that this is only one type of
exercise, and we have used a very small set of train-
ing data. When performing the error analysis, we
found one student who had attempted only half of
the sentences—generally a sign of a low level—who
was put into level 300. We assume this student per-
formed better on other exercises in the exam. Given
this picture, it is not surprising that our system con-
sistently groups this student into a lower level.

6.4 Ablation studies

We are particularly interested in how the different
phases interact, 1) because one major way to expand
the system is to add different exercises and incor-
porate them into the second phase, and 2) because
the results in table 6 show a strong interdependence
between phases. We thus performed a set of exper-
iments to gauge the effect of different types of fea-
tures. By running ablation studies—i.e., removing
one or more sets of features (cf. e.g. (Yannakoudakis
et al., 2011))–we can determine their relative impor-
tance and usefulness. We run phase 2 (k = 1) using
different combinations of phase 1 classifiers (1-best)
as input. The results are presented in table 8.

Intra Inter Global Acc.
Y Y Y 60.5%
Y Y N 47.4%
Y N N 42.1%
N Y Y 42.1%
N Y N 42.1%
Y N Y 36.8%
N N Y 34.2%

Table 8: Ablation studies, evaluating on phase 2 accuracy

Perhaps unsurprisingly, the combination of all
feature types results in the highest results of 60.5%.
Also, using only one type of features results in the
lowest performance, with the global features being
the least informative set, on par with the baseline of
34.2%. If we use only two feature sets, removing
the global features results in the least deterioration.
Since these features do not directly model errors but

rather global sentence trends, this is to be expected.
However, leaving out inter-token features results in
the second-lowest results (36.8%), thus showing that
this set is extremely important—again not surprising
given that we are working with an exercise designed
to test word order skills.

7 Summary and Outlook

We have developed a system for predicting the level
of Hebrew language learners, using only a small
amount of targeted language data. We have pre-
dicted level based on a single placement exam exer-
cise, finding a surprising degree of accuracy despite
missing much of the information normally used on
such exams. We accounted for the problem of data
sparsity by breaking the problem into a two-phase
classification and through our choice of learning al-
gorithm. The classification process isolates individ-
ual errors and linguistic constructions which are then
aggregated into a second phase; such a two-step pro-
cess allows for easy integration of other exercises
and features in the future. The aggregation of infor-
mation allows us to smooth over sparse features.

In the immediate future, we are integrating other
exercises, to improve the overall accuracy of level
prediction (i.e., the second phase) and make auto-
matic testing more valid (cf. e.g. (Fulcher, 1997)),
while at the same time incorporating more linguistic
processing for more complex input. For example,
with question formation exercises, no closed set of
correct answers exists, and one must use parse tree
distance to delineate features. With multiple exer-
cises, we have plans to test the system with incoming
students to the Hebrew program at our university.
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Abstract 

In this paper we present a new spell-checking 
system that utilizes contextual information for 
automatic correction of non-word misspel-
lings. The system is evaluated with a large 
corpus of essays written by native and non-
native speakers of English to the writing 
prompts of high-stakes standardized tests 
(TOEFL® and GRE®). We also present com-
parative evaluations with Aspell and the spel-
ler from Microsoft Office 2007. Using 
context-informed re-ranking of candidate sug-
gestions, our system exhibits superior error-
correction results overall and also corrects er-
rors generated by non-native English writers 
with almost same rate of success as it does for 
writers who are native English speakers. 

1 Introduction 

Misspellings are ubiquitous in student writing. 
Connors and Lunsford (1988) have found that spel-
ling errors accounted for about one quarter of all 
errors found in a random sample of 300 student 
essays. Desmet and Balthazor (2006) found that 
spelling errors are among the five most frequent 
errors in first-year college composition of US stu-
dents. Lunsford and Lunsford (2008) found that 
spelling errors constituted about 6.5% of all errors 
found in a US national sample of 3000 college 
composition essays, despite the fact that writers 
had access to spellcheckers. 

Misspellings are even more ubiquitous in texts 
written by non-native speakers of English, espe-
cially English Language Learners (ELL). The 

types of misspellings produced by L2 writers are 
typically different from errors produced by native 
speakers (Hovermale, 2010; Al-Jarf, 2010; Okada, 
2005). 

In the area of automatic assessment of writing, 
detection of misspellings is utilized in computer-
aided language learning applications and in some 
automatic scoring systems, especially when feed-
back to users is involved (Dikli, 2006; Warschauer 
and Ware, 2006). Yet spelling errors may have a 
deeper influence on automated text assessment. As 
noted by Nagata, et al. (2011), sub-optimal auto-
matic detection of grammar and mechanics errors 
may be attributed to poor performance of NLP 
tools over noisy text. 

Presence of spelling errors also hinders systems 
that require only lexical analysis of text (Landauer, 
et al. , 2003; Pérez, et al., 2004). Granger and 
Wynne (1999) have shown that spelling errors can 
affect automated estimates of lexical variation, 
which in turn are used as predictors of text quality 
(Crossley, et al., 2008; Yu, 2010). In the context of 
automated preposition and determiner error correc-
tion in L2 English, De Felice and Pulman (2008) 
noted that the process is often disrupted by miss-
pellings. Futagi (2010) described how misspellings 
pose problems in development of a tool for detec-
tion of phraseological collocation errors. 

Given this state of affairs, it is only natural for 
automatic text assessment systems to utilize auto-
matic spellchecking components. However, gener-
ic spellcheckers are typically oriented for errors 
produced by writers who are native speakers of a 
language. Rimrott and Heift (2008, 2005) have 
demonstrated that a generic speller has poor per-
formance on data from German language learners. 
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Bestgen and Granger (2011) and Hovermale 
(2010) have demonstrated similar results on data 
from ELL. 

Many researchers have suggested that spell-
checkers for L2 users need to be adapted for the 
particular patterns of errors that characterize each 
native language (L1), by studying patterns of inter-
ference and influence from L1 to L2 (Mitton and 
Okada, 2007; Mitton, 1996; Rimrott and Heift, 
2008, 2005; Bestgen and Granger, 2011; Hover-
male, 2010). We have set up to explore a different 
path, in the context of automated text assessment. 
Our goal in the present study is to examine to what 
extent detection and automatic correction of non-
word misspellings can be improved by utilizing 
essay context, for data from both native and non-
native English speakers. 

The rest of this paper is organized as follows. 
Section 2 provides a description of the corpus of 
texts and misspellings that was used in this study. 
Section 3 describes the ConSpel automatic spell-
checking system. Section 4 presents results from a 
comparative evaluation of our system, ConSpel, 
the popular Aspell speller and the Microsoft Office 
2007 speller. Section 5 compares our findings with 
some recent studies and discusses implications for 
further development of automatic spell-checking 
systems. 

2 Corpus 

The corpus used in this study is a collection of es-
says, annotated for misspellings by trained annota-
tors. It is developed for evaluation of automatic 
spellcheckers, and for research on patterns of 
misspellings produced by both native English 
speakers and ELL. 

2.1 Texts 

The corpus comprises essays written by exami-
nees on the writing sections of GRE® (Graduate 
Record Examinations) and TOEFL® (Test of Eng-
lish as a Foreign Language) (ETS, 2011a,b). The 
TOEFL test includes two different writing tasks: a 
short opinion essay, on a pre-assigned topic, and a 
summary essay that compares arguments from two 
different sources (both supplied during the test). 
GRE also includes two different writing tasks: one 
is a short argumentative essay taking a position on 
an assigned topic, the other is an essay evaluating 

the soundness of arguments presented in prompt. 
Both tests are delivered on computer (at test cen-
ters around the world and via Internet), always us-
ing the standard English language computer 
keyboard (QWERTY). Editing tools such as a 
spellchecker are not provided in the test-delivery 
software (ETS, 2011a). All writing tasks have time 
constraints. 

In the current phase of the project, the corpus 
includes 3000 essays, for a total of 963,428 words. 
The essays were selected equally from the two 
tests (4 tasks, 10 prompts per task, 75 essays per 
prompt), also covering full range of scores (as a 
proxy for English proficiency levels) for each task. 
The majority of essays in this collection were writ-
ten by examinees for whom English is not the first 
language (98.73% of TOEFL essays, 57.86% of 
GRE essays). 

2.2 Annotation 

Each text was independently reviewed by two 
annotators, who are native English speakers expe-
rienced in linguistic annotation. Annotators were 
asked to identify all non-word misspellings and 
provide the adequate correction for each one. Inter-
annotator agreement was quite high - annotators 
agreed in 82.6% of the cases (Cohen’s Kappa=0.8, 
p<.001). All disagreements were resolved by a 
third annotator (adjudicator). For details of the an-
notation procedure, see Flor and Futagi (2011).  

The Annotation Scheme for this project provides 
three classes of misspellings, as summarized in 
Table 1. Classification of annotated misspellings 
was automatic. 

 

Type Description 
Count in 
corpus 

1 single token non-word  
(e.g. “businees”, “inthe”) 

21,160

2 single token non-word for which no 
plausible correction was found 

52

3 multi-token non-word misspelling  
(e.g. “mor efun” for “more fun”) 

383

 Total 21,595

 
Table 1. Classification of misspellings  

annotated in the study corpus. 
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The annotation effort focused specifically on 
misspellings, rather than on a wider category of 
orthographic errors in general. The annotation ig-
nored repeated words, missing spaces1 and impro-
per capitalization. Many of the essays have 
inconsistent capitalization and essays written fully 
in capital letters are not uncommon (not only in 
our corpus). In addition, different spelling variants 
were acceptable. This consideration stems from the 
international nature of the two tests – the exami-
nees come from all around the world, being accus-
tomed to either British, American, or some other 
English spelling standard; so, it is only fair to ac-
cept all of them. 

Overall, the annotated corpus of 3,000 essays 
has the following statistics. Average essay length is 
321 words (the range is 28-798 words). 148 essays 
turned out to have no misspellings at all. Total 
spelling error counts are given in Table 1; 2.24% 
of the words in the corpus are non-word misspel-
lings. 

3 Spelling correction systems 

3.1 Background 

Classic approaches to the problem of spelling cor-
rection of non-word errors were reviewed by Ku-
kich (1992). The typical approach for error 
detection is using good spelling dictionaries. The 
typical approach for correction of non-word errors 
is to include modules for computing edit distance 
(Damerau, 1964; Levenshtein, 1966) and phonetic 
similarity. These are used for ranking suggestions 
by their orthographic and phonetic similarity to the 
misspelled word. A more recent feature utilizes 
word frequency data for candidate ranking. Mitton 
(2009) and Deorowicz and Ciura (2005) describe 
state of the art approaches to non-word correction 
without contextual information.  

The use of context for spelling correction was 
initially proposed by Mayes, et al. (1991) only for 
‘contextual spelling’ – correcting real-word errors 
(e.g. writing ‘fig’ instead of ‘fog’). A common 
strategy for this task is using pre-defined confusion 
sets, which makes it more amenable to classifier-
based approaches (Golding and Roth, 1999). Sev-

                                                           
1 Annotation ignored missing spaces around punctuation (e.g. 
“chairs,tables”, but all cases where missing spaces result in 
fused words were marked in annotation (e.g. “inthe”). 

eral recent studies used a web-scale language mod-
el (Google Web1T n-gram corpus – Brants and 
Franz, 2006) for “context-sensitive” (i.e. real-
words) spelling correction (Bergsma, et al., 2009; 
Islam and Inkpen, 2009; Carlson and Fette, 2007). 
Chen, et al. (2007) used a LM for pruning candi-
date corrections for non-words in web queries. 
Whitelaw, et al. (2009) used a LM for correcting 
non-word and real-word errors without a dictionary 
and using a statistically trained error model. Our 
study extends the use of language models to auto-
matic correction of non-word errors, with a dictio-
nary, but without any explicit error model. 

3.2 ConSpel system 

The ConSpel system was designed and imple-
mented as a fully automatic system for detection 
and correction of spelling errors. The current ver-
sion is focused on non-word misspellings. The sys-
tem has two intended uses. One is to serve as a 
component in NLP systems for automatic evalua-
tion of student essays. The other use is to facilitate 
automation for research on patterns of misspellings 
in ELL essays. 

In ConSpel, detection policy is quite simple. A 
token in a text is potentially a misspelling if the 
string is not in the system dictionaries. A text may 
include some non-dictionary tokens that systemati-
cally are not misspellings. ConSpel has several 
parameterized options to handle such cases. By 
default, the system will ignore numbers, dates, web 
and email addresses, and mixed alpha-numeric 
strings (e.g. ‘RV400’). The system can be in-
structed to ignore capitalized words (e.g. ‘Lon-
don’) and/or words in all uppercase (e.g. ‘ROME’). 

ConSpel spelling dictionaries include about 
360,000 entries. The core set includes 245,000 en-
tries, providing a comprehensive coverage of mod-
ern English vocabulary. This lexicon includes all 
inflectional variants for a given word (e.g. ‘love’, 
‘loved’, ‘loves’, ‘loving’), and international spel-
ling variants (e.g. American and British English). 
Additional dictionaries include about 120,000 en-
tries for international surnames and first names, 
and names for geographical places. 

Dictionaries are also the source of suggested 
corrections. Candidate suggestions for each de-
tected misspelling are generated by returning all 
dictionary words that have an edit distance up to a 
given threshold. With the default threshold of 5, a 
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misspelling can easily get hundreds of correction 
candidates. Since ConSpel is intended to work on 
ELL data, and ELL misspellings can be quite dis-
similar from the intended words, starting with a 
large number of candidates is a deliberate strategy 
to ensure that the adequate correction will be in-
cluded in the candidate set. Candidates are pruned 
during the re-ranking process, so that only a few 
candidates from the initial set survive to the final 
decision making stage. 

Candidate suggestions for each detected miss-
pelling are ranked using a set of algorithms. An 
edit distance module is used to compute ortho-
graphic similarity between each candidate and the 
original misspelling. Phonetic similarity is com-
puted using the Double Metaphone algorithm (Phi-
lips, 2000). Word frequency is computed for each 
candidate using a very large word-frequency data 
source. 

The main thrust of our new spelling correction 
system is the conjecture that non-word misspel-
lings can be corrected better when their context is 
taken into account.  

Local context (several words around the miss-
pelled word in the text) provides lots of informa-
tion for choosing the adequate correction. For each 
candidate, we check the frequency of its co-
occurrence (in a language model) with the adjacent 
words in the text. This approach borrows from the 
family of noisy-channel error-correction models 
(Zhang, et al., 2006; Cucerzan and Brill, 2004; 
Kernigham, et al., 1990). With the advent of very 
large word n-gram language models, we can utilize 
large contexts (about 4 words on each side of a 
misspelling). Our current language model uses a 
filtered version of the Google Web1T collection, 
containing 1,881,244,352 n-gram types of size 1-5, 
with punctuation included.2 Notably, ConSpel does 
not use any statistical error model. 

A second context-sensitive algorithm utilizes 
non-local context in the essay. The idea is quite 
simple – given a misspelled token in a text and a 
set of correction-candidates for that word, for each 
candidate we check whether that candidate string 
occurs elsewhere in the text. Since content words 
have some tendency of recurrence in same text, the 
                                                           
2 ConSpel system uses the TrendStream n-gram compression 
software library (Flor, 2012) for fast and memory efficient 
retrieval of n-gram data. As a result, the ConSpel system runs 
even on modest hardware (e.g. a 4GB RAM laptop), concur-
rently with other applications. 

misspelled token might be such a case, and the 
candidate should be strengthened. The idea is 
somewhat similar to cache-based language model 
adaptation (Kuhn and De Mori, 1990), though 
there are considerable differences. First, our sys-
tem looks not only in preceding context, but over 
the whole essay text. Second, and unique to our 
system, ConSpel looks not only in the text, but also 
into the k-best candidate correction lists of the oth-
er misspelled words. Thus, if a word is systemati-
cally misspelled in a document, ConSpel will 
strengthen a candidate correction that appears as a 
candidate for multiple misspelled instances.3  

For each misspelling found in a text, each algo-
rithm produces ranking scores for each candidate. 
We use a linear-weighted ensemble method to 
combine scores from different algorithms. First, 
scores for all candidates of a given misspelling are 
normalized into a 0-1 range, separately for each 
ranker. Normalized scores are then summed using 
a set of constant weights.4  

The ConSpel system is implemented as a flexi-
ble configurable system. Configuration settings 
include choice of dictionaries, choice of algorithms 
and weights for computing the final ranking, and 
choice of the output formats. 

4 Comparative evaluation 

In this section we report the results of evaluation 
on data from our gold-standard corpus of 3,000 
essays described in section 2. This evaluation fo-
cuses on detection and correction of the 21,212 
single-token non-word misspellings (types 1 and 2 
in Table 1) as well as false alarms raised by spell-
checkers.  

Evaluation included three systems. In addition to 
ConSpel, we tested Aspell (version 0.60.6), a pop-
ular open-source spell checking library (Atkinson, 
2011). The third system is spellchecker included in 
Microsoft Office 2007 (hereafter ‘MS Word’). 

All evaluations were performed “in full context” 
(rather than word-by-word) – each essay in the 
corpus was submitted to each system separately, as 
a simple text file. All evaluations used standard 

                                                           
3 A detailed comparative study of different context utilization 
methods is under way.  
4 The current weights were found experimentally, prior to the 
annotation effort described in this article. We intend to use 
machine learning methods in future research, using the anno-
tated corpus for this purpose. 
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measures of recall, precision and F-score (Leacock, 
et al., 2010).  

Evaluations for Aspell and MS Word were con-
ducted twice – once with their original dictiona-
ries5 and once with the ConSpel spelling dictionary 
of about 360,000 word forms. Evaluations where 
Aspell and MS Word were bundled with ConSpel 
dictionary are marked below as Aspell+ and MS 
Word+. 

4.1 Error Detection 

Detection results for non-word misspellings are 
presented in Table 2. All systems show very strong 
recall rates, above 99%. There is more variability 
when precision of error detection is concerned. 
Both MS Word and Aspell benefit from using the 
larger dictionary – they raise much less false 
alarms than with original dictionaries (Aspell im-
proves precision by about 4% and MS Word by 
about 6%). ConSpel shows best precision, the dif-
ference with second-best (MS Word+) is statisti-
cally significant at p<.01. 

 
System Recall Precision F-score 

Aspell 99.45 86.66 92.62

Aspell+ 99.14 90.92 94.85

ConSpel 99.40 98.43 98.91

MS Word 99.55 90.26 94.68

MS Word+ 99.32 96.16 97.71

 
Table 2. Evaluation results: non-word error detection 

4.2 Error Correction 

For evaluating spelling correction, we again use 
the measures of recall, precision and F-score. Note 
that precision of error correction is defined as pro-
portion of adequately corrected misspellings out of 
total number of misspellings that a system tried to 
correct (this excludes cases missed in detection). 

We conducted error-correction evaluations with 
ConSpel in two variants. The baseline variant, 
ConSpel-A, ranks candidate suggestions using edit 
distance, phonetic similarity and word-frequency. 
                                                           
5 Notably, both Aspell and MS Word in this evaluation came 
with respective default dictionaries for US spelling, and gen-
erated many false alarms when flagging words that are British 
and other international spelling variants. Such false alarm 
cases were discounted from the evaluation statistics. 

The contextual variant, ConSpel-B, adds contex-
tual information in the ranking process. 

Results of error-correction evaluations are 
shown in Table 3. While MS Word speller pro-
vided the adequate correction (top ranked sugges-
tion) in about 73% of annotated cases, its precision 
is only about 67-69%, due to large number of false 
alarms. Aspell has markedly lower accuracy – both 
in recall and precision. ConSpel-A has approx-
imately same recall as MS-Word, but better preci-
sion (due to low rate of false alarms). ConSpel-B, 
which uses contextual information in ranking can-
didate suggestions, shows markedly better recall 
and precision than either ConSpel-A or MS Word 
(statistically significant at p<.01). 

For Aspell, use of the larger spelling dictionary 
improved detection precision (fewer false alarms – 
see Table 2), but it has led to degradation in error 
correction – as shown in Table 3 (possibly ranking 
of candidates is affected by larger dictionaries). 

 

System Recall Precision F-score 

Aspell 61.53 53.62 57.30

Aspell+ 54.17 49.68 51.83

ConSpel-A 72.65 71.94 72.29

ConSpel-B 78.32 77.55 77.93

MS Word 73.34 66.49 69.74

MS Word+ 71.71 69.44 70.56

 
Table 3. Evaluation results: non-word error correction  

(top ranked candidates only) 
 

An additional way to evaluate automatic spel-
ling correction is to consider how often the ade-
quate target correction is found among the k-best 
of the candidate suggestions (Mitton, 2009; Brill 
and Moore, 2000). Figure 1 shows error-correction 
recall and precision results for four systems6 using 
k-best values 1-5 and 10.  

When two-or-more best-ranked candidates are 
considered for each misspelling, the baseline Con-
Spel-A system shows better performance than MS 
Word. Aspell results lag significantly below the 
other systems, although it catches up with MS-
Word beyond k=5. ConSpel-B system outperforms 
all other systems, in both recall and precision. It 

                                                           
6 ‘MS Word’ and ‘MS Word+’ overlap for all values of k, 
except for k=1, thus only ‘MS Word’ is shown in Figure 1. 
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places the target correction among the top two 
candidates in 88% of cases, and among top three or 
more candidates in beyond 90% of cases. 
 

 
 

Figure 1. Error correction recall and precision  
for four systems, with different k-best cutoffs. 

 

4.3 Evaluation with data from native and 
non-native English speakers 

In this section we report the results of spell-check 
evaluation with data breakdown by native and non-
native English speakers. Out of 21,212 single-
token non-word misspellings in our corpus, 2,859 
came from 570 essays written by native English 
speakers (NS) and 18,353 misspellings came from 
2,282 essays written by test-takers who are not na-
tive speakers of English (NNS). 

Comparison of error-detection for five systems 
is presented in Table 4. All systems show very 
strong recall results for both types of populations 
(all values are above 99%). The results are a bit 
different for error-detection precision. ConSpel 
achieves best results in both populations (the dif-
ferences with second-best, MS Word+, are statisti-
cally significant at p<.01). MS Word has precision 
around 91%, approximately same in both popula-
tions. Compared to MS Word, MS Word+ has bet-
ter recall rates, in both populations – due to a 
larger dictionary, it raises much less false alarms. 
Aspell lags behind in this comparison. Using a 
larger dictionary helps, as Aspell+ precision is bet-
ter than that of Aspell in both populations; im-
provement is manifest for NNS data and only 2% 
for NS data. Aspell detection precision on NS data 
(77%) is lower than its precision on NNS data 

(88%). This may be due to Aspell having a prob-
lem with possessive forms (80% of the false alarms 
on NS data are possessives, but only 70% for NNS 
data).7 
 

System  Recall Precision F-score 

Aspell 
ns:

nns:
99.7 
99.4 

76.7
88.5

86.7
93.6

Aspell+ 
ns:

nns:
99.6 
99.3 

78.7
93.3

87.9
96.3

ConSpel 
ns:

nns:
99.5 
99.4 

96.2
98.8

97.9
99.1

MS Word 
ns:

nns:
99.6 
99.6 

91.1
90.1

95.1
94.6

MS Word+ 
ns:

nns:
99.2 
99.3 

94.4
96.5

96.7
97.9

 
Table 4. Evaluation results: percent correct for 

non-word error detection, with breakdown for data from 
native (ns) and non-native (nns) English speakers 

 
Results of error-correction recall, with k-best le-

vels 1-5 and 10, are presented in Figure 2. In com-
parisons of recall, with k=1, on NS data (right 
panel), MS Word (81.3%) and ConSpel-B (80.7%) 
show best results (the difference is not significant). 
For larger k-values, MS Word correction rate8 im-
proves to a ceiling of about 88.5% and both Con-
Spel variants have better improvement than MS 
Word. The context-informed ConSpel-B system 
has error-correction recall above 90% for k≥2 and 
reaches 94.2% at k=5. 

On NNS data, ConSpel-B has a clear advantage 
over all other systems. At k=1, ConSpel-A and MS 
Word show equal correction performance (72%). 
For k ≥2, ConSpel-A shows constant improvement, 
while MS Word improves to a ceiling of about 
85%. For both NS and NNS populations, Aspell 
error-correction performance lags considerably 
behind the other systems, although it catches up 
with and even outperforms MS Word for k≥3. Inte-
restingly, Aspell+ performs consistently worse 
than Aspell; the larger dictionary has detrimental 
effect on error-correction for Aspell, but not for 
MS Word. 

                                                           
7 ConSpel dictionary does not contain possessive forms. 
8 Results for ‘MS Word’ and ‘MS Word+’ on this data overlap 
for all values of k, in both populations.  
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Figure 2. Error-correction recall for five systems, data 

from native (ns) and non-native (nns) English speakers. 
 

Error-correction precision results are shown in 
Figure 3. Overall, ConSpel-B outperforms all other 
systems, for both NS and NNS populations. On NS 
data, for k=1, MS Word+ (77%), ConSpel-A 
(76%) and MS Word (75%) are very close. For 
k≥2, ConSpel-A shows better improvement, reach-
ing 89.4% at k=5, while MS Word+ reaches a ceil-
ing of about 85% (81% for MS Word). Aspell 
performance lags clearly behind the other systems, 
although it also improves considerably with larger 
k-values. For NNS data, the separation between 
systems is even clearer. Aspell lags behind, al-
though it catches up to MS Word at k≥5. 

Except for ConSpel-B, all systems have mani-
festly better error-correction precision on NS data 
than on NNS data – misspellings made by non-
native English speakers are harder to correct. Con-
Spel-B, with context-informed ranking of spelling 
suggestions, performs almost equally well for both 
populations. For k=1, its error-correction precision 
is 77.5% for NNS data and 78% for NS data. For 
k=2, precision is 87.9% for NNS and 88.2% for NS 
data. These differences are not statistically signifi-
cant. For both populations, precision rises beyond 
90% for k≥3. ConSpel-B also shows remarkably 
close error-correction recall in both populations: at 
k=1, recall is 77.9% for NNS and 80.7% for NS; at 
k=2, recall is 88.4% for NNS, 91.4% for NS (the 
differences are statistically significant). For k≥3, 
recall is beyond 90% for both populations, with 
about 2% advantage for NS population. 

 

 
Figure 3. Error-correction precision for six systems, for 

native (ns) and non-native (nns) English speakers. 
 

Table 5 presents F-scores for error-correction 
evaluation results, for six systems, for k-best val-
ues 1-5 and 10, for NS and NNS data. For each 
value of k, the ConSpel-B system has best values 
for both NS and NNS data. For each cell in Table 
5, we calculated the absolute difference between 
the NS and NNS F-scores. The results are shown in 
Figure 4. Except for ConSpel-B, all systems have 
marked differences in performance on NS and 
NNS data. The differences tend to diminish for 
larger k-values. ConSpel-B is the only system for 
which the differences in error-correction between 
NS and NNS data are consistently below 2%, even 
for k=1. 
 

K-best: 1 2 3 4 5 10 

Aspell 
60.6
54.9 

65.9
62.3 

75.6 
72.8 

77.0 
76.5 

78.9
78.9 

80.3
81.8 

Aspell+ 
56.9
49.6 

61.8
55.6 

74.0 
69.8 

76.4 
74.0 

78.5
77.3 

82.4
82.9 

MS Word 
78.2
68.4 

83.2
76.0 

84.4 
78.5 

84.9 
79.5 

85.1
80.1 

85.2
80.6 

MS Word+ 
78.7
69.3 

84.8
78.7 

86.9 
81.4 

87.3 
82.4 

87.5
83.0 

87.9
83.9 

ConSpel-A 
77.2
71.5 

85.1
81.2 

87.7 
85.0 

89.7 
87.0 

90.9
88.7 

92.4
91.6 

ConSpel-B 
79.3
77.7 

89.8
88.1 

91.6 
90.5 

92.1 
91.3 

92.6
91.7 

93.2
92.5 

 
Table 5. Error-correction evaluation results:  

 F-scores for six systems, data from native (upper value 
in each cell) and non-native English speakers 
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 Figure 4. Error-correction F-scores absolute differences 
 

A question we need to address is whether there 
are any real differences in misspellings produced 
by NS and NNS writers in our corpus. Our initial 
analyses show that there are some distinguishing 
characteristics. 

One characterization is obtained when we look 
at the ‘complexity’ of the error, defining it as the 
edit distance between misspelling and correct 
word. The data is presented in Table 6. Native 
English speakers make significantly more simple 
errors (edit distance 1) than non-native speakers, 
while the latter make more complex errors (edit 
distance 4+). 
 

Edit distance between  
misspelling and correct form 

NS NNS 

1 83.3% *79.9%

2 13.0% 14.0%

3 3.1% 3.9%

4+ 0.6% *2.1%

 
Table 6. Percent of non-word misspellings (tokens)  

by edit distance to correct word,  
for native and non-native populations. 

* difference significant at p<.01 
 

Another difference we found in our data is the 
length (number of characters) of the correct word 
that was misspelled, for each population (Figure 
5). For words of length 2 to 7, non-native speakers 
produce relatively more misspellings than native 
speakers. For words of length 8 and longer, native 

speakers produce relatively more misspellings than 
non-native speakers. 

ConSpel-B performs about the same on NS and 
NNS data, and better than the other systems. Given 
the above differences of NS and NNS misspellings 
in our corpus, and given that all evaluated systems, 
except ConSpel-B, show better correction on NS 
data, we conclude that ConSpel-B shows this real 
advantage due to utilization of contextual data. 
 

 
 

 Figure 5. Percent of non-word misspellings (tokens)  
by length of the ‘intended’ correct word,  

for native and non-native populations. 

5 Discussion 

Large scale comparative studies of spellchecker 
performance on data from non-native language 
speakers are scarce, possibly due to large amount 
of effort required for expert annotation of data. 

Hovermale (2010) analyzed 500 spelling errors 
from a corpus of essays produced by ELL in Japan. 
In that study, MS Word 2007 successfully cor-
rected 72% of non-word errors, while Aspell had a 
success rate of 81% (presumably at k=1). In our 
study, with data from an international sample of 
non-native English speakers, Aspell error-
correction precision rate is only 52% at k=1, and 
rises to 78% for k=5. MS Word and ConSpel-A 
(no-context) begin with precision of about 75-77% 
at k=1. At k=5, MS Word improves to about 85%, 
and ConSpel-A to above 89%.  

Bestgen and Granger (2011) analyzed 222 ar-
gumentative essays from the ICLE corpus (Gran-
ger et al., 2009), written by European EFL students 
across different levels of English proficiency. 
Their sample included about 150,000 words and 
had 1,549 spelling errors. This amounts to spel-
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ling-error rate of about 1%, compared to 2.2% in 
our data. In that study, MS Word 2007 had detec-
tion recall of 80.43%, and detection precision of 
82.35%. In our study, MS Word had 99.6% recall 
and 90.1% precision in error detection. The differ-
ence may be attributed to the fact that we focus on 
single-token non-word misspellings, while Bestgen 
and Granger included other categories, specifically 
multi-token errors. Error-correction recall was 71% 
and precision 59% (at k=1). In our study, at k=1, 
MS Word achieved 72% recall and 65% precision, 
which is quite close to the above figures. 

Given that our context-informed system has er-
ror-correction F-score of 77.9% at k=1, and 91.8% 
at k=5, it is obvious that the system picks up the 
right corrections. There is a potential for improve-
ment, possibly by better ranking. Why doesn’t the 
context help even more? Could the system perform 
with 90% at k=1? We have tentatively identified 
three major types of influences that detract the sys-
tem from better performance. Those are a) local 
error density; b) poor grammar; and c) competition 
among inflectional variants. Local error density 
means simply that adjacent words are misspelled 
so there is not enough reliable context to use n-
grams in such cases. 

Poor grammar is also problematic for n-gram-
based approach. In a fragment “If docter want to 
operate, he...”, the intended word was ‘doctor’, but 
‘doctor want’ is a subject-verb agreement error, 
which is not frequent in the normative n-gram data. 
Thus, under n-gram frequency influence, the sys-
tem prefers ‘doctors’ as top ranked candidate. 
There is competition of inflectional variants in 
presence of grammatical errors. 

We have observed that even in absence of 
grammatical errors, sometimes an inadequate top 
ranked candidate is an inflectional variant of the 
adequate correction. For example: “They received 
fresh air, interacte with other youth their age, solved 
problems...”. The adequate correction is 'interacted', 
but ConSpel ranks it third, while 'interacts' comes 
second and 'interact' is ranked first. Notably, non-
local context is not always beneficial – for a exam-
ple, the presence of word 'interact' elsewhere in the 
essay will strengthen the wrong candidate. Possi-
bly, additional linguistic information could help 
improve ranking in such cases, e.g. by observing 
that all verbs in this sentence come in past tense. 

Mitton (1996) suggested that it should be possi-
ble to adapt a spellchecker to cope specifically 

with L1-characteristic errors of English learners. 
Granger and Wynne (1999) analyzed misspellings 
produced by students with several different L1 
backgrounds and have also suggested that it might 
be “useful to adapt tools such as spellcheckers to 
the needs of non-native users.” Mitton and Okada 
(2007) have demonstrated a successful adaptation 
of a spellchecker (oriented for native English 
speakers) to Japanese learners of English.9 Howev-
er, adaptation to each specific L1 would require 
considerable resources. As noted by Hovermale 
(2010), it is not clear whether it is worthwhile to 
customize spellchecker heuristics for each learner 
population or better to just have one ELL spell-
checker. Results from our study indicate that it is at 
least feasible to produce a general-purpose spell-
checker that can successfully correct misspellings 
produced by non-native English speakers, almost 
as well as it does for native English speakers. A 
key for such development is utilization of essay 
context for re-ranking of spelling suggestions.  

6 Conclusions 

In this paper we presented a method for context-
informed correction of single-token non-word spel-
ling errors. Our results with ConSpel system dem-
onstrate that utilizing contextual information helps 
improve automatic correction of non-word miss-
pellings, for both native and non-native speakers of 
English, at least for essays written by test takers on 
standardized English proficiency tests. In future 
work we intend to produce a detailed study of the 
different ways of context utilization. We also in-
tend to expand the system to handle multi-word 
spelling errors. 
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Abstract

Prior work has shown the utility of syntactic
tree fragments as features in judging the gram-
maticality of text. To date such fragments have
been extracted from derivations of Bayesian-
induced Tree Substitution Grammars (TSGs).
Evaluating on discriminative coarse and fine
grammaticality classification tasks, we show
that a simple, deterministic, count-based ap-
proach to fragment identification performs on
par with the more complicated grammars of
Post (2011). This represents a significant re-
duction in complexity for those interested in
the use of such fragments in the development
of systems for the educational domain.

1 Introduction

Automatically judging grammaticality is an im-
portant component in computer-assisted education,
with potential applications including large-scale es-
say grading and helping to interactively improve the
writing of both native and L2 speakers. While n-
gram models have been productive throughout nat-
ural language processing (NLP), they are obviously
insufficient as models of languages, since they do
not model language structure or correspondences
beyond the narrow Markov context.

Context-free grammars (CFGs) address many of
the problems inherent in n-grams, and are there-
fore intuitively much better suited for grammatical-
ity judgments. Unfortunately, CFGs used in practice
are permissive (Och et al., 2004) and make unreal-
istic independence and structural assumptions, re-
sulting in “leaky” grammars that overgenerate and

thus serve poorly as models of language. How-
ever, approaches that make use of the CFG produc-
tions as discriminative features have performed bet-
ter. Cherry and Quirk (2008) improved upon an n-
gram baseline in grammatical classification by ad-
justing CFG production weights with a latent SVM,
while others have found it useful to use comparisons
between scores of different parsers (Wagner et al.,
2009) or the use of CFG productions in linear clas-
sification settings (Wong and Dras, 2010) in classi-
fying sentences in different grammaticality settings.

Another successful approach in grammaticality
tasks has been the use of grammars with an extended
domain of locality. Post (2011) demonstrated that
larger syntactic patterns obtained from Tree Sub-
stitution Grammars (Joshi, 1985) outperformed the
Cherry and Quirk models. The intuitions underlying
their approach were that larger fragments are more
natural atomic units in modeling grammatical text,
and that larger fragments reduce the independence
assumptions of context-free generative models since
there are fewer substitution points in a derivation.
Their grammars were learned in a Bayesian setting
with Dirichlet Process priors, which have simple for-
mal specifications (c.f., Goldwater et al. (2009, Ap-
pendix A)), but which can become quite complicated
in implementation.

In this paper, we observe that fragments used for
classification do not require an underlying proba-
bilistic model. Here, we present a simple extraction
method that elicits a classic formal non-probabilistic
grammar from training data by deterministically
counting fragments. Whereas Post parses with his
TSG and extracts the Viterbi derivation, we use an
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SBAR

IN

for

S

NP VP

TO

to

VP

(a) A TSG fragment.

SBAR→ IN S
IN→ for
S→ NP VP
VP→ TO VP
TO→ to

(b) Equivalent CFG rules.

Figure 1: Equivalent TSG fragment and CFG rules.

off-the-shelf parser and pattern match the fragments
in our grammar against the tree. With enough pos-
itive and negative training data (in the form of au-
tomatic parses of good and bad sentences), we can
construct classifiers that learn which fragments cor-
relate with grammaticality. The resulting model re-
sults in similar classification accuracy while doing
away with the complexity of Bayesian techniques.

2 Tree Substitution Grammars (TSGs)

Though CFGs and TSGs are weakly equivalent,
TSGs permit nonterminals to rewrite as tree frag-
ments of arbitrary size, whereas CFG rewrites are
limited to depth-one productions. Figure 1 de-
picts an example TSG fragment and equivalent CFG
rules; note that the entire internal structure of 1a is
described within a single rewrite.

Unfortunately, learning probabilistic TSGs is not
straight-forward, in large part because TSG-specific
resources (e.g., large scale TSG-annotated tree-
banks) do not exist. Approaches to this problem be-
gan by taking all fragments Fall in a treebank (Bod,
1993; Goodman, 1996), which resulted in very large
grammars composed mostly of fragments very un-
likely to generalize.1 A range of heuristic solutions
reduced these grammar sizes to a much smaller,
more compact subset of all fragments (Zollmann
and Sima’an, 2005; Zuidema, 2007). More recently,
more principled models have been proposed, taking
the form of inference in Bayesian non-parametric
models (Post and Gildea, 2009; Cohn et al., 2009).
In addition to providing a formal model for TSGs,
these techniques address the overfitting problem of

1The n-gram analog would be something like storing all 30-
grams seen in a corpus.

all fragments grammars with priors that discourage
large fragments unless there is enough evidence to
warrant their inclusion in the grammar. The problem
with such approaches, however, is that the sampling
procedures used to infer them can be complex, dif-
ficult to code, and slow to converge. Although more
general techniques have been proposed to better ex-
plore the search space (Cohn and Blunsom, 2010;
Cohn et al., 2010; Liang et al., 2010), the complex-
ity and non-determinism of these samplers remain,
and there are no publicly available implementations.

The underlying premise behind these grammar
learning approaches was the need for a probabilis-
tic grammar for parsing. Post (2011) showed that
the fragments extracted from derivations obtained
by parsing with probabilistic TSGs were useful as
features in two coarse-grained grammaticality tasks.
In such a setting, fragments are needed for classifica-
tion, but it is not clear that they need to be obtained
from derivations produced by parsing with proba-
bilistic TSGs. In the next section, we describe a sim-
ple, deterministic, count-based approach to learn-
ing an unweighted TSG. We will then demonstrate
(§4) the effectiveness of these grammars for gram-
maticality classification when fragments are pattern-
matched against parse trees obtained from a state-of-
the-art parser.

3 Counting Common Subtrees

Rather than derive probabilistic TSGs, we employ
a simple, iterative and deterministic (up to tie-
breaking) alternative to TSG extraction. Our method
extracts F〈R,K〉, the K most common subtrees of
size at most R. Though selecting the top K-most-
frequent fragments from all fragments is computa-
tionally challenging through brute force methods,
note that if F ∈ F〈R,K〉, then all subtrees F ′ of F

must also be in F〈R,K〉.2 Thus, we may incremen-
tally build F〈R,K〉 in the following manner: given r,
for 1 ≤ r ≤ R, maintain a ranking S, by frequency,
of all fragments of size r; the key point is that S may
be built from F〈r−1,K〉. Once all fragments of size
r have been considered, retain only the top K frag-
ments of the ranked set F〈r,K〉 = F〈r−1,K〉 ∪ S.3

2Analogously, if an n-gram appears K times, then all con-
stituent m-grams, m < n, must also appear at least K times.

3We found that, at the thresholding stage, ties may be arbi-
trarily broken with neglible-to-no effect on results.
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Algorithm 1 EXTRACTFRAGMENTS (R,K)
Assume: Access to a treebank

1: S ← ∅
2: F〈1,K〉 ← top K CFG rules used
3: for r = 2 to R do
4: S ← S ∪ {observed 1-rule extensions of F ∈

F〈r−1,K〉}
5: F〈r,K〉 ← top K elements of F〈r−1,K〉 ∪ S
6: end for

Pseudo-code is provided in Algorithm 1.4

This incremental approach is appealing for two
reasons. Firstly, our approach tempers the growth
of intermediate rankings F〈r,K〉. Secondly, we
have two tunable parameters R and K, which can
be thought of as weakly being related to the base
measure and concentration parameter of (Post and
Gildea, 2009; Cohn et al., 2010). Note that by
thresholding at every iteration, we enforce sparsity.

4 Experiments

We view grammaticality judgment as a binary clas-
sification task: is a sequence of words grammatical
or not? We evaluate on two tasks of differing granu-
larity: the first, a coarse-grain classification, follows
Cherry and Quirk (2008); the other, a fine-grain ana-
logue, is built upon Foster and Andersen (2009).

4.1 Datasets
For the coarse-grained task, we use the BLLIP5-
inspired dataset, as in Post (2011), which dis-
criminates between BLLIP sentences and Kneyser-
Ney trigram generated sentences (of equal length).
Grammatical and ungrammatical examples are given
in 1 and 2 below, respectively:

(1) The most troublesome report may be the
August merchandise trade deficit due out
tomorrow .

(2) To and , would come Hughey Co. may be
crash victims , three billion .

For the fine-grained task we use a version of the
BNC that has been automatically modified to be

4Code is available at: cs.jhu.edu/˜ferraro.
5LDC2000T43

ungrammatical, via insertions, deletions or substi-
tutions of grammatically important words. As has
been argued in previous work, these automatically
generated errors, simulate more realistic errors (Fos-
ter and Andersen, 2009). Example 3 gives an origi-
nal sentence, with an italicized substitution error:

(3) The league ’s promoters hope retirees and
tourists will join die-hard fans like Mr. de
Castro and pack then stands to see the seniors .

Both sets contain train/dev/test splits with an
equal number of positive and negative examples, and
all instances have an available gold-standard parse6.

4.2 Models and Features
Algorithm 1 extracts common constructions, in the
form of count-extracted fragments. To test the ef-
ficacy of these fragments, we construct and experi-
ment with various discriminative models.

Given count-extracted fragments obtained from
EXTRACTFRAGMENTS(R,K), it is easy to define a
feature vector: for each query, there is a binary fea-
ture indicating whether a particular extracted frag-
ment occurs in its gold-standard parse. These count-
extracted features, along with the sentence length,
define the first model, called COUNT.

Although our extracted fragments may help
identify grammatical constructions, capturing un-
grammatical constructions may be difficult, since
we do not parse with our fragments. Thus,
we created two augmented models, COUNT+LEX

and COUNT+CFG, which built upon and extended
COUNT. COUNT+LEX included all preterminal and
lexical items. For COUNT+CFG, we included a bi-
nary feature for every rule that was used in the most
likely parse of a query sentence, according to a
PCFG7.

Following Post (2011), we train an `-2 regular-
ized SVM using liblinear8 (Fan et al., 2008)
per model. We optimized the models on dev data,
letting the smoothing parameter be 10m, for integral
m ∈ [−4, 2]: 0.1 was optimal for all models.

6We parsed all sentences with the Berkeley parser (Petrov et
al., 2006).

7We used the Berkeley grammar/parser (Petrov et al., 2006)
in accuratemode; all other options were their default values.

8csie.ntu.edu.tw/˜cjlin/liblinear/
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Task COUNT COUNT+LEX COUNT+CFG

coarse 86.3 86.8 88.3
fine 62.9 64.3 67.0

(a) Our count-based models, with R = 15, K = 50k.

Task 3 5 10 15
coarse 89.2 89.1 88.6 88.3

fine 67.9 67.2 67.2 67.0
(b) Performance of COUNT+CFG, with K =
50k and varying R.

Table 1: Development accuracy results.

Our three models all have the same two tunable
parameters, R and K. While we initially experi-
mented with R = 31, K ∈ {50k, 100k} — in or-
der to be comparable to the size of Post (2011)’s ex-
tracted TSGs — we noticed that very few, if any,
fragments of size greater than 15 are able to sur-
vive thresholding. Dev experimentation revealed
that K = 50k and 100k yielded nearly the same
results; for brevity, we report in Table 1a dev re-
sults for all three models, with R = 15, K =
50k. The differences across models was stark, with
COUNT+CFG yielding a two point improvement over
COUNT on coarse, but a four point improvement
on fine. While COUNT+LEX does improve upon
COUNT, on both tasks it falls short of COUNT+CFG.
These differences are not completely surprising:
one possible explanation is that the PCFG features
in COUNT+CFG yield useful negatively-biased fea-
tures, by providing a generative explanation. Due
to the supremacy of COUNT+CFG, we solely report
results on COUNT+CFG.

In Table 1b, we also examine the effect of ex-
tracted rule depth on dev classification accuracy,
where we fix K = 50k and vary R ∈ {3, 5, 10, 15},
where the best results are achieved with R = 3.
We evaluate two versions of COUNT+CFG: one with
R = 3 and the other with R = 15 (K = 50k for
both).

5 Results and Fragment Analysis

We build on Post (2011)’s results and compare
against bigram, CFG and TSG baselines. Each base-
line model is built from the same `-2 regularized

Method coarse fine
COUNT+CFG, R = 3 89.1 67.2

COUNT+CFG, R = 15 88.2 66.6
bigram 68.4 61.4
CFG 86.3 64.5
TSG 89.1 67.0

Table 2: Classification accuracy on test portions for
both coarse and fine, with K = 50k. Chance is 50%
for each task.

SVM as above, and each is optimized on dev data.
For the bigram baseline, the binary features corre-
spond with whether a particular bigram appears in
an instance, while the CFG baseline is simply the
augmentation feature set used for COUNT+CFG. For
the TSG baseline, the binary features correspond
with whether a particular fragment is used in the
most probable derivation of each input sentence (us-
ing Post’s Bayesian TSGs). All baselines use the
sentence length as a feature as well.

The results on the test portions of each dataset are
given in Table 2. When coupled with the best parse
output, our counting method was able to perform on
par with, and even surpass, Post’s TSGs. The sim-
pler model (R = 3) ties TSG performance on coarse
and exceeds it by two-tenths on fine; the more com-
plex model (R = 15) gets within a point on coarse
and four-tenths on fine. Note that both versions of
COUNT+CFG surpass the CFG baseline on both sets,
indicating that (1) encoding deeper structure, even
without an underlying probabilistic model, is use-
ful for grammaticality classifications, and (2) this
deeper structure can be achieved by a simple count-
ing scheme.

As PCFG output comprises a portion of our fea-
ture set, it is not surprising that a number of the
most discriminative positive and negative features,
such as flat NP and VP rules not frequent enough
to survive thresholding, were provided by the CFG
parse. While this points out a limitation of our
non-adaptive thresholding, note that even among
the highest weighted features, PCFG and count-
extracted features were interspersed. Further, con-
sidering that both versions of COUNT+CFG outper-
formed CFGs, it seems our method adds discrimina-
tive power to the CFG rules.
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(a) Coarse (b) Fine
Grammatical Ungrammatical Grammatical Ungrammatical

1 (S NP VP (. .)) (S NP (VP (VBP are)
PP))

10 (SBAR (IN if) S) (SBAR (S VP))

2 (S (S (VP VBG NP))
VP)

(VP VBZ (S VP)) 11 (NP (DT these) NNS) (SBAR DT (S NP
VP))

3 (SBAR (IN while) S) (SBAR (S VP) ) 12 (VP (VBG being) VP) (S (VP VB NP))
4 (VP (VBD called) S) (VP VBN (S VP)) 13 (PP IN (S NP (VP

VBG NP)))
(S (VP VBZ NP))

5 (VP (VB give) NP NP) (NP (NP JJ NN)
SBAR)

14 (S (VP VBG VP)) (VP VB (S VP))

6 (NP NNP NNP NNP
(NNP Inc.))

(VP NN (PP IN NP)) 15 (PP IN (SBAR (IN
whether) S))

(S (VP VBP VP))

7 (PP (IN with) (S NP
VP))

(S (VP MD VP)) 16 (VP (VBD had) (VP
VBN S))

(S NP (VP (VBD
said)))

8 (SBAR (IN for) (S NP
(VP (TO to) VP)))

(SBAR (S (NP NNS)
VP))

17 (VP MD (VP VB NP
(PP IN NP) PP))*

(PP (PP IN NP) (CC
and) PP)*

9 (PRN (-LRB- -LRB-)
NP (-RRB- -RRB-))*

(S (ADJP JJ))* 18 (NP (DT no) NNS)* (PP (IN As) NP)*

Table 3: Most discriminative count-based features for COUNT+CFG on both tasks. For comparability to Post
(2011), R = 15, K = 50k, are shown. Asterisks (*) denote fragments hand-selected from the top 30.

Table 5 presents top weighted fragments from
COUNT+CFG on both coarse and fine, respectively.
Examining useful grammatical features across tasks,
we see a variety of fragments: though our fragments
heavily weight simple structure such as proper punc-
tuation (ex. 1) and parentheticals (ex. 9), they also
capture more complex phenomena such as lexical
argument descriptions (e.g., give, ex. 5). Our ex-
tracted fragments also describe common construc-
tions and transitions (e.g., 3, 8 and 15) and involved
verb phrases (e.g., gerunds in 2 and 14, passives in
16, and modals in 17).

Though for both tasks some ungrammatical frag-
ments easily indicate errors, such as sentence frag-
ments (e.g., example 6) or repeated words (ex. 11),
in general the analysis is more difficult. In part, this
is because, when isolated from errors, one may con-
struct grammatical sentences that use some of the
highest-weighted ungrammatical fragments. How-
ever, certain errors may force particular rules to be
inappropriately applied when acquiring the gold-
standard parse. For instance, example 10 typically
coordinates with larger VPs, via auxiliary verbs or
expletives (e.g., it). Affecting those crucial words
can significantly change the overall parse structure:
consider that in “said it is too early. . . ,” it provides a

crucial sentential link; without it, “is too early” may
be parsed as a sentence, and then glued on to the
former part.

6 Conclusion

In this work, we further examined TSGs as useful
judges of grammaticality for written English. Us-
ing an iterative, count-based approach, along with
the most likely PCFG parse, we were able to train a
discriminative classifier model — COUNT+CFG —
that surpassed the PCFG’s ability to judge gram-
maticality, and performed on par with Bayesian-
TSGs. Examining the highest weighted features, we
saw that complex structures and patterns encoded by
the count-based TSGs proved discriminatively use-
ful. This suggests new, simpler avenues for frag-
ment learning, especially for grammaticality judg-
ments and other downstream tasks.
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Abstract

Accuracy of content have not been fully uti-
lized in the previous studies on automated
speaking assessment. Compared to writing
tests, responses in speaking tests are noisy
(due to recognition errors), full of incomplete
sentences, and short. To handle these chal-
lenges for doing content-scoring in speaking
tests, we propose two new methods based
on information extraction (IE) and machine
learning. Compared to using an ordinary
content-scoring method based on vector anal-
ysis, which is widely used for scoring written
essays, our proposed methods provided con-
tent features with higher correlations to human
holistic scores.

1 Introduction
In recent years, there is an increasing interest of
using speech processing and natural language pro-
cessing (NLP) technologies to automatically score
speaking tests (Eskenazi, 2009). A set of features
related to speech delivery, such as fluency, pronun-
ciation, and intonation, has been utilized in these
studies. However, accuracy of an answer’s content
to the question being asked, important factors to be
considered during the scoring process, have not been
fully utilized. In this paper, we will report our ini-
tial efforts exploring content scoring in an automated
speaking assessment task. To start, we will briefly
describe the speaking test questions in our research.

In the test we used for evaluation, there were
two types of questions. The first type, survey,
requires a test-taker to provide answers specific
to one or several key points in a survey ques-
tion without any background reading/listening re-
lated to the topic of the survey. Typical questions

could be “how frequently do you go shopping?” or
“what kind of products did you purchase recently?”
In contrast, the second type, opinion, requires a test-
taker to speak as long as 60 seconds to present his
or her opinions about some topic. An example of
such questions could be, “Do you agree with the
statement that online shopping will be dominant in
future or not?” Compared to the essays in writing
tests, these spoken responses could just be incom-
plete sentences. For example, for the survey ques-
tions, test-takers could just say several words. For
the questions described above, some test-takers may
just use phrases like “once a week” or “books”. In
addition, given short responding durations, the num-
ber of words in test-takers’ responses is limited. Fur-
thermore, since scoring speech responses requires
speech recognition, more noisy inputs are expected.
To tackle these challenges, we propose two novel
content scoring methods in this paper.

The remainder of the paper is organized as fol-
lows: Section 2 reviews the related previous re-
search efforts; Section 3 proposes the two content-
scoring methods we designed for two types of ques-
tions described above; Section 4 reports the experi-
mental results of applying the proposed methods; fi-
nally, Section 5 concludes our reported research and
describes our plans for future research.

2 Related Work
For writing tests, previous content scoring investiga-
tions can be divided into the following three groups.
The first group relies on obtaining and matching pat-
terns associated with the correct answers (Leacock
and Chodorow, 2003; Sukkarieh and Blackmore,
2009).

The second group of methods, also mostly used
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for content-scoring, is to rely on a variety of text
similarity measurements to compare a response with
either pre-defined correct answers or a group of re-
sponses rated with a high score (Mohler and Mihal-
cea, 2009). Compared to the first group, such meth-
ods can bypass a labor intensive pattern-building
step. A widely used approach to measuring text
similarity between two text strings is to convert
each text string into a word vector and then use
the angle between these two vectors as a similar-
ity metric. For example, Content Vector Analy-
sis (CVA) has been successfully utilized to detect
off-topic essays (Higgins et al., 2006) and to pro-
vide content-related features for essay scoring (At-
tali and Burstein, 2004). For this group of meth-
ods, measuring the semantics similarity between two
terms is a key question. A number of metrics have
been proposed, including metrics (Courley and Mi-
halcea, 2005) derived from WordNet, a semantics
knowledge database (Fellbaum, 1998), and metrics
related to terms’ co-occurrence in corpora or on the
Web (Turney, 2001).

The third group of methods treats content scor-
ing as a Text Categorization (TC) task, which treats
the responses being scored on different score levels
as different categories. Therefore, a large amount
of previous TC research, such as the many machine
learning approaches proposed for the TC task, can
be utilized. For example, Furnkranz et al. (1998)
compared the performance of applying two machine
learning methods on a web-page categorization task
and found that the Repeated Incremental Pruning to
Produce Error Reduction algorithm (RIPPER) (Co-
hen, 1995) shows an advantage concerning the fea-
ture sparsity issue.

3 Methodology
As described in Section 1, for the two types of ques-
tions considered, the number of words appearing
in a response is quite limited given the short re-
sponse time. Therefore, compared to written es-
says, when applying the content-scoring methods
based on vector analysis, e.g., CVA, feature sparsity
becomes a major factor negatively influencing the
performance of these methods. Furthermore, there
are more challenges when applying vector analysis
on survey questions because test-takers could just
use words/phrases rather than completed sentences.

Also, some survey questions could have a very large
range of correct answers. For example, if a question
is about the name of a book, millions of book ti-
tles could be potential answers. Therefore, a simple
phrase-matching solution cannot work.

3.1 Semi-Automatic Information Extraction
For survey responses, the answers should be related
to the key points mentioned in the questions. For
example, for the question, “What kind of TV pro-
grams do you like to watch?”, possible correct an-
swers should be related to TV programs. Moreover,
it should be the instances of specific TV programs,
like news, comedy, talk shows, etc. Note that the ac-
ceptable answers may be infinite, so it is not realis-
tic to enumerate all possible answers. Therefore, we
proposed a method to extract the potential answer
candidates and then measure their semantic similar-
ities to the answer keys that could be determined
manually. In particular, the answer keys were deter-
mined by the first author based on her analysis of the
test prompts. For example, for the question “What
kind of books do you like to read?”, two answer keys,
“book” and “reading” were selected. After a fur-
ther analysis of the questions, we found that most of
the survey questions are about “when” “where” and
“what”, and the answers in the responses were usu-
ally nouns or noun phrases. Therefore, we decided
to extract the noun phrases from each response and
use them as potential candidates.

We use two semantic similarity metrics (SSMs)
to evaluate how each candidate relates to an answer
key, including PMI-IR (Turney, 2001) and a word-
to-word similarity metric from WordNet (Courley
and Mihalcea, 2005). The PMI-IR is a measure
based on web query analysis using Pointwise Mutual
Information (PMI) and Information Retrieval (IR).
For an answer candidate (c) and an answer key (k),
their PMI-IR is computed as:

SSMPMI-IR(c, k) =
hits(cNEARk)

hits(c)

where the hits(x) function obtains the count of term
x returned by a web search engine and NEAR is a
query operator for proximity search, searching the
pages on which both k and c appear within a spec-
ified distance. Among many WordNet (WN) based
SSMs summarized in Courley and Mihalcea (2005),
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we found that the Wu-Palmer metric proposed by
Wu and Palmer (1994) worked the best in our pilot
study. This metric is a score denoting how similar
two word senses are, based on the depth of the two
word senses in the taxonomy and their Least Com-
mon Subsumer 1 (LCS):

SSMWN(c, k) =
2 ∗ depth(LCS)

depth(c) + depth(k)

For each answer key, we calculated two sets of
SSMs (SSMPMI-IR and SSMWN , respectively)
from all candidates. Then, we selected the largest
SSMPMI-IR and SSMWN as the final SSMs for this
particular answer key. For each test question, using
the corresponding responses in the training set, we
built a linear regression model between these SSMs
for all answer keys and the human judged scores.
The learned regression model was applied to the re-
sponses to this particular testing question in the test-
ing set to convert a set of SSMs to predictions of
human scores. The predicted scores were then used
as a content feature. Since answer keys were deter-
mined manually, we refer to this method as semi-
automatic information extraction (Semi-IE).

3.2 Machine Learning Using Smoothed Inputs
For the opinion responses, inspired by Furnkranz
et al. (1998), we decided to try sophisticated ma-
chine learning methods instead of the simple vector-
distance computation used in CVA. Due to short
response-time in the speaking test being considered,
the ordinary vector analysis may face a problem that
the obtained vectors are too short to be reliably used.
In addition, using other non-CVA machine learning
methods can enable us to try other types of linguis-
tic features. To address the feature sparsity issue, a
smoothing method, which converts word-based text
features into features based on other entities with
a much smaller vocabulary size, is used. We use
a Hidden Markov Model (HMM) based smooth-
ing method (Huang and Yates, 2009), which in-
duces classes, corresponding to hidden states in the
HMM model, from the observed word strings. This
smoothing method can use contextual information
of the word sequences due to the nature of HMM.

Then, we convert word-entity vectors to the vec-
tors based on the induced classes. TF-IDF (term

1Most specific ancestor node

frequency and inverse document frequency) weight-
ing is applied on the new class vectors. Finally,
the processed class vectors are used as input fea-
tures (smoothed) to a machine learning method. In
this research, after comparing several widely used
machine learning approaches, such as Naive Bayes,
CART, etc., we decided to use RIPPER proposed by
Cohen (1995), a rule induction method, similar to
Furnkranz et al. (1998).

4 Experiments
Our experimental data was from a test for interna-
tional workplace English. Six testing papers were
used in our study and each individual test contains
three survey questions (1, 2, and 3) and two opin-
ion questions (4 and 5). Table 1 lists examples
for these question types. From the real test, we
collected spoken responses from a total of 1, 838
test-takers. 1, 470 test-takers were used for training
and 368 were used for testing. Following scoring
rubrics developed for this test by considering speak-
ers’ various language skill aspects, such as fluency,
pronunciation, vocabulary, as well as content accu-
racy, the survey and opinion responses were scored
by a group of experienced human raters by using a
3-point scale and a 5-point scale respectively. For
the survey responses, the human judged scores were
centered on 2; for the opinion responses, the human
judged scores were centered on 3 and 4.

Qs. Example
1 How frequently do you go shopping?
2 What kinds of products do you buy often?
3 How should retailers improve their services?
4 Make a purchase decision based on the chart

provided and justify your decision.
5 Do you agree with the statement that online

shopping will be dominant in the future or
not? Please justify your point.

Table 1: Examples of the five kinds of questions investi-
gated in the study

All of these non-native speech responses were
manually transcribed. A state-of-the-art HMM Au-
tomatic Speech Recognition (ASR) system which
was trained from a large set of non-native speech
data was used. For each type of test question, acous-
tic and language model adaptations were applied
to further lower the recognition error rate. Finally,
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a word error rate around 30% to 40% could be
achieved on the held-out speech data. In our exper-
iments, we used speech transcriptions in the model
training stage and used ASR outputs in the testing
stage. Note that we decided to use speech transcrip-
tions, instead of noisy ASR outputs that match to
the testing condition, to make sure that the learned
content-scoring model are based on correct word en-
tities related to content accuracy.

For the survey responses, we manually selected
the key points from the testing questions. Then,
using a Part-Of-Speech (POS) tagger and a sen-
tence chunker implemented by using the OpenNLP 2

toolkit, we found all possible nouns and noun-
phrases that could serve as answer candidates and
applied the Semi-IE method described in Sec-
tion 3.1. For opinion questions, based on Huang and
Yates (2009), we used 80 hidden states and applied
the method described in Section 3.2 for content scor-
ing. We used JRip, a Java implementation of the
RIPPER (Cohen, 1995) algorithm in the Weka (Hall
et al., 2009) machine learning toolkit, in our experi-
ments.

When measuring performance of content-related
features, following many automated assessment
studies (Attali and Burstein, 2004; Leacock and
Chodorow, 2003; Sukkarieh and Blackmore, 2009),
we used the Pearson correlation r between the con-
tent features and human scores as an evaluation met-
ric. We compared the proposed methods with a base-
line method, CVA. It works as follows: it first groups
all the training responses by scores, then it calculates
a TF vector from all the responses under a score
level. Also, an IDF matrix is generated from all
the training responses. After that, for each testing
response, CVA first converts it into a TF-IDF vec-
tor and then calculates the cosine similarity between
this vector with each score-level vector respectively
and uses the largest cosine similarity as the content
feature for that response. The experimental results,
including content-features’ correlations r to human
scores from each proposed method and the correla-
tion increases measured on CVA results, are shown
in Table 2. First, we find that CVA, which is de-
signed for scoring lengthy written essays, does not
work well for the survey questions, especially on

2http://opennlp.sourceforge.net

Question rCV A rSemi−IE r ⇑

1 0.12 0.30 150%
2 0.15 0.27 80%
3 0.21 0.26 23.8%

Question rCV A rRipperHMM
r ⇑

4 0.47 0.54 14.89%
5 0.33 0.39 18.18%

Table 2: Comparisons of the proposed content-scoring
methods with CVA on survey and opinion responses

first two questions, which are mostly phrases (not
completed sentences). By contrast, our proposed
Semi-IE method can provide more informative con-
tent measurements, indicated by substantially in-
creased r. Second, CVA works better on opinion
questions than on survey questions. This is because
that opinion questions can be treated as short spo-
ken essays and therefore are closer to the data on
which the CVA method was originally designed to
work. However, even on such a well-performing
CVA baseline, the HMM smoothing method allows
the Ripper algorithm to outperform the CVA method
in content-features’ correlations to human scores.
For example, on question 4, on which either a table
or a chart has been provided to test-takers, the CVA
achieves a r of 0.47. The proposed method can still
improve the r by about 15%.

5 Conclusions and Future Works
In this paper, we proposed two content-scoring
methods for the two types of test questions in an
automated speaking assessment task. For particu-
lar properties of these two question types, we uti-
lized information extraction (IE) and machine learn-
ing technologies to better score them on content
accuracy. In our experiments, we compared these
two methods, Semi-IE and machine learning us-
ing smoothed inputs, with an ordinary word-based
vector analysis method, CVA. The content features
computed using the proposed methods show higher
correlations to human scores than what was obtained
by using the CVA method.

For the Semi-IE method, one direction of investi-
gation will be how to find the expected answer keys
automatically from testing questions. In addition,
we will investigate better ways to integrate many se-
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mantic similarly measurements (SSMs) into a single
content feature. For the machine learning approach,
inspired by Furnkranz et al. (1998), we will inves-
tigate how to use some linguistic features related to
response structures rather than just TF-IDF weights.
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Abstract 

This paper describes a novel Arabic Reading 
Enhancement Tool (ARET) for classroom use, 
which has been built using corpus-based Natu-
ral Language Processing in combination with 
expert linguistic annotation. The NLP tech-
niques include a widely used morphological 
analyzer for Modern Standard Arabic to pro-
vide word-level grammatical details, and a rela-
tional database index of corpus texts to provide 
word concordances. ARET also makes use of a 
commercial Arabic text-to-speech (TTS) sys-
tem to add a speech layer (with male and fe-
male voices) to the Al-Kitaab language 
textbook resources. The system generates test 
questions and distractors, offering teachers and 
students an interesting computer-aided lan-
guage learning tool. We describe the back-
ground and the motivation behind the building 
of ARET, presenting the various components 
and the method used to build the tools. 

1 Introduction 

Reading is an essential skill for learners of Modern 
Standard Arabic (MSA). For most of learners it is 
the most important skill to master in order to en-
sure success in learning. With strengthened reading 
skills, learners of Arabic tend to make greater 
progress in other areas of language learning. Read-
ing should be an active, fluent process that in-

volves the reader and the reading material in build-
ing meaning. Often, however, it is not. The average 
learner’s second language reading ability is usually 
well below that of the first language. This can im-
pede academic progress in the second language. 
Arabic language teachers and learners face many 
challenges in the classroom. Teaching students 
how to utilize the skills and knowledge they bring 
from their first language, develop vocabulary 
skills, improve reading comprehension and rate, 
and monitor their own improvement are just some 
of the issues that teachers must consider in prepar-
ing for an Arabic language reading class. With 
these issues in mind, we set out to create a web-
based service that would provide efficient and 
pedagogically relevant access to instructional texts 
in Modern Standard Arabic, with the goal of creat-
ing a resource that would serve both instructors 
and students, by presenting novel modes of infor-
mation access. We received valuable support from 
Georgetown University Press, which gave permis-
sion for us to use the reading passages from the 3-
volume textbook publication Al-Kitaab (Al-Batal 
et al., 2001;2004 and 2006), which is the most 
popular publication in the USA for teaching Arab-
ic. 

2 Motivation 

Using technology in classrooms can make the les-
sons more efficient. There are many technology 
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tools that can be used in English as a Second Lan-
guage (ESL) classes to improve foreign students’ 
English and technology skills. According to Wang 
(2005) there are many advantages integrating tech-
nology in classrooms especially for ESL students. 
To be able to improve their language skills, like 
writing, reading, listening and speaking, English 
language learners use pedagogical computer appli-
cations to check their work and improve their lan-
guage skills; they also use web browsers and e-
mail to search for information, join in online dis-
cussions, publish their work, read technology texts, 
communicate each other even worldwide. He also 
says that, “Technology integration in foreign lan-
guage teaching demonstrates the shift in educa-
tional paradigms from a behavioral to a 
constructivist learning approach” (p. 2). Gone are 
the days in which learning foreign language voca-
bulary and grammar rules relied largely on repeti-
tive drills; more and more, foreign language 
learners are asked to engage directly with authentic 
materials and take more initiative in their learning. 
However, finding appropriate, authentic reading 
materials is a challenge for language instructors. 
The Web is a vast resource of texts, but most pages 
are not suitable for reading practice, and commer-
cial search engines are not well suited to finding 
texts that satisfy pedagogical constraints such as 
reading level, length, text quality, and presence of 
target vocabulary. We present a system that uses 
various language technologies to facilitate the se-
lection , presentation and study of authentic read-
ing materials from the widely used textbook series 
Al-Kitaab (Al-Batal et al., 2001;2004 and 2006). In 
the next section we review some of the related 
work. In section 4 we discuss some of the specific 
challenges faced when learning the Arabic lan-
guage.  

3 Related work 

Many studies have shown that an on-line learning 
environment that supplements classroom instruc-
tion with additional study materials at an appropri-
ate level for the learner may enhance language 
learning and development (Ware, 2004; Chiu et al., 
2007; Yuan, 2003; Wang, 2005;). As a result, a 
number of recent projects have aimed to dynami-
cally provide a supply of accessible authentic texts 
to language learners by drawing from online re-
sources. WERTi (Meurers et al. 2010) is an intelli-

gent automatic workbook that uses texts from the 
Web to increase knowledge of English grammati-
cal forms and functions. READ-X (Miltsakaki and 
Troutt, 2007) is a tool for finding texts at specified 
reading levels. SourceFinder (Sheehan et al.,2007) 
is an authoring tool for finding suitable texts for 
standardized test items on verbal reasoning and 
reading comprehension. Project REAP (Reader-
Specific Lexical Practice) (Brown and Eskenazi, 
2004; Heilman et al., 2006) takes a different ap-
proach. Rather than teachers choosing texts, in 
REAP the system selects individualized practice 
readings from a digital library according to specific 
lexical constraints. Readings are chosen to contain 
vocabulary words that a given student needs to 
learn, while limiting the number of words the stu-
dent does not know. The choice of texts is there-
fore driven by a curriculum model, informed by a 
student model, and constrained by the availability 
of suitable texts, as described by their text model.  

While a user-adapted tool has the potential to 
better match individual needs, since each student 
can work with different texts, a drawback of this 
approach is that instructors may have difficulty 
coordinating group discussion about readings and 
integrating the tool into their curriculum. An ad-
vantage of a tool containing a search system, how-
ever, is that teachers can find texts that match the 
needs and interests of the class as a whole. While 
some degree of individualization is lost, the advan-
tages of better coordinated support from teachers 
and classroom integration are gained. In the early 
stages of this project, we had planned to use REAP 
software after adapting it to handle the complex 
morphology of MSA. Unfortunately, while the 
system was already being tested in the field, REAP 
project leaders did not consider the code base ma-
ture enough to be released to other research 
groups. As a result, we chose to develop our own 
database and access method to texts, foregoing 
adaptation to individual users. 

4 Challenges of Arabic reading 

It has never been an easy transition from ‘learning 
to read’ to ‘reading to learn’ for Arabs and other 
Arabic learners. In Meynet (1971) and according to 
father Anastase Al-Karmali, a member of the 
Arabic Language Academy in Cairo, Egypt. “The 
Arabs study the rules of the Arabic language in 
order to learn to read, whereas others read in order 

128



to learn …”. Indeed, reading in Arabic as a first or 
second language presents special challenges due to 
its script and its rich and complex morphology. 
Also, Arabic texts lack short vowels and other 
diacritics that distinguish words and grammatical 
functions. These linguistic complexities result in 
significant reading difficulties. Typically, Arabic 
as a second language learners face difficulties in 
word recognition, word disambiguation and the 
acquisition of decoding skills, including recogniz-
ing letter and word boundaries, decoding unvoca-
lized words and identifying these words. In order 
to understand Arabic text, the novice reader must 
learn to insert short vowels and other diacritics 
based on grammatical rules not yet learned. The 
ambiguity associated with a lack of diacritization is 
shown for instance in the lemma علم /Elm/ which 
has the following nine possible reading interpreta-
tions shown in Table 1. 

 ’Science, learning‘ عِلم
 ’flag’ عَلَم
 3rd P. Masc. Sing. Perf. V. (MSA V. I) عَلِمَ

‘he learned/knew’ 
 3rd P. Sing. Pass. V. (MSA V. I) ‘it/he عُلِمَ

was learned’  
 Intensifying, Caus. V. (MSA V. II) ‘he عَلَّمَ

taught 
 Causative V. Pass (MSA V. II) ‘he was عَلَّمَ

taught’ 
عِلمٌ/عِلمُ  (NOM Noun + Definite and Indefinite) 

 (ACCU Noun + Definite) عِلمَ
عِلمٍ/عِلمِ  (GEN Noun + Definite and Indefinite) 

Table 1.  Various interpretations for the lemma علم 
 

5 The Arabic reading enhancement tools 

To address these challenges, we developed an 
Arabic Reading Enhancement Tool (ARET) for 
classroom use with support from the U.S. Depart-
ment of Education’s International Research Study 
Program (IRS). The ARET tool is rather similar in 
intent to the foreign language learning tool, 
GLOSSER-RuG built by Nerbonne and Smit 
(1996) for Dutch, but targets explicitly the particu-
larities of MSA. ARET has two subparts tools : the 
Arabic Reading Facilitation Tool (ARFT) and the 
Arabic Reading Assessment Tool (ARAT). A ma-
jor achievement of this project was to create a col-
lection of fully annotated texts for learners of 

Arabic, using materials included in an authoritative 
textbook series that spans several competence le-
vels. In this section, we describe the creation, 
structure and content of the Arabic corpus/lexicon 
database, and then describe the ARFT and ARAT 
tools in more detail. 

5.1 The Al-Kitaab corpus database 

The ARET system uses the full text of Arabic 
reading passages from the Georgetown University 
Press Al-Kitaab textbook series, which represents a 
60,000 word corpus. Each passage was submitted 
to a combined automatic/manual annotation 
process in order to create a version of the text that 
was completely diacritized and thoroughly seg-
mented and labeled to identify all morphemes for 
each word, including their part-of-speech labels 
and English glosses. 

We first applied the Standard Arabic Morpho-
logical Analyzer (SAMA) (Maamouri et al., 2010), 
to enumerate all possible solutions for each word 
token in a given passage. The entire passage, with 
the full set of possible SAMA solutions for each 
word token, was then presented to a native Arabic 
speaker experienced in the morphological analysis 
of MSA, and their task was to select the particular 
SAMA solution for each word based on their un-
derstanding of the context; where necessary, the 
annotator would manually edit the details of POS 
tags or glosses to fill gaps in SAMA’s coverage of 
the vocabulary. This is a standard approach used in 
the annotation of numerous Arabic text corpora, 
including the Arabic Treebank Project (Maamouri 
and Bies 2004). As described in section 5.2, the 
resulting annotation was fully reviewed by expert 
Arabic linguists using our reading facilitation tool, 
to identify and repair errors. 

A relational database was created to store the 
corpus and annotations. Separate tables were used 
to enumerate (a) the reading passages (keeping 
track of the book volume, chapter and page num-
ber of each passage), (b) the sequence of sentences 
in each passage, (c) the word token sequence for 
each sentence, (d) the inventory of distinct word 
types (i.e. orthographic word forms with their con-
text-dependant analyses), and (e) the inventory of 
distinct “headwords” (lemmas) and affix mor-
phemes (clitics). 

Using this relational table structure, a full pas-
sage could be assembled for display by querying 
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for the sequence of sentences and the word tokens 
for each sentence. The information returned by the 
query could include, for each word token, the orig-
inal and/or diacritized spelling, and an index for 
looking up the context-dependent morphological 
analysis plus gloss for the token. This in turn also 
provided access to a dictionary entry for the lemma 
from which the token was derived. Table 2 sum-
marizes the contents of the database.  The number 
of distinct lemmas refers to the number of citation 
forms for content words (nouns, verbs, etc) that are 
referenced by the all the inflected stems found in 
the reading texts; the number of glossary entries 
refers to the manually edited dictionary descrip-
tions for lemmas / citation forms, including their 
consonantal roots. In cases where a lemma does 
not have a corresponding glossary entry, the fully-
detailed morphological analysis provides an Eng-
lish gloss (but not the root) for each word token 
containing the lemma. 
 

Type No. of 
Entries 

Sentences, titles and sub-headings 
3,692 

Arabic word tokens 53,411 
Distinct undiacritized Arabic ortho-
graphic forms 

17,209 

Distinct diacritized orthographic forms 20,725 
Distinct morphology/POS/gloss anno-
tations on word forms 

22,304 

Distinct clitic and inflected-stem mor-
phemes 

16,774 

Distinct lemmas 6,829 
Glossary entries for lemmas 3,436 
 Table 2. Corpus quantities in ARET database 

5.2 The Arabic reading facilitation tool 

The Arabic Reading Facilitation Tool (ARFT) 
provides the user with direct access to the Al-
Kitaab text corpus, organized by volume, chapter 
and page number. In addition to presenting the full 
text for a given passage, the user can click on any 
word in the passage to bring up in a side-bar the 
full morphological analysis and gloss for the word 
in that context, along with a glossary entry for the 
associated lemma, and a summary of other Arabic 
citation forms that are related by root. Two other 
important functions are also provided: (a) toggling 
the presence vs. absence of all diacritic marks in 

the full display of the reading passage, and (b) the 
ability to view a concordance of all occurrences for 
any selected word. The tool also provides a "tool-
tip" pop-up window whenever the mouse cursor 
hovers over an Arabic word in the text passage; if 
the page is showing undiacritized text, the pop-up 
shows the diacritized form of the word, and vice-
versa. This is a very useful feature for the new 
learners of the Arabic language. 

As soon as the annotated version of the corpus 
was loaded into the database, there was a sustained 
effort involving native Arabic speakers and Arabic 
faculty to carefully review the database content, as 
displayed by the ARFT, and validate it against the 
original textbook content. This effort involved 
numerous repairs of all sorts that stemmed from all 
stages of corpus preparation: typing mistakes from 
the original keyboarding of the text, problems in 
morphological annotation, and difficulties in the 
loading of the tables. Customized tools and proce-
dures were developed to facilitate the updates that 
were needed to apply all the corrections directly to 
the database.  

A glossary for use in the ARFT was added to 
the database, with the relational linkage needed to 
support glossary lookups triggered by the user 
clicking on any word in a text passage. The word-
to-glossary relation is based on the "lemma_ID" of 
the stem in each word. The lemma_ID is a string 
identifier assigned by the Standard Arabic Mor-
phological Analyzer (SAMA), which was used for 
the morphological annotation of the entire corpus; 
all verbs in a given conjugation paradigm share the 
same lemma_ID, as do all nouns or adjectives in a 
given declensional (case) paradigm, so every dis-
tinct inflected form of a noun, adjective or verb is 
linked by the annotation to its corresponding glos-
sary entry. The glossary table (with indexing by 
Semitic root) was a special, additional annotation 
specifically for ARFT, so not all lemmas were 
covered in the glossary; when a term not in the 
glossary is clicked, the side-bar display area in the 
ARFT shows the message "Refer to Morphology 
Information"; the morphology information is the 
full set of annotation data for each word based on 
SAMA, and this always includes an English gloss 
for the stem (except in the case of proper nouns, 
which always have "Proper Noun" as their part-of-
speech label).  

The ARFT is intended for use with a modern 
web browser over a reasonably fast internet con-
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nection. The tool has a flexible and intuitive web 
interface to navigate the texts via several key fea-
tures: 
 
1. Source Panel, featuring Al-Kitaab text 
2. Highlighted Sentence 
3. Highlighted Word 
4. Audio Player for highlighted sentence 
5. Audio Player for highlighted word 
6. Morphological Data Panel 
7. Lexical Data Panel 
8. Tabbed browsing for convenient access to 
multiple screens 
 
Figure 1. below illustrates an example of the tool 
using a passage of text from Al-Kitab Volume 2, 
Page 61. 
 

 
Figure 1. Arabic Reading Facilitation Tool featuring 
function labels 
 

5.3 The Text to speech module 

An Arabic Text-to-Speech technology module was 
licensed from RDI1. This technology has been used 
to add an audio feature to the ARFT, and can be 
used to render audio of arbitrary Arabic text. So 
the users will be able to listen to individual words 
or passages of text spoken by a high quality syn-
thesized voice. The RDI module, reads text files or 
literal text in Windows Arabic encoding and gene-
rates WAV audio data either as files or for direct 
output to an audio device. It has a C++ API that 
may be employed in Microsoft Visual Studio. The 

                                                           
1<http://www.rdi-eg.com/Technologies/speech.htm> 

voice rendering quality is excellent. Moreover, the 
module analyzes diacritized or undiacritized Arab-
ic text to determine pronunciation, rhythm and 
inflection of speech. Many variables of speech 
production can be controlled, most significantly 
the gender of the speaker. We developed a simple 
console-based executable that reads a list of Arabic 
text files and generates a WAV file of speech cor-
responding to each one, using a male voice, female 
voice, or one of each.  

5.4 The Arabic Reading Assessment Tool 
(ARAT) 

In order to support the creation of tests and quizzes 
for specific Arabic reading skills the Arabic Read-
ing Assessment Tool (ARAT) has been built 
around an existing open-source web application 
framework called Moodle (http://moodle.org). This 
framework was developed as a “Content Manage-
ment System”, and provides built-in support for 
many of the ‘infrastructure’ functions that ARAT 
would need, including: registration of faculty and 
student user accounts; creation of courses with 
schedule plans and content-based resources; crea-
tion, presentation and scoring of tests and quizzes; 
and overall record-keeping of resources, activities 
and test scores. Custom software modules were 
developed to augment the Moodle code base in 
order to provide functions that are specific to the 
ARAT: 
 - communicating with and importing data from the 
annotated Al-Kitaab passage database; 
 - defining specialized question types (the first 
three types described below) based on annotations 
in the database, such that answers to the questions 
can be scored automatically by reference to the 
corpus annotations.  
 

The three types of annotation-based questions 
were defined and implemented in the prototype 
ARAT: 
 - Cloze-Test Question: given a reading passage in 
Arabic, one or more words are chosen as test items 
and are replaced in the text by an underlined empty 
slot; the student is given a multiple-choice question 
to identify the correct Arabic word to fill each slot. 
 - English Gloss Question: given a reading passage, 
one or more words are chosen as test items and 
highlighted in the text; the student is given a mul-
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tiple-choice question to identify the correct English 
gloss for each test word. 
 - Case-Ending Question: given reading passage, 
one or more nouns and/or adjectives are chosen as 
test items and highlighted in the text; the student is 
given a multiple-choice question of the six possible 
cases in Arabic to identify the correct case ending 
for each test word. Mood ending could also be 
considered for verbs. 
- Yes/No questions: these are fully  developed by 
teachers, who must enter questions and answers 
into the program in order to have Moodle give the 
student/teacher the appropriate final scores and 
correct answers feedback.  

The implementation allows an instructor to se-
lect what text passage to use for a given quiz, and 
also allows for either manual and automatic selec-
tion of words to use as test items from the text, as 
well as either manual or automatic selection of 
distractor items for the Cloze and Gloss tests. By 
providing automatic selection of test items and 
distractors based on available annotations in the 
corpus database, ARAT allows a student to prac-
tice each task any number of times on a given text 
passage, be challenged by novel questions on each 
attempt, and receive a tally of right and wrong 
answers, without the instructor having to create or 
score each attempt as shown in Figure 2. 
 

 
 
Figure 2. A sample question created with ARAT 
 

5.5 The test set creation procedure 

The procedure for creating a test set within ARAT 
breaks down to the following ‘top-level’ steps: 

 

1. Provide or select a text passage to be used as the 
source from which test questions are derived. 

 
2. For questions that will be based on specific word 
tokens in the text, identify the tokens that will be 
basis for test questions; these token-specific ques-
tions will always involve a particular task with a 
multiple-choice response, so for each selected to-
ken: select the task (word choice, gloss choice, 
case-ending), identify a correct answer and provide 
or select a set of three distractors. 

 
3. For questions not based on specific tokens, the 
instructor must supply the following: prompting 
text for the question, the type of response (y/n, t/f, 
type-in, multiple choice) and the correct answer 
(and three distractors for multiple choice). Figure 3 
shows the test set main screen. 
 

 
Figure 3. Test set main screen. 
 

6 Classroom usage and tool evaluation 

The ARFT was presented to Arabic faculty at the 
University of Pennsylvania; the tool was an-
nounced in Arabic courses and students were asked 
to use it. Several lists of student enrollments for 
many Arabic courses have been imported into the 
Moodle-based system.  

An informal evaluation was also performed, in 
the Summer of 2010, with Arabic instructors teach-
ing in the ARAbic and North African Studies 
(ARANAS) program at Al Akhawayn University, 
in Ifrane, Morocco. Unfortunately, due to the very 
rushed schedule and time pressure that instructors 
work under during this intensive program, the tools 
did not receive the desired attention. Only a hand-
ful of instructors actually explored the tools. Two 

132



instructors filled out an evaluation questionnaire 
concerning various aspects of the tools and their 
use of computer technology for language teaching 
in general. The feedback was generally positive 
and included some detailed suggestion for improv-
ing the tools; they also revealed some issues with 
inconsistent response time (partly due to the net-
work infrastructure of the university at that time) 
and ease of use (for non technology-savy instruc-
tors). The biggest obstacles to using the tools, 
however, appeared to be lack of time on the part of 
the instructors to acquire sufficient familiarity with 
the tools and devise effective ways of introducing 
them in the curriculum. We are investigating the 
possibility of using the tools with exchange stu-
dents during the regular academic year, even 
though the numbers in Arabic classes at all levels 
is much lower than in the Summer program. 

Recently, the use of the ARFT and its compa-
nion the ARAT has been mandated by the Arabic 
Section at the University of Pennsylvania and we 
hope that a more consistent use is going to be 
made. As of now, 118 students are registered 
representing four 1st Year classes (total: 63 stu-
dents), two 2nd Year classes (total:3 students), one 
3rd Year class ( total: 13 students) and One 4th 
Year class ( 11students).At this point, the tool im-
pact on the classroom has not been evaluated, but it 
is in our future plans to do a comprehensive class-
room evaluation of the tool. 

As part of the effort to introduce the ARFT and 
the ARAT to faculty, we obtained three short read-
ing passage texts, totaling 1022 Arabic word to-
kens, selected by a faculty member from news 
sources. These were submitted to annotation to 
disambiguate and diacritize the content based on 
SAMA analysis, just as was done for the Al-Kitaab 
passages. The annotated texts have been added into 
the database corpus and are available for use in the 
ARAT, but are not accessible for general browsing 
via the ARFT. The annotation and database import 
went quickly, demonstrating that these procedures 
have matured, and providing resources for building 
quizzes and tests based on materials that are ‘un-
seen’ by students who use both the ARFT and the 
ARAT. 

7 Conclusion 

We have described computational tools and lin-
guistic resources that enable students to enhance 

their Arabic reading skills by helping them with 
the difficulties they face in word recognition, word 
disambiguation and general decoding skills during 
the Arabic reading process. These computational 
tools and resources provide the needed correct and 
meaningful vocalizations by using natural lan-
guage processing (NLP) technologies namely a 
Standard Arabic Morphological Analyzer 
(SAMA), a concordance, a Text-to-Speech module 
and various interfaces. The time gained by students 
who use our Reading Enhancement Tools could be 
put to good use in the current ASL (Arabic as a 
Second Language) classroom which, following the 
ACTFL proficiency movement puts a primary 
emphasis on communication with less concern for 
accuracy as reflected in morphology or syntax, 
particularly at the initial stages of ASL learning. 
We reiterate at this point that our choice of the 
GUP Al-Kitaab textbook series was not fortuitous. 
We could have chosen any other pedagogical text 
but Al-Kitaab distinguishes itself by being widely 
used in the United States and abroad, and provid-
ing an extensive curriculum with a wide variety of 
texts. We are thankful that GUP gave us permis-
sion to use this resource, as it enabled us to create a 
tool that can accompany many English-speaking 
students studying MSA in many classrooms around 
the world.  

In addition to answering learners’ reading needs 
in MSA, our efforts went beyond the specificities 
of this language by allowing us to demonstrate that 
our tools and the methodology we followed was in 
fact ‘portable’ to other languages which had a 
morphologically complex nature such as, for in-
stance, the Nahuatl Learning Environment (NLE) 
project based on the ARET infrastructure 2. Future 
efforts will continue experimentation of the use of 
available and robust Arabic NLP technologies to 
extend the enhancement of Arabic reading to better 
understanding of authentic reading text that the 
reader could download from the Internet for in-
stance. Progress in that direction is desirable and 
possible because it would increase the motivation 
of Modern Standard Arabic learners and will boost 
access by students and other professionals to au-
thentic real world language text in new genres and 
topics. In this way, the contribution of NLP tech-
                                                           
2 The Nahuatl learning tool project prepared by Jonathan 
Amith (n.d) and a team of Nahuatl speakers can be accessed 
online through a Beta version of the Nahuatl Learning Envi-
ronment at the LDC : http://nahuatl.ldc.upenn.edu/. 
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nologies to the teaching and learning of languages 
may become more significant and more compelling 
to all concerned, teachers, learners and computer 
NLP specialists alike.  
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Abstract 

This paper describes and evaluates DQGen, 
which automatically generates multiple choice 
cloze questions to test a child’s comprehen-
sion while reading a given text.  Unlike previ-
ous methods, it generates different types of 
distracters designed to diagnose different 
types of comprehension failure, and tests 
comprehension not only of an individual sen-
tence but of the context that precedes it.  We 
evaluate the quality of the overall questions 
and the individual distracters, according to 8 
human judges blind to the correct answers and 
intended distracter types.  The results, errors, 
and judges’ comments reveal limitations and 
suggest how to address some of them. 

1 Introduction 

This paper presents an automated method to check 
a reader’s comprehension of a given text while 
reading it, and to diagnose comprehension failures.  
In contrast to testing reading comprehension skill, 
for which there are published tests with well-
established psychometric properties (e.g., 
Wiederholt & Bryant, 1992; Woodcock, 1998), 
testing comprehension during reading of a given 
text requires generating a test for that specific text. 

A widely used solution is to replace some of the 
words with blanks for the student to fill, typically 
by selecting from multiple candidates.  Such mul-
tiple choice fill-in-the-blank questions are called 

cloze questions.  They are trivial to score because 
the correct answer is simply the original text word. 

Cloze questions test the ability to decide which 
word is consistent with the surrounding context.  
Thus it taps the comprehension processes that 
judge various types of consistency, such as syntac-
tic, semantic, and inter-sentential. 

In a nutshell, these processes successively en-
code sentences, integrate them into an overall rep-
resentation of meaning, notice gaps and 
inconsistencies, and repair them (see, e.g., Kintsch, 
1993, 2005; van den Broek, Everson, Virtue, Sung, 
& Tzeng, 2002).  The reader’s resulting situation 
model represents “the content or microworld that 
the text is about” (Graesser & Bertus, 1998). 

In this paper, we introduce DQGen (Diagnostic 
Question Generator), a system that uses natural 
language processing to generate diagnostic cloze 
questions that check the comprehension of some-
one reading a given text.  DQGen differs from pre-
vious methods for generating cloze questions in 
that it is designed to minimize disruption to the 
reading process, and to diagnose different types of 
comprehension failure. 

The intended application context that motivated 
the development of DQGen is an automated read-
ing tutor that listens to children read aloud and 
helps them build their oral reading fluency 
(Mostow, 2008).  Periodic comprehension checks 
should deter children from reading as fast as they 
can and ignoring what the text means.  When the 
child answers incorrectly, the wrong answers 
should provide clues to why they are wrong. 
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The rest of this article is organized as follows.  
Section 2 describes the generated questions.  Sec-
tion 3 describes how DQGen generates distracters.  
Section 4 reports a pilot evaluation of it.  Section 5 
analyzes errors.  Section 6 relates DQGen to prior 
work.  Section 7 concludes. 

2 Form of Generated Cloze Questions 

Generating cloze questions requires deciding:   
1. Which sentences to make cloze questions?   
2. Which words to delete from them? 
3. How many distracters to provide for them? 
4. What types of distracters? 

To illustrate the results of DQGen’s decisions, 
Figure 1 shows one of the better questions it gen-
erated: 
 

 
Figure 1.  An example of a generated question 

 
The four decisions enumerated above involve 

tradeoffs among preserving the flow of reading, 
encouraging comprehension, and assessing it accu-
rately.  As this example illustrates, DQGen inserts 
cloze questions as comprehension checks at the 
end of paragraphs, where there are natural breaks, 
in order to minimize disruption to the flow of read-
ing.  If the last sentence is shorter than four words 
or DQGen fails to find an acceptable distracter of 
each type, it simply leaves the last sentence un-
changed rather than turn it into a bad cloze ques-
tion. 

DQGen deletes the last word of the sentence, in 
order to allow normal reading up till that point and 
thereby minimize disruption to the flow of reading.  
Deleting a word earlier in the sentence would force 
the reader to skip the deleted word and read ahead 
to answer the cloze question.  Indeed, a review of  
of comprehension assessments (Pearson & Hamm, 
2005) indicates that end-of-sentence multiple 
choice cloze questions are widely used:  “Delete 

words at the end of sentences and provide a set of 
choices from which examinees are to pick the best 
answer (this tack is employed in several standard-
ized tests, including the Stanford Diagnostic Read-
ing Test and the Degrees of Reading Power).” 

The number of distracters involves a tradeoff.  
On the one hand, the more distracters, the less 
chance of lucky guesses, and the more types of 
distracters possible.  On the other hand, offering 
more distracters lengthens the disruption to the 
flow of reading and raises the cognitive load on the 
reader to remember the paragraph when reading 
the distracters.  As a compromise, DQGen adds 
three distracters, for a total of four choices to pre-
sent in randomized order – typical for multiple 
choice questions on educational tests for children. 

DQGen uses three types of distracters.  Each 
type of distracter indicates a different type of com-
prehension failure when chosen incorrectly by the 
reader as the answer.  By aggregating children’s 
performance over questions with these same three 
types of distracters, we hope not only to test their 
comprehension, but to profile the difficulties en-
countered by a given child or posed by a given text. 

2.1 Ungrammatical distracters 

The first and presumably easiest type of distracter 
renders the completed sentence ungrammatical.  
Syntactic processing is part of comprehension but 
not necessarily well-developed in children. Analy-
sis of children's responses to 69,000 multiple cloze 
questions automatically generated, presented, and 
scored by the Reading Tutor (Mostow et al., 2004) 
found that children’s performance decreased as the 
number of distracters with the same part of speech 
as the correct answer increased.  However, this 
effect was weaker for lower-level readers, indicat-
ing less sensitivity to syntax (Hensler & Beck, 
2006).  Choosing an ungrammatical distracter indi-
cates failure to detect a syntactic inconsistency.  
The ungrammatical distracter, e.g., are in Figure 1, 
has a different part of speech (POS) than the cor-
rect answer germs.  

2.2 Nonsensical distracters 

The second type of distracter makes the completed 
sentence grammatical but nonsensical.  Choosing a 
nonsensical distracter indicates failure to detect a 
local semantic inconsistency with the rest of the 
sentence.  The nonsensical distracter has the same  

Some of those cells patrol your body.  They are 
hungry, and they eat germs! Some stop the 
trouble germs make.  Others make antibodies.  
They stick to germs.  That helps your body find 
and kill _____  . 

a) are  
b) intestines  
c) terrorists  
d) germs 
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  Ungrammatical Nonsensical Plausible 

Source of candidates Other words in 
paragraph 

List of words at 
grade level up to 4 Matching Google N-grams 

Same as correct answer? No No No (94.96%) 
Related to words earlier in paragraph? – – No (lowest score) 
Related to words earlier in sentence? – – Yes (55.77%) 
Contains a space? –No No (100%) –No 
Frequent enough for children to know? –Yes –Yes Yes (96.15%) 
Passes grammar checker? No (65.48%) Yes (52.62%) Yes (92.31%)* 
Same POS as answer? –No Yes (26.67%) – 
Matches a Google N-gram? No (95.83%) No (91.67%) –Yes 

 
Table 1.  Sources and constraints for each distracter type, in order tested (with % satisfied in pilot data).   

Constraints guaranteed to be satisfied or violated without explicit testing are marked –Yes or –No. 
* We added this test after the pilot evaluation because Google N-grams aren’t always grammatical.

POS as the correct answer, but plugging it into the 
sentence forms a context not found in the Google 
N-grams corpus. For example, the nonsensical dis-
tracter in Figure 1 is intestines.    

2.3 Plausible distracters 

The third and hardest type of distracter makes the 
completed sentence meaningful in isolation but 
inconsistent with the preceding global context.  
This type of distracter is essential in testing inter-
sentential processing, i.e. “understanding that 
reaches across sentences in a passage,” because  
otherwise “an individual's ability to fill in cloze 
blanks does not depend on passage context” – a 
frequent criticism of cloze questions (Pearson & 
Hamm, 2005).  A plausible distracter has the same 
POS as the correct answer, like a nonsensical dis-
tracter, but the sentence it forms when plugged into 
the blank sounds reasonable – in isolation.  That is, 
it ends with an N-gram that occurs in the Google 
N-grams corpus.   However, it doesn’t make sense 
in the context of the preceding sentences, because 
the distracter is unrelated to the words in the pre-
ceding sentences.  For example, terrorists in Fig-
ure 1 is a plausible distracter. 

3 Generating and Filtering Distracters 

DQGen uses generate-and-test to construct each 
type of distracter:  it chooses randomly from a 
source of candidates and backtracks if the chosen 
candidate violates a constraint on that type of dis-

tracter.  If none of the candidates that satisfy a con-
straint survive subsequent tests, DQGen drops the 
constraint and considers candidates that violate it. 
The source and constraints vary by distracter type 
(ungrammatical, nonsensical, plausible).  Table 1 
summarizes the tests and the order they are applied.  
Sections 3.1-3.3 discuss them in further detail.  

3.1 Lexical constraints on distracters 

Three constraints apply at the word level. 
No spaces: We constrain all three types of dis-

tracters to be words rather than phrases.  This con-
straint is guaranteed for paragraph words and 
Google N-grams, DQGen’s respective sources of 
ungrammatical and plausible distracters.  However, 
our source of nonsensical distracters is a table 
(Biemiller, 2009) that specifies the grade level not 
only of words but also of some phrases, such as 
barbeque sauce, which DQGen therefore filters out.  
Table 2 shows an excerpt from the table used. 
 

Word Meaning Level … 
barbecue sauce flavored sauce for meat 2  
intestines guts  4  
intimate close, friendly 10  
intimate a close friend 10  

Table 2. Excerpt from Biemiller's (2009) table 
 

Distinct: DQGen explicitly excludes the correct 
answer as a distracter.  Other constraints on differ-
ent types of distracters are mutually exclusive with 
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each other.  Consequently, no answer choice can 
appear twice. 

Familiar: Distracters must be familiar to chil-
dren.  DQGen satisfies this constraint for ungram-
matical and nonsensical distracters by choosing 
them from the paragraph and a grade-leveled word 
list (Biemiller, 2009), respectively.  These sources 
suffice to provide candidates, but they are not 
comprehensive enough to test candidates from an-
other source, such as the Google N-grams used to 
generate plausible distracters.  To exclude words 
likely to be unfamiliar to children, DQGen filters 
out candidates whose unigram frequency falls be-
low 5,000,000.  We tuned this threshold by infor-
mal trial and error; higher thresholds proved too 
stringent to allow any distracters from the limited 
source of candidate plausible distracters. 

3.2 Constraints on completed sentences  

Three constraints pertain to making completed sen-
tences sensible or not. 

Grammatical: As Table 1 shows, all three types 
of distracters involve grammaticality constraints.  
Ungrammatical distracters must make the complet-
ed sentence ungrammatical, e.g., That helps your 
body find and kill are.  In contrast, nonsensical and 
plausible distracters must make the completed sen-
tence grammatical, e.g., That helps your body find 
and kill terrorists.   

To check grammaticality of a completed sen-
tence, we use the Link Grammar Parser (Sleator & 
Temperley, 1993), a syntactic dependency parser, 
as a grammar checker.  As a grammar checker, the 
Link Grammar Parser usually accepts grammatical 
sentences and rejects ungrammatical ones, perhaps 
because sentences in children’s text tend to be 
short.  However, it sometimes fails to accept a 
grammatical sentence, as the last row of Table 3 
illustrates. 
 
sentence grammatically parser 
The germs hide in food or 
people 

correct accepted 

The germs hide in food or 
world 

incorrect rejected 

So keep dirty hands away 
from cuts and your face. 

correct rejected 

Table 3. Examples of grammar checking by parser 
 

Part of speech: More than one POS may make 
a distracter grammatical.  DQGen uses the Stan-

ford POS Tagger (Toutanova, Klein, Manning, & 
Singer, 2003) to tag the correct answer and a can-
didate nonsensical distracter when used to com-
plete the sentence, and requires them to have the 
same POS.  This test is superfluous for ungram-
matical distracters and unnecessary for plausible 
distracters. 

Google N-gram: As a heuristic test of whether a 
completed sentence is plausible, we check whether 
its ending occurs in the Google N-grams corpus 
(Brants & Franz, 2006), which means that it ap-
pears at least 40 times on the Web.  For ungram-
matical and nonsensical distracters, the last 4 
words of the completed sentence must not occur in 
this corpus.  For plausible distracters, the last 4 
words followed by “.” must occur.  To enforce this 
constraint, DQGen’s source of candidate plausible 
distracters consists of Google 5-grams of the form 
W X Y __ .   Here W, X, and Y are the words pre-
ceding the correct answer in the original sentence, 
e.g., find and kill.  If there are fewer than 5 such 5-
grams, DQGen allows 4-grams of the form X Y __ ., 
e.g. and kill __. 

3.3 Relevance to context 

Two constraints on distracters concern context. 
Irrelevant to words earlier in paragraph: A 

plausible distracter should not be too plausible, so 
DQGen tries to ensure that it is unrelated to the 
earlier sentences and hence unlikely to make sense 
in context.  We measure the relatedness of a dis-
tracter to words in the earlier sentences by how 
often it co-occurs with them when used as in the 
last sentence.  DQGen therefore first pairs the can-
didate distracter, e.g. terrorists, with the last con-
tent word preceding the blank, e.g., kill in That 
helps your body find and kill ____.   It then esti-
mates the probability of these two words (kill and 
terrorists) co-occurring with the words in the earli-
er sentences of the paragraph, using a Naïve Bayes 
formula to score their relevance to that context: 

1

Pr( , | ) Pr( , ) Pr( | , )
n

i
i

c k w c k w c k
=

∝ ∏
 

The formula omits Pr( )w because it’s the same for 
all candidate plausible distracters for a given ques-
tion.  Here c is a candidate distracter (e.g., terror-
ists), k is the last content word before the blank 
(e.g., kill), w is a vector of the n content words 
earlier in the paragraph, and wi is the ith such word.   
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Figure 2.  Prompt for the pilot user test 

 
DQGen scores Pr( | , )iw c k  based on how often 
word wi co-occurs with words c and k in the same 
30-word window in the British National Corpus 
(BNC). 

The purpose of a plausible distracter is to detect 
failures of intersentential comprehension processes 
that monitor global consistency.  As a heuristic to 
violate global consistency, DQGen picks distract-
ers with the lowest relevance scores. 

Relevant to words earlier in sentence: A plau-
sible distracter should be relevant to the words ear-
lier in the sentence.  To score local relevance, 
DQGen uses a Naïve Bayes formula similar to its 
formula for global relevance: 

1

Pr( | ) Pr( ) Pr( | )
n

i
i

c w c w c
=

∝ ∏
 

Here, c is a candidate distracter, w is a vector of 
the n content words earlier in the sentence, and wi 
is the ith such word.  DQGen estimates Pr( | )iw c  in 
the same way as before, but omits k because n is so 
much smaller for the sentence than for the para-
graph context preceding it.  DQGen averages these 
local coherence scores over the candidates, and 
allows only candidates whose local coherence 
scores are above the mean.   

4 Pilot Study 

How good are the generated questions? To evalu-
ate DQGen, we asked human judges to score them.  
Section 4.1 explains how we evaluated questions, 
Section 4.2 reports inter-rater reliability, and Sec-
tion 4.3 presents results. 

4.1 Methodology 

For the evaluation, we used DQGen to insert sam-
ple questions in an informational text for children, 
The Germs, which explains the concept of germs 
and their danger.  Of the 18 paragraphs in this text, 
we rejected one because it was only two sentences 
long, and DQGen rejected another because the last 
sentence failed the grammar checker.  For each of 
the other 16 paragraphs, DQGen generated a cloze 
question with ungrammatical and nonsensical dis-
tracters, but it found plausible distracters for only 
13 of the questions, which we evaluated as follows. 

We recruited eight human judges, members of 
our research team but unfamiliar with DQGen.  We 
asked them to evaluate each question at two levels, 
using the form illustrated in Figure 2.  

At the high level, we evaluated the overall quali-
ty of each question by asking judges to rate it as 
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Good, OK, or Bad.  We report the percentage of 
generated questions rated by human judges as ac-
ceptable, defined as Good or OK.  We used a 3-
point scale rather than a finer-grained scale both to 
get higher inter-rater reliability, and because we 
were interested more in how many of the questions 
were acceptable than in precise ratings of quality.   

At the low level, we evaluated how often 
DQGen generated the intended type of distracter.  
We asked the judges to categorize each of the mul-
tiple choices (correct answer plus 3 distracters) as 
Ungrammatical, Nonsensical but grammatical, 
Meaningful but incorrect given the preceding text, 
or Correct.  To avoid biasing their responses, we 
did not tell them that each question was supposed 
to have one choice in each category. 

To elicit additional feedback, the form invited 
judges to comment on the questions and distracters. 

4.2 Inter-rater reliability 

It is important to measure inter-rater reliability 
among human judges, especially on experimenter-
designed measures such as the form we used. 

The overall quality ratings involved ranked data 
from more than two judges, so to measure their 
inter-rater reliability we used Kendall’s Coefficient 
of Concordance (Kendall & Smith, 1939).  KCC 
for overall quality was .40 on a scale from 0 to 1.  
This low value reflects the considerable variation 
between the judges, whose average ratings of over-
all quality ranged from 1.3 to 2.6. 

Categorization of each answer choice involved 
unranked data from more than two judges, so we 
used Fleiss’ Kappa (Shrout & Fleiss, 1979) to 
measure its inter-rater reliability.  Kappa was .58;   
a value of .4-.6 is considered moderate, .6-.8 sub-
stantial, and .8-1 outstanding (Landis & Koch, 
1977).  Figure 3 shows the Kappa values for each 
label by the judges. 

 

 
Figure 3.  Fleiss's Kappa for inter-rater reliability 

of each type of choice 

The low values of inter-rater reliability measures 
revealed the raters’ lack of consensus, presumably 
due to differing interpretations of the instructions.  
For instance, one judge commented that instruction 
for rating the overall quality did not indicate 
whether a good question requires reading the pre-
ceding text.  Another issue was missing and multi-
ple categorical responses.   

Evidently we need to specify our rating criteria 
more clearly, both for overall quality and for indi-
vidual components, especially nonsensical and 
plausible distracters.  A worked-out example might 
help judges understand each type better, but must 
avoid phrasing biased toward how DQGen works. 

4.3 Results 

We computed average ratings of overall quality 
and agreement with the intended category of each 
answer choice.   

We averaged all the ratings of overall quality af-
ter converting Bad, OK, and Good ratings into 1, 2, 
and 3, respectively.  Overall quality ratings aver-
aged 2.04, which corresponds to OK.  For agree-
ment of judges with the intended category of each 
answer choice, Cohen’s Kappa was .60.  Note that 
in contrast to Section 4.2, where we used Kappa to 
measure inter-rater reliability, i.e., how well the 
judges agreed with each other on overall question 
quality, here we use Kappa to measure distracter 
quality, i.e., how well the judges agreed with 
DQGen on the intended type of answer choices. 

Individual judges ranged from 63% to 79% 
agreement with the intended answer (Cohen's 
Kappa .51 to .72).  As Figure 4 shows, agreement 
was stronger for correct answers and ungrammati-
cal distracters than for nonsensical and plausible 
distracters.  On average, judges rated 94% of the 
correct answers as correct and agreed with 
DQGen’s intended distracter type for 91% of the 
ungrammatical distracters, 63% of the nonsensical 
distracters, and only 32% of the plausible distract-
ers.  Apparently correct answers are obviously 
right and ungrammatical answers are obviously 
wrong, but nonsensical and plausible distracters 
are harder to classify. 

5 Analysis of errors 

We now discuss issues revealed by errors and 
judges’ comments, and how to address them. 
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Figure 4.  Cohen’s Kappa for agreement with the 

intended type of each choice 

5.1 Dependence on preceding text 

The judges’ most frequent comment about the 
quality of a question was that answering it did not 
require reading the preceding text.  The judges rat-
ed only 32% of the intended plausible distracters as 
plausible.  Evidently we need to identify further 
constraints on plausible distracters.  We may also 
need to identify constraints on sentences where 
plausible distracters exist for the correct answer. 

5.2 Idioms 

Answer choices, whether correct answers or dis-
tracters, are problematic when they form idioms 
such as twisted in knots or make do.  For instance, 
one pilot cloze question ended with twisted in ____, 
where the correct answer was knots.  Another 
question ended with get your body to make ____, 
with do as a supposedly ungrammatical distracter. 

Idioms pose multiple problems, although we 
found only two cases in our small pilot study.  First, 
we want to test comprehension of the paragraph, 
not just knowledge of specific idioms.  Second, the 
word that completes an idiom can be far likelier 
than any other choice, making it too easy to guess 
based solely on local context, whether correct or 
not.  Third, because idioms have non-componential 
semantics, the missing word is liable to be seman-
tically unrelated to other sentence words, causing 
DQGen to badly underestimate its local relevance. 

Detecting idioms automatically is a research 
problem in its own right (Li, Roth, & Sporleder, 
2010; Li & Sporleder, 2009).  We might be able to 
recognize idioms by using the fact that its N-gram 
frequency is much higher than expected based on 
the frequency of its individual words.  A simpler 
approach is to consult a dictionary of common 
phrases.  Either approach would require extension 

to handle parameterized idioms such as a chip on 
[someone’s] shoulder, or non-contiguous forms 
such as Actions do in fact speak louder than words. 

5.3 Lexical issues for distracters 

The pilot study exposed a number of issues affect-
ing the suitability of words as distracters. 

Same-root words 

DQGen ensures that answer choices are distinct.  
However, one question included two forms of the 
same word as choices, namely throats as the cor-
rect answer and throat as a plausible distracter.  
We need to ensure that answer choices are not only 
distinct but dissimilar, unless we want questions 
that focus on minor differences between them. 

Common verbs and modal verbs 

One judge commented that we might want to avoid 
common verbs as distracters, such as any form of 
be, do, have, and get, and modal verbs, such as can, 
cannot, and will, lest children notice that they are 
seldom the correct answer, and therefore eliminate 
them without considering them.  Accordingly, we 
plan to filter out common verbs and modal verbs. 

Word difficulty 

The same judge considered some words too diffi-
cult for children, such as gauge and roast.  Actual-
ly, Biemiller (2009) rates noun senses of these 
words at grade 2, but the verb sense of gauge as 
estimate at grade 10.  These examples illustrate a 
limitation of DQGen’s methods to pick familiar 
words as distracters.  It picks ungrammatical dis-
tracters from the words in the paragraph, nonsensi-
cal distracters from Biemiller’s word list, and 
plausible distracters from Google N-grams, filtered 
by unigram frequency to avoid rare words.  In all 
three cases, DQGen constrains words rather than 
word senses. 

A more sophisticated approach would determine 
a distracter’s word sense, or at least POS, when 
used to complete the sentence, and rate the famili-
arity of its specific sense or POS.  Tagging the dis-
tracter POS is easier than determining its word 
sense(s) when inserted in the sentence.  Rating the 
familiarity of different word senses would require 
either a grade-leveled list of them like Biemiller’s 
(2009), or a resource with information about the 
frequency of different word senses or POS. 
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6 Relation to Prior Work 

How does this research relate to previous work? 
There has been considerable research on automatic 
generation of multiple choice cloze questions to 
test vocabulary, grammar, and comprehension.  
Although these types of questions differ in purpose, 
they have much in common when it comes to gen-
erating them automatically.  

6.1 Vocabulary and grammar cloze questions 

A multiple choice cloze question to test vocabulary 
and grammar is constructed from a sentence se-
lected from a corpus by deleting part of it (typical-
ly the target vocabulary word) and selecting 
distracters for it. 

Selecting distracters with the same POS and ap-
proximate frequency as the answer word is a com-
mon strategy (Brown, Frishkoff, & Eskenazi, 
2005; Coniam, 1997; Liu, Wang, & Gao, 2005). 

Besides matching the correct answer’s POS and 
frequency, Liu et al. (2005) added a culture-
dependent strategy for generating distracters:  
choose English words with semantically similar 
translations in the learner’s native language to the 
translation of the answer word. 

Correia et al. (2010) generated vocabulary ques-
tions for Portuguese with three types of distracters.  
One type of distracter had the same POS and word 
level as the target word, based on its unigram fre-
quency in Portuguese textbooks used in different 
grades.  A second type had the lowest Levenshtein 
distance to the target out of all words with its POS.  
A third type was misspellings of the target word 
using a table of common spelling mistakes.  Al-
dabe et al. (2007) also included students’ common 
mistakes as candidate distracters.  

Some work also used semantic similarity 
between a distracter and the answer word to choose 
distracters.  Pino et al. (2008) selected distracters 
that made the completed sentence grammatical and 
tended to co-occur with the words in the sentence, 
but were semantically distant from the target word 
as measured by WordNet.  In constrast, Smith et al. 
(2008) looked for distracters semantically similar 
to the answer word based on distributional simi-
larity. In addition, Sumita et al. (2005) used a the-
saurus for the same purpose, and then consulted 
the web to filter out plausible distracters.  

Aldabe et al. (2009) considered context in a 
question sentence when choosing distracters.  They 

used an n-gram language model to predict the 
probability of occurrence of a distracter with its 
preceding words. 

Gates et al. (2011) generated phrase-type dis-
tracters, unlike other work.  They generated ques-
tions from a dictionary definition of the target 
vocabulary word.  Rather than delete the target 
word, they parsed the definition, deleted a phrase 
from it, and chose distracters with the same syntac-
tic phrase type from definitions of other words, 
filtered to exclude synonyms of the target word. 

6.2 Comprehension cloze questions 

In contrast to vocabulary and grammar questions 
constructed from isolated sentences, DQGen’s 
comprehension questions are for (and inserted into) 
connected text. 

The most closely related work was by Mostow 
et al. (2004).  Their Reading Tutor dynamically 
generated multiple choice cloze questions to test 
children’s comprehension of randomly chosen sen-
tences while reading a story.  It randomly chose an 
approximate level of difficulty (‘sight’, ‘easy’, 
‘hard’, and ‘defined’) for which word to delete 
from the sentence, and which words to choose ran-
domly from the same story as distracters. 

Goto et al. (2010) also generated questions from 
texts.  They used a training corpus of existing cloze 
questions to learn how to select sentences to turn 
into cloze questions, words to delete, and types of 
distracters distinguished by their relation to the 
answer word:  inflectional (e.g., ask  asked); der-
ivational (e.g., work  worker); orthographic (e.g., 
circulation  circumcision); and semantic (e.g., 
synonyms and antonyms). 

Aldabe et al. (2010) generated questions for 
learners’ assessment in the science domain.  To 
generate distracters, they measured semantic simi-
larity by using Latent Semantic Analysis (LSA) 
and additional information such as semantic rela-
tionships between words.  Experts discarded dis-
tracters that could form a correct answer. 

DQGen differs from prior work on generating 
cloze questions for vocabulary and comprehension 
in two key respects.  First, each question it gener-
ates has multiple types of distracters designed to 
detect different types of comprehension failure.  
Second, to generate plausible distracters it consid-
ers their relation not only to the clozed sentence 
but to the entire paragraph that contains it. 
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7 Conclusion 

We conclude by summarizing contributions, limi-
tations, and future work. 

7.1 Contributions 

This paper describes a method for generating mul-
tiple choice cloze questions to test students’ com-
prehension while reading.  Unlike previous 
methods, some of which also generate multiple 
types of distracters, DQGen’s distracter types are 
diagnostic.  It generates ungrammatical, nonsensi-
cal, and plausible distracters in order to detect fail-
ures of syntactic, semantic, and intersentential 
processing, respectively.  Unlike prior methods, 
which test comprehension only of individual sen-
tences, DQGen’s plausible distracters take their 
preceding context into account. 

We observed that candidate plausible distracters 
with high relevance scores tend to be surprisingly 
sensible answers – even though the formula 
doesn’t “know” the correct answer or even the un-
grammatical and nonsensical distracters.  That is, 
grammaticality, N-grams, and a simple relevance 
measure often suffice to produce intelligent an-
swers to a cloze question despite their shallow rep-
resentation of the meaning of the paragraph – that 
is, without really understanding it.  This finding is 
surprising insofar as one would expect good per-
formance on such questions to require a deep rep-
resentation such as the situation model constructed 
by human readers. 

7.2 Limitations 

Besides describing DQGen’s design and imple-
mentation, we report on an evaluation of 13 gener-
ated questions by eight human judges blind to 
correct answer and intended distracter type.  On 
average they rated overall question quality OK, but 
with a wide range from the least to most favorable 
judge.  They agreed well with DGQen in classify-
ing answers as ungrammatical or correct, but not as 
nonsensical or plausible.  They criticized many 
questions as answerable without reading the text. 

7.3 Future work 

Our analysis of errors and judges’ comments re-
vealed several limitations and suggested ways to 
address some of them.  In addition to identifying 
further constraints on plausible distracters, we need 

to identify constraints on good sentences to turn 
into end-of-paragraph cloze questions, beyond just 
the ability to generate a distracter of each type.  
One criterion is reliability:  how well does perfor-
mance on a question correlate with performance on 
other questions about the same text?  Another cri-
terion is informativeness:  what do wrong answers 
reveal about comprehension? 

Besides improving DQGen, we need to test it on 
more stories (both narrative fiction and informa-
tional text) and readers (especially children, our 
target population) to expose additional problems 
and avoid overfitting their solutions. 

One possible use of DQGen is machine-assisted 
generation of comprehension questions, or more 
precisely, human-assisted machine generation, for 
example with the human vetting or selecting 
among candidate questions generated automatical-
ly, thereby reducing the amount of human effort 
currently required to compose comprehension 
questions, and producing them more systematically. 

Success in getting DQGen to produce cloze 
questions on a large scale would have useful appli-
cations.  Periodic comprehension checks should 
deter children from reading as fast as they can and 
ignoring what the text means.  Diagnostic feedback 
based on incorrect answers should shed light on the 
nature of their comprehension failures and may be 
valuable as feedback to teachers or as guidance to 
the reading tutor. 

Another use for large numbers of automatically 
generated cloze questions is to develop methods to 
monitor reading comprehension unobtrusively.  
Student responses to cloze questions could provide 
automated labels for data collected while they read 
the preceding text.   Such data could include oral 
reading (Zhang, Mostow, & Beck, 2007) or even 
EEG (Mostow, Chang, & Nelson, 2011).  Models 
trained and tested on the labeled data could esti-
mate reading comprehension based on unlabeled 
data – that is, without interrupting to ask questions. 
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Université de Lorraine
LORIA, UMR 7503

Vandoeuvre-lès-Nancy
F-54500, France

laura.perez@loria.fr

Claire Gardent
CNRS, LORIA, UMR 7503

Vandoeuvre-lès-Nancy
F-54500, France

claire.gardent@loria.fr

German Kruszewski
Inria, LORIA, UMR 7503

Villers-lès-Nancy
F-54600, France

german.kruszewski@inria.fr

Abstract

Grammar exercises for language learning fall
into two distinct classes: those that are based
on “real life sentences” extracted from exist-
ing documents or from the web; and those that
seek to facilitate language acquisition by pre-
senting the learner with exercises whose syn-
tax is as simple as possible and whose vo-
cabulary is restricted to that contained in the
textbook being used. In this paper, we in-
troduce a framework (called GramEx) which
permits generating the second type of gram-
mar exercises. Using generation techniques,
we show that a grammar can be used to
semi-automatically generate grammar exer-
cises which target a specific learning goal; are
made of short, simple sentences; and whose
vocabulary is restricted to that used in a given
textbook.

1 Introduction

Textbooks for language learning generally include
grammar exercises. Tex’s French Grammar 1 for in-
stance, includes at the end of each lecture, a set of
grammar exercises which target a specific pedagog-
ical goal such as learning the plural form of nouns

1Tex’s French Grammar http://www.laits.
utexas.edu/tex/ is an online pedagogical reference
grammar that combines explanations with surreal dialogues
and cartoon images. Tex’s French Grammar is arranged like
many other traditional reference grammars with the parts of
speech (nouns, verbs, etc.) used to categorize specific grammar
items (gender of nouns, irregular verbs). Individual grammar
items are carefully explained in English, then exemplified in a
dialogue, and finally tested in self-correcting, fill-in-the-blank
exercises.

or learning the placement of adjectives. Figure 1
shows the exercises provided by this book at the end
of the lecture on the plural formation of nouns. As
exemplified in this figure, these exercises markedly
differ from more advanced learning activities which
seek to familiarise the learner with “real world sen-
tences”. To support in situ learning, this latter type
of activity presents the learner with sentences drawn
from the Web or from existing documents thereby
exposing her to a potentially complex syntax and to
a diverse vocabulary. In contrast, textbook grammar
exercises usually aim to facilitate the acquisition of
a specific grammar point by presenting the learner
with exercises made up of short sentences involving
a restricted vocabulary.

As shall be discussed in the next section, most ex-
isting work on the generation of grammar exercises
has concentrated on the automatic creation of the
first type of exercises i.e., exercises whose source
sentences are extracted from an existing corpus. In
this paper, we present a framework (called GramEx)
which addresses the generation of the second type of
grammar exercises used for language learning i.e.,
grammar exercises whose syntax and lexicon are
strongly controlled. Our approach uses generation
techniques to produce these exercises from an exist-
ing grammar describing both the syntax and the se-
mantics of natural language sentences. Given a ped-
agogical goal for which exercises must be produced,
the GramEx framework permits producing Fill in the
blank (FIB, the learner must fill a blank with an ap-
propriate form or phrase) and Shuffle (given a set of
lemmas or forms, the learner must use these to pro-
duce a phrase) exercises that target that specific goal.
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Give the plural form of the noun indicated in parentheses.
Pay attention to both the article and the noun.
1. Bette aime _____ . (le bijoux)
2. Fiona aime ______ . (le cheval)
3. Joe-Bob aime ______ américaines. (la bière)
4. Tex n’aime pas ______ . (le choix)
5. Joe-Bob n’aime pas ______ difficiles. (le cours)
6. Tammy n’aime pas ______ . (l’hôpital)
7. Eduard aime ______. (le tableau)
8. Bette aime ______ de Tex. (l’oeil)
9. Tex aime ______ français. (le poète)
10. Corey aime ______ fraı̂ches. (la boisson)
11. Tammy aime ______ américains. (le campus)
12. Corey n’aime pas ______ . (l’examen)

Figure 1: Grammar exercises from the Tex’s French Grammar textbook

The exercises thus generated use a simple syntax and
vocabulary similar to that used in the Tex’s French
Grammar textbook.

We evaluate the approach on several dimensions
using quantitative and qualitative metrics as well as a
small scale user-based evaluation. And we show that
the GramEx framework permits producing exercises
for a given pedagogical goal that are linguistically
and pedagogically varied.

The paper is structured as follows. We start by
discussing related work (Section 2). In Section 3,
we present the framework we developed to generate
grammar exercises. Section 4 describes the exper-
imental setup we used to generate exercise items.
Section 5 reports on an evaluation of the exercise
items produced and on the results obtained. Section
6 concludes.

2 Related Work

A prominent strand of research in Computer Aided
Language Learning (CALL) addresses the automa-
tion of exercise specifications relying on Natural
Language Processing (NLP) techniques (Mitkov et
al., 2006; Heilman and Eskenazi, 2007; Karama-
nis et al., 2006; Chao-Lin et al., 2005; Coniam,
1997; Sumita et al., 2005; Simon Smith, 2010; Lin
et al., 2007; Lee and Seneff, 2007). Mostly, this
work targets the automatic generation of so-called
objective test items i.e., test items such as multiple
choice questions, fill in the blank and cloze exercise
items, whose answer is strongly constrained and can
therefore be predicted and checked with high accu-
racy. These approaches use large corpora and ma-
chine learning techniques to automatically generate
the stems (exercise sentences), the keys (correct an-

swers) and the distractors (incorrect answers) that
are required by such test items.

Among these approaches, some proposals target
grammar exercises. Thus, (Chen et al., 2006) de-
scribes a system called FAST which supports the
semi-automatic generation of Multiple-Choice and
Error Detection exercises while (Aldabe et al., 2006)
presents the ArikiTurri automatic question genera-
tor for constructing Fill-in-the-Blank, Word Forma-
tion, Multiple Choice and Error Detection exercises.
These approaches are similar to the approach we
propose. First, a bank of sentences is built which are
automatically annotated with syntactic and morpho-
syntactic information. Second, sentences are re-
trieved from this bank based on their annotation and
on the linguistic phenomena the exercise is meant to
illustrate. Third, the exercise question is constructed
from the retrieved sentences. There are important
differences however.

First, in these approaches, the source sentences
used for building the test items are selected from
corpora. As a result, they can be very complex
and most of the generated test items are targeted
for intermediate or advanced learners. In addition,
some of the linguistic phenomena included in the
language schools curricula may be absent or insuf-
ficiently present in the source corpus (Aldabe et al.,
2006). In contrast, our generation based approach
permits controlling both the syntax and the lexicon
of the generated exercices.

Second, while, in these approaches, the syntactic
and morpho-syntactic annotations associated with
the bank sentences are obtained using part-of-speech
tagging and chunking, in our approach, these are
obtained by a grammar-based generation process.
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As we shall see below, the information thus asso-
ciated with sentences is richer than that obtained by
chunking. In particular, it contains detailed linguis-
tic information about the syntactic constructs (e.g.,
cleft subject) contained in the bank sentences. This
permits a larger coverage of the linguistic phenom-
ena that can be handled. For instance, we can re-
trieve sentences which contain a relativised cleft ob-
ject (e.g., This is the man whom Mary likes who
sleeps) by simply stipulating that the retrieved sen-
tences must be associated with the information Cleft
Object).

To sum up, our approach differs from most exist-
ing work in that it targets the production of syntac-
tically and lexically controlled grammar exercises
rather than producing grammar exercises based on
sentences extracted from an existing corpus.

3 Generating Exercises

Given a pedagogical goal (e.g., learning adjective
morphology), GramEx produces a set of exercise
items for practicing that goal. The item can be ei-
ther a FIB or a shuffle item; and GramEx produces
both the exercise question and the expected solution.

To generate exercise items, GramEx proceeds in
three main steps as follows. First, a generation
bank is constructed using surface realisation tech-
niques. This generation bank stores sentences that
have been generated together with the detailed lin-
guistic information associated by the generation al-
gorithm with each of these sentences. Next, sen-
tences that permit exercising the given pedagogical
goal are retrieved from the generation bank using a
constraint language that permits defining pedagog-
ical goals in terms of the linguistic properties as-
sociated by the generator with the generated sen-
tences. Finally, exercises are constructed from the
retrieved sentences using each retrieved sentence to
define FIB and Shuffle exercises; and the sentence
itself as the solution to the exercise.

We now discuss each of these steps in more detail.

3.1 Constructing a Generation bank

The generation bank is a database associating sen-
tences with a representation of their semantic con-
tent and a detailed description of their syntactic and
morphosyntactic properties. In other words, a gen-

Sentence realisation:
”Tammy a une voix douce”
Lemma-features pairs:
{”lemma”: ”Tammy”,
”lemma-features”: {anim:+,num:sg,det: +,wh:-,cat:n,
func:suj,xp: +, gen:f},
”trace”: {propername}},
{”lemma”: ”avoir”,
”lemma-features”: {aux-refl:-,inv:-,cat:v,pers:3,pron:-,
num:sg,mode:ind, aspect:indet,tense:pres,stemchange:-,
flexion:irreg},
”trace”: {CanonicalObject,CanonicalSubject,n0Vn1}},
{”lemma”: ”un”,
”lemma-features”: {wh:-,num:sg,mass:-,cat:d,
gen:f,def:+},
”trace”: {determiner}},
{”lemma”: ”voix”,
”lemma-features”: {bar:0,wh:-,cat:n,num:sg,
mass:-,gen:f,flexion:irreg,
”trace”: {noun}},
{”lemma”: ”doux”,
”lemma-features”: {num:sg,gen:f,flexion:irreg,cat:adj},
”trace”: {Epith,EpithPost}}

Figure 2: Morphosyntactic information associated by
GraDe with the sentence Tammy a un voix douce

eration bank is a set of (Si, Li, σi) tuples where Si is
a sentence, Li is a set of linguistic properties true of
that sentence and σi is its semantic representation.

To produce these tuples, we use the GraDe gram-
mar traversal algorithm described in (Gardent and
Kruszewski, 2012). Given a grammar and a set
of user-defined constraints, this algorithm gener-
ates sentences licensed by this grammar. The user-
defined constraints are either parameters designed to
constrain the search space and guarantee termina-
tion (e.g., upper-bound on the number and type of
recursive rules used or upper-bound on the depth of
the tree build by GraDe); or linguistic parameters
which permit constraining the output (e.g., by spec-
ifying a core semantics the output must verbalise or
by requiring the main verb to be of a certain type).
Here we use GraDe both to generate from manu-
ally specified semantic input; and from a grammar
(in this case an existing grammar is used and no
manual input need to be specified). As explained
in (Gardent and Kruszewski, 2012), when generat-
ing from a semantic representation, the output sen-
tences are constrained to verbalise that semantics but
the input semantics may be underspecified thereby
allowing for morpho-syntactic, syntactic and tem-
poral variants to be produced from a single se-
mantics. For instance, given the input semantics
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L1:named(J bette n) A:le d(C RH SH) B:bijou n(C)
G:aimer v(E J C), GraDe will output among others
the following variants:

Bette aime le bijou (Bette likes the jewel),
Bette aime les bijoux (Bette likes the jewels),
C’est Bette qui aime le bijou (It is Bette who
likes the jewel), C’est Bette qui aime les bijoux
(It is Bette who likes the jewel), Bette aimait le
bijou (Bette liked the jewel), Bette aimait les
bijoux (Bette liked the jewels), ...

When generating from the grammar, the output
is even less constrained since all derivations com-
patible with the user-defined constraints will be pro-
duced irrespective of semantic content. For instance,
when setting GraDe with constraints restricting the
grammar traversal to only derive basic clauses con-
taining an intransitive verb, the output sentences in-
clude among others the following sentences:

Elle chante (She sings), La tatou chante-t’elle?
(Does the armadillo sing?), La tatou chante
(The armadillo sings), Chacun chante -t’il
(Does everyone sing? ), Chacun chante (Ev-
eryone sings), Quand chante la tatou? (When
does the armadillo sing?), ...

Figure 2 shows the linguistic properties associ-
ated with the sentence Tammy a une voix douce
(Tammy has a soft voice) by GraDe. To gener-
ate exercises, GramEx makes use of the morpho-
syntactic information associated with each lemma
i.e., the feature-value pairs occurring as values of the
lemma-features fields; and of their linguistic proper-
ties i.e., the items occurring as values of the trace
fields.

3.2 Retrieving Appropriate Sentences

To enable the retrieval of sentences that are appropri-
ate for a given pedagogical goal, we define a query
language on the linguistic properties assigned by
GraDe to sentences. We then express each peda-
gogical goal as a query in that language; and we use
these queries to retrieve from the generation bank
appropriate source sentences. For instance, to re-
trieve a sentence for building a FIB exercise where
the blank is a relative pronoun, we query the gen-
eration bank with the constraint RelativePronoun.
This will return all sentences in the generation bank
whose trace field contains the RelativePronoun

item i.e., all sentences containing a relative pronoun.
We then use this sentence to build both the exercise
question and its solution.

3.2.1 GramEx Query Language
We now define the query language used to retrieve

sentences that are appropriate to build an exercise
for a given pedagogical goal. Let B be a genera-
tion bank and let (Si, Li, σi) be the tuples stored in
B. Then, a GramEx query q permits retrieving from
B the set of sentences Si ∈ (Si, Li, σi) such that
Li satisfies q. In other words, GramEx queries per-
mit retrieving from the generation bank all sentences
whose linguistic properties satisfy those queries.

The syntax of the GramEx query language is as
follows:

BoolExpr → BoolTerm
BoolTerm → BoolFactor | BoolTerm ∨ BoolFactor
BoolFactor → BoolUnary | BoolFactor ∧ BoolUnary
BoolUnary → BoolPrimary | ¬ BoolPrimary
BoolPrimary → PrimitiveCond | ( BoolExpr ) | [ BoolExpr ]
PrimitiveCond → traceItem | feature = value

In words: the GramEx query language permits
defining queries that are arbitrary boolean con-
straints on the linguistic properties associated by
GraDe with each generated sentence. In addi-
tion, complex constraints can be named and reused
(macros); and expressions can be required to hold
on a single lexical item ([ BoolExpr] indicates that
BoolExpr should be satisfied by the linguistic prop-
erties of a single lexical item).

The signature of the language is the set of gram-
matical (traceItem) and morpho-syntactic proper-
ties (feature = value) associated by GraDe with
each generated sentence where traceItem is any
item occurring in the value of a trace field and
feature = value any feature/value pair occurring
in the value of a lemma-features field (cf. Fig-
ure 2). The Table below (Table 1) shows some of the
constraints that can be used to express pedagogical
goals in the GramEx query language.

3.2.2 Query Examples
The GramEx query language allows for very spe-

cific constraints to be expressed thereby providing
fine-grained control over the type of sentences and
therefore over the types of exercises that can be pro-
duced. The following example queries illustrate this.
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Grammatical Properties (traceItem)
Argument Cleft, CleftSUbj, CleftOBJ, ...,
Realisation InvertedSubj

Questioned, QuSubj, ...
Relativised, RelSubj ...
Pronominalised, ProSubj, ...

Voice Active, Passive, Reflexive
Aux tse, modal, causal
Adjective Predicative,Pre/Post nominal
Adverb Sentential, Verbal
Morpho-Syntactic Properties (feature=value)
Tense present,future,past
Number mass, count, plural, singular
Inflexion reg,irreg

Table 1: Some grammatical and morpho-syntactic prop-
erties that can be used to specify pedagogical goals.

(1) a. EpithAnte
Tex pense que Tammy est une jolie tatou (Tex
thinks that Tammy is a pretty armadillo)

b. [Epith ∧ flexion: irreg]
Tex et Tammy ont une voix douce (Tex and
Tammy have a soft voice)

c. POBJinf ∧ CLAUSE
POBJinf ≡ (DE-OBJinf ∨ A-OBJinf)
CLAUSE ≡ Vfin∧¬Mod ∧ ¬CCoord∧ ¬Sub
Tammy refuse de chanter (Tammy refuses to
sing)

Query (1a) shows a query for retrieving sentences
containing prenominal adjectives which uses the
grammatical (traceItem) property EpithAnte associ-
ated with preposed adjectives.

In contrast, Query (1b) uses both grammatical and
morpho-syntactic properties to retrieve sentences
containing a postnominal adjective with irregular in-
flexion. The square brackets in the query force the
conjunctive constraint to be satisfied by a single lex-
ical unit. That is, the query will be satisfied by sen-
tences containing a lexical item that is both a post-
nominal adjective and has irregular inflexion. This
excludes sentences including e.g., a postnominal ad-
jective and a verb with irregular inflexion.

Finally, Query (1c) shows a more complex case
where the pedagogical goal is defined in terms of
predefined macros themselves defined as GramEx
query expressions. The pedagogical goal is de-
fined as a query which retrieves basic clauses
(CLAUSE) containing a prepositional infinitival ob-
ject (POBJinf). A sentence containing a preposi-

tional infinitival object is in turn defined (second
line) as a prepositional object introduced either by
the de or the à preposition. And a basic clause (3rd
line) is defined as a sentence containing a finite verb
and excluding modifiers, clausal or verb phrase co-
ordination (CCORD) and subordinated clauses2

3.3 Building Exercise Items

In the previous section, we saw the mechanism used
for selecting an appropriate sentence for a given
pedagogical goal. GramEx uses such selected sen-
tences as source or stem sentences to build exercise
items. The exercise question is automatically gen-
erated from the selected sentence based on its asso-
ciated linguistic properties. Currently, GramEx in-
cludes two main types of exercises namely, Fill in
the blank and Shuffle exercises.

FIB questions. FIB questions are built by remov-
ing a word from the target sentence and replacing it
with either: a blank (FIBBLNK), a lemma (FIBLEM)
or a set of features used to help the learner guess
the solution (FIBHINT). For instance, in an exercise
on pronouns, GramEx will use the gender, number
and person features associated with the pronoun by
the generation process and display them to specify
which pronominal form the learner is expected to
provide. The syntactic representation (cf. Figure 2)
associated by GraDe with the sentence is used to
search for the appropriate key word to be removed.
For instance, if the pedagogical goal is Learn Sub-
ject Pronouns and the sentence retrieved from the
generation bank is that given in (2a), GramEx will
produce the FIBHINT question in (2b) by search-
ing for a lemma with category cl (clitic) and feature
func=subj and using its gender value to provide the
learner with a hint constraining the set of possible
solutions.

(2) a. Elle adore les petits tatous
(She loves small armadillos)
b. ... adore les petits tatous (gender=fem)

Shuffle questions. Similarly to FIB questions,
shuffle exercise items are produced by inspecting
and using the target derivational information. More
specifically, lemmas are retrieved from the list of

2The expressions CCoord and Sub are themselves defined
rather than primitive expressions.
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lemma-feature pairs. Function words are (option-
ally) deleted. And the remaining lemmas are “shuf-
fled“ (MSHUF). For instance, given the source sen-
tence (2a), the MSHUF question (2b) can be pro-
duced.

(3) a. Tammy adore la petite tatou
a. tatou / adorer / petit / Tammy

Note that in this case, there are several possible
solutions depending on which tense and number is
used by the learner. For such cases, we can either
use hints as shown above to reduce the set of pos-
sible solutions to one; or compare the learner’s an-
swer to the set of output produced by GraDe for the
semantics the sentence was produced from.

4 Experimental Setup

We carried out an experiment designed to assess the
exercises produced by GramEx. In what follows, we
describe the parameters of this experiment namely,
the grammar and lexicons used; the input and the
user-defined parameters constraining sentence gen-
eration; and the pedagogical goals being tested.

4.1 Grammar and Lexicon
The grammar used is a Feature-Based Lexicalised
Tree Adjoining Grammar for French augmented
with a unification-based compositional semantics.
This grammar contains around 1300 elementary
trees and covers auxiliaries, copula, raising and
small clause constructions, relative clauses, infini-
tives, gerunds, passives, adjuncts, wh-clefts, PRO
constructions, imperatives and 15 distinct subcate-
gorisation frames.

The syntactic and morpho-syntactic lexicons used
for generating were derived from various existing
lexicons, converted to fit the format expected by
GraDe and tailored to cover basic vocabulary as de-
fined by the lexicon used in Tex’s French Grammar.
The syntactic lexicon contains 690 lemmas and the
morphological lexicon 5294 forms.

4.2 Pedagogical Goals
We evaluate the approach on 16 pedagogical goals
taken from the Tex’s French Grammar book. For
each of these goals, we define the corresponding
linguistic characterization in the form of a GramEx
query. We then evaluate the exercises produced by

the system for each of these queries. The pedagog-
ical goals tested are the following (we indicate in
brackets the types of learning activity produced for
each teaching goal by the system):

• Adjectives: Adjective Order (MSHUF), Adjec-
tive Agreement (FIBLEM), Prenominal adjec-
tives (FIBLEM), Present and Past Participial
used as adjectives (FIBLEM), Regular and Ir-
regular Inflexion (FIBLEM), Predicative adjec-
tives (MSHUF)

• Prepositions: Prepositional Infinitival Object
(FIBBLNK), Modifier and Complement Prepo-
sitional Phrases (FIBBLNK)

• Noun: Gender (FIBLEM), Plural form (FI-
BLEM), Subject Pronoun (FIBHINT).

• Verbs: Pronominals (FIBLEM), -ir Verbs in
the present tense (FIBLEM), Simple past (FI-
BLEM), Simple future (FIBLEM), Subjunctive
Mode (FIBLEM).

4.3 GraDe’s Input and User-Defined
Parameters

GraDe’s configuration As mentioned in Sec-
tion 3, we run GraDe using two main configura-
tions. In the first configuration, GraDe search is con-
strained by an input core semantics which guides the
grammar traversal and forces the output sentence to
verbalise this core semantics. In this configuration,
GraDe will only produce the temporal variations
supported by the lexicon (the generated sentences
may be in any simple tense i.e., present, future,
simple past and imperfect) and the syntactic varia-
tions supported by the grammar for the same MRSs
(e.g., active/passive voice alternation and cleft argu-
ments).

Greater productivity (i.e., a larger output/input ra-
tio) can be achieved by providing GraDe with less
constrained input. Thus, in the second configura-
tion, we run GraDe not on core semantics but on the
full grammar. To constrain the search, we specify a
root constraint which requires that the main verb of
all output sentences is an intransitive verb. We also
set the constraints on recursive rules so as to exclude
the inclusion of modifiers. In sum, we ask GraDe to
produce all clauses (i) licensed by the grammar and
the lexicon; (ii) whose verb is intransitive; and (iii)
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which do not include modifiers. Since the number
of sentences that can be produced under this con-
figuration is very large, we restrict the experiment
by using a lexicon containing a single intransitive
verb (chanter/To sing), a single common noun and a
single proper name. In this way, syntactically struc-
turally equivalent but lexically distinct variants are
excluded.

Input Semantics We use two different sets of in-
put semantics for the semantically guided configura-
tion: one designed to test the pedagogical coverage
of the system (Given a set of pedagogical goals, can
GramEx generate exercises that appropriately target
those goals?); and the other to illustrate linguistic
coverage (How much syntactic variety can the sys-
tem provide for a given pedagogical goal?).

The first set (D1) of semantic representations con-
tains 9 items representing the meaning of exam-
ple sentences taken from the Tex’s French Gram-
mar textbook. For instance, for the first item
in Figure 1, we use the semantic representation
L1:named(J bette n) A:le d(C RH SH) B:bijou n(C)
G:aimer v(E J C). With this first set of input seman-
tics, we test whether GramEx correctly produces the
exercises proposed in the Tex’s French Grammar
book. Each of the 9 input semantics corresponds to
a distinct pedagogical goal.

The second set (D2) of semantic representations
contains 22 semantics, each of them illustrating dis-
tinct syntactic configurations namely, intransitive,
transitive and ditransitive verbs; raising and control;
prepositional complements and modifiers; sentential
and prepositional subject and object complements;
pronominal verbs; predicative, attributive and par-
ticipial adjectives. With this set of semantics, we
introduce linguistically distinct material thereby in-
creasing the variability of the exercises i.e., making
it possible to have several distinct syntactic configu-
rations for the same pedagogical goal.

5 Evaluation, Results and Discussion

Using the experimental setup described in the previ-
ous section, we evaluate GramEx on the following
points:

• Correctness: Are the exercises produced by the
generator grammatical, meaningful and appro-

priate for the pedagogical goal they are associ-
ated with?

• Variability: Are the exercises produced linguis-
tically varied and extensive? That is, do the ex-
ercises for a given pedagogical goal instantiate
a large number of distinct syntactic patterns?

• Productivity: How much does GramEx support
the production, from a restricted number of se-
mantic input, of a large number of exercises?

Correctness To assess correctness, we randomly
selected 10 (pedagogical goal, exercise) pairs for
each pedagogical goal in Section 4.2 and asked two
evaluators to say for each pair whether the exer-
cise text and solutions were grammatical, meaning-
ful (i.e., semantically correct) and whether the ex-
ercise was adequate for the pedagogical goal. The
results are shown in Table 3 and show that the sys-
tem although not perfect is reliable. Most sources of
grammatical errors are cases where a missing word
in the lexicon fails to be inflected by the generator.
Cases where the exercise is not judged meaningful
are generally cases where a given syntactic construc-
tion seems odd for a given semantics content. For
instance, the sentence C’est Bette qui aime les bi-
joux (It is Bette who likes jewels) is fine but C’est
Bette qui aime des bijoux although not ungrammati-
cal sounds odd. Finally, cases judged inappropriate
are generally due to an incorrect feature being as-
signed to a lemma. For instance, avoir (To have) is
marked as an -ir verb in the lexicon which is incor-
rect.

Grammatical Meaningful Appropriate
91% 96% 92%

Table 3: Exercise Correctness tested on 10 randomly se-
lected (pedagogical goal, exercise pairs)

We also asked a language teacher to examine 70
exercises (randomly selected in equal number across
the different pedagogical goals) and give her judg-
ment on the following three questions:

• A. Do you think that the source sentence se-
lected for the exercise is appropriate to practice
the topic of the exercise? Score from 0 to 3 ac-
cording to the degree (0 inappropriate - 3 per-
fectly appropriate)
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Nb. Ex. 1 2 4 5 6 12 17 18 20 21 23 26 31 37 138
Nb. Sem 1 4 6 1 4 3 1 1 1 1 1 1 1 1 1

Table 2: Exercise Productivity: Number of exercises produced per input semantics

• B. The grammar topic at hand together with
the complexity of the source sentence make
the item appropriate for which language level?
A1,A2,B1,B2,C13

• C. Utility of the exercise item: ambiguous (not
enough context information to solve it) / correct

For Question 1, the teacher graded 35 exercises as
3, 20 as 2 and 14 as 1 pointing to similar problems
as was independently noted by the annotators above.
For question B, she marked 29 exercises as A1/A2,
24 as A2, 14 as A2/B1 and 3 as A1 suggesting that
the exercises produced are non trivial. Finally, she
found that 5 out of the 70 exercises lacked context
and were ambiguously phrased.

Variability For any given pedagogical goal, there
usually are many syntactic patterns supporting learn-
ing. For instance, learning the gender of common
nouns can be practiced in almost any syntactic con-
figuration containing a common noun. We assess the
variability of the exercises produced for a given ped-
agogical goal by computing the number of distinct
morpho-syntactic configurations produced from a
given input semantics for a given pedagogical goal.
We count as distinct all exercise questions that are
derived from the same semantics but differ either
in syntax (e.g., passive/active distinction) or in mor-
phosyntax (determiner, number, etc.). Both types of
differences need to be learned and therefore produc-
ing exercises which, for a given pedagogical goal,
expose the learner to different syntactic and morpho-
syntactic patterns (all involving the construct to be
learned) is effective in supporting learning. How-
ever we did not take into account tense differences
as the impact of tense on the number of exercises
produced is shown by the experiment where we gen-
erate by traversing the grammar rather than from a

3A1, A2, B1, B2 and C1 are reference levels established
by the Common European Framework of Reference for
Languages: Learning, Teaching, Assessment (cf. http:
//en.wikipedia.org/wiki/Common_European_
Framework_of_Reference_for_Languages) for
grading an individual’s language proficiency.

semantics. Table 4 shows for each (input semantics,
teaching goal) pair the number of distinct patterns
observed. The number ranges from 1 to 21 distinct
patterns with very few pairs (3) producing a single
pattern, many (33) producing two patterns and a fair
number producing either 14 or 21 patterns.

Nb. PG 1 2 3 4 5 6
Nb. sent 213 25 8 14 10 6

Table 6: Pedagogical Productivity: Number of Teaching
Goals the source sentence produced from a given seman-
tics can be used for

Productivity When used to generate from seman-
tic representations (cf. Section 4.3), GramEx only
partially automates the production of grammar ex-
ercises. Semantic representations must be manually
input to the system for the exercises to be generated.
Therefore the issue arises of how much GramEx
helps automating exercise creation. Table 5 shows
the breakdown of the exercises produced per teach-
ing goal and activity type. In total, GramEx pro-
duced 429 exercises out of 28 core semantics yield-
ing an output/input ratio of 15 (429/28). Further, Ta-
ble 2 and 6 show the distribution of the ratio be-
tween (i) the number of exercises produced and the
number of input semantics and (ii) the number of
teaching goals the source sentences produced from
input semantics i can be used for. Table 6 (peda-
gogical productivity) shows that, in this first exper-
iment, a given input semantics can provide material
for exercises targeting up to 6 different pedagogi-
cal goals while Table 2 (exercise productivity) shows
that most of the input semantics produce between 2
and 12 exercises4.

When generating by grammar traversal, under the
constraints described in Section 4, from one input

4If the input semantics contains a noun predicate whose gen-
der is underspecified, the exercise productivity could be dou-
bled. This is the case for 4 of the input semantics in the dataset
D2; i.e. an input semantics containing the predicates tatou n(C)
petit a(C) will produce variations such as: la petite tatou (the
small armadillo (f)) and le petit tatou (the small armadillo (m)).
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Nb. SP 1 2 3 4 5 6 7 8 9 10 14 21
(S,G) 3 33 16 7 2 4 6 1 4 1 2 6

Table 4: Variability: Distribution of the number of distinct sentential patterns that can be produced for a given peda-
gogical goal from a given input semantics

Pedagogical Goal FIBLEM FIBBLNK MSHUF FIBHINT
Preposition — 28 — —
Prepositions with infinitives — 8 — —
Subject pronouns–il — — — 3
Noun number 11 — — —
Noun gender — 49 — —
Adjective order — — 30 —
Adjective morphology 30 — — —
Adjectives that precede the noun 24 — — —
Attributive Adjectives — — 28 —
Irregular adjectives 4 — — —
Participles as adjectives 4 — — —
Simple past 78 — — —
Simple future 90 — — —
-ir verbs in present 18 — — —
Subjunctive mode 12 — — —
Pronominal verbs 12 — — —
Total 236 78 30 3

Table 5: Number and Types of Exercises Produced from the 28 input semantics

90 exercises are generated targeting 4 different ped-
agogical goals (i.e. 4 distinct linguistic phenomena).

6 Conclusion

We presented a framework (called GramEx) for gen-
erating grammar exercises which are similar to those
often used in textbooks for second language learn-
ing. These exercises target a specific learning goal;
and, they involve short sentences that make it eas-
ier for the learner to concentrate on the grammatical
point to be learned.

One distinguishing feature of the approach is the
rich linguistic information associated by the gen-
erator with the source sentences used to construct
grammar exercises. Although space restriction pre-
vented us from showing it here, this information
includes, in addition to the morphosyntactic infor-
mation and the grammatical properties illustrated in
Figure 2 and Table 1 respectively, a semantic rep-
resentation, a derivation tree showing how the parse
tree of each sentence was obtained and optionally,
an underspecified semantics capturing the core pred-
icate/argument and modifier/modifiee relationships

expressed by each sentence. We are currently ex-
ploring how this information could be used to ex-
tend the approach to transformation exercises (e.g.,
passive/active) where the relation between exercise
question and exercise solution is more complex than
in FIB exercises.

Another interesting question which needs further
investigation is how to deal with exercise items that
have multiple solutions such as example (3) above.
Here we plan to use the fact that underspecified se-
mantics in GraDe permits associating many variants
with a given semantics.
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Abstract 

We present in this paper a novel, optimal 

semantic similarity approach based on 

word-to-word similarity metrics to solve 

the important task of assessing natural 

language student input in dialogue-based 

intelligent tutoring systems. The optimal 

matching is guaranteed using the sailor 

assignment problem, also known as the job 

assignment problem, a well-known 

combinatorial optimization problem. We 

compare the optimal matching method with 

a greedy method as well as with a baseline 

method on data sets from two intelligent 

tutoring systems, AutoTutor and iSTART. 

Introduction  

We address in this paper the important task of 

assessing natural language student input in 

dialogue-based tutoring systems where the primary 

form of interaction is natural language. Students 

provide their responses to tutor’s requests by 

typing or speaking their responses. Therefore, in 

dialogue-based tutoring systems understanding 

students’ natural language input becomes a crucial 

step towards building an accurate student model, 

i.e. assessing the student’s level of understanding, 

which in turn is important for optimum feedback 

and scaffolding and ultimately impacts the 

tutoring’s effectiveness at inducing learning gains 

on the student user. 

We adopt a semantic similarity approach to 

assess students’ natural language input in 

intelligent tutoring systems. The semantic 

similarity approach to language understanding 

derives the meaning of a target text, e.g. a student 

sentence, by comparing it with another text whose 

meaning is known. If the target text is semantically 

similar to the known-meaning text then we know 

the target’s meaning as well. 

Semantic similarity is one of the two major 

approaches to language understanding, a central 

topic in Artificial Intelligence. The alternative 

approach is full understanding. The full 

understanding approach is not scalable due to 

prohibitive costs to encode world and domain 

knowledge which are needed for full understanding 

of natural language. 

To illustrate the problem of assessing natural 

language student input in dialogue-based tutoring 

systems using a semantic similarity approach, we 

consider the example below from experiments with 

AutoTutor (Graesser et al., 2005), a dialogue-based 

tutoring system. 
Expert Answer: The force of the earth's gravity, 

being vertically down, has no effect on the object's 

horizontal velocity 

Student Input: The horizontal component of motion 

is not affected by vertical forces 

In this example, the student input, also called 

contribution, is highly similar to the correct expert 

answer, called expectation, allowing us to conclude 

that the student contribution is correct. A correct 

response typically triggers positive feedback from 

the tutor. The expert answer could also be an 
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anticipated wrong answer, usually called a 

misconception. A student contribution similar to a 

misconception would trigger a misconception 

correction strategy. 

We model the problem of assessing natural 

language student input in tutoring systems as a 

paraphrase identification problem (Dolan et al., 

2004). The student input assessment problem has 

been also modeled as a textual entailment task in 

the past (Rus & Graesser, 2006). 

Our novel method to assess a student 

contribution against an expert-generated answer 

relies on the compositionality principle and the 

sailor assignment algorithm that was proposed to 

solve the assignment problem, a well-known 

combinatorial optimization problem. The sailor 

assignment algorithm optimally assigns sailors to 

ships based on the fitness of the sailors’ skills to 

the ships’ needs [7, 8]. In our case, we would like 

to optimally match words in the student input (the 

sailors) to words in the expert-generated answer 

(the ships) based on how well the words in student 

input (the sailors) fit the words in the expert 

answer (the ships). The fitness between the words 

is nothing else but their similarity according to 

some metric of word similarity. We use the 

WordNet word-to-word similarity metrics 

(Pedersen et al., 2004) and Latent Semantic 

Analysis (Landauer et al., 2007). 

The methods proposed so far that rely on the 

principle of compositionality to compute the 

semantic similarity of longer texts have been 

primarily greedy methods (Corley & Mihalcea, 

2005; Lintean & Rus, 2012). To the best of our 

knowledge, nobody proposed an optimal solution 

based on the principle of compositionality and 

word-to-word similarity metrics for the student 

input assessment problem. It is important to note 

that the optimal method proposed here is generally 

applicable to compute the similarity of any texts. 

We provide experimental results on two datasets 

provided to us by researchers developing two 

world-class dialogue-based tutoring systems: 

AutoTutor (Graesser et al., 2005) and iSTART 

(McNamara et al., 2004). 

Background  

It is beyond the scope of this work to offer an 

exhaustive overview of methods proposed so far to 

handle the task of assessing natural language 

student input in intelligent tutoring systems. We 

only describe next methods that are most relevant 

to our work. 

Assessing student’s contributions in dialogue-

based tutoring systems has been approached either 

as a paraphrase identification task (Graesser et al., 

2005), i.e. the task was to assess how similar 

student contributions were to expert-generated 

answers, or as an entailment task (Rus & Graesser, 

2006), in which case the task was to assess whether 

student contributions were entailed by expert-

generated answers. The expert answers were 

assumed to be true. If a correct expert answer 

entailed a student contribution then the 

contribution was deemed to be true as well. 

Latent Semantic Analysis (LSA; Landauer et al., 

2007) has been used to evaluate student 

contributions during the dialog between the student 

by Graesser and colleagues (2005). In LSA the 

meaning of a word is represented by a reduced-

dimensionality vector derived by applying an 

algebraic method, called Singular Value 

Decomposition (SVD), to a term-by-document 

matrix built from a large collection of documents. 

A typical dimensionality of an LSA vector is 300-

500 dimensions. To compute the similarity of two 

words the cosine of the word’s corresponding LSA 

vector is computed, i.e. the normalized dot-

product. A typical extension of LSA-based word 

similarity to computing the similarity of two 

sentences (or even larger texts) is to use vector 

algebra to generate a single vector for each of the 

sentences (by adding up the individual words’ LSA 

vectors) and then compute the cosine between the 

resulting sentence vectors. Another approach 

proposed so far to compute similarities between 

individual words in the two sentences, greedily 

selects for each word its best match, and then sums 

the individual word-to-word similarities in order to 

compute the overall similarity score for the two 

sentences (Lintean & Rus, 2012). We do report 

results with LSA using the latter approach for 

comparison purposes. Another reason is that only 

the latter approach allows the application of the 

optimum matching method. 

Extending word-to-word similarity measures to 

sentence level and beyond has drawn increasing 

interest in the last decade or so in the Natural 

Language Processing community. The interest has 

been driven primarily by the creation of 

standardized data sets and corresponding shared 
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task evaluation campaigns (STECs) for the major 

text-to-text semantic relations of entailment (RTE; 

Recognizing Textual Entailment corpus by Dagan, 

Glickman, & Magnini, 2005), paraphrase (MSR; 

Microsoft Research Paraphrase corpus by Dolan, 

Quirk, and Brockett, 2004), and more recently for 

elaboration (ULPC; User Language Paraphrase 

Challenge by McCarthy & McNamara, 2008). 

None of the existing methods for assessing the 

similarity of texts based on the compositional 

principle and word-to-word similarity metrics have 

proposed an optimum method. 

Beyond Word-to-Word Similarity Measures  

Based on the principle of compositionality, which 

states that the meaning of longer texts can be 

composed from the meaning of their individual 

words (which includes collocations in our case 

such as “free fall”), we can extend the word-to-

word similarity metrics to compute the similarity 

of longer texts, e.g. of sentences. 

In our work, we use a set of WordNet-based 

similarity metrics as well as LSA. We used the 

following similarity measures implemented in the 

WordNet::Similarity package and described in 

(Pedersen et al., 2004): LCH (Leacock and 

Chodorow), RES (Resnik), JCN (Jiang and 

Conrath), LIN (Lin), PATH, and WUP (Wu and 

Palmer). Some measures, e.g. PATH, are path-

based, i.e. use paths of lexico-semantic relations 

between concepts in WordNet, while some others 

are gloss-based, that is, they use the text of the 

gloss or the definition of a concept in WordNet as 

the source of meaning for the underlying concept. 

One challenge with the WordNet word-to-word 

relatedness measures is that they cannot be directly 

applied to larger texts such as sentences. They 

must be extended to larger texts, which we did as 

described later. 

Another challenge with the WordNet word-to-

word similarity metrics is the fact that texts express 

meaning using words and not concepts. To be able 

to use the word-to-word related measures we must 

map words in sentences to concepts in WordNet. 

Thus, we are faced with a word sense 

disambiguation (WSD) problem. It is beyond the 

scope of our investigation to fully solve the WSD 

problem, one of the hardest in the area of Natural 

Language Processing. Instead, we addressed the 

issue in two ways: (1) mapped the words in the 

student contribution and expert answer onto the 

concepts corresponding to their most frequent 

sense, which is sense #1 in WordNet, and (2) map 

the words onto all the concepts corresponding to 

all the senses and then take the maximum of the 

relatedness scores for each pair of senses. Because 

the ALL (all senses) method offered better results 

and because of space constraints we only report 

results with the ALL method in this paper. 

Greedy versus Optimal Semantic Similarity 

Matching  

This section describes the greedy and optimal 

matching methods to assess the similarity of two 

texts based on word-to-word similarity metrics. 

We assume the two texts, T1 and T2, are two 

sentences and regard them as bags of words 

(syntactic information is ignored). 

The Greedy Method. In the greedy method, 

each word in text T1 is paired with every word in 

text T2 and word-to-word similarity scores are 

computed according to some metric. The 

maximum similarity score between words in T1 

and any word in T2 is greedily retained regardless 

of the best matching scores of the other words in 

T1. The greedily-obtained scores are added up 

using a simple or weighted sum which can then be 

normalized in different ways, e.g. by dividing to 

the longest text or to the average length of the two 

texts. The formula we used is given in equation 1. 

As one would notice, this formula is asymmetric, 

i.e. score(T1,T2)≠score(T2,T1). The average of 

the two scores provides a symmetric similarity 

score, more suitable for a paraphrase task, as 

shown in Equation 2. In this paper, we do a simple 

non-weighted sum, i.e. all the words are equally-

weighted with a weight of 1. 

The obvious drawback of the greedy method is 

that it does not aim for a global maximum 

similarity score. The optimal method described 

next solves this issue. 
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Equation 1. Asymmetric semantic similarity score 

between texts T1 and T2. 
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between texts T1 and T2. 
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Optimal Matching. The optimal assignment 

problem is one of the fundamental combinatorial 

optimization problems and consists of finding a 

maximum weight matching in a weighted bipartite 

graph.  

Given a weighted complete bipartite graph 

, where edge  has weight 

, find a matching M from X to Y with 

maximum weight. 

An application is about assigning a group of 

workers, e.g. sailors, to a set of jobs (on ships) 

based on the expertise level, measured by , 

of each worker at each job. By adding dummy 

workers or jobs we may assume that X and Y have 

the same size, n, and can viewed as  

 and Y = . In the 

semantic similarity case, the workers and jobs are 

words from the two sentences to be compared and 

the weight  is the word-to-word similarity 

between word x and y in the two sentences, 

respectively.  

The assignment problem can be stated as finding 

a permutation  of {1, 2, 3, … , n} for which 

 is maximum. Such an assignment 

is called optimum assignment. An algorithm, the 

Kuhn-Munkres method (Kuhn, 1955), has been 

proposed that can find a solution to the optimum 

assignment problem in polynomial time. For space 

reasons, we do not show here the algorithm in 

detail. 

To illustrate the difference between the two 

methods, we use the two sentence fragments 

shown in Figure 1. A greedy method would pair 

motion with motion (similarity score of 1.00) as 

that is the maximum similarity between motion and 

any word in the opposite sentence and acceleration 

is paired with speed (similarity score of 0.69) for a 

total score of 1.69 (before normalization). An 

optimal matching would yield an overall score of 

1.70 by pairing motion in the first sentence with 

speed (similarity of 0.75) and acceleration with 

motion (similarity of 0.95). 

 

 

 

 

 

 

 
Figure 1. Examples of two sentence fragments and 

word-to-word similarity scores for each of the word 

pairs across sentences. The bold arrows show optimal 

pairing. 

Experimental Setup and Results  

We present in this section the datasets we used 

in our experiments and the results obtained. As we 

already mentioned, we use two datasets containing 

real student answers from two dialogue-based 

tutoring systems: AutoTutor (Graesser et al., 2005) 

and iSTART (McNamara et al., 2004). 

The AutoTutor dataset contains 125 student 

contribution – expert answer pairs and the correct 

paraphrase judgment, TRUE or FALSE, as 

assigned by human experts. The target domain is 

conceptual physics. One expert physicist rated the 

degree to which particular speech acts expressed 

during AutoTutor training matched particular 

expert answers. These judgments were made on a 

sample of 25 physics expectations (i.e., correct 

expert answers) and 5 randomly sampled student 

answers per expectation, yielding a total of 125 

pairs of expressions. The learner answers were 

always responses to the first hint for that 

expectation. The E-S pairs were graded by Physics 

experts on a scale of 1-4 (4 being perfect answer). 

This rubric could be mapped onto a binary TRUE-

FALSE rubric: scores 3 and 4 equal a TRUE 

decision and 1 and 2 equal a FALSE decision. We 

ended up with 36 FALSE and 89 TRUE entailment 

pairs, i.e. a 28.8% versus 71.2% split (as compared 

to the 50-50% split of RTE data). 

The iSTART data set, also known as the User 

Language Paraphrase Corpus (McCarty & 

McNamara, 2008) comprises annotations of 

paraphrase relations between student responses and 

ideal answers. The corpus contains 1998 pairs 

collected from previous student iSTART sessions 

and is divided into training (1499 instances) and 

testing (499 instances) subsets. The training subset 

contains 54% positive instances while testing 

contains 55% positive instances. The iSTART 

texts represent high school students’ attempts to 

self-explain biology textbook texts. 

To evaluate the performance of our methods, we 

compare the methods’ judgments with the expert 

judgments. The percentage of matching judgments 

provides the accuracy of the run, i.e. the fraction of 

correct responses. We also report kappa statistics 

which indicate agreement between our methods’ 

output and the human-expert judgments for each 

1.00 

speed                  motion 

0.95 
0.75 

  motion              acceleration    Sentence A: 

Sentence B: 

0.69 
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instance while taking into account chance 

agreement. 

Tables 1, 2, and 3 summarize the results on the 

original AutoTutor data (from Rus & Graesser, 

2006; Table 1), the re-annotated AutoTutor data by 

a second rater with inter-annotator agreement of 

0.606 (Table 2), and the ULPC test subset (Table 

3). For the ULPC corpus the methods have been 

trained on the training subset, an optimum 

threshold has been learned (such that scores above 

the threshold mean TRUE paraphrases) which is 

then used on the test data. Since the AutoTutor 

dataset is small, we only report results on it as a 

whole, i.e. only training. We report for each corpus 

a baseline method of guessing all the time the 

dominant class in the dataset (which is TRUE 

paraphrase for all three datasets), a pure greedy 

method (Greedy label in the first column of the 

tables), a greedy method applied to the words 

paired by the optimum method (optGreedy), and 

the results with the optimum matching method 

(Optimum).  

Overall, the optimum method offered better 

performance in terms of accuracy and kappa 

statistics. The greedy method yields results that are 

close. In fact, when analyzed as raw scores instead 

of binary decisions (as is the case when computing 

accuracy) the greedy raw score are on average very 

similar to the optimum scores. For instance, for the 

LSA word-to-word similarity metric which 

provided best accuracy results on the ULPC 

dataset (accuracy=.643 for optimum and .615 for 

greedy), the average raw scores are .563 (using 

optimum matching) and .567 (using greedy 

matching). One reason for why they are so closed 

is that in optimum matching we have one-to-one 

word matches while in the greedy matching many-

to-one matches are possible. That is, two words v 

and w from text T1 can be matched to same word y 

in text T2 in the greedy method. If we enforce that 

only one-to-one matches are possible in the greed 

method as in the optimum method, then we obtain 

the optGreedy method. The optGreedy method 

does work better than the pure greedy method 

(Greedy in the tables). 

Another reason for why the raw scores are close 

for greedy and optimum is the fact that student 

input and expert answers in both the AutoTutor 

and ULPC corpora are sharing many words in 

common (>.50). This is the case because the 

dialogue is highly contextualized around a given, 

e.g. physics, problem. In the answer, both students 

and experts refer to the entities and interactions in 

the problem statement which leads to high 

identical word overlap. Identical words lead to 

perfect word-to-word similarity scores (=1.00) 

increasing the overall similarity score of the two 

sentences in both the greedy and optimum method. 

Conclusions and Future Work 

Overall, the optimum method offers better 

performance in terms of accuracy and kappa 

statistics than greedy and baseline methods. 

The way we modeled the student assessment 

problem in this paper cannot deal with some type 

of responses. For instance, sometimes students’ 

responses are mixed. Instead of being TRUE or 

FALSE responses, they contain both a correct part 

and an incorrect part as illustrated in the example 

below (Expert Answer provided for reference). 
Expert Answer: The object continues to have a 

constant horizontal velocity component after it is 

released that is the same as the person horizontal 

velocity at the time of dropping the object. 

Student Input: The horizontal velocity will decrease 

while the vertical velocity increases. 

Such a mixed student input should trigger a 

mixed feedback from the system: “You are 

partially right! The vertical velocity will increase 

but not the horizontal velocity. Can you explain 

why?” We plan to address this problem in the 

future by proposing a more sophisticated model. 

We also plan to answer the question of how much 

lexical versus world and domain knowledge each 

of these measures can capture. For instance, 

WordNet can be viewed as capturing some world 

knowledge as the concepts’ definitions provide 

information about the world. However, it might be 

less rich in capturing domain specific knowledge. 

Indeed, WordNet seems to capture less domain 

knowledge at first sight. For instance, the 

definition of acceleration in WordNet does not 

link it to the concept of force but physics laws do, 

e.g. Newton’s second law of motion. 
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ID RES LCH JCN LSA Path Lin WUP 

Baseline .712 .712 .712 .712 .712 .712 .712 

Greedy .736/.153 .752/.204 .760/.298 .744/.365 .752/.221 .744/.354 .760/.298 

optGreedy .744/187 .752/.221 .760/.298 .744/.306 .752/.309 .752/.204 .784/.349 

Optimal .744/.236 .752/.204 .760/.298 .744/.221 .752/.334 .752/.204 .784*/.409* 

Table 1.  Accuracy/kappa on AutoTutor data (* indicates statistical significance over the baseline method at p<0.005 level). 

ID RES LCH JCN LSA Path Lin WUP 

Baseline .568 .568 .568 .568 .568 .568 .568 

Greedy .616/.137 .608/.117 .624/.214 .632/.256 .624/.161 .608/1.34 .624/.181 

optGreedy .632/.192 .632/.207 .632/.229 .624/.218 .632*/.177* .624/.165 .648*/.235* 

Optimal .624*/.153* .624/.169 .640*/.208* .640/.283 .624/.165 .624*/.148 .624/.173 

Table 2.  Accuracy/kappa on AutoTutor data with user annotations (* indicates statistical significance over the baseline 

method at p<0.005 level). 

ID RES LCH JCN LSA Path Lin WUP 

Baseline .547 .547 .547 .547 .547 .547 .547 

Greedy .619/.196 .619/.201 .629/.208 .615/.183 .635/.221 .629/.214 .621/.201 

optGreedy .621/.195 .615/.201 .629/.208 .643/.237 .623/.197 .619/.196 .613/.190 

Optimal .625/.205 .615/.196 .629/.208 .643/.237 .633/.215 .623/.203 .625/.214 

Table 3.  Accuracy/kappa on ULPC test data (all results are statistically different from the baseline at p<0.005 level). 
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Abstract

We investigate the problem of readability as-
sessment using a range of lexical and syntac-
tic features and study their impact on predict-
ing the grade level of texts. As empirical ba-
sis, we combined two web-based text sources,
Weekly Reader and BBC Bitesize, targeting
different age groups, to cover a broad range
of school grades. On the conceptual side, we
explore the use of lexical and syntactic mea-
sures originally designed to measure language
development in the production of second lan-
guage learners. We show that the develop-
mental measures from Second Language Ac-
quisition (SLA) research when combined with
traditional readability features such as word
length and sentence length provide a good
indication of text readability across different
grades. The resulting classifiers significantly
outperform the previous approaches on read-
ability classification, reaching a classification
accuracy of 93.3%.

1 Introduction

Reading plays an important role in the development
of first and second language skills, and it is one of
the most important means of obtaining information
about any subject, in and outside of school. How-
ever, teachers often find it difficult to obtain texts
appropriate to the reading level of their students, on
a given topic. In many cases, they end up modifying
or creating texts, which takes significant time and ef-
fort. In addition to such a traditional school setting,
finding texts at the appropriate reading level is also

important in a wide range of real-life contexts in-
volving people with intellectual disabilities, dyslex-
ics, immigrant populations, and second or foreign
language learners.

Readability-based text classification, when used
as a ranking parameter in a search engine, can help
in retrieving texts that suit a particular target reading
level for a given query topic. In the context of lan-
guage learning, a language aware search engine (Ott
and Meurers, 2010) that includes readability classi-
fication can facilitate the selection of texts from the
web that are appropriate for the students in terms of
form and content. This is one of the main motiva-
tions underlying our research.

Readability assessment has a long history
(DuBay, 2006). Traditionally, only a limited set of
surface features such as word length and sentence
length were considered to derive a formula for read-
ability. More recently, advances in computational
linguistics made it possible to automatically extract
a wider range of language features from text. This
facilitated building machine learning models that es-
timate the reading level of a text. On the other hand,
there has also been an on-going stream of research
on reading and text complexity in other areas such as
Second Language Acquisition (SLA) research and
psycholinguistics.

In SLA research, a range of measures have been
proposed to study the development of complexity
in the language produced by learners. These mea-
sures are used to evaluate the oral or written pro-
duction abilities of language learners. The aim of
readability classification, on the other hand, is to re-
trieve texts to be comprehended by readers at a par-
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ticular level. Since we want to classify and retrieve
texts for learners of different age groups, we hypoth-
esized that these SLA-based complexity measures of
learner production, when used as features for read-
ability classification will improve the performance
of the classifiers. In this paper, we show that this
approach indeed results in a significant performance
improvement compared to previous research.

We used the WeeklyReader website1 as one of
the text used in previous research. We combined it
with texts crawled from the BBC-Bitesize website2,
which provides texts for a different age group. The
combined corpus, WeeBit, covers a comparatively
larger range of ages than covered before.

To summarize, the contributions of this paper are:

• We adapt measures from second language ac-
quisition research to readability classification
and show that the overall classification accu-
racies of an approach including these features
significantly outperforms previous approaches.

• We extend the most widely used WeeklyReader
corpus by combining it with another corpus that
is graded for a different age-group, thereby cre-
ating a larger and more diverse corpus as basis
for future research.

The paper is organized as follows: Section 2 de-
scribes related work on reading level classification
to put our work in context. Section 3 introduces the
corpora we used. Section 4 describes the features
we considered in detail. Section 5 presents the ap-
proach and discusses the results. Section 6 provides
a summary and points to future work.

2 Related Work

The traditional readability formulae made use of a
limited number of surface features, such as the aver-
age sentence length and the average word length in
characters or syllables (Kincaid et al., 1975; Cole-
man and Liau, 1975). Some works also made use
of lists of “difficult” words, typically based on fre-
quency counts, to estimate readability of texts (Dale
and Chall, 1948; Chall and Dale, 1995; Stenner,

1http://www.weeklyreader.com
2http://www.bbc.co.uk/bitesize

1996). Dubay (2006) provides a broad survey of tra-
ditional approaches to readability assessment. Al-
though the features considered appear shallow in
terms of linguistic modeling, they have been popular
for many years and are widely used.

More recently, the developments in computational
linguistics made it possible to consider various lex-
ical and syntactic features to automatically model
readability. In some of the early works on statis-
tical readability assessment, Si and Callan (2001)
and Collins-Thompson and Callan (2004) reported
the impact of using unigram language models to es-
timate the grade level of a given text. The models
were built on a United States text book corpus.

Heilman et al. (2007; 2008b; 2008a) extended
this approach and worked towards retrieving rele-
vant reading materials for language learners in the
REAP3 project. They extended the above mentioned
approach to include a set of manually and later au-
tomatically extracted grammatical features.

Schwarm and Ostendorf (2005) and Petersen and
Ostendorf (2009) report on classification experi-
ments with WeeklyReader data, considering statisti-
cal language models, traditional formulae, as well as
certain basic parse tree features in building an SVM-
based statistical model. Feng et al. (2010) and Feng
(2010) went beyond lexical and syntactic features
and studied the impact of several discourse-based
features, comparing their performance on the Week-
lyReader corpus.

While the vast majority of approaches have tar-
geted English texts, some work on other languages
such as German, Portuguese, French and Italian (vor
der Brück et al., 2008; Aluisio et al., 2010; Fran-
cois and Watrin, 2011; Dell’Orletta et al., 2011) is
starting to emerge. Parse-tree-based features have
also been used to measure the complexity of spoken
Swedish (Roll et al., 2007).

The process of text comprehension and the effect
of factors such as the coherence of texts have also
been intensively studied (e.g., Crossley et al., 2007a;
2007b; Graesser et al., 2004) and measures to ana-
lyze the text under this perspective have been imple-
mented in the CohMetrix project.4

The DARPA Machine Reading program created

3http://reap.cs.cmu.edu
4http://cohmetrix.memphis.edu

164



a corpus of general text readability containing var-
ious forms of human and machine generated texts
(Strassel et al., 2010).5 The aim of this program is to
transform natural language texts into a format suit-
able for automatic processing by machines and to
filter out poorly written documents based on the text
quality. Kate et al. (2010) used this data set to build
a coarse grained model of text readability.

While in this paper we focus on comparing com-
putational linguistic approaches to readability as-
sessment and improving the state of the art on a tra-
ditional and available data set, Nelson et al. (2012)
compared several research and commercially avail-
able text difficulty assessment systems in support of
the Common Core Standards’ goal of providing stu-
dents with texts at the appropriate level of difficulty
throughout their schooling.6

Independent of the research on readability, the
complexity of the texts produced by language learn-
ers has been extensively investigated in Second
Language Acquisition (SLA) research (Housen and
Kuiken, 2009). Recent approaches have automated
and compared a number of such complexity mea-
sures for learner language, specifically in English as
Second Language learner narratives (Lu, 2010; Lu,
2011b). So far, there is hardly any work on using
such insights in computational linguistics, though,
with the notable exception of Chen and Zechner
(2011) using SLA features to evaluate spontaneous
non-native speech. Given that graded corpora are
also intended to be used by incremental age groups,
we started to investigate whether the insights from
SLA research can fruitfully be applied to readability
classification.

3 Corpora

We used a combined corpus of WeeklyReader and
BBC-Bitesize to develop a statistical model that
classifies texts into five grade levels, based on the
age groups.
WeeklyReader7 is an educational newspaper, with
articles targeted at four grade levels (Level 2, Level
3, Level 4, and Senior), corresponding to children

5The corpus is apparently intended to be available for public
use, but does not yet seem to be so; we so far were unsuccessful
in obtaining more information from the authors.

6http://www.corestandards.org
7http://www.weeklyreader.com

between ages 7–8, 8–9, 9–10, and 9–12 years. The
articles cover a wide range of non-fiction topics,
from science to current affairs, written according to
the grade level of the readers. The exact criterion
of graded writing is not published by the magazine.
We obtained permission to use the graded magazine
articles and downloaded the archives in 11/2011.8

Though we used the same WeeklyReader text
base as the previous works, the corpus is not identi-
cal since we downloaded our version more recently.
Thus the archive contained more articles per level
and some preprocessing may differ. The Week-
lyReader magazine issues in addition to the actual
articles include teacher guides, student quizzes, im-
ages and brain teaser games, which we did not in-
clude in the corpus. The distribution of articles after
this preprocessing is shown in Table 1.

Grade Age Number of Avg. Number of
Level in Years Articles Sentences/Article

Level 2 7–8 629 23.41
Level 3 8–9 801 23.28
Level 4 9–10 814 28.12
Senior 10-12 1325 31.21

Table 1: The Weekly Reader corpus

BBC-Bitesize9 is a website with articles classi-
fied into four grade levels (KS1, KS2, KS3 and
GCSE), corresponding to children between ages 5–
7, 8–11, 11–14 and 14–16 years. The Bitesize cor-
pus is freely available on the web, and we crawled it
in 2009. Most of the articles at KS1 consisted of im-
ages and flash files and other audio-visual material,
with little text. Hence, we did not include KS1 in
our corpus. We also excluded pages that contained
only images, audio, or video files without text.

To cover a broad range of non-overlapping age
groups, we used Level 2, Level 3 and Level 4 from
WeeklyReader and KS3 and GCSE from Bitesize
data respectively and built a combined corpus cover-
ing learners aged 7 to 16 years. Note that while KS2
covers the age group of 8–11 years, Levels 2, 3, and

8A license to use the texts on the website for research can be
obtained for a small fee from support@weeklyreader.com. To
support comparable research, we will share the exact corpus we
used with other researchers who have obtained a license to use
the WeeklyReader materials.

9http://www.bbc.co.uk/bitesize
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4 together cover ages 7–10 years. Similarly, the Se-
nior Level overlaps with Level 4 and KS3. Hence,
we excluded KS2 and Senior from the combined
corpus. We will refer to the combined five-level cor-
pus we created in this way as WeeBit. The distribu-
tion of articles in the combined WeeBit corpus after
preprocessing and removing the overlapping grade
levels, is shown in Table 2.

Grade Age Number of Avg. Number of
Level in Years Articles Sentences/Article

Level 2 7–8 629 23.41
Level 3 8–9 801 23.28
Level 4 9–10 814 28.12

KS3 11–14 644 22.71
GCSE 14–16 3500 27.85

Table 2: The WeeBit corpus

To avoid a classification bias towards a class with
more training examples during, for each level in the
WeeBit corpus, 500 documents were taken as train-
ing set and 125 documents were taken as test set.
In total, we trained on a set of 2500 documents and
used a test set of 625 documents, spanning across
five grade levels.

4 Features

To build our classification models, we combined
features used in previous research with other parse
tree features as well as lexical richness and syntactic
complexity features from SLA research. We group
the features into three broad categories: lexical, syn-
tactic and traditional features.

4.1 Lexical Features
Word n-grams have been frequently used as lexical
features in the previous research (Collins-Thompson
and Callan, 2004; Schwarm and Ostendorf, 2005).10

POS n-grams as well as POS-tag ratio features have
also been used in some of the later works (Feng et
al., 2010; Petersen and Ostendorf, 2009).

In the SLA context, independent of the readability
research, Lu (2011a) studied the relationship of lexi-
cal richness to the quality of English as Second Lan-
guage (ESL) learners’ oral narratives and analyzed

10In the readability literature, n-grams are traditionally dis-
cussed as lexical features. N-grams beyond unigrams naturally
also encode aspects of syntax.

the distribution of three dimensions of lexical rich-
ness (lexical density, sophistication and variation) in
them using various metrics proposed in the language
acquisition literature. Those measures were used to
analyze a large scale corpus of Chinese learners of
English. We adapted some of the metrics from this
research as our lexical features:

Type-Token Ratio (TTR) is the ratio of number
of word types (T) to total number word tokens in
a text (N). It has been widely used as a measure
of lexical diversity or lexical variation in language
acquisition studies. However, since it is depen-
dent on the text size, various alternative transfor-
mations of TTR came into existence. We consid-
ered Root TTR (T/

√
N ), Corrected TTR (T/

√
2N ),

Bilogarithmic TTR (Log T/Log N) and Uber Index
(Log2T/Log(N/T )).

Another recent TTR variant we considered, which
is not a part of Lu (2011a), is the Measure of Textual
Lexical Diversity (MTLD; McCarthy and Jarvis,
2010). It is a TTR-based approach that is not af-
fected by text length. It is evaluated sequentially, as
the mean length of string sequences that maintain a
default Type-Token Ratio value. That is, the TTR
is calculated at each word. When the default TTR
value is reached, the MTLD count increases by one
and TTR evaluations are again reset. McCarthy and
Jarvis (2010) considered the default TTR as 0.72 and
we continued with the same default.

Considering nouns, adjectives, non-modal and
non-auxiliary verbs and adverbs as lexical items,
Lu (2011a) studied various syntactic category based
word ratio measures. Lexical variation is defined
as the ratio of the number of lexical types to lexi-
cal tokens. Other variants of lexical variation stud-
ied in Lu (2011a) included noun, adjective, modi-
fier, adverb and verb variations, which represent the
proportion of the words of the respective categories
compared to all lexical words in the document. Al-
ternative measures of verb variation, namely Verb
Variation-1 (Tverb/Nverb), Squared Verb Variation-
1 (T 2

verb/Nverb) and Corrected Verb Variation-1
(Tverb/

√
2Nverb) are also studied in the literature.

We considered all these measures of lexical varia-
tion as a part of our lexical features. We have also
included Lexical Density, which is the ratio of the
number of lexical items in relation to the total num-
ber of words in a text.
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In addition to these measures from the SLA lit-
erature, in our lexical features we included the aver-
age number of syllables per word (NumSyll) and the
average number of characters per word (NumChar),
which are used as word-level indicators of text com-
plexity in various traditional formulae (Kincaid et
al., 1975; Coleman and Liau, 1975).

Finally, we included the proportion of words in
the text which are found on the Academic Word List
as another lexical feature. It refers to the word list
created by Coxhead (2000), which contains a list of
most frequent words found in the academic texts.11

The list does not include the most frequent words in
the English language as such. The words in this list
are specific to academic contexts. It was intended to
be used both by teachers and students as a measure
of vocabulary acquisition. We use it as an additional
lexical feature in our work – and it turned out to be
one of the most predictive features.

All the lexical features we considered in this work
are listed in Table 3. The SLA based lexical features
are referred to as SLALEX in the table. Of these,

Lexical Features from SLA research (SLALEX)
– Lexical Density (LD)
– Type-Token Ratio (TTR)
– Corrected TTR (CTTR)
– Root TTR (RTTR)
– Bilogarithmic TTR (LogTTR)
– Uber Index (Uber)
– Lexical Word Variation (LV)
– Verb Variation-1 (VV1)
– Squared VV1 (SVV1)
– Corrected VV1 (CVV1)
– Verb Variation 2 (VV2)
– Noun Variation (NV)
– Adjective Variation (AdjV)
– Adverb Variation (AdvV)
– Modifier Variation (ModV)
– Mean Textual Lexical Density (MTLD)

Other Lexical Features
– Proportion of words in AWL (AWL)
– Avg. Num. Characters per word (NumChar)
– Avg. Num. Syllables per word (NumSyll)

Table 3: Lexical Features (LEXFEATURES)

11http://en.wikipedia.org/wiki/Academic_Word_List

six features CTTR, RTTR, SVV1, CVV1, AdvV, ModV
were shown by Lu (2011b) to correlate best with the
learner data. We will refer to them as BESTLEX-
SLA, highlighted in italics in the table.

4.2 Syntactic Features
Schwarm and Ostendorf (2005) implemented four
parse tree features (average parse tree height, aver-
age number of SBARs, NPs per sentence and VPs
per sentence) in their work. Feng (2010) considered
more syntactic features, adding the average lengths
of phrases (NP, VP and PP) per sentence in words
and characters, and the total number of respective
phrases in the document. In our work, we started
with reconsidering the above mentioned syntactic
features.

In addition, we included measures of syntactic
complexity from the SLA literature. Lu (2010) se-
lected 14 measures from a large set of measures used
to monitor the syntactic development in language
learners. He then used these measures in the analysis
of syntactic complexity in second language writing
and showed that some of them correlate well with
the syntactic development of adult Chinese learners
of English. They are grouped into five broad cate-
gories:

The first set consists of three measures of syn-
tactic complexity based on the length of a unit at
the sentential, clausal and T-unit level respectively.
The definitions for sentence, clause and T-unit were
adapted from the SLA literature. While a sentence
is considered to be a group of words delimited with
punctuation mark, a clause is any structure with a
subject and a finite verb. Finally, a T-unit is char-
acterized as one main clause plus any subordinate
clause or non-clausal structure that is attached to or
embedded in it.

The second type of measure targets sentence com-
plexity. Clauses per sentence is considered as a sen-
tence complexity measure.

The third set of measures reflect the amount of
subordination in the sentence. They include clauses
per T-unit, complex T-units per T-unit, dependent
clauses per clause and dependent clauses per T-unit.
A complex T-unit is considered as any T-unit that
contains a dependent clause.

The fourth type of measures measured the amount
of co-ordination in a sentence. They consist of co-
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ordinate phrases per clause and co-ordinate phases
per T-unit. Any adjective, verb, adverb or noun
phrase that dominates a co-ordinating conjunction is
considered a co-ordinate phrase.

The fifth type of measures represented the rela-
tionship between specific syntactic structures and
larger production units. They include complex nom-
inals per clause, complex nominals per T-unit and
verb phrases per T-unit. Complex nominals are com-
prised of a) nouns plus adjective, possessive, prepo-
sitional phrase, relative clause, participle or appos-
itive, b) nominal clauses, c) gerunds and infinitives
in subject positions.

We implemented these 14 syntactic measures as
features in building our classification models, in ad-
dition to existing features. Eight of these features
(MLC, MLT, CP/C, CP/T, CN/C, CN/T, MLS, VP/T)
were argued to correlate best with language develop-
ment. We refer to this subset of eight as BESTSYN-
SLA, shown in italics in Table 4. We will see in sec-
tion 5 that a set including those features also holds
good predictive power for classifying graded texts.

We also included the number of dependent
clauses, complex T-units, and co-ordinate phrases
per sentence as additional syntactic features. Table 4
summarizes the syntactic features used in this paper.

4.3 “Traditional” Features

The average number of characters per word (Num-
Char), the average number of syllables per word
(NumSyll), and the average sentence length in words
(MLS) have been used to derive formulae for read-
ability in the past. We refer to them as Traditional
Features below. We included MLS in the syntactic
features and NumChar, and NumSyll in the Lexi-
cal features. We also included two popular readabil-
ity formulae, Flesch-Kincaid score (Kincaid et al.,
1975) and Coleman-Liau readability formula (Cole-
man and Liau, 1975), as additional features. The
latter will be referred as Coleman below, and both
formulas together as Traditional Formulae.

5 Experiments and Evaluation

We used the Berkeley Parser (Petrov and Klein,
2007) with the standard model they provide for
building syntactic parse trees and defined the pat-
terns for extracting various syntactic features from

Syntactic features from SLA research (SLASYN)
– Mean length of clause (MLC)
– Mean length of a sentence (MLS)
– Mean length of T-unit (MLT)
– Num. of Clauses per Sentence (C/S)
– Num. of T-Units per sentence (T/S)

– Num. of Clauses per T-unit (C/T)
– Num. of Complex-T-Units per T-unit (CT/T)
– Dependent Clause to Clause Ratio (DC/C)
– Dependent Clause to T-unit Ratio (DC/T)
– Co-ordinate Phrases per Clause (CP/C)

– Co-ordinate Phrases per T-unit (CP/T)
– Complex Nominals per Clause (CN/C)
– Complex Nominals per T-unit (CN/T)
– Verb phrases per T-unit (VP/T)

Other Syntactic features
– Num. NPs per sentence (NumNP)
– Num. VPs per sentence (NumVP)
– Num. PPs per sentence (NumPP))
– Avg. length of a NP (NPSize)
– Avg. length of a VP (VPSize)
– Avg. length of a PP (PPSize)
– Num. Dependent Clauses per sentence (NumDC)
– Num. Complex-T units per sentence (NumCT)
– Num. Co-ordinate Phrases per sentence (CoOrd)
– Num. SBARs per sentence (NumSBAR)
– Avg. Parse Tree Height (TreeHeight)

Table 4: Syntactic features (SYNFEATURES)

the trees using the Tregex pattern matcher (Levy and
Andrew, 2006). More details about the patterns from
the SLA literature and their definitions can be found
in Lu (2010). We used the OpenNLP12 tagger to
get POS tag information and calculate Lexical Rich-
ness features. We used the WEKA (Hall et al., 2009)
toolkit for our classification experiments. We ex-
plored different classification algorithms such as De-
cision Trees, Support Vector Machines, and Logis-
tic Regression. The Multi-Layer Perceptron (MLP)-
classifier performed best with various combinations
of features, so we focus on reporting the results for
that algorithm.

12http://opennlp.apache.org
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Feature set # Features Classifier Performance
Accuracy RMSE

Traditional Formulae 2 38.8% 0.36
Traditional Features 3 70.3% 0.25

Trad. Features + Trad. formulae 5 72.3% 0.32
SLALEX 16 68.1% 0.29
SLASYN 14 71.2% 0.28

SLALEX + SLASYN 30 82.3% 0.23
BEST10SYN 10 69.9% 0.28

All Syntactic Features 25 75.3% 0.27
BEST10LEX 10 82.4% 0.22

All Lexical Features 19 86.7% 0.20
BEST10ALL 10 89.7% 0.18
All features 46 93.3% 0.15

Table 5: Classification results for WeeBit Corpus

5.1 Evaluation Metrics

We report our results in terms of classification accu-
racy and root mean square error.

Classification accuracy refers to the percentage of
instances in the test set that are classified correctly.
The correct classifications include both true posi-
tives and true negatives. However, accuracy does
not reflect how close the prediction is to the actual
value. A difference between expected and predicted
values of one grade level is treated the same way as
the difference of, e.g., four grade levels.

Root mean square error (RMSE) is a measure
which gives a better picture of this difference.
RMSE is the square root of empirical mean of the
squared prediction errors. It is frequently used as
a measure to estimate the deviation of an observed
value from the expected value. In readability assess-
ment, it can be understood as the average difference
between the predicted grade level and the expected
grade level.

5.2 Feature Combinations

Complementing our experiments comparing the dif-
ferent lexical and syntactic features and their com-
bination, we also used WEKA’s information-gain-
based feature selection algorithm, and selected the
Top-10 best features using the ranker method.

When all features were considered, the top 10
most predictive features were found to be: (Num-
Char, NumSyll, MLS, AWL, ModVar, CoOrd, Cole-

man, DC/C, CN/C,and AdvVar), which are referred
to as BEST10ALL in the table.

Considering the 25 syntactic features alone, the
10 most predictive features were: (MLS, CoOrd,
DC/C, CN/C, CP/C, NumPP, VPSize, C/T, CN/T and
NumVP), referred to as BEST10SYN in the table.

The 10 most predictive features amongst all the
lexical features were: (NumChar, NumSyll, AWL,
ModV, AdvV, AdjV, LV, VV1, NV and SVV1). They
are referred to as BEST10LEX in the table.

Although the traditionally used features (Num-
Char, NumSyll, MLS) seem to be the most predictive,
it can be seen from the other top ranked features,
that there is significant overlap between the best fea-
tures identified by WEKA and the features which
Lu (2010; 2011b) identified as correlating best with
language development (shown in italics in Table 3
and Table 4), which supports our hypothesis that the
SLA-based measures are useful features for read-
ability classification of non-learner text too.

5.3 Results

Table 5 shows the results of our classification ex-
periments using WEKA’s Multi-Layer Perceptron
algorithm with different combinations of features.
Combining all features results in the best accuracy
of 93.3%, which is a large improvement over the
current state of the art in readability classification
reported on the WeeklyReader corpus (74.01% by
Feng et al., 2010). It should, however, be kept
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# Features Highest reported accuracy
Previous work (on WeeklyReader)

(Feng et al., 2010) 122 74.01%
(Petersen and Ostendorf, 2009) 25 63.18%

Syntactic features only (Petersen and Ostendorf, 2009) 4 50.91%
Our Results (on WeeklyReader alone)

Syntactic features from (Petersen and Ostendorf, 2009) 4 50.68%
All our Syntactic Features 25 64.3%
All our Lexical Features 19 84.1%

All our Features 46 91.3%
Our Results (on WeeBit)
All our Syntactic Features 25 75.3%
All our Lexical Features 19 86.7%

All our Features 46 93.3%

Table 6: Overall Results and Comparison with Previous Work

in mind that the improvement is achieved on the
WeeBit corpus which is an extension of the Week-
lyReader corpus previously used. Interestingly, the
result of 89.7% for BEST10ALL, the top 10 features
chosen by the WEKA ranker, are quite close to our
best result, with a very small number of features.

Lexical features seem to perform better than syn-
tactic features when considered separately. How-
ever, this better performance of lexical features was
mainly due to the addition of the traditionally used
features NumChar and NumSyll. So it is no won-
der that these shallow features have been used in
the traditional readability formulae for such a long
time; but the predictive power of the traditional for-
mulae as features by themselves is poor (38.8%), in
line with the conclusions drawn in previous research
(Schwarm and Ostendorf, 2005; Feng et al., 2010)
about the Flesch-Kincaid and Dale-Chall formulae.
Interestingly, Coleman, which was not considered
in those previous approaches, was ranked among
the Top-10 most predictive features by the WEKA
ranker. So it holds a good predictive power when
used as one of the features for the classifier.

We also studied the impact of SLA based fea-
tures alone on readability classification. The perfor-
mance of the SLA based lexical features (SLALEX)
and syntactic features (SLASYN) when considered
separately are still in a comparable range with the
previously reported results on readability classifi-
cation (68.1% and 71.2% respectively). However,

combining both of them resulted in an accuracy of
82.3%, which is a considerable improvement over
previously reported results. It again adds weight to
the initial hypothesis that SLA based features can be
useful for readability classification.

5.4 Comparison with previous work

Table 6 provides an overall comparison of the accu-
racies obtained for the key features sets in our work
with the best results reported in the literature for the
WeeklyReader corpus. However, since our classi-
fication experiments were carried out with a newly
compiled corpus extending the WeeklyReader data,
such a direct comparison is not particularly mean-
ingful by itself. To address this issue, we explored
two avenues.

Firstly, we ran additional experiments, training
and testing on the WeeklyReader data only, includ-
ing the four levels used in previous work on that cor-
pus. A summary of the results can be seen in Table
6. Our approach with 46 features results in 91.3%
accuracy on the WeeklyReader corpus, compared to
74.01% as the best previous WeeklyReader result,
reported by Feng et al. (2010) for their much larger
feature set (122 features).

In order to verify the impact of our choice of fea-
tures, we also did a replication of the parsed syntac-
tic feature measures reported by (Schwarm and Os-
tendorf, 2005) on the WeeklyReader corpus and ob-
tained essentially the same accuracy as the one pub-
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lished (50.7% vs. 50.91%), supporting the compa-
rability of the WeeklyReader data used. The signif-
icant performance increase we reported thus seems
to be due to the new features we integrated from the
SLA literature.

Secondly, we were interested in the impact of the
training size on the results. We therefore investi-
gated how good our best approach (using all fea-
tures) is on a training corpus that is comparable to
the WeeklyReader corpus used in previous work in
terms of the number of documents per class. When
we took 1400 WeeklyReader documents distributed
into four classes as described in Feng et al. (2010),
we obtained an accuracy of 84.2%, compared to the
74.01% they reported as best result. Using 2500
documents distributed into four classes as in Pe-
tersen and Ostendorf (2009) we obtained 88.4%,
compared to their best result of 63.18%. Given that
the original corpora used are not available, these
WeeklyReader corpora with the same source, num-
ber of documents, and size of classes are as close
as we can get to a direct comparison. In the future,
the availability of the WeeBit corpus will support a
more direct comparison of approaches.

In sum, the above experiments seem to indicate
that the set of features and classifier used in our ap-
proach play an important role in the resulting signif-
icant increase in accuracy.

6 Conclusion and Discussion

We created a new corpus, WeeBit, by combining
texts from two graded web sources WeeklyReader
and BBC Bitesize. The resulting text corpus is
larger and covers more grade levels, spanning the
age group between 7 and 16 years. We hope that
the availability of this graded corpus will be useful
as an empirical basis for future studies in automatic
readability assessment.13

We studied the impact of various lexical and syn-
tactic features and explored their performance in
combination with features encoding syntactic com-
plexity and lexical richness that were inspired by
Second Language Acquisition research. Our experi-
ments show that not only the full set of features, but

13As mentioned above, we will make the WeeBit corpus
available to all researchers who have obtained the inexpensive
research license from WeeklyReader.

also specific manually or automatically selected sub-
sets of features provide results significantly improv-
ing on the previously published state of the art in
automatic readability assessment. There also seems
to be a clear correlation between the good predictors
according to SLA research on language learning and
those that performed well in text classification.

Although the exact criteria based on which the
individual corpora (WeeklyReader, BBC-Bitesize)
were created is not known, it is possible that they
were created with the well-known, traditional read-
ability formulae in mind. It would be surprising if
the two corpora, compiled in the US and Britain by
different companies, were created with the same set
of measures in mind, so the WeeBit corpus should
be less affected. Still, it is possible that the rea-
son the traditional features NumChar, NumSyll and
MLS held such a strong predictive power is that
these measures were considered when the texts were
written. But removing these traditional features only
strengthens the role of the other features and thereby
the main point of the paper arguing for the usefuless
of SLA developmental measures for readability clas-
sification.

As a part of our future work, we intend to revisit
and study the impact of further classes of features
employed in psycholinguistics and cognitive sci-
ence research, such as those studied in Coh-Metrix
(Graesser et al., 2004) or in the context of retrieving
texts for specific groups of readers (Feng, 2010).

In terms of our overall application goal, we are
currently studying the ability of the classification
models we built to generalize to web data. We then
plan to add the classification model to a language
aware search engine (Ott and Meurers, 2010). Such
a search engine may then also be able to integrate
user feedback on the readability levels of webpages,
to build a dynamic, online model of readability.
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Abstract

This paper presents an interactive analytic tool
for educational peer-review analysis. It em-
ploys data visualization at multiple levels of
granularity, and provides automated analytic
support using clustering and natural language
processing. This tool helps instructors dis-
cover interesting patterns in writing perfor-
mance that are reflected through peer reviews.

1 Introduction

Peer review is a widely used educational approach
for coaching writing in many domains (Topping,
1998; Topping, 2009). Because of the large number
of review comments to examine, instructors giving
peer review assignments find it difficult to examine
peer comments. While there are web-based peer-
review systems that help instructors set up peer-
review assignments, no prior work has been done
to support instructors’ comprehension of the textual
review comments.

To address this issue, we have designed and devel-
oped an interactive analytic interface (RevExplore)
on top of SWoRD1 (Cho and Schunn, 2007), a web-
based peer-review reciprocal system that has been
used by over 12,000 students over the last 8 years.
In this paper, we show how RevExplore visualizes
peer-review information in multiple dimensions and
various granularity levels to support investigative
exploration, and applies natural language process-
ing (NLP) techniques to facilitate review compre-
hension and comparison.

1https://sites.google.com/site/swordlrdc/

2 Design Goals

Instructors face challenges when they try to make
sense of the peer-review data collected by SWoRD
for their assignments. Instructors we have inter-
viewed have complained that peer reviews are time-
consuming to read and almost “impossible” to in-
terpret: 1) to understand the pros and cons of one
student’s paper, they need to synthesize all the peer
reviews received by that student by reading them one
by one; 2) furthermore, if instructors would like to
discover general patterns regarding students’ writ-
ing performance, they have to additionally compare
peer reviews across multiple students which requires
their simultaneously remembering various opinions
for many students; 3) in the initial stage of peer re-
view analysis, instructors have no clear idea of what
potential patterns they should be looking for (“cold
start”).

These challenges motivate our design of RevEx-
plore, a peer-review analytic tool that is a plugin
to SWoRD. We set our design goals to address the
challenges mentioned above, respectively: 1) cre-
ate a simple and informative representation of peer-
review data which automatically aggregates peer-
reviews at the level of student; 2) provide intelligent
support of text mining and semantic abstraction for
the purpose of comparison; 3) enable an overview of
key characteristics of peer reviews for initial explo-
ration.

To fulfill our design goals, we design an inter-
active visualization system to ease the exploration
process, following the pattern of overview plus de-
tail (Card et al., 1999). In the overview, RevExplore
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provides a high level of visualization of overall peer-
review information at the student level for initial ex-
ploration. In the detail-view, RevExplore automati-
cally abstracts the semantic information of peer re-
views at the topic-word level, with the original texts
visible on demand. In addition, we introduce clus-
tering and NLP techniques to support automated an-
alytics.

3 Related Work

One major goal of peer review studies in educational
research is to understand how to better improve stu-
dent learning, directly or indirectly. Empirical stud-
ies of textual review comments based on manual
coding have discovered that certain review features
(e.g., whether the solution to a problem is explicitly
stated in a comment) can predict both whether the
problem will be understand and the feedback imple-
mented (Nelson and Schunn, 2009). Our previous
studies used machine learning and NLP techniques
to automatically identify the presence of such useful
features in review comments (Xiong et al., 2010);
similar techniques have also been used to determine
review comment helpfulness (Xiong and Litman,
2011; Cho, 2008). With respect to paper analysis,
Sándor and Vorndran (2009) used NLP to highlight
key sentences, in order to focus reviewer attention
on important paper aspects. Finally, Giannoukos et
al. (2010) focused on peer matching based on stu-
dents’ profile information to maximize learning out-
comes, while Crespo Garcia and Pardo (2010) ex-
plored the use of document clustering to adaptively
guide the assignment of papers to peers. In contrast
to the prior work above, the research presented here
is primarily motivated by the needs of instructors,
instead of the needs of students. In particular, the
goal of RevExplore is to utilize the information in
peer reviews and papers, to help instructors better
understand student performance in the peer-review
assignments for their courses.

Many computer tools have already been de-
veloped to support peer review activities in var-
ious types of classrooms, from programming
courses (Hyyrynen et al., 2010) to courses involving
writing in the disciplines (Nelson and Schunn, 2009;
Yang, 2011). Within the writing domain, systems
such as SWoRD (Cho and Schunn, 2007) mainly as-

sist instructors by providing administrative manage-
ment support and/or (optional) automatic grading
services. While peer review systems especially de-
signed for instructors do exist, their goal is typically
to create a collaborative environment for instructors
to improve their professional skills (Fu and Hawkes,
2010). In terms of artificial intelligence support, to
our knowledge no current peer review system has the
power to provide instructors with insights about the
semantic content of peer reviews, due to the diver-
sity and complexity of the textual review comments.
For example, SWoRD currently provides teachers a
numerical summary view that includes the number
of reviews received for each paper, and the mean
and standard deviation of numerical reviewing rat-
ings for each paper. SWoRD also allows instruc-
tors to automatically compute a grade based on a
student’s writing and reviewing quality; the grading
algorithm uses the numerical ratings but not the as-
sociated text comments. In this work, we attempted
to address the lack of semantic insight both by hav-
ing humans in the loop to identify points of interest
for interactive data exploration, and by adapting ex-
isting natural language processing techniques to the
peer review domain to support automated analytics.

4 RevExplore

As an example for illustration, we will use data col-
lected in a college level history class (Nelson and
Schunn, 2009): the instructor created the writing
assignment through SWoRD and provided a peer-
review rubric which required students to assess a
history paper’s quality on three dimensions (logic,
flow and insight) separately, by giving a numeric
rating on a scale of 1-7 in addition to textual com-
ments. While reviewing dimensions and associated
guidelines (see below) are typically created by an in-
structor for a particular assignment, instructors can
also set up their rubric using a library provided by
SWoRD.

For instance, the instructor created the following
guidance for commenting on the “logic” dimension:
“Provide specific comments about the logic of the
author’s argument. If points were just made without
support, describe which ones they were. If the sup-
port provided doesn’t make logical sense, explain
what that is. If some obvious counter-argument was
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not considered, explain what that counter-argument
is. Then give potential fixes to these problems if you
can think of any. This might involve suggesting that
the author change their argument.”

Instructor guidance for numerically rating the log-
ical arguments of the paper based on the comments
was also given. For this history assignment, the
highest rating of 7 (“Excellent”) was described as
“All arguments strongly supported and no logical
flaws in the arguments.” The lowest rating of 1
(“Disastrous”) was described as “No support pre-
sented for any arguments, or obvious flaws in all
arguments.”

24 students submitted their papers online through
SWoRD and then reviewed 6 peers’ papers assigned
to them in a “double blind” manner (review exam-
ples are available in Figure 2). When peer review
is finished, RevExplore loads all papers and peer
reviews, both textual comments and numeric rat-
ings, and then goes through several text processing
steps to prepare for interactive analytics. This pre-
processing includes computing the domain words,
sentence simplification, domain-word masking, syn-
tactic analysis, and key noun-phrase extraction.

4.1 Overview – Student Clustering

RevExplore starts with a student-centric visualiza-
tion overview. It uses a visual node of a bar chart
to represent each student, visualizing the average of
the student’s peer ratings in gray, as well as the rat-
ing histogram with gradient colors (from red to blue)
that are mapped to the rating scale from 1 to 7 (de-
noted by the legend in Figure 1).

To investigate students’ writing performance, in-
structors can manually group similar nodes together
into one stacked bar chart, or use automatic group-
ing options that RevExplore supports to inform ini-
tial hypotheses about peer review patterns. In the
auto-mode, RevExplore can group students regard-
ing a certain property (e.g. rating average); it can
also cluster students using standard clustering algo-
rithms2 based on either rating statistics or Bag-Of-
Words extracted from the relevant peer reviews.

If a instructor is curious about the review content
for certain students during exploration, the instruc-

2RevExplore implements both K-Means and a hierarchical
clustering algorithm.

Figure 1: RevExplore overview. Stacked bar charts rep-
resent student groups. The tooltip shows the ID of the
current student, writingperformance(average peer rat-
ings), reviewhelpfulness(average helpfulness ratings), as
well as the mainissuesin the descending order of their
frequency, which are extracted from the peer reviews re-
ceived by a highlighted student using NLP techniques.

tor can read the main issues, in the form of noun
phrases (NPs) of a student’s peer reviews in a tooltip
by mouse hovering on the bar squares which the stu-
dent corresponds to. For example, Figure 1 shows
that the peer reviews received by this student are
mainly focused on the argumentation and the intro-
duction part of the paper.

To extract peer-review main issues, RevExplore
syntactically simplifies each review sentence (Heil-
man and Smith, 2010), parses each simplified sen-
tence using the Stanford dependency parser (de
Marneffe et al., 2006), and then traverses each de-
pendency tree to find the key NP in a rule-based
manner.3 Due to reviewers’ frequent references to
the relevant paper, most of the learned NPs are do-
main related facts used in the paper, rather than eval-
uative texts that suggest problems or suggestions. To
avoid the interference of the domain content, we ap-
ply domain-word masking (explained in Section 4.2)
to the simplified sentences before parsing, and elim-
inate any key NP that contains the mask.

4.2 Detail-View – Topic Comparison

When two groups of students are selected in the
overview, their textual peer reviews can be further

3Rules are constructed purely based on our intuition.
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Figure 2: Peer-review exploration using RevExplore, for mining differences between strong and weak students.

compared with respect to specific reviewing dimen-
sions using a list of topic words that are automati-
cally computed in real-time.

Extracting topic words of peer reviews for com-
parison purposes is different from most traditional
topic-word extraction tasks that are commonly in-
volved in text summarization. In traditional text
summarization, the informativeness measurement
is designed to extract the common themes, while
in our case of comparison, instructors are more
concerned with the uniqueness of each target set
of peer reviews compared to the others. Thus a
topic-signature acquisition algorithm (Lin and Hovy,
2000), which extracts topic words through compar-
ing the vocabulary distribution of a target corpus
against that of a generic background corpus using
a statistic metric, suits our application better than
other approaches, such as probabilistic graphical
models (e.g. LDA) and frequency based methods.
Therefore, RevExplore considers topic signatures as
the topic words for a group of reviews, using all peer

reviews as the background corpus.4 Again, to min-
imize the impact of the domain content of the rele-
vant papers, we apply topic-masking which replaces
all domain words5 with “ddd” before computing the
topic signatures.

As the software outputs topic signatures together
with their associated weights which reflect signature
importance, RevExplore uses this weight informa-
tion to order the topic words as a list, and visualizes
the weight as the font size and foreground color of
the relevant topic word. These lists are placed in
two rows regarding their group membership dimen-
sion by dimension. For each dimension, the cor-
responding lists of both rows are aligned vertically
with the same background color to indicate that di-
mension (e.g. Topic-list detail view of Figure 2).
To further facilitate the comparison within a dimen-
sion, RevExplore highlights the topic words that are
unique to one group with a darker background color.

4We use TopicS (Nenkova and Louis, 2008) provided by An-
nie Louis.

5learned from all student papers against 5000 documents
from the English Gigaword Corpus using TopicS.
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If the user cannot interpret the topic that an ex-
tracted word might imply, the user can click on the
word to read the relevant original reviews, with that
word highlighted in red (e.g. Original reviews pane
of Figure 2).

5 Analysis Example

Figure 2 shows how RevExplore is used to discover
the difference betweenstrong and weak students
with respect to their writing performance on “logic”
in the history peer-review assignment introduced in
Section 4.

First we group students into strong versus weak
regarding their writing performance on logic by se-
lecting the K-Means algorithm to cluster students
into two groups based on their rating histogram on
logic. As shown in the Overview pane of Figure 2,
we then label them as A and B for further topic com-
parison.

Next, in the topic-list detail view, we check
“praise” and “problem”6, and fire the “enter” but-
ton to start extracting topic words for group A and B
on every selected dimension. Note that “logic” will
be automatically selected since the focus has already
been narrowed down to logic in the overview.

To first compare the difference in general logic is-
sues between these two groups, we refer to the two
lists on “logic” (in the middle of the topic-list de-
tail view, Figure 2). As we can see, the weak stu-
dents’ reviews (Group A) are more about the logic
of statements and the usage of facts (indicated by the
unique words “examples” and “details”); the strong
students’ peer reviews (group B) focus more on ar-
gumentation (noted by “counter” and “supporting”).

To further compare the two groups regarding dif-
ferent review sentiment, we look at the lists corre-
sponding to “problem” and “praise” (left and right
columns). For instance, we can see that strong stu-
dents’ suffer more from context specific problems,
which is indicated by the bigger font size of the
domain-word mask. Meanwhile, to understand what
a topic word implies, say, “logic” in group A’s topic
list on “problem”, we can click the word to bring out
the relevant peer reviews, in which all occurrences

6Although “praise” and “problem” are manually annotated
in this corpus (Nelson and Schunn, 2009), Xiong et al. (2010)
have shown that they can be automatically learned in a data-
driven fashion.

of “logic” are colored in red (original reviews pane
in Figure 2).

6 Ongoing Evaluation

We are currently evaluating our work along two di-
mensions. First, we are interested in examining
the utility of RevExplore for instructors. After re-
ceiving positive feedback from several instructors
at the University of Pittsburgh, as an informal pilot
study, we deployed RevExplore for some of these
instructors during the Spring 2012 semester and let
them explore the peer reviews of their own ongo-
ing classes. Instructors did observe interesting pat-
terns using this tool after a short time of exploration
(within two or three passes from the overview to the
topic-word detail view). In addition, we are con-
ducting a formal user study of 40 subjects to validate
the topic-word extraction component for comparing
reviews in groups. Our preliminary result shows that
our use of topic signatures is significantly better than
a frequency-based baseline.

7 Summary and Future work

RevExplore demonstrates the usage of data visual-
ization in combination with NLP techniques to help
instructors interactively make sense of peer review
data, which was almost impracticable before. In the
future we plan to further analyze the data collected
in our formal user study, to validate the helpful-
ness of our proposed topic-word approach for mak-
ing sense of large quantities of peer reviews. We
also plan to incorporate NLP information beyond the
word and NP level, to support additional types of re-
view comparisons. In addition, we plan to summa-
rize the interview data that we informally collected
from several instructors, and will mine the log files
of their interactions with RevExplore to understand
how the tool would (and should) be used by instruc-
tors in general. Last but not least, we will continue
revising our design of RevExplore based on instruc-
tor feedback, and plan to conduct a more formal
evaluation with instructors.
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Abstract

This study presents a method that assesses
ESL learners’ vocabulary usage to improve
an automated scoring system of sponta-
neous speech responses by non-native English
speakers. Focusing on vocabulary sophistica-
tion, we estimate the difficulty of each word
in the vocabulary based on its frequency in
a reference corpus and assess the mean diffi-
culty level of the vocabulary usage across the
responses (vocabulary profile).

Three different classes of features were gen-
erated based on the words in a spoken re-
sponse: coverage-related, average word rank
and the average word frequency and the extent
to which they influence human-assigned lan-
guage proficiency scores was studied. Among
these three types of features, the average word
frequency showed the most predictive power.
We then explored the impact of vocabulary
profile features in an automated speech scor-
ing context, with particular focus on the im-
pact of two factors: genre of reference corpora
and the characteristics of item-types.

The contribution of the current study lies in
the use of vocabulary profile as a measure of
lexical sophistication for spoken language as-
sessment, an aspect heretofore unexplored in
the context of automated speech scoring.

1 Introduction

This study provides a method that measures ESL
(English as a second language) learners’ compe-
tence in vocabulary usage.

Spoken language assessments typically measure
multiple dimensions of language ability. Overall

proficiency in the target language can be assessed
by testing the abilities in various areas including flu-
ency, pronunciation, and intonation; grammar and
vocabulary; and discourse structure. With the recent
move toward the objective assessment of language
ability (spoken and written), it is imperative that we
develop methods for quantifying these abilities and
measuring them automatically.

A majority of the studies in automated speech
scoring have focused on fluency (Cucchiarini et al.,
2000; Cucchiarini et al., 2002), pronunciation (Witt
and Young, 1997; Witt, 1999; Franco et al., 1997;
Neumeyer et al., 2000), and intonation (Zechner et
al., 2011). More recently, Chen and Yoon (2011)
and Chen and Zechner (2011) have measured syn-
tactic competence in speech scoring. However, only
a few have explored features related to vocabulary
usage and they have been limited to type-token ratio
(TTR) related features (e.g., Lu (2011)). In addi-
tion, Bernstein et al. (2010) developed vocabulary
features that measure the similarity between the vo-
cabulary in the test responses and the vocabulary in
the pre-collected texts in the same topic. However,
their features assessed content and topicality, not vo-
cabulary usage.

The speaking construct of vocabulary usage com-
prises two sub-constructs: sophistication and preci-
sion. The aspect of vocabulary that we intend to
measure in this paper is that of lexical sophistication,
also termed lexical diversity and lexical richness in
second language studies. Measures of lexical so-
phistication attempt to quantify the degree to which
a varied and large vocabulary is used (Laufer and
Nation, 1995). In order to assess the degree of lex-
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ical sophistication, we employ a vocabulary profile-
based approach (partly motivated from the results of
a previous study, as will be explained in Section 2).

By a vocabulary profile, it is meant that the fre-
quency of each vocabulary item is calculated from
a reference corpus covering the language variety of
the target situation. The degree of lexical sophisti-
cation is captured by the word frequency - low fre-
quency words are considered to be more difficult,
and therefore more sophisticated. We then design
features that capture the difficulty level of vocabu-
lary items in test takers’ responses. Finally, we per-
form correlation analyses between these new fea-
tures and human proficiency scores and assess the
feature’s importance with respect to the other fea-
tures in an automatic scoring module. The novelty
of this study lies in the use of vocabulary profile in
an automatic scoring set-up to assess lexical sophis-
tication.

This paper will proceed as follows: we will re-
view related work in Section 2. Data and experiment
setup will be explained in Section 3 and Section 4.
Next, we will present the results in Section 5, discuss
them in Section 6, and conclude with a summary of
the importance of our findings in Section 7.

2 Related Work

Measures of lexical richness have been the focus of
several studies involving assessment of L1 and L2
language abilities (Laufer and Nation, 1995; Ver-
meer, 2000; Daller et al., 2003; Kormos and Denes,
2004). The types of measures considered in these
studies can be grouped into quantitative and qualita-
tive measures.

The quantitative measures give insight into the
number of words known, but do not distinguish them
from one another based on their category or fre-
quency in language use. They have evolved to make
up for the widely applied measure type-token-ratio
(TTR). However, owing to its sensitivity to the num-
ber of tokens, TTR has been considered as an un-
stable measure in differing proficiency levels of lan-
guage learners. The Guiraud index, Uber index, and
Herdan index (Vermeer, 2000; Daller et al., 2003;
Lu, 2011) are some measures in this category mostly
derived from TTR as either simpler transformations
of the TTR or its scaled versions to ameliorate the

effect of differing token cardinalities.
Qualitative measures, on the other hand, dis-

tinguish themselves from those derived from TTR
since they take into account distinctions between
words such as their parts of speech or difficulty lev-
els. Adding a qualitative dimension gives more in-
sight into lexical aspects of language ability than
the purely quantitative measures such as TTR-based
measures. Some measures in this category in-
clude a derived form of the limiting relative diver-
sity (LRD) given by

√
D(verbs)/D(nouns) using

the D-measure proposed in (Malvern and Richards,
1997), Lexical frequency profile (LFP) (Laufer and
Nation, 1995) and P-Lex (Meara and Bell, 2003).

LFP uses a vocabulary profile (VP) for a given
body of written text or spoken utterance and gives
the percentage of words used at different frequency
levels (such as from the one-thousand most com-
mon words, the next thousand most common words)
where the words themselves come from a pre-
compiled vocabulary list, such as the Academic
Word List (AWL) with its associated frequency dis-
tribution on words by Coxhead(1998). Frequency
level refers to a class of words (or appropriately cho-
sen word units) that are grouped based on their fre-
quencies of actual usage in corpora. P-Lex is an-
other approach that uses the frequency level of the
words to assess lexical richness. These measures are
based on the differing frequencies of lexical items
and hence rely on the availability of frequency lists
for the language being considered.

These two different types of measures have been
used in the analysis of essays written by second lan-
guage learners of English (ESL). Laufer and Nation
(1995) have shown that LFP correlates well with an
independent measure of vocabulary knowledge and
that it is possible to categorize learners according to
different proficiency levels using this measure. In
another study seeking to understand the extent to
which VP based on students’ essays predicted their
academic performance (Morris and Cobb, 2004), it
was observed that students’ vocabulary profile re-
sults correlated significantly with their grades. Ad-
ditionally, VP was found to be indicative of finer dis-
tinctions in the language skills of high proficiency
nonnative speakers than oral interviews can cover.

Furthermore, these measures have been employed
in automated essay scoring. Attali and Burstein
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(2006) used average word frequency and average
word length in characters across the words in the
essay. In addition to the average word frequency
measure, the average word length measure was im-
plemented to assess the average difficulty of the
word used in the essay under the assumption that
the words with more characters were more difficult
than the words with fewer characters. These fea-
tures showed promising performance in estimating
test takers’ proficiency levels.

In contrast to qualitative measures, quantitative
measures did not achieve promising performance.
Vermeer (2000) showed that quantitative measures
achieve neither the validity nor the reliability of the
measures, regardless of the transformations and cor-
rections.

More recently, the relationship of lexical rich-
ness to ESL learners’ speaking task performance
has been studied by Lu (2011). The comprehensive
study was aimed at measuring lexical richness along
the three dimensions of lexical density, sophistica-
tion, and variation, using 25 different metrics (be-
longing to both the qualitative and quantitative cate-
gories above) available in the language acquisition
literature. His results, based on the manual tran-
scription of a spoken corpus of English learners, in-
dicate that a) lexical variation (the number of word
types) correlated most strongly with the raters’ judg-
ments of the quality of ESL learners’ oral narratives,
b) lexical sophistication only had a very small ef-
fect, and c) lexical density (indicative of proportion
of lexical words) in an oral narrative did not appear
to relate to its quality.

In this study, we seek to quantify vocabulary us-
age in terms of measures of lexical sophistication:
VP based on a set of reference word lists. The nov-
elty of the current study lies in the use of VP as
a measure of lexical sophistication for spoken lan-
guage assessment. It derives support from other
studies (Morris and Cobb, 2004; Laufer and Nation,
1995) but is carried out in a completely different
context, that of automatic scoring of proficiency lev-
els in spontaneous speech, an area not explored thus
far in existing literature.

Furthermore, we investigate the impact of the
genre of the reference corpus on the performance of
these lexical measures. For this purpose, three dif-
ferent corpora will be used to generate reference fre-

quency levels. Finally, we will investigate how the
characteristics of the item types influence the perfor-
mance of these measures.

3 Data

The AEST balanced data set, a collection of re-
sponses from the AEST, is used in this study.
AEST is a high-stakes test of English proficiency,
and it consists of 6 items in which speakers are
prompted to provide responses lasting between 45
and 60 seconds per item, yielding approximately 5
minutes of spoken content per speaker.

Among the 6 items, two items elicit information
or opinions on familiar topics based on the exam-
inees’ personal experience or background knowl-
edge. These constitute the independent (IND) items.
The four remaining items are integrated tasks that
include other language skills such as listening and
reading. These constitute the integrated (INT)
items. Both sets of items extract spontaneous and
unconstrained natural speech. The primary dif-
ference between the two elicitation types is that
IND items only provide a prompt whereas INT items
provide a prompt, a reading passage, and a listening
stimulus. The size, purpose, and speakers’ native
language information for each dataset are summa-
rized in Table 1. All items extract spontaneous, un-
constrained natural speech.

Each response was rated by a trained human rater
using a 4-point scoring scale, where 1 indicates
a low speaking proficiency and 4 indicates a high
speaking proficiency. The scoring guideline is sum-
marized in the AEST rubrics.

Since none of the AEST balanced data was
double-scored, we estimate the inter-rater agreement
ratio of the corpus by using a large double-scored
dataset which used the same scoring guidelines and
scoring process; using the 41K double-scored re-
sponses collected from AEST, we calculate the Pear-
son correlation coefficient to be 0.63, suggesting a
reasonable agreement. The distribution of scores for
this data can be found in Table 2.

4 Experiments

4.1 Overview
In this study, we developed vocabulary profile fea-
tures. From a reference corpus, we pre-compiled
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Corpus
name

Purpose # of
speakers

# of re-
sponses

Native languages Size
(Hrs)

AEST bal-
anced data

Feature evaluation, Scor-
ing model training and
evaluation

480 2880 Korean (15%), Chinese (14%),
Japanese (7%), Spanish (9%),
Others (55%)

44

Table 1: Data size and speakers’ native languages

Size Score1 Score2 Score3 Score4
Number
of files

141 1133 1266 340

(%) 5 40 45 12

Table 2: Distribution of proficiency scores in the dataset

multiple sets of vocabulary lists (e.g., a list of the
100 most frequent words in a reference corpus).
Next, for each test response, a transcription was gen-
erated using the speech recognizer. For each re-
sponse with respect to each reference word list, vo-
cabulary profile features were calculated. In addi-
tion to vocabulary profile features, type-token ratio
(TTR) was calculated as a baseline feature. Despite
its instability, TTR has been employed in the auto-
mated speech scoring systems such as (Zechner et
al., 2009), and its use here allows a direct compar-
ison of the performance of the features with the re-
sults of previous studies.

4.2 Vocabulary list generation
The three reference corpora we used in this study
are presented in Table 3: The General Service
List (GSL), the TOEFL 2000 Spoken and Written
Academic Language Corpus (T2K-SWAL) and the
AEST data.

Corpus Genre Tokens Types
GSL Written - 2,284
T2K-SWAL Spoken 1,869,346 28,855
AEST data Spoken 5,520,375 23,165

Table 3: Three reference corpora used in this study

GSL (West, 1953) comprises 2,284 words se-
lected to be of “general service” to learners of En-
glish. In this study, we used the version with fre-
quency information from (Bauman, 1995). The orig-
inal version did not include word frequency and
was ‘enhanced’ by John Bauman and Brent Culli-

gan with the frequency information obtained from
the Brown Corpus, a collection of written texts.

T2K-SWAL (Biber et al., 2002) is a collection of
spoken and written texts covering a broad language
variety and use in the academic setting. In this study,
only its spoken texts were used. The spoken corpus
included manual transcriptions of discussions, con-
versations, and lectures that occurred in class ses-
sions, study-group meetings, office hours, and ser-
vice encounters.

Finally, AEST data is a collection of manual tran-
scriptions of spoken responses from the AEST for
non-native English speakers. Although there was no
overlap between AEST data and the evaluation data
(AEST balanced data), the vocabulary lists in AEST
data might be a closer match to the vocabulary lists
in the evaluation data since both of them come from
the same test products. From a content perspective,
this dataset is likely to better reflect characteristics
of non-native English speakers than the other two
reference corpora.

For T2K-SWAL and AEST, all transcriptions
were normalized; all the tokens were further de-
capitalized and removed of all non-alphanumeric
characters except for dash and quote. The morpho-
logical variants were considered as different words.
All words were sorted by the word occurrences in
the corpus, and a set of 6 lists were generated:
top-100 words (TOP1), word frequency ranks 101-
300 (TOP2), ranks 301-700 (TOP3), ranks 701-1500
(TOP4), ranks 1501-3000 (TOP5), and all other
words with ranks of 3001 and above (TOP6). For
GSL, a set of 5 lists was generated; TOP6 was
not generated since GSL only included about 2200
words.

Compared to written texts, speakers tended to use
a much smaller vocabulary in speech. For instance,
the percentage of words within the top-1000 words
on the total word types of AEST data responses was
over 90% on average, and they were similar across
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proficiency levels. This is the reason why we sub-
classified the top 1000 words into three lists, unlike
the vocabulary profile features using top-1000 words
as one list like (Morris and Cobb, 2004), which did
not have any power to differentiate between profi-
ciency levels.

4.3 Transcription generation for evaluation
data

A Hidden Markov Model (HMM) speech recognizer
was trained on the AEST dataset, approximately
733 hours of non-native speech collected from 7872
speakers. A gender independent triphone acoustic
model and a combination of bigram, trigram, and
four-gram language models was used. The word
error rate (WER) on the held-out test dataset was
27%. For each response in the evaluation partition,
an ASR-based transcription was generated using the
speech recognizer.

4.4 Feature generation

Each response comprised less than 60 seconds of
speech with an average of 113 word tokens. Due
to the short response length, there was wide varia-
tion in the proportion of low-frequency word types
for the same speaker. In order to address this issue,
for each speaker, two responses from the same item-
type (IND/INT) were concatenated and used as one
large response. As a result, three concatenated re-
sponses (one IND response and two INT responses)
were generated for each speaker, yielding a total of
480 concatenated responses for IND items and 960
concatenated responses for INT items for our exper-
iment.

First, a list of word types was generated from
the ASR hypothesis of each concatenated response.
IND items provide only a one-sentence prompt,
while INT items provide stimuli including a prompt,
a reading passage, and a listening stimulus. In order
to minimize the influence of the vocabulary in the
stimuli on that of the speakers, we excluded the con-
tent words that occurred in the prompts or stimuli
from the word type list1.

1This process prevents to measure the content relevance;
whether the response is off-topic or not. However, this is not
problematic since the features in this study will be used in the
conjunction with the features that measure the accuracy of the
aspects of content and topicality such as (Xie et al., 2012)’s fea-

Table 4: List of features.
Feature # of Feature Description

features type
TTR 1 Ratio Type-token ratio
TOPn 5 or 6a Listrel Proportion of types

that occurred both
the response and
TOPn list in the to-
tal types of the re-
sponse.

aRank 1 Rank Avg. word rankb

aFreq 1 Freq Avg. word freq.c

lFreq 1 Freq Avg. log(word
freq)d

a For GSL, five different features were created using
TOP1-TOP5 lists, but TOP6 was not created. For
T2K-SWAL and AEST data, six different features were
created using TOP1-TOP6 lists separately.

b “rank” is the ordinal number of words in a list that is sorted in
descending order of word frequency; words not present in the
reference corpus get the default rank of RefMaxRank+1.

c Avg. word frequency is the sum of the word-frequencies of
word types in the reference corpus divided by the total
number of words in the reference corpus; words not in the
reference corpus get assigned a default frequency of 1.

d Same as feature aFreq, but the logarithm of the word
frequency is taken here

Next, we generated five types of features using
three reference vocabulary lists. A maximum of 10
features were generated for each reference list. The
feature-types are tabulated in Table 4.

All features above were generated from word
types, not word tokens, i.e., multiple occurrences of
the same word in a response were only counted once.

Below we delineate the step-by-step process with
a sample response that leads to the feature genera-
tion outlined in Table 5.

• Step 1: Generate ASR hypothesis for the given
speech response. e.g: Every student has dif-
ferent perspective about how to relax. Playing
xbox.

• Step 2: Generate type list from ASR hypoth-
esis. For the response above we get the list
- about, how, different, xbox, to, relax, every,
perspective, student, has, playing.

tures.
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word
freq. in
reference
corpus

word rank in
the reference
corpus

TOPn

about 25672 30 TOP1
how 8944 96 TOP1
has 18105 53 TOP1
to 218976 2 TOP1
different 5088 153 TOP2
every 2961 236 TOP2
playing 798 735 TOP4
perspec-
tive

139 1886 TOP5

xbox 1 20000 No

Table 5: An example of feature calculation.

• Step 3: Generate type list excluding words that
occurred in the prompt - about, how, different,
xbox, to, every, perspective, has, playing.

From the ASR hypotheses (result of Step 1), the
corresponding type list was generated (Step 2) and
two words (‘student’, ‘relax’) were excluded from
the final list due to overlap with the prompt. The
final word list used in the feature generation has 9
types (Step 3).

Next, for each word in the above type list, if it oc-
curs in the reference corpus (a list of words sorted
by frequency), its word frequency, word rank and
the TOPn information (whether the word belonged
to the TOPn list or not) are obtained. If it did not oc-
cur in the reference corpus, the default frequency (1)
and the default word rank (20000) were assigned. In
5, the default values were assigned for ‘xbox’ since
it was not in the reference corpus.

Finally, the average of the word frequencies and
the average of the the word ranks were calculated
(aFreq and aRank). For lFreq, the log value of each
frequency was calculated and then averaged. For
TOPn features, we obtain the proportion of the word
types that belong to the TOPn category. For the
above sample, the TOP1 feature value was 0.444
since 4 words belong to TOP1 and the total number
of word types was 9 (4/9=0.444).

5 Results

5.1 Correlation

We analyzed the relationship between the proposed
features and human proficiency scores to assess their
influence on predicting the proficiency score. The
reference proficiency score for a concatenated re-
sponse was estimated by summing up the two scores
of the constituent responses. Thus, the new score
scale was 2-8. Table 6 presents Pearson correlation
coefficients (r).

The best performing feature was aFreq followed
by TOP1. Both features showed statistically signif-
icant negative correlations with human proficiency
scores. TOP6 also showed statistically significant
correlation with human scores, but it was 10-20%
lower than TOP1. This suggests that a human rater
more likely assigned high scores when the vocabu-
lary of the response was not limited to a few most
frequent words. However, the use of difficult words
(low-frequency) shows a weaker relationship with
the proficiency scores.

Features based on AEST data outperformed fea-
tures based on T2K-SWAL or GSL. The correlation
of the AEST data-based aFreq feature was −0.61
for the IND items and−0.51 for the INT items; they
were approximately 0.1 higher than the correlations
of T2K-SWAL or GSL-based features. A similar
tendency was found for the TOP1-TOP6 features,
although differences between AEST data-based fea-
tures and other reference-based features were less
salient overall.

For top-performing vocabulary profile features
including aFreq and TOP1, the correlations of
INT items were weaker than those of the IND items.
In general, the correlations of INT items were 10-
20% lower than those of the IND items in absolute
value.

aFreq and TOP1 consistently achieved better
performance than TTR across all item-types.

5.2 Scoring model building

To arrive at an automatic scoring model, we included
the new vocabulary profile features with other fea-
tures previously found to be useful in a multiple lin-
ear regression (MLR) framework. A total of 80 fea-
tures were generated by the automated speech pro-
ficiency scoring system from Zechner et al. (2009),
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Reference TTR TOP1 TOP2 TOP3 TOP4 TOP5 TOP6 aRank aFreq lFreq
IND GSL -.147 -.347 .027 .078 .000 .053 - .266 -.501 -.260

T2K-SWAL -.147 -.338 .085 .207 .055 .020 .168 .142 -.509 -.159
ATEST -.147 -.470 .014 .275 .172 .187 .218 .236 -.613 -.232

INT GSL -.245 -.255 -.086 -.019 -.068 -.031 - .316 -.404 -.318
T2K-SWAL -.245 -.225 .010 .094 .047 .079 .124 .087 -.405 -.198
ATEST -.245 -.345 -.092 .156 .135 .188 .194 .214 -.507 -.251

Table 6: Correlations between features and human proficiency scores

and they were classified into 5 sub-groups: fluency,
pronunciation, prosody, vocabulary complexity, and
grammar usage. For each sub-group, at least one
feature that correlated well with human scores but
had a low inter-correlation with other features was
selected. A total of following 6 features were se-
lected and used in the base model (base):

• wdpchk (fluency): Average chunk length in words;
a chunk is a segment whose boundaries are set by
long silences

• tpsecutt (fluency): Number of types per sec.

• normAM (pronunciation): Average acoustic model
score normalized by the speaking rate

• phn shift (pronunciation): Average absolute dis-
tance of the normalized vowel durations compared
to standard normalized vowel durations estimated
on a native speech corpus

• stretimdev (prosody): Mean deviation of distance
between stressed syllables in sec.

• lmscore (grammar): Average language model score
normalized by number of words

We first calculated correlations between these fea-
tures and human proficiency scores and compared
them with the most predictive vocabulary profile
features. Table 7 presents Pearson correlation co-
efficients (r) of these features.

In both item-types, the most correlated features
represented the aspect of fluency in production.
While tpsecutt was the best feature in IND items
and the correlation with human scores was approx-
imately 0.66, in INT items, wdpchk was the best
feature and the correlation was even higher, 0.73.

The performance of aFreq was particularly high
in IND items; it was the second best feature and only
marginally lower than the best feature (by 0.04).
aFreq also achieved promising performance in INT;

Features IND INT
wdpchk .538 .612
tpsecutt .659 .729

normAM .467 .429
phn shift -.503 -.535

stretimemdev -.442 -.397
lmscore .257 .312

aFreq -.613 -.507
TOP1 -.470 -.345
TTR -.147 -.245

Table 7: Comparison of feature-correlations with human-
assigned proficiency scores.

it was the fourth best feature. However, the perfor-
mance was considerably lower than the the best fea-
ture, and the difference between the best feature and
aFreq was approximately 22%.

We compared the performances of this base
model with an augmented model (base + TTR + all
vocabulary profile features) whose feature set was
the base augmented with our proposed measures of
vocabulary sophistication. Item-type specific multi-
ple linear regression models were trained using five-
fold cross validation. The 480 IND responses 960
INT responses were partitioned into five sets, sepa-
rately. In each fold, an item-type specific regression
model was trained using four of these partitions and
tested on the remaining one.

The averages of the five-fold models are sum-
marized in Table 8, showing weighted kappa to
indicate agreement between automatic scores and
human-assigned scores and also the Pearson’s cor-
relation (r) of the unrounded (un-rnd) and rounded
(rnd) scores with the human-assigned scores. We
used the correlation and weighted kappa as perfor-
mance evaluation measures to maintain the consis-
tency with the previous studies such as (Zechner
et al., 2009). In addition, the correlation metric
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matches better with our goal to investigate the rela-
tionship between the predicted scores and the actual
scores rather than the difference between the pre-
dicted scores and the actual scores.

Features un-
rnd
corr.

rnd
corr.

weighted
kappa

IND base 0.66 0.62 0.55
base + TTR 0.66 0.63 0.56
base + TTR +
all

0.66 0.64 0.57

INT base 0.76 0.73 0.69
base + TTR 0.76 0.74 0.70
base + TTR +
all

0.77 0.74 0.70

Table 8: Performance of item-type specific multiple lin-
ear regression based scoring models.

The new scores show slightly better agreement
with human-assigned scores, but the improvement
was small in both item-types, approximately 1%.

6 Discussion

In general, we found that the test takers used a fairly
small number of vocabulary items in the spoken re-
sponses. On average, the total types used in the
responses was 87.21 for IND items and 98.52 for
INT items. Furthermore, the proportions of high
frequency words on test takers’ spoken responses
were markedly high. The proportion of top-100
words was almost 50% and the proportion of top-
1500 words (summation of TOP1-TOP4) was over
89% on average. This means that only 1500 words
represent almost 90% of the active vocabulary of
the test takers in their spontaneous speech. Figure
1 presents the average TOP1-TOP6 features across
all proficiency levels.

The values of INT items were similar to IND
items, but the TOP3-TOP6 values were slightly
higher than IND items; INT items tended to include
more low frequency words. In order to investigate
the impact of the higher proportion of low frequency
words in INT items, we selected two features (aFreq
and TOP1) and further analyzed them.

Table 9 provides the mean of aFreq and TOP1 for
each score level. The features were generated using
AEST as a reference.

Figure 1: Proportion of top-N frequent words on average

Score aFreq TOP1
IND INT IND INT

2 43623 36175 .60 .52
3 38165 32493 .55 .49
4 33861 28884 .51 .48
5 30599 27118 .49 .46
6 28485 26327 .46 .45
7 27358 25093 .45 .43
8 26065 24711 .43 .43

Table 9: Mean of vocabulary profile features for each
score level

On average, the differences between adjacent
score levels in INT items were smaller than those
in IND items. The weaker distinction between score
levels may result in the lower performance of vo-
cabulary profile features in INT items. Particularly,
the differences were smaller in lower score levels (2-
4) than in higher score levels (5-8). The relatively
high proportion of low frequency words in the low
score level reduced the predictive power of vocabu-
lary profile features.

This difference between the item-types strongly
supports item-type-specific modeling. We combined
the IND and INT item responses and computed
a correlation between the features and the profi-
ciency scores over the entirety of data sets. De-
spite increase in sample sizes, the correlations were
lower than both the corresponding correlations of
the IND items and the INT items. For instance, the
correlation of the T2K-SWAL-based aFreq feature
was−0.393, and that of the AEST data-based aFreq
was−0.50, which was approximately 3% lower than
the INT items and 10% lower than the IND items.
The difference in the vocabulary distributions be-
tween the two item-types decreased the performance
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of the features.
In this study, AEST data-based features outper-

formed T2K-SWAL-based features. Although no
items in the evaluation data overlapped with items
in AEST data, the similarity in the speakers’ profi-
ciency levels and task types might have resulted in
a better match between the vocabulary and its dis-
tributions of AEST data with AEST balanced data,
finally the AEST data-based features achieved the
best performance.

In order to explore the degree to which AEST bal-
anced data (test responses) and the reference cor-
pora matched, we calculated the proportion of word
types that occurred in test responses and reference
corpora (the coverage of reference list). The ASR
hypotheses of AEST balanced data comprised 6,024
word types. GSL covered 73%, T2K-SWAL cov-
ered 99%, and AEST data covered close to 100%.
Considering the fact that, a) despite high coverage
of both T2K-SWAL and AEST data, T2K-SWAL-
based features achieved much lower performance
than AEST data, and, b) despite huge differences
in the coverage between T2K-SWAL and GSL, the
performance of features based on these reference
corpora were comparable, coverage was not likely
to have been a factor having a strong impact on the
performance. The large differences in the perfor-
mance of TOP1 across reference lists support the
possibility of the strong influence of high frequency
word types on proficiency; the kinds of word types
that were in the TOP1 bins were an important factor
that influenced the performance of vocabulary pro-
file features. Finally, genre differences (spoken texts
vs. written texts) in reference corpora did not have
strong impact on the predictive ability of the fea-
tures; the performance of features based on written
reference corpus (GSL) were comparable to those
based on a spoken reference corpus (T2K-SWAL).

Despite the high correlation shown by the indi-
vidual features (such as aFreq), we do not see a cor-
responding increase in the performance of the scor-
ing model with all the best performing features. The
most likely explanation to this is the small training
data size; in each fold, only about 380 responses for
IND and about 760 responses for INT were used
in the scoring model training. Another possibility
is overlap with the existing features; the aspect that
vocabulary profile features are modeling may be al-

ready covered to some extent in existing feature set.
In future research, we will further investigate this as-
pect in details.

7 Conclusions

In this study, we presented features that measure
ESL learners’ vocabulary usage. In particular, we
focused on vocabulary sophistication, and explored
the suitability of vocabulary profile features to cap-
ture sophistication. From three different reference
corpora, the frequency of vocabulary items was cal-
culated which was then used to estimate the sophis-
tication of test takers’ vocabulary. Among the three
different reference corpora, features based on AEST
data, a collections of responses similar to that of the
test set, showed the best performance. A total of 29
features were generated, and the average word fre-
quency (aFreq) achieved the best correlation with
human proficiency scores. In general, vocabulary
profile features showed strong correlations with hu-
man proficiency scores, but when used in an auto-
matic scoring model in combination with an existing
set of predictors of language proficiency, the aug-
mented feature set showed marginal improvement in
predicting human-assigned scores of proficiency.
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Abstract

A number of different research subfields are
concerned with the automatic assessment of
student answers to comprehension questions,
from language learning contexts to computer
science exams. They share the need to evaluate
free-text answers but differ in task setting and
grading/evaluation criteria, among others.

This paper has the intention of fostering
synergy between the different research strands.
It discusses the different research strands,
details the crucial differences, and explores
under which circumstances systems can be
compared given publicly available data. To that
end, we present results with the CoMiC-EN
Content Assessment system (Meurers et al.,
2011a) on the dataset published by Mohler
et al. (2011) and outline what was necessary
to perform this comparison. We conclude
with a general discussion on comparability and
evaluation of short answer assessment systems.

1 Introduction

Short answer assessment systems compare students’
responses to questions with manually defined target
responses or answer keys in order to judge the
appropriateness of the responses, or in order to
automatically assign a grade. A number of
approaches have emerged in recent years, each of
them with different aims and different backgrounds.
In this paper, we will draw a map of the short answer
assessment landscape, highlighting the similarities
and differences between approaches and the data used
for evaluation. We will provide an overview of 12

systems and sketch their attributes. Subsequently,
we will zoom into the comparison of two of them,
namely CoMiC-EN (Meurers et al., 2011a) and the
one which we call the Texas system (Mohler et al.,
2011) and discuss the issues that arise with this
endeavor. Returning to the bigger picture, we will
explore how such systems could be compared in
general, in the belief that meaningful comparison
of approaches across research strands will be an
important ingredient in advancing this relatively new
research field.

2 The short answer assessment landscape

2.1 General aspects

Researchers from all directions have settled in the
landscape of short answer assessment, each of them
with different backgrounds and different goals. In
this section, we aim at providing an overview of
these research villages, also hoping to construct a
road network that may connect them.

Most approaches to short answer assessment are
situated in an educational context. Some focus on
GCSE1 tests, others aim at university assessment
tests in the medical domain. Another strand
of approaches focuses on language teaching and
learning. All of these approaches share one theme:
they assess short texts written by students. These
may be answers to questions that ask for knowledge
acquired in a course, e.g., in computer science, or to
reading comprehension questions in second language

1The General Certificate of Secondary Education (GCSE) is
an academic qualification in the United Kingdom, usually taken
at the age of 14–16.
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learning. While thematically related, short answer
assessment is different from essay grading. Short
answers are formulated by students in a much more
controlled setting. Not only are they short, they
usually are supposed to contain only a few facts that
answer only one question.

Another common theme of these approaches is
that they compare the student answers to one or more
previously defined correct answers that are either
given in natural language as target answers or as a list
of concepts in an answer key. The ways of technically
conducting these comparisons vary widely, as we
discuss below in Section 2.2.

There also are conceptual differences between
the approaches. Some systems focus on assessing
whether or not the student has properly answered
the question. They put the spot on comparing the
meaning of target answers and student answers; they
aim at being tolerant of form errors such as spelling
or grammar errors. Others aim at giving a grade as
accurate as possible, therefore not only assessing
meaning but also performing grading similar to
human teachers. This can also include modules that
take into account form errors.

These two views on a similar task are also reflected
in the annotation of the data used in experiments:
Systems performing meaning comparison usually
operate with labels specifying the relations between
target answers and student answers. Grading systems
naturally aim at producing numerical grades. Since
labels are on a nominal scale, and grades are on
an ordinal scale (or even treated as being on an
interval scale), the difference between meaning
comparison and grading results in a whole string
of other differences in methodology.

Researchers also enter the short answer landscape
from different home countries: Some projects are
interested in the strategies and mechanics of meaning
comparison, others aim at reducing the load and costs
of large-scale assessment tests, and yet others aim
at improving intelligent tutoring systems, requiring
additional components that provide useful feedback
to students using these systems.

2.2 Approaches

Table 1 summarizes the features of the short answer
assessment systems discussed hereafter.

One of the earlier systems is WebLAS, presented
by Bachman et al. (2002). A human task creator feeds
the system with scores for model answers. Regular
expressions are then created automatically from these
model answers. Since each regular expression is
associated with a score, matching the expression
against a student answer yields a score for that answer.
Bachman et al. (2002) do not provide an evaluation
study based on data.

Another earlier system is CarmelTC by Rosé et
al. (2003). It has been designed as a component
in the Why2 tutorial dialogue system (VanLehn et
al., 2002). Even though Rosé et al. (2003) position
CarmelTC in the context of essay grading, it may be
considered to deal with short answers: in their data,
the average length of a student response is approx.
48 words. Their system is designed to perform
text classification on single sentences in the student
responses, where each class of text represents one
possible model response, plus an additional class for
‘no match’. They combine decision trees operating
on an automatic syntactic analysis, a Naive Bayes
text classifier, and a bag-of-words approach. In a
50-fold cross validation experiment with one physics
question, six classes and 126 student responses,
hand-tagged by two annotators, CarmelTC reaches
an F-measure value of 0.85. They do not report on a
baseline. Concerning the quality of the gold standard,
they report that conflicts in the annotation have been
resolved.

C-Rater (Leacock and Chodorow, 2003) is based
on a paraphrase recognition approach. It employs
correct answer models consisting of essential points
formulated in natural language. C-Rater aims at
automatic scoring and focuses on meaning, thus
tolerating form errors. Leacock and Chodorow
(2003) present two pilot studies, one of them dealing
with reading comprehension. From 16,625 student
answers with an average length of 43 words, they
drew a random sample of 100 answers to each of
the seven questions. This sample was scored by
one human judge using a three-way scoring system
(full credit, partial credit, no credit). Their system
achieved 84% agreement with the gold standard.
Information about the distribution of the scoring
categories is given indirectly: A baseline system that
assigns scores randomly would have achieved 47%
accuracy.
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System Goal Technique Domain Lang.
WebLAS (Bachman et al., 2002) Assessment of

language ability
Auto-generated regular
expressions

Foreign language
teaching

EN

CarmelTC (Rosé et al., 2003) Automatic grading Text classification Physics EN
C-Rater (Leacock and Chodorow,
2003)

Assessment test Paraphrase recognition Mathematics,
Reading comp.

EN

IAT (Mitchell et al., 2003) Assessment,
Automatic grading

Information extraction
w/ handwritten patterns

Medical EN

Oxford (Pulman and Sukkarieh,
2005)

Assessment,
automatic grading

Information extraction
w/ handwritten patterns

GCSE exams EN

Atenea (Pérez et al., 2005) Automatic grading N-gram overlap, Latent
Semantic Analysis

Computer science ES

Logic-based System (Makatchev
and VanLehn, 2007)

Meaning comparison First-order logic,
machine learning

Physics EN

CAM (Bailey and Meurers, 2008),
CoMiC-EN (Meurers et al., 2011a)

Meaning comparison Alignment, machine
learning

Reading comp. in
foreign language

EN

Facets System (Nielsen et al., 2009) Meaning comparison
& tutoring systems

Alignment of facets,
machine learning

Elementary
school science
classes

EN

Texas (Mohler et al., 2011) Automatic grading Graph alignment,
semantic similarity

Computer science EN

CoMiC-DE (Meurers et al., 2011b) Meaning comparison Alignment, machine
learning

Reading comp. in
foreign language

DE

CoSeC-DE (Hahn and Meurers,
2012)

Meaning comparison Alignment via
Lexical-Resource
Semantics

Reading comp. in
foreign language

DE

Table 1: Short Answer Assessment systems and their Features

Information extraction templates form the core of
the Intelligent Assessment Technologies system (IAT,
Mitchell et al. 2003). These templates are created
manually in a special-purpose authoring tool by
exploring sample responses. They allow for syntactic
variation, e.g., filling the subject slot in a sentence
with different equivalent concepts. The templates
corresponding to a question are then matched against
the student answer. Unlike other systems, IAT
additionally features templates for explicitly invalid
answers. They tested their approach with a progress
test that has to be taken by medicine students.
Approximately 800 students each plowed through
270 test items. The automatically graded responses
then were moderated: Human judges streamlined the
answers to achieve a more consistent grading. This
step already had been done before with tests graded
by humans. Mitchell et al. (2003) state that their
system reaches 99.4% accuracy on the full dataset
after the manual adjustment of the templates via
the moderation process. Summarizing, they report

an error of “between 5 and 5.5%” in inter-grader
agreement and an error of 5.8% in automatic grading
without the moderation step, though it is not entirely
clear which data these statistics correspond to. No
information on the distribution of grades or a random
baseline is provided.

The Oxford system (Pulman and Sukkarieh, 2005)
is another one to employ an information extraction
approach. Again, templates are constructed manually.
Motivated by the necessary robustness to process
language with grammar mistakes and spelling errors,
they use shallow analyses in their pre-processing.
In order to overcome the hassle of manually con-
structing templates, they also investigated machine
learning techniques. However, the automatically
generated templates were outperformed by the
manually created ones. Furthermore, they state that
manually created templates can be equipped with
messages provided to the student as feedback in a
tutoring system. For evaluating their system, they
used factual science questions and the corresponding
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student answers from GCSE tests. 200 graded
answers for each of nine questions served as a
training set, while another 60 answers served as a
test set. They report that their system achieves an
accuracy of 84%. With inconsistencies in the human
grading removed, it achieves 93%. However, they do
not report on the level of inter-grader agreement or
on a random baseline.

Pérez et al. (2005) present the Atenea system,
a combined approach that makes use of Latent
Semantic Analysis (LSA, Landauer et al. 1998) and
n-gram overlap. While n-gram overlap supports
comparing target responses and student responses
with differing word order, it does not deal with
synonyms and related terms. Hence, they use LSA to
add a component that deals with semantic relatedness
in the comparison step. As a test corpus, they
collected nine different questions from computer
science exams. A tenth question “[consists] of a
set of definitions of ‘Operating System’ obtained
from the Internet.” Altogether, they gathered 924
student responses and 44 target responses written
by teachers. Since their LSA module had been
trained on English but their data were in Spanish,
they chose to use Altavista Babelfish to translate the
data into English. They do not provide information
about the distribution of scores and about inter-grader
agreement. Atenea achieves a Pearson’s correlation
of r = 0.554 with the scores in the gold standard.

The approach by Makatchev and VanLehn (2007),
which we refer to as the Logic-based System,
enters the landscape from the direction of artificial
intelligence. It is related to CarmelTC and its
dataset, but follows a different route: target
responses are manually encoded in first-order
predicate language. Similar logic representations
are constructed automatically for student answers.
They explore various strategies for matching these
two logic representation on the basis of 16 semantic
classes. In an evaluation experiment, they tested the
system on 293 “natural language utterances” with
ten-fold cross validation. The test data are skewed
towards the ‘empty’ label that indicates that none
of the 16 semantic labels could be attached. They
do not report on other properties of the dataset such
as number of annotators or number of questions to
which the student answers were given. Their winning
configuration yields a F-measure value of 0.4974.

While Makatchev and VanLehn (2007) position their
approach in the context of the Why2 tutorial dialogue
system, their use of semantic classes seems to make
them more related to meaning comparison than to
grading.

The Content Assessment Module (CAM) pre-
sented in Bailey (2008) and Bailey and Meurers
(2008) utilizes an approach that is different from
the systems discussed so far: Following a three-step
strategy, the system first automatically generates
linguistic annotations for questions, target responses
and student responses. In an alignment phase, these
annotations are then used to map from elements
(words, lemmas, chunks, dependency triples) in
the student responses to elements in the target
responses. Finally, a machine learning classifier
judges on the basis of this alignment, whether
or not the student has answered the question
correctly. The data used for evaluation was made
available as the Corpus of Reading Comprehension
Exercises in English (CREE, Meurers et al. 2011a).
This corpus consists of 566 responses produced
by intermediate ESL learners at The Ohio State
University as part of their regular assignments.
Students had access to their textbooks and typically
answered questions in one to three sentences. All
responses were labelled as either appropriate or
inappropriate by two independent annotators, along
with a detailed diagnosis code specifying the nature
of the inappropriateness (missing concept, extra
concept, blend, non-answer). In leave-one-out
evaluation on the development set containing 311
responses to 47 different questions, CAM achieved
87% accuracy on the binary judgment (response
correct/incorrect). For the test set containing 255
responses to 28 questions, the approach achieved
88%. However, the distribution of categories in the
data is heavily skewed with 71% of the responses
marked as correct in the development set and 84% in
the test set. The best result obtained on a balanced
set with leave-one-out-testing is 78%. Meurers et
al. (2011a) present a re-implementation of CAM
called CoMiC-EN (Comparing Meaning in Context
in English), achieving an accuracy of 87.6% on the
CREE development set and 88.4% on the test set.

With their Facets System, Nielsen et al. (2009)
establish a connection to the field of Recognizing
Textual Entailment (RTE, Dagan et al. 2009). In
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a number of friendly challenges, RTE research has
spawned numerous systems that try to automatically
answer the following question: Given a text and a
hypothesis, is the hypothesis entailed by the text?
Short answers assessment can be seen as a RTE task
in which the target response corresponds to the text
and the student response to the hypothesis. Nielsen et
al. (2009) base their system on what they call facets.
These facets are meaning representations of parts
of sentences. They are constructed automatically
from dependency and semantic parses of the target
responses. Each facet in the target response is then
looked up in the corresponding student response
and equipped with one of five labels2 ranging from
unaddressed (the student did not mention the fact
in this facet) to expressed (the student named the
fact). This step is taken via machine learning.
From a tutoring system in real-life operation, they
gathered responses from third- to sixth-grade students
answering questions for science classes. Two
annotators worked on these data, producing 142,151
facets. Furthermore, all facets were looked up in
the corresponding student responses and annotated
accordingly, using the mentioned set of labels. The
best result of the Facets System is 75.5% accuracy on
one of the held-out test sets. With ten-fold cross
validation on the training set, it achieves 77.1%
accuracy. The majority label baselines are 51.1% and
54.6% respectively. Providing this more fine-grained
analysis of facets that are searched for in student
responses, Nielsen et al. (2009) claim to “enable
more intelligent dialogue control” in tutoring systems.
From the point of view of grading vs. meaning
comparison, their approach can be counted towards
the latter, since their labels can be conflated to
produce a single yes/no decision.

Another recent approach is described by Mohler et
al. (2011), hereafter referred to as the Texas system.
Student responses and target responses are annotated
using a dependency parser. Thereupon, subgraphs of
the dependency structures are constructed in order to
map one response to the other. These alignments
are generated using machine learning. Dealing
with subgraphs allows for variation in word order
between the two responses that are to be compared.

2In human annotation, they use eight labels, which are
grouped into five broader categories as used by their system.

In order to account for meaning, they combine
lexical semantic similarity with the aforementioned
alignment. They make use of several WordNet-based
measures and two corpus-based measures, namely
Latent Semantic Analysis and Explicit Semantic
Analysis (ESA, Gabrilovich and Markovitch 2007).
For evaluating their system, Mohler et al. (2011)
collected student responses from an online learning
environment. 80 questions from ten introductory
computer science assignments spread across two
exams were gathered together with 2,273 student
responses. These responses were graded by two
human judges on a scale from zero to five. The
judges fully agreed in 57% of all cases, their
Pearson correlation computes to r = 0.586. The
gold standard has been created by computing the
arithmetic mean of the two judgments for each
response. The Texas system achieves r = 0.518 and
a Root Mean Square Error of 0.978 as its best result.
Mohler et al. (2011) mention that “[t]he dataset is
biased towards correct answers”. Data are publicly
available. We used these in an evaluation experiment
with the CoMiC-EN system, discussed in Section 3.

While almost all short answer assessment research
has targeted answers written in English, there are
two recent approaches dealing with German answers.
The CoMiC-EN reimplementation of CAM discussed
above was motivated by the need for a modular
architecture supporting a transfer of the system to
German, resulting in its counterpart named CoMiC-
DE (Meurers et al., 2011b). The German system
utilizes the same strategies as the English one,
but with language-dependent processing modules
being replaced. Meurers et al. (2011b) evaluated
CoMiC-DE on a subset of the Corpus of Reading
Comprehension Questions in German (CREG, Ott et
al. 2012), collected in collaboration with the German
programs at The Ohio State University and the
University of Kansas. Like in CREE, all responses
are rated by two annotators with both binary and
detailed diagnosis codes.3 The aforementioned
subset contains 1,032 learner responses and 223
target responses to 177 questions. Furthermore, it
features an even distribution of correct and incorrect
answers according to the judgement of two human

3In CREG, correct answers as well as incorrect ones can be
labelled with missing concept, extra concept, or blend.
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annotators. On that subset, CoMiC-DE achieved an
accuracy of 84.6% in the binary classification task.
CREG is freely available for research purposes under
a Creative Commons by-nc-sa license.

Hahn and Meurers (2012) present the CoSeC-DE
approach based on Lexical Resource Semantics
(LRS, Richter and Sailer 2003). In a first step,
they create LRS representations from POS-tagged
and dependency-parsed data. These underspecified
LRS representations of student responses and target
responses are then aligned. Using A* as heuristic
search algorithm, a best alignment is computed and
equipped with a numeric score representing the
quality of the alignment of the formulae. If this
best alignment scores higher than a threshold, the
system judges student response and target response
to convey the same meaning. The alignment
and comparison mechanism does not utilize any
linguistic representations other than the LRS
semantic formulae. These semantic representations
abstract away from surface features, e.g., by treating
active and passive voice equally. Hahn and Meurers
(2012) claim that that “[semantic representations]
more clearly expose those distinction which do make
a difference in meaning.” They evaluate the approach
on the above-mentioned subset of CREG containing
1,032 learner responses and report an accuracy of
86.3%.

3 A concrete system comparison

After discussing the broad landscape of Short Answer
Evaluation systems, the main characteristics and
differences, we now turn to a comparison of two
concrete systems, namely CoMiC-EN (Meurers
et al., 2011a) and the Texas system Mohler et
al. (2011), to explore what is involved in such a
concrete comparison of two systems from different
contexts. While CoMiC-EN was developed with
meaning comparison in mind, the purpose of the
Texas system is answer grading. We pick these
two systems because they constitute recent and
interesting instances of their respective fields and
the corresponding data are freely available.

3.1 Data

In evaluating the Texas system, Mohler et al. (2011)
used a corpus of ten assignments and two exams from

an introductory computer science class. In total, the
Texas corpus consists of 2,442 responses, which were
collected using an online learning platform. Each
response is rated by two annotators with a numerical
grade on a 0–5 scale. Annotators were not given any
specific instructions besides the scale itself, which
resulted in an exact agreement of 57.7%. In order to
arrive at a gold standard rating, the numerical average
of the two ratings was computed. The data exist in
raw, sentence-segmented and parsed versions and are
freely available for research use. Table 2 presents
a breakdown of the score counts and distribution
statistics of the Texas corpus. A bias towards correct
answers can be observed, which is also mentioned by
Mohler et al. (2011).

Score #
0.000 24
0.500 3
1.000 23
1.500 46
1.750 1
2.000 93
2.250 2
2.500 125
3.000 164

Score #
3.250 1
3.500 187
3.625 1
3.750 1
4.000 220
4.125 2
4.500 310
4.750 1
5.000 1238

x = 4.19, s = 1.11

Table 2: Details on the gold standard scores in the Texas
corpus. Non-integer scores result from averaging between
raters and normalization onto the 0–5 scale.

3.2 Approaches
CoMiC-EN uses a three-step approach to meaning
comparison. Annotation uses NLP to enrich the
student and target answers, as well as the question
text, with linguistic information on different levels
(words, chunks, dependency triples) and types of
abstraction (tokens, lemmas, distributional vectors,
etc.). Alignment maps elements of the learner answer
to elements of the target response using annotation.
The global alignment solution is computed using the
Traditional Marriage Algorithm (Gale and Shapley,
1962). Finally, Classification analyzes the possible
alignments and labels the learner response with a
binary or detailed diagnosis code. The features used
in the classification step are shown in Table 3.

For the Texas system, Mohler et al. (2011) used a
combination of bag-of-words (BOW) features and
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Features Description
1. Keyword Overlap Percent of keywords aligned

(relative to target)
2./3. Token Overlap Percent of aligned

target/learner tokens
4./5. Chunk Overlap Percent of aligned

target/learner chunks
6./7. Triple Overlap Percent of aligned

target/learner triples
8. Token Match Percent of token alignments

that were token-identical
9. Similarity Match Percent of token alignments

that were similarity-resolved
10. Type Match Percent of token alignments

that were type-resolved
11. Lemma Match Percent of token alignments

that were lemma-resolved
12. Synonym Match Percent of token alignments

that were synonym-resolved
13. Variety of Match Number of kinds of

(0-5) token-level alignments

Table 3: Features used in the CoMiC-EN system

dependency graph alignment in connection with
two different machine learning approaches. Among
the BOW features are WordNet-based similarity
measures such as the one by Lesk (1986) and vector
space measures such as tf ∗ idf (Salton and McGill,
1983) and the more advanced LSA (Landauer et al.,
1998). The dependency graph alignment approach
builds on a node-to-node matching stage which
computes a score for each possible match between
nodes of the student and target response. In the next
stage, the optimal graph alignment is computed based
on the node-to-node scores using the Hungarian
algorithm.

Mohler et al. (2011) also employ a technique
they call “question demoting”, which refers to the
exclusion of words from the alignment process
if they already appeared in the question string.
Incidentally, the technique is also used in the earlier
CAM system (Bailey and Meurers, 2008), but called
“Givenness filter” there, following the long tradition
of research on givenness (Schwarzschild, 1999) as a
notion of information structure investigated in formal
pragmatics.

To produce the final system score, the Texas
system uses two machine learning techniques based
on Support Vector Machines (SVMs), SVMRank and

Support Vector Regression (SVR). Both techniques
are trained with several combinations of the
dependency alignment and BOW features. While
with SVR one trains a function to produce a score on
the 0–5 scale itself, SVMRank produces a ranking of
student answers which does not produce a 0–5 grade.
Therefore, Mohler et al. (2011) employ isotonic
regression to map the ranking to the 0–5 scale.

In terms of performance, Mohler et al. (2011)
report that the SVMRank system produces a better
correlation measure (r = 0.518) while the SVR
system yields a better RMSE (0.978).

3.3 Evaluation

We now turn to the evaluation of CoMiC-EN on the
Texas corpus as it is a publicly available dataset. As
mentioned before, CoMiC-EN performs meaning
comparison based on a system of categories while
the Texas system is a scoring approach, trying to
predict a grade. While the former is a classification
task, the latter is better characterized as a regression
problem because of the desired numerical outcome.
Of course, one could simply pretend that individual
grades are classes and treat scoring as a classification
task. However, a classification approach has no
knowledge of numerical relationships, i.e., it does
not ‘know’ that 4 is a higher grade than 3 and a
much higher grade than 1 (assuming a 0–5 scale).
As a result, if an evaluation metric such as Pearson
correlation is used, classification systems are at a
disadvantage because some misclassifications are
punished more than others. We discuss this point
further in Section 4.

For these reasons, to obtain a more interesting
comparison, we modified CoMiC-EN to perform
scoring instead of meaning comparison. This means
that the memory-based learning approach CoMiC-
EN had employed so far was no longer applicable and
had to be replaced with a regression-capable learning
strategy. We chose Support Vector Regression (SVR)
using libSVM4 since that is one of the methods
employed by Mohler et al. (2011). However, all other
parts of CoMiC-EN such as the processing pipeline
and the alignment approach and the extracted features
remained the same.

4http://www.csie.ntu.edu.tw/˜cjlin/
libsvm
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The evaluation procedure was carried out as a
12-fold cross-validation due to the 12 assignments
in the Texas corpus. For each fold, one complete
assignment was held out as test set. Parameters for
the SVR were determined using a grid search using
the tools provided with libSVM. As kernel function,
we used a linear kernel as it was also used in the
evaluation of the Texas system and thus constitutes
a vital part of the evaluation setup. In general, we
designed to evaluation procedure to be as close as
possible to the Texas one.

Table 4 presents detailed results on the 12 folds
as well as the overall results and a baseline which
always predicts the median value 5.

Assignment # responses r RMSE
1 203 0.416 0.958
2 210 0.349 1.221
3 217 0.335 0.969
4 210 0.338 1.212
5 112 0.010 1.030
6 182 0.646 0.702
7 182 0.265 0.991
8 189 0.521 0.942
9 189 0.220 0.942
10 168 0.699 0.990
11 (exam) 300 0.436 1.076
12 (exam) 280 0.619 1.165
Median Baseline 2442 – 1.375
Overall 2442 0.405 1.016

Table 4: Detailed results of CoMiC-EN on Texas corpus

The CoMiC-EN system on the Texas data set does
not quite reach the level achieved by the Texas system
on their data set. We obtained a Pearson correlation
of r = 0.405 and an RMSE of 1.016 over all 12 folds.
However, let us keep in mind the objective of this
experiment as exemplifying the process needed to
directly compare two systems from different research
strands on the same dataset.

4 Comparability of approaches & datasets

It seems clear that for systems to be comparable
and results to be reproducible, datasets must be
publicly available, as is the case with the Texas
corpus. However, data availability alone does not
ensure meaningful comparison. Depending on the
context the corpus was drawn from, datasets will
differ just like the corresponding systems:

• Data source: Reading comprehension task in
language learning setting, language tutoring
context, automated grading of short answer
exams

• Language properties: Native vs. learner
language, domain-specific language (e.g., com-
puter science)

• Assessment scheme: nominal vs. interval scale

Especially the last point deserves some further
discussion. Depending on the kind of assessment
scheme, which in turn is motivated by the task,
different evaluation methods may be chosen. Scoring
systems are often evaluated using a correlation metric
in order to capture the systems’ tendency to assign
similar but not necessary equal grades as the human
raters. Conversely, with category-based schemes one
usually reports accuracy, which expresses how many
items were classified correctly.

The question that arises is how a system coming
from one paradigm can be compared to one from
the other paradigm in a meaningful way. One might
argue that the tasks are simply too different: scoring
might take form errors into account while meaning
comparison by definition does not. Moreover,
while classification labels say something explicit and
absolute about a piece of data, grades by definition
are relative to the scale they come from. It thus seems
impossible to somehow unify the two schemes as they
express fundamentally different ideas.

However, the strategies systems use to tackle
scoring or meaning comparison are undoubtedly
similar and should be comparable, as we argue in this
paper. So in order for researchers to learn from other
approaches and also compare their results to those of
other systems which tackle a different task, changes
to systems seem necessary and should be preferred
over changes to the gold standard data. In the case
presented here, a meaning comparison system was
turned into a scoring system by changing the machine
learning component from classification to regression,
which requires a certain level of system modularity.

Having compared the two systems using Pearson
correlation and RMSE, it also makes sense to
consider the relevance of these evaluation metrics.
For example, it is the case that pairwise correlation
assumes a normal distribution whereas datasets like
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the Texas corpus are heavily skewed towards correct
answers (see Table 2). Mohler et al. (2011) also note
that in distributions with zero variance, correlation is
undefined, which is not a problem as such but limits
the use of correlation as evaluation metric. Mohler
et al. (2011) propose that RMSE is better suited to
the task since it captures the relative error a system
makes when trying to predict scores. However,
RMSE is scale-dependent and thus RMSE values
across different studies cannot be compared. We
can only suggest that in order to sufficiently describe
a system’s performance, several metrics need to be
reported.

Finally, an important point concerns the quality
of gold standards. Given the relatively low inter-
annotator agreement in the Texas corpus (r =
0.586, RMSE = 0.659) it seems fair to ask whether
answers without perfect agreement should be used in
training and testing systems at all. In the CREE
and CREG corpora, answers with disagreement
among the annotators have either been excluded
from experiments or resolved by an additional judge.
This approach is also supported by recent literature
(cf., e.g., Beigman and Beigman Klebanov 2009;
Beigman Klebanov and Beigman 2009). However,
for the Texas corpus, Mohler et al. (2011) have opted
to use the arithmetic mean of the two graders as gold
standard. While mathematically a viable solution,
it seems questionable whether the mean is reliable
with only two graders, especially if they have not
operated on the grounds of explicit guidelines. It
would be interesting to see whether in this case, a
system trained on more, singly annotated data would
perform better than one on less, doubly annotated
data, as argued for by Dligach et al. (2010). In any
case, if many disagreements occur, one should ask
the question whether the annotation task is defined
well enough and whether machines should really be
expected to perform it consistently if humans have
trouble doing so.

5 Conclusion

We discussed several issues in the comparison of
short answer evaluation systems. To that end, we
gave an overview of the existing systems and picked
two for a concrete comparison on the same data, the
CoMiC-EN system (Meurers et al., 2011a) and the

Texas system (Mohler et al., 2011). In comparing
the two, it was necessary to turn CoMiC-EN into
a scoring system because the Texas corpus as
the chosen gold standard contains numeric scores
assigned by humans. Taking a step back from
the concrete comparison, we gave a more general
description of what is necessary to compare short
answer evaluation systems. We observed that more
datasets need to be publicly available in order for
performance comparisons to have meaning, a point
also made earlier by Pulman and Sukkarieh (2005).
Moreover, we noted how datasets differ in similar
aspects as systems do, such as task context and
assessment scheme. We then criticized the use of
correlation measures as evaluation metrics for short
answer scoring. Finally, we discussed the importance
of gold standard quality.

We conclude that it is interesting and relevant
to compare short answer evaluation systems even
if the concrete task they tackle, such as grading or
meaning comparison, is not the same. However, the
availability and quality of the datasets will decide
to what extent systems can sensibly be compared.
For progress to be made in this area, more publicly
available datasets and systems are needed. The
upcoming SemEval-2013 task on “Textual entailment
and paraphrasing for student input assessment”5

will hopefully become one important step into this
direction (see also Dzikovska et al. 2012).
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Abstract 

This paper reports on our work in the HOO 
2012 shared task. The task is to automatically 
detect, recognize and correct the errors in the 
use of prepositions and determiners in a set of 
given test documents in English. For that, we 
have developed a hybrid system of an n-gram 
statistical model along with some rule-based 
techniques. The system has been trained on 
the HOO shared task’s training datasets and 
run on the test set given. We have submitted 
one run, which has demonstrated an F-score 
of 7.1, 6.46 and 2.58 for detection, recognition 
and correction respectively before revision 
and F-score of 8.22, 7.59 and 3.16 for detec-
tion, recognition and correction respectively 
after revision. 

1 Introduction 

Writing research papers or theses in English is a 
very challenging task for those researchers and 
scientists whose first language or mother tongue is 
not English. Depicting their research works proper-
ly in English is a hard job for them. Generally their 
papers, which are submitted to conferences, may 
be rejected not because of their research works but 
because of the English writing, which makes the 
papers harder for the reviewer to understand the 
intentions of author. This kind of problem will be 
faced in any field where someone has to provide 

material in a language other than his/her first lan-
guage. 

The mentoring service of Association for Com-
putational Linguistics (ACL) is one part of a re-
sponse. This service can address a wider range of 
problems than those related purely to writing. The 
aim of this service is that a research paper should 
be judged only on its research content. 

The organizer of “Help Our Own” (HOO) pro-
posed and initiated a shared task in 2011 (Dale and 
Kilgarriff, 2010), which attempts to tackle the 
problem by developing tools or techniques for the 
non-native speaker of English, which will automat-
ically correct the English prose of the papers so 
that they can be accepted. This tools and tech-
niques may also help native English speakers. This 
task is simply expressed as text-to-text generation 
or Natural language Generation (NLG). In the 
2011 shared task, all possible errors were covered 
which made the task enormously huge. In 2012, 
the task is more specific and only deals with de-
terminers and prepositions as described in (Dale 
and Kilgarriff, 2011). 

For this shared task, HOO, we have developed 
two models, one is rule-based model and the other 
is the statistical model for both determiners and 
prepositions. Then we have combined both these 
models and developed our system for HOO 2012. 

2 Related Work 

The English language belongs to the Germanic 
languages branch of the Indo-European language 
family, widely spoken on six continents. The HOO 
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shared task is organized to help authors with writ-
ing tasks. Identifying grammatical and linguistic 
errors in text is an open challenge to researchers. In 
recent times, researchers (Heidorn, 2000) have 
provided quite a benchmark for spell checker and 
grammar checkers, which is commonly available. 
In this task it is aimed to correct errors beyond the 
scope of these commonly available checkers i.e. 
detection and correction of jarring errors at part-of-
speech (POS) level, syntax level and semantic lev-
el. Earlier Heidorn (1975) developed augmented 
phrase structure grammar. (Tetreault et. al., 2008) 
has dealt with error pattern with preposition by 
non-native speakers. Meurers and Wunsch (2010) 
showed a surface based state-of-the-art machine 
learning technique, which deals with some fre-
quently used prepositions. (Elghafari et al., 2010) 
worked on Data-Driven Prediction of Prepositions 
in English. Boyd et al. (2011) used an n-gram 
based machine-learning approach. Last year we 
have also participated in this shared task; our sys-
tem report was reported in (Bhaskar et. al., 2011).  

3 Corpus Statistics 

There are two sets of data, training set and test set 
provided by the organizer. The training set has 
1000 documents, which are collected from the FCE 
dataset. The publicly available dataset was in the 
native FCE format. So, the organizer first convert-
ed it to the HOO data format. Then CUP annota-
tors found the errors and marked them up in the 
dataset. This year the task is only about the errors 
related to prepositions and determiners. So the or-
ganizer set only six types of errors, listed in table 
1, which were dealt with this year. Hence, the other 
errors were discarded and replace with its corre-
sponding standoff annotation in the training set. 
The training set consists of 1000 documents of to-
tal 374680 words, which means 375 words per 
document. All the standoff annotations of training 
set were provided and an example of the standoff 
annotation is shown in the figure 1. Table 2 gives 
the error statistics of training set as reported in 
(Dale et. al., 2012). 

The test dataset has another 100 documents, 
which contain total of 18013 words at an average 
of 180 words per document. The test data was pro-
cessed as the training data was done, but the stand-
off annotation of the test documents was not 
provided before the task completion. The docu-

ments were provided in XML format as shown in 
the figure 2. 
  
Error Type Tag Original Correction 
Replacement 
Preposition  

RT He was born 
on January 

He was born 
in January 

Missing 
Preposition  

MT Because it 
reminds me 
my child-
hood. 

Because it 
reminds me 
of my child-
hood. 

Unwanted 
Preposition  

UT Regarding to 
the accom-
modation 

Regarding 
the accom-
modation 

Replacement 
Determiner  

RD I used to go-
ing with my 
friends to the 
camp. 

I used to go-
ing with my 
friends to a 
camp. 

Missing 
Determiner  

MD That will be 
nice to go on 
1st of July 

That will be 
nice to go on 
the 1st of 
July 

Unwanted 
Determiner  

UD The most 
suitable time 
for shopping 
is weekend 
when parents 
don't work 
and children 
haven't got a 
school. 

The most 
suitable time 
for shopping 
is weekend 
when parents 
don't work 
and children 
haven't got 
school. 

 
Table 1. Examples of the six types of error. 

 
 

Error 
Type 

# Training # Test 
# before 
Revised 

# after 
Revised 

UT  822  43 39 
MT  1104 57 56 
RT  2618 136 148 
Prep  4545 236 243 
UD  1048 53 62 
MD  2230 125 131 
RD  609 39 37 
Det  3887 217 230 
Total  8432 453 473 
Words/  
Error  44.18 39.77 38.08 

 
Table 2. Error Statistics in the Training set. 
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<edit end="779" file="0004" in-
dex="0008" part="1" start="775" 
type="UD"> 
  <original>the </original> 
    <corrections> 
      <correction> 
        <empty/> 
      </correction> 
  </corrections> 
</edit> 
 
<edit end="1041" file="0004" in-
dex="0010" part="1" start="1039" 
type="RT"> 
  <original>in</original> 
    <corrections> 
      <correction>at</correction> 
  </corrections> 
</edit> 
 

 
Figure 1: An example of a standoff error annotation 

 

4 System Description  

The task is consisted of two coarse parts – Preposi-
tion and Determiner detection, recognition and cor-
rection. In our previous year’s hybrid model, to 
resolve preposition errors, a rule-based model was 
developed and for determiner errors, a linear statis-
tical method was used. There was no linear statisti-
cal model for prepositions. So this year we have 
induced a statistical model to incorporate larger 
coverage of preposition error detection, which is 
not detected by the appropriate preposition list de-
scribed in section 4.1.2. 

To resolve preposition errors and determiner er-
rors we have built a hybrid model for both of them 
and used a voting technique among the rule based 
and statistical model for determiners and rule 
based post processing for prepositions. The system 
architecture is shown in the figure 3. 
 

 
<?xml version="1.0" encod-
ing="utf-8"?> 
<HOO version="2.1"> 
  <HEAD sortkey="" source-
type="FCE"> 

    <CANDIDATE> 
      <AGE>20-30</AGE> 
    </CANDIDATE> 
  </HEAD> 
  <BODY> 
    <PART id="1"> 
      <P>Dear Chris</P> 
      <P>I was great …</P> 
      . 
      . 
      . 
    </PART> 
  </BODY> 
</HOO> 
 

 
Figure 2: An example of the XML format of documents 
 

4.1 Preposition Error Detection 

4.1.1 Statistical Model for Preposition 

An n-gram based linear statistical model is used. 
From the training corpus, it was trained with 3, 5 
and 7-gram models. After testing, the 5-gram mod-
el is performing best as from 3-gram, the statistical 
model fails to classify since probability distance is 
too small among the probable set to distinguish 
proper one while in 7-gram it fails to score high as 
training data set is relatively small and there are no 
similar occurrences. For the statistical model, dif-
ferent linguistic information is taken as features. 
Initially, surface words are only considered which 
actually is similar to fingerprinting technique. Due 
to different inflected forms, the system fails to 
identify possible cases for a similar type of error 
with different inflected forms. Hence the root form 
of the word is included as a feature. Chunk infor-
mation is included as a feature. The preposition 
with same word varies with if following word is 
animate or inanimate. As example, 

collaborate with SB 
collaborate in/on ST
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Figure 3. System Architecture 
 

The text is parsed using the Stanford Dependen-
cy parser1 to retrieve animate and inanimate infor-
mation. After including animate and inanimate 
information the system didn’t improve much as 
training data set is quite small and animate infor-
mation is not correct for names. Hence, this feature 
is discarded from the statistical model. 

4.1.2 Appropriate Preposition List 

An appropriate preposition list consists of list of 
words along with preposition. The list is prepared 
in different corpus and training data. In the list, all 
possible formation with a word and preposition is 
stored. Let us take an example: 

admit ST to SB 
admit to 

From corpus, two patterns for admit are found. 
Between admit and preposition something (ST) 

                                                             
1 http://nlp.stanford.edu/software/lex-parser.shtml 

may come. Hence both of the entries are combined 
and formed in a regular expression format. 

admit (ST)* to SB 

4.1.3 Rule Based model for Preposition 

Rule based post processing was applied on output 
of statistical model. For the rule based post pro-
cessing, an appropriate preposition list was pre-
pared manually. The list contains 1567 entries. The 
list is associated with animate and inanimate in-
formation. Hence, we aim to use dependency par-
ser to identify subject object relation. Since the test 
data was in XML format, raw text was extracted 
from the XML document and the extracted sen-
tences were parsed using Stanford dependency par-
ser. 

After parsing the document with the dependency 
parser, subject and object information was extract-
ed. From all the sentences, proposition are detected 
and cross-validated with the appropriate preposi-
tion list. The preposition is dependent of the local 
association of the word around it. For the baseline
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model, we have found that due to the list being 
small, few errors are being detected. Hence from 
the training corpus, the appropriate proposition list 
is enriched. The list is prepared in regular expres-
sion format. Here is an example: 

ask * out + invite on a date 
 

In the above example, + means the two phrases 
have a similar meaning and * means one or more 
words can appear between the two words. Hence, 
when a match is found from the appropriate propo-
sition list with the first word or the preposition, the 
words local to it are validated. Since the task is 
about correcting preposition errors, only words are 
matched with the list.  

grateful to SB for ST 
 

In the above example, ST means something or 
an object and SB means somebody or a subject, 
this information being retrieved from the depend-
ency parser.  

4.2 Determiner Error Detection 

At the beginning of the determiner error detection 
task, we found that generation of list of rules to 
detect and correct the probable linguistic errors is a 
non-exhaustive set. Hence, we have decided to use 
a statistical model. After the statistical model, a 
rule based system is implemented with a few rules 
for the determiner devised from grammar books as 
for certain patterns statistical model fails to identi-
fy. 

4.2.1 Statistical Model for Determiner 

Similarly to preposition error detection, here a 5-
gram linear statistical model is used. As same au-
thors are prone to repeat same types of mistakes, 
we have decided to list out the errors from the 
training corpus documents. We have listed the er-
rors document wise. In the training corpus, age 
information of author is mentioned. Hence docu-
ments are grouped according to age. After a close 
inspection of the document wise error list, the age 
group is prone to make similar type of errors, 
which depicts the attributes of the age group. Our 
statistical model is trained with every set of train-
ing data grouped by age separately. Hence differ-
ent statistical models are prepared for different age 

groups. Now statistical model are applied accord-
ing to the age group. It is found that age wise train-
ing incurred better result than single statistical 
model over whole data.  

4.2.2 Rule Based Model for Determiner 

It is found that statistical models works best for 
detecting the a and an determiner whereas perfor-
mance drops for the determiner. Hence, rules for 
the are crafted manually from grammar books. A 
few rules for a and an are defined based on the 
first letter of the following word.  
Among the determiners, usage of the is the most 
complicated one. For the rule based system differ-
ent lists like nation, nationalities, unique objects, 
etc are produced. A few of the rules, which have 
been developed for the the determiner are men-
tioned below. 

1. In most cases, if a sentence starts with a 
proper noun or common noun the is 
dropped. 

2. Before a country name, the is dropped except 
if starts with kingdom or republic. 

3. They system checks whether a common noun 
is appeared in a previous line of the docu-
ment, i.e. it has already been referred to, in 
which case the is added. 

4. If subject and object belong to same class i.e. 
they share the same hyponym class, the is 
added to the subject. 

5. In case of superlatives like best, worst etc. 
the is added. 

6. Before numerals, the is added. 

7. Before unique things, the is added. Unique-
ness is defined if a thing has single embod-
iment like moon etc. 

8.  It is found that if some geographical location 
is mentioned at a position other than start of 
sentence, the is added. 

For different rules word lists are prepared such 
as a unique things list, superlatives, common 
nouns, country names, citizenships etc.  

For a and an determiner correction, a list of dif-
ferent phonemes is prepared. Rule based system 

205



trims the first two characters and maps them into a 
phoneme to decide between a and an. 

4.2.3 Voting Technique 

The voting technique is used on the output of the 
rule based model and the statistical model. For a 
and an determiners, statistical model works best, 
especially in missing determiner and unnecessary 
determiner but for wrong determiner the rule based 
model performs better. For the determiner, the sta-
tistical model identified missing determiner and 
unnecessary determiner cases to some extent 
whereas list based rule-based system elevates the 
accuracy.  

5 Evaluation 

The system was evaluated for its performance in 
detecting, recognizing and correcting preposition 
and determiner errors in English documents. Sepa-
rate scores were calculated for detection, recogni-
tion and correction for both the errors of 
preposition and determiner separately and then 
combined scores were also calculated. For all re-
sults, the organizer has provided three measures: 
Precision, Recall and F-Score. The precise defini-
tions of these measures as implemented in the 
evaluation tool, and further details on the evalua-
tion process are provided in (Dale and Narroway, 
2012) and elaborated on at the HOO website.4 

Each team was allowed to submit up to 10 sepa-
rate runs over the test data, thus allowing them to 
have different configurations of their systems eval-

                                                             
4 See www.correcttext.org/hoo2012. 

uated. Teams were asked to indicate whether they 
had used only publicly available data to train their 
systems, or whether they had made use of privately 
held data. We have submitted only one run 
(JU_run1) which has demonstrated F-scores of 7.1, 
6.46 and 2.58 for detection, recognition and correc-
tion respectively before revision. And after revi-
sion it has demonstrated F-scores of 8.22, 7.59 and 
3.16 for detection, recognition and correction re-
spectively. Table 3 shows all the results of our run. 
We had used only publicly available data to train 
our systems, which are provided by the organizer 
as training set; we didn’t use any privately held 
data. 

6 Conclusion and Future Works 

Our system has achieved F-scores of 8.22, 7.59 
and 3.16 in detection, recognition and correction 
respectively. Our system failed to detect and cor-
rect many syntactic and semantic errors like wrong 
a determiner. Since the data consists of mostly 
mail conversation, it retains huge number of 
spelling mistakes, which misdirected the statistical, 
and rule based model to detect probable errors. For 
the determiner, if the size of the produced lists in-
creases, better accuracy can be achieved with the 
rule-based system. Co-reference is another issue to 
identify, as the determiner is used mostly subse-
quent references. Anaphora resolution might there-
fore be of some help.  

 
 

 

    

Element Task Before Revision After Revision 
Precision Recall F-score Precision Recall F-score 

Preposition 
Detection 6.10 7.63 6.78 7.12 8.61 7.79 
Recognition 5.42 6.78 6.03 6.44 7.79 7.05 
Correction 3.05 3.81 3.39 3.73 4.51 4.08 

Determiner 
Detection 7.73 6.45 7.04 9.39 7.42 8.29 
Recognition 7.73 6.45 7.04 9.39 7.42 8.29 
Correction 1.66 1.38 1.51 2.21 1.75 1.95 

Combined 
Detection 6.93 7.28 7.10 8.19 8.25 8.22 
Recognition 6.30 6.62 6.46 7.56 7.61 7.59 
Correction 2.52 2.65 2.58 3.15 3.17 3.16 

 
Table 3. Results for Preposition, Determiner and Combined (preposition and determiner) errors. 
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Abstract

We extend our n-gram-based data-driven pre-
diction approach from the Helping Our Own
(HOO) 2011 Shared Task (Boyd and Meur-
ers, 2011) to identify determiner and preposi-
tion errors in non-native English essays from
the Cambridge Learner Corpus FCE Dataset
(Yannakoudakis et al., 2011) as part of the
HOO 2012 Shared Task. Our system focuses
on three error categories: missing determiner,
incorrect determiner, and incorrect preposi-
tion. Approximately two-thirds of the errors
annotated in HOO 2012 training and test data
fall into these three categories. To improve
our approach, we developed a missing deter-
miner detector and incorporated word cluster-
ing (Brown et al., 1992) into the n-gram pre-
diction approach.

1 Introduction

We extend our n-gram-based prediction approach
(Boyd and Meurers, 2011) from the HOO 2011
Shared Task (Dale and Kilgarriff, 2011) for the HOO
2012 Shared Task. This approach is an extension
of the preposition prediction approach presented
in Elghafari, Meurers and Wunsch (2010), which
uses a surface-based approach to predict preposi-
tions in English using frequency information from
web searches to choose the most likely preposition
in a given context. For each preposition in the text,
the prediction algorithm considers up to three words
of context on each side of the preposition, building
a 7-gram with a preposition slot in the middle:

rather a question the scales falling

For each prediction task, a cohort of queries is con-
structed with each of the candidate prepositions in
the slot to be predicted:

1. rather a question of the scales falling
2. rather a question to the scales falling
3. rather a question in the scales falling. . .
9. rather a question on the scales falling

In Elghafari, Meurers and Wunsch (2010), the
queries are submitted to the Yahoo search engine
and in Boyd and Meurers (2011), the search engine
is replaced with the ACL Anthology Reference Cor-
pus (ARC, Bird et al., 2008), which contains texts of
the same genre as the HOO 2011 data. If no hits are
found for any of the 7-gram queries, shorter over-
lapping n-grams are used to approximate the 7-gram
query. For instance, a 7-gram may be approximated
by two overlapping 6-grams:

[rather a question of the scales falling]

⇓
[rather a question of the scales]

[a question of the scales falling]

If there are still no hits, the overlap backoff will
continue reducing the n-gram length until it reaches
3-grams with one word of context on each side of
the candidate correction. If no hits are found at
the 3-gram level, the Boyd and Meurers (2011) ap-
proach predicts the original token, effectively mak-
ing no modifications to the original text. The ap-
proach from Elghafari, Meurers and Wunsch (2010),
addressing a prediction task rather than a correction
task (i.e., the original token is masked), predicted the
most frequent preposition of if no hits were found.
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Elghafari, Meurers and Wunsch (2010) showed
this surface-based approach to be competitive with
published state-of-the-art machine learning ap-
proaches using complex feature sets (Gamon et al.,
2008; De Felice, 2008; Tetreault and Chodorow,
2008; Bergsma et al., 2009). For a set of nine fre-
quent prepositions (of, to, in, for, on, with, at, by,
from), they accurately predicted 76.5% on native
data from section J of the British National Corpus.
For these nine prepositions, De Felice (2008) iden-
tified a baseline of 27% for the task of choosing
a preposition in a slot (choose of ) and her system
achieved 70.1% accuracy. Humans performing the
same task agree 89% of the time (De Felice, 2008).

For the academic texts in the HOO 2011 Shared
Task, Boyd and Meurers (2011) detected 67% of de-
terminer and preposition substitution errors (equiva-
lent to detection recall in the current task) and pro-
vided the appropriate correction for approximately
half of the detected cases. We achieved a detection
F-score of approximately 80% and a correction F-
score of 44% for the four function word prediction
tasks we considered (determiners, prepositions, con-
junctions, and quantifiers).

2 Our Approach

For the 2012 shared task corpus, we do not have
the advantage of access to a genre-specific reference
corpus such as the ARC used for the first challenge,
so we instead use the Google Web 1T 5-gram Cor-
pus (Web1T5, Brants and Franz, 2006), which con-
tains 1-gram to 5-gram counts for a web corpus with
approximately 1 trillion tokens and 95 billion sen-
tences. Compared to our earlier approach, using the
Web1T5 corpus reduces the size of available context
by going from 7-grams to 5-grams, but we are inten-
tionally keeping the corpus resources and algorithm
simple. We are particularly interested in exploring
the space between surface forms and abstractions
by incorporating information from word clustering,
an issue which is independent from the choice of a
more sophisticated learning algorithm.

Rozovskaya and Roth (2011) compared a range of
learning algorithms for the task of correcting errors
made by non-native writers, including an averaged
perceptron algorithm (Rizzolo and Roth, 2007) and
an n-gram count-based approach (Bergsma et al.,

2009), which is similar to our approach. They found
that the count-based approach performs nearly as
well as the averaged perceptron approach when
trained with ten times as much data. Without access
to a large multi-genre corpus even a tenth the size
of the Web1T5 corpus, we chose to use Web1T5.
Our longest queries thus are 5-grams with at least
one word of context on each side of the candidate
function word and the shortest are 3-grams with
one word of context on each side. A large multi-
genre corpus would improve the results by support-
ing access to longer n-grams, and it would also make
deeper linguistic analysis such as part-of-speech tag-
ging feasible.

Table 1 shows the sets of determiners and prepo-
sitions for each of the three categories addressed by
our system: missing determiner (MD), incorrect de-
terminer (RD), and incorrect preposition (RT). The
function word lists are compiled from all single-
word corrections of these types in the training data.
The counts show the frequency of the error types in
the test data, along with the total frequency of func-
tion word candidates.

The following sections describe the main exten-
sions to our system for the 2012 shared task: a sim-
ple correction probability model, a missing deter-
miner detector, and the addition of hierarchical word
clustering to the prediction approach.

2.1 Correction Probability Model
To adapt the system for the CLC FCE learner data,
we added a simple correction probability model to
the n-gram predictor that multiplies the counts for
each n-gram by the probability of a particular re-
placement in the training data. The model includes
both correct and incorrect occurrences of each can-
didate, ignoring any corrections that make up less
than 0.5% of the corrections for a particular token.
For instance, the word among has the following cor-
rection probabilities: among 0.7895, from 0.1053,
between 0.0526. Even such a simplistic probability
model has a noticeable effect on the system perfor-
mance, improving the overall correction F-score by
approximately 3%. The preposition substitution er-
ror detection F-score alone improves by 9%.

Prior to creating the probability model, we exper-
imented with the addition of a bias toward the origi-
nal token, which we hoped would reduce the number
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Category # Errors Candidate Corrections # Occurrences
Original Revised

MD 125 131 a, an, another, any, her, his, its, my, our, that,
the, their, these, this, those, which, your

-

RD 39 37 a, an, another, any, her, his, its, my, our, that,
the, their, these, this, those, which, your

1924

RT 136 148 about, after, against, along, among, around, as,
at, before, behind, below, between, by,
concerning, considering, during, for, from, in,
into, like, near, of, off, on, onto, out, outside,
over, regarding, since, through, throughout, till,
to, toward, towards, under, until, via, with,
within, without

2202

Table 1: Single-Word Prepositions and Determiners with Error and Overall Frequency in Test Data

of overcorrections generated by our system. With-
out the probability model, a bias toward the original
token improves the results, however, with the prob-
ability model, the bias is no longer useful.

2.2 Word Clustering

In the 2011 shared task, we observed that data spar-
sity issues are magnified in non-native texts because
the n-gram context may contain additional errors
or other infrequent or unusual n-gram sequences.
We found that abstracting to part-of-speech tags
and lemmas in certain contexts leads to small im-
provements in system performance. For the 2012
shared task, we explore the effects of abstracting to
word clusters derived from co-occurrence informa-
tion (Brown et al., 1992), another type of abstraction
relevant to our n-gram prediction approach. We hy-
pothesize that replacing tokens in the n-gram context
in our prediction tasks with clusters will reduce the
data sparsity for non-native text.

Clusters derived from co-occurrence frequencies
offer an attractive type of abstraction that occupy
a middle ground between relatively coarse-grained
morphosyntactic abstractions such as part-of-speech
tags and fine-grained abstractions such as lemmas.
For determiner and preposition prediction, part-of-
speech tags clearly retain too few distinctions. For
example, the choice of a/an before a noun phrase de-
pends on the onset of the first word in the phrase, in-
formation which is not preserved by part-of-speech
tagging. Likewise, preposition selection may be de-
pendent on lexical specifications (e.g., phrasal verbs
such as depend on) or on semantic or world knowl-
edge (cf. Wechsler, 1994).

Brown et al. (1992) present a hierarchical word
clustering algorithm that can handle a large num-
ber of classes and a large vocabulary. The algorithm
clusters a vocabulary into C clusters given a corpus
to estimate the parameters of an n-gram language
model. Summarized briefly, the algorithm first cre-
ates C clusters for the C most frequent words in
the corpus. Then, a cluster is added containing the
next most frequent word. After the new cluster is
added, the pair of clusters is merged for which the
loss in average mutual information is smallest, re-
turning the number of clusters to C. The remaining
words in the vocabulary are added one by one and
pairs of clusters are merged in the same fashion un-
til all words have been divided into C clusters.

Using the implementation from Liang (2005),1

we generate word clusters for the most frequent
100,000 tokens in the ukWaC corpus (Baroni et al.,
2009). We convert all tokens to lower case, replace
all lower frequency words with a single unique to-
ken, and omit from the clustering the candidate cor-
rections from Table 1 along with the low frequency
tokens. Our corpus is the first 18 million sentences
from ukWaC.2 After converting all tokens to lower-
case and omitting the candidate function words, a
total of 75,333 tokens are clustered.

We create three sets of clusters with sizes 500,
1000, and 2000. Due to time constraints, we did not
yet explore larger sizes. Brown et al. (1992) report
that the words in a cluster appear to share syntac-
tic or semantic features. The clusters we obtained
appear to be overwhelmingly semantic in nature.

1Available at http://cs.stanford.edu/∼pliang/software
2Those sentences in the file ukwac dep parsed 01.
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Cluster ID Selected Cluster Members
(1) 00100 was..., woz, wasn’t, was, wasnt
(2) 0111110111101 definetly, definatly, assuredly, definately, undoubtedly, certainly, definitely
(3) 1001110100 extremely, very, incredibly, inordinately, exceedingly, awfully
(4) 1110010001 john, richard, peter, michael, andrew, david, stephen
(5) 11101001001 12.30pm, 7am, 2.00pm, 4.00pm, weekday, tuesdays

Table 2: Sample Clusters from ukWaC with 2000 Clusters

Table 2 shows examples from the set of 2000 clus-
ters. Examples (1) and (2) show how tokens with
errors in tokenization or misspellings are clustered
with tokens with standard spelling and standard tok-
enization. Such clusters may be useful for the shared
task by allowing the system to abstract away from
spelling errors in the learner essays. Examples (3)–
(5) show semantically similar clusters.

An excerpt of the hierarchical cluster tree for the
cluster ID from example (3) is shown in Figure 1.
The tree shows a subset of the clusters for cluster
IDs beginning with the sequence 1001110. Each bi-
nary branch appends a 0 or 1 to the cluster ID as
shown in the edge labels. The cluster 1001110100
(extremely, very) is found in the left-most leaf of
the right branch. A few of the most frequent clus-
ter members are shown for each leaf of the tree.

In our submissions to the shared task, we included
five different cluster settings: 1) using the original
word-based approach with no clusters, 2) using only
2000 clusters, 3) using the word-based approach ini-
tially and backing off to 2000 clusters if no hits are
found, 4) backing off to 1000 clusters, and 5) back-
ing off to 500 clusters. The detailed results will be
presented in section 3.

2.3 Missing Determiner Detector

We newly developed a missing determiner detector
to identify those places in the learner text where
a determiner is missing. Since determiners mostly
occur in noun phrases, we extract all noun phrases
from the text and put them through a two-stage clas-
sifier. For a single-stage classifier, always predict-
ing ‘no error’ leads to a very high baseline accu-
racy of 98%. Therefore, we first filter out those
noun phrases which already contain a determiner, a
possessive pronoun, another possessive token (e.g.,
’s), or an existential there, or whose head is a pro-

noun. This prefiltering reduces the baseline accu-
racy to 93.6%, but also filters out 10% of learner er-
rors (false negatives), which thus cannot be detected
in stage two.

In the second stage, a decision tree classifier de-
cides for every remaining noun phrase whether a de-
terminer is missing. From the 203 features we orig-
inally extracted to inform the classification, the chi
squared algorithm selected 30. Almost all of the se-
lected features capture properties of either the head
of the noun phrase, its first word, or the token im-
mediately preceding the noun phrase. We follow
Minnen et al. (2000) in defining the head of a noun
phrase as the rightmost noun, or if there is no noun,
the rightmost token. As suggested by Han et al.
(2004), the classifier considers the parts of speech
of these three words, while the features that record
the respective literal word were discarded.

We also experimented with using the entire noun
phrase and its part-of-speech tag sequence as fea-
tures (Han et al., 2004), which proved not to be
helpful due to the limited size of the training data.
We replaced the part-of-speech tag sequence with a
number of boolean features that each indicate equiv-
alence with a particular sequence. Of these features
only the one that checks whether the whole noun
phrase consists of a single common noun in the sin-
gular was included in the final feature set. Addi-
tionally, the selected features include countability
information from noun countability lists generated
by Baldwin and Bond (2003), which assign nouns
to one or more countability classes: countable, un-
countable/mass noun, bipartite, or plural only.

The majority of the 30 selected features refer to
the position of one of the three tokens (head, first
word, and preceding token) in the cluster hierarchy
described in section 2.2. The set of 500 clusters
proved not to be fine-grained enough, so we used
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0 1

Figure 1: Hierarchical Clustering Subtree for Cluster Prefix 1001110

the set of 1000 clusters. To take full advantage of the
hierarchical nature of the cluster IDs, we extract pre-
fixes of all possible lengths (1–18 characters) from
the cluster ID of the respective token. For the head
and the first word, prefixes of length 3–14 were se-
lected by the attribute selector, in addition to a prefix
of length 6 for the preceding token’s cluster ID.

Among the discarded features are many extracted
from the context surrounding the noun phrase, in-
cluding the parts of speech and cluster membership
of three words to the left and right of the noun
phrase, excluding the immediately preceding token.
Features referring to possible sister conjuncts of the
noun phrase, the next 3rd person pronoun in a fol-
lowing sentence, or previous occurrences of the head
in the text also turned out not to be useful. The per-
formance of the classifier was only marginally af-
fected by the reduction in the number of features.
We conclude from this that missing determiner de-
tection is sufficiently informed by local features.

In order to increase the robustness of the classifier,
we generated additional data from the written por-
tion of the BNC by removing a determiner in 20% of
all sentences. The resulting rate of errors is roughly

equal to the rate of errors in the learner texts and the
addition of the BNC data increases the amount of
training data by a factor of 13. We trained a classifier
on both datasets (referred to as HOO-BNC below).
It achieves an F-score of 46.7% when evaluated on
30% of the shared task training data, which was held
out from the classifier training data. On the revised
test data, it reaches an F-score of 44.5%.

3 Results

The following two sections discuss our overall re-
sults for the shared task and our performance on the
three error types targeted by our system.

3.1 Overall

Figure 2 shows the overall recognition and correc-
tion F-score for the cluster settings described in
section 2.2. With the missing determiner detec-
tor HOO-BNC described in section 2.3, these cor-
respond to runs #5–9 submitted to the shared task.
For the unrevised data, Run #6 (2000 clusters only)
gives our best result for overall detection F-score
(30.26%) and Run #7 (2000 cluster backoff) for cor-
rection F-score (18.44%). For the revised data, Run
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Figure 2: Recognition and Correction F-Score with Clustering

#7 (2000 cluster backoff) has our best overall detec-
tion F-score (32.21%) and Run #5 (no clusters) has
our best overall correction F-score (22.46%).

Runs using clusters give the best results in two
other metrics reported in the shared task results for
the revised data. Run #6 (2000 clusters only) gives
the best results for determiner correction F-score and
Run #2 (2000 cluster backoff), which differs only
from Run #7 in the choice of missing determiner de-
tector, gives the best results for preposition detection
and recognition F-scores.

The detailed results for Runs #5–9 with the re-
vised data are shown in Figure 2. This graph shows
that the differences between the systems with and
without clusters are very small. The recognition F-
score is best with 2000 cluster backoff and the cor-
rection F-score is best with no clusters. In both
cases, the difference between the top two results is
less than 0.01. There is, however, a noticeable in-
crease in performance as the number of clusters in-
creases, which indicates that a larger number of clus-
ters may improve results further. The set of 2000
clusters may still retain too few distinctions for this
task.

3.2 Targeted Error Types
Our system handles three of the six error types in the
shared task: missing determiner (MD), incorrect de-
terminer (RD), and incorrect preposition (RT). The
recognition and correction F-scores for our best-
forming run for each type are shown in Figure 3.
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Figure 3: Recognition and Correction F-Score for the
Targeted Error Types

In a comparison of performance on individual er-
ror types in the shared task, our system does best
on the task for which it was originally developed,
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preposition prediction. We place 4th in recognition
and 3rd in correction F-score for this error type. For
missing determiner (MD) and incorrect determiner
(RD) errors, our system is ranked similarly as in our
overall performance (4th–6th).

For the sake of replicability, as the HOO 2012 test
data is not publicly available, we include our results
on the HOO training data for the preposition and de-
terminer substitution errors in Table 3.

Error No Clusters
Type Recognition Correction

Prec Rec Prec Rec
RT 32.69 29.94 24.85 22.77
RD 10.63 18.56 8.37 14.61

Error 2000 Backoff
Type Recognition Correction

Prec Rec Prec Rec
RT 25.87 35.60 18.26 25.13
RD 9.71 23.65 7.48 18.23

Table 3: Results for HOO 2012 Training Data

Results are reported for the no cluster and 2000
cluster backoff settings, which show that incorpo-
rating the cluster backoff improves recall at the ex-
pense of precision. Missing determiner errors are
not reported directly as the missing determiner de-
tector was trained on the training data, but see the
evaluation at the end of section 2.3.

4 Discussion and Conclusion

The n-gram prediction approach with the new miss-
ing determiner detector performed well in the HOO
2012 Shared Task, placing 6th in terms of detection
and 5th in terms of correction out of fourteen teams
participating in the shared task. In our best sub-
missions evaluated using the revised test data, we
achieved a detection F-score of 32.71%, a recogni-
tion F-score of 29.21% and a correction F-score of
22.73%. For the three error types addressed by our
approach, our correction F-scores are 39.17% for
missing determiners, 9.23% for incorrect determin-
ers, and 30.12% for incorrect prepositions. Informa-
tion from hierarchical word clustering (Brown et al.,
1992) extended the types of abstractions available
to our n-gram prediction approach and improved the

performance of the missing determiner detector.
For the n-gram prediction approach, word clusters

IDs from the hierarchical word clustering replace to-
kens in the surrounding context in order to improve
recall for learner texts which may contain errors
or infrequent token sequences. The use of cluster-
based contexts with 2000 clusters as a backoff from
the word-based approach leads to a very small im-
provement in the overall recognition F-score for the
HOO 2012 Shared Task, but our best overall correc-
tion F-score was obtained using our original word-
based approach. The differences between the word-
based and cluster-based approaches are quite small,
so we did not see as much improvement from the
word cluster abstractions as we had hoped. We
experimented with sets of clusters of several sizes
(500, 1000, 2000) and found that as the number
of clusters becomes smaller, the performance de-
creases, suggesting that a larger number of clusters
may lead to more improvement for this task.

Information from the word cluster hierarchy was
also integrated into our new missing determiner de-
tector, which uses a decision tree classifier to decide
whether a determiner should be inserted in front of
a determiner-less NP. Lexical information from the
extracted noun phrases and surrounding context are
not as useful for the classifier as information about
the position of the tokens in the word cluster hier-
archy. In particular, cluster information appears to
help compensate for lexical sparsity given a rela-
tively small amount of training data.

In future work, we plan to explore additional clus-
tering approaches and to determine when the use of
word cluster abstractions is helpful for the task of
predicting determiners, prepositions, and other func-
tion words. An approach that refers to word clus-
ters in certain contexts or in a customized fashion
for each candidate correction may lead to improved
performance for the task of detecting and correcting
such errors in texts by non-native writers.
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Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

NUS at the HOO 2012 Shared Task

Daniel Dahlmeier1, Hwee Tou Ng1,2, and Eric Jun Feng Ng2

1NUS Graduate School for Integrative Sciences and Engineering
2Department of Computer Science, National University of Singapore

{danielhe,nght,eng}@comp.nus.edu.sg

Abstract

This paper describes the submission of the Na-
tional University of Singapore (NUS) to the
HOO 2012 shared task. Our system uses a
pipeline of confidence-weighted linear classi-
fiers to correct determiner and preposition er-
rors. Our system achieves the highest correc-
tion F1 score on the official test set among all
14 participating teams, based on gold-standard
edits both before and after revision.

1 Introduction

Grammatical error correction is the task of automati-
cally detecting and correcting erroneous word usage
and ill-formed grammatical constructions in text.
Determiner and preposition errors are the two most
prominent types of errors made by non-native speak-
ers of English. Although there has been much work
on automatic correction of determiner and preposi-
tion errors over the last few years, it has so far been
impossible to directly compare results because dif-
ferent teams have evaluated on different data sets.

The HOO 2012 shared task evaluates grammatical
error correction systems for determiner and prepo-
sition errors. Participants are provided with a set
of documents written by non-native speakers of En-
glish. The task is to automatically detect and cor-
rect determiner and preposition errors and produce a
set of corrections (called edits). Evaluation is done
by computing precision, recall, and F1 score be-
tween the system edits and a manually created set
of gold-standard edits. The details of the HOO 2012
shared task are described in the official overview pa-
per (Dale et al., 2012).

In this paper, we describe the system submission
from the National University of Singapore (NUS).
Our system treats determiner and preposition correc-
tion as classification problems. We use confidence-
weighted linear classifiers to predict the correct
word from a confusion set of possible correction op-
tions. Separate classifiers are built for determiner
errors, preposition replacement errors, and preposi-
tion insertion and deletion errors. The classifiers are
combined into a pipeline of correction steps to form
an end-to-end error correction system. Our system
achieves the highest correction F1 score on the offi-
cial test set among all 14 participating teams, based
on gold-standard edits both before and after revision.

The remainder of this paper is organized as fol-
lows. The next section presents our error correction
system. Section 3 describes the features. Section 4
presents experimental results. Section 5 contains
further discussion. Section 6 concludes the paper.

2 System Architecture

Our system consists of a pipeline of sequential steps
where the output of one step serves as the input to
the next step. The steps in sequence are:

1. Pre-processing

2. Determiner correction (Det)

3. Replacement preposition correction (RT)

4. Missing and unwanted preposition correction
(MT, UT)

The final output after the last step forms our submis-
sion to the shared task. Each correction step (i.e.,
steps 2, 3, 4) involves three internal steps:

1. Feature extraction
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2. Classification
3. Language model filter

Feature extraction first analyzes the syntactic struc-
ture of the input sentences (part-of-speech (POS)
tagging, chunking, and parsing) and identifies
relevant instances for correction (e.g., all noun
phrases (NP) for determiner correction). Each in-
stance is mapped to a real-valued feature vector.
Next, a classifier predicts the most likely correction
for each feature vector. Finally, the proposed correc-
tions are filtered using a language model and only
corrections that strictly increase the language model
score are kept.

2.1 Confidence-Weighted Learning
As the learning algorithm for all classifiers, we
choose confidence-weighted (CW) learning (Dredze
et al., 2008; Crammer et al., 2009), which has been
shown to perform well for natural language pro-
cessing (NLP) problems with high dimensional and
sparse feature spaces. Instead of keeping a single
weight vector, CW learning maintains a distribu-
tion over weight vectors, parametrized by a multi-
variate normal distribution N (µ,Σ) with mean µ
and covariance matrix Σ. In practice, Σ is of-
ten approximated by a diagonal matrix (Dredze et
al., 2008). CW is an online learning algorithm
that proceeds in rounds over a labeled training set
((y1,x1), (y2,x2), . . . , (yn,xn)), one example at a
time. After the i-th round, CW learning updates the
distribution over weight vectors such that the i-th ex-
ample is predicted correctly with probability at least
0 < η < 1 while choosing the update step that min-
imizes the Kullback-Leibler (KL) distance from the
current distribution. The CW update rule is:

(µi+1,Σi+1) = (1)

arg min
µ,Σ

DKL (N (µ,Σ)||N (µi,Σi))

s.t. Pr[yi|xi,µ,Σ] ≥ η.

Dredze et al. (2008) show that in the binary case, the
CW update rule has a closed-form solution. In the
multi-class case, there exists no closed-form solu-
tion but the solution can be efficiently approximated.

2.2 Pre-processing
Pre-processing involves sentence splitting, tokeniza-
tion, re-casing, and spelling correction. We noticed

that the HOO 2012 training data contained a large
number of spelling mistakes and that some docu-
ments are written in all upper case. Both have a neg-
ative effect on tagging and classification accuracy.
We automatically identify and re-case upper-case
documents using a standard re-casing model from
statistical machine translation (SMT). Re-casing is
modeled as monotone decoding (without reorder-
ing) involving translation of an un-cased sentence
to a mixed-case sentence. Next, we automatically
correct spelling mistakes using an open-source spell
checker. Words are excluded from spelling correc-
tion if they are shorter than a threshold (set to 4 char-
acters in our work), or if they include hyphens or up-
per case characters inside the word. We apply a lan-
guage model filter (described in the next subsection)
to filter the proposed spelling corrections. Note that
spelling correction is only performed to improve the
accuracy of subsequent correction steps. Spelling
corrections themselves are not part of the edits sub-
mitted for evaluation.

2.3 Determiner Correction

Determiner errors include three error types: replace-
ment determiner (RD), missing determiner (MD),
and unwanted determiner (UD). Although determin-
ers are not limited to articles (a, an, the, empty arti-
cle ε), article errors account for the majority of de-
terminer errors. We therefore focus our efforts on
errors involving only articles.

2.3.1 Correction as Classification
We treat determiner error correction as a multi-

class classification problem. A classifier is trained
to predict the correct article from a confusion set of
possible article choices {a, the, ε}, given the sen-
tence context. The article an is normalized as a and
restored later using a rule-based heuristic. During
training, every NP in the training data generates one
training example. The class y ∈{a, the, ε} is the
correct article as annotated by the gold standard or
the observed article used by the writer if the arti-
cle is not annotated (i.e., the article is correct). The
surrounding context is represented as a real-valued
feature vector x ∈ X . The features of our classifiers
are described in Section 3.

One challenge in training classifiers for grammat-
ical error correction is that the data is highly skewed.
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Training examples without any error (i.e., the ob-
served article equals the correct article) greatly out-
number those examples with an error (i.e., the ob-
served article is different from the correct article).
As the observed article is highly correlated with the
correct article, the observed article is a valuable fea-
ture (Rozovskaya and Roth, 2010; Dahlmeier and
Ng, 2011). However, the high correlation can have
the undesirable effect that the classifier always pre-
dicts the observed article and never proposes any
corrections. To mitigate this problem, we re-sample
the training data, either by oversampling examples
with an error or undersampling examples without an
error. The sampling parameter is chosen through a
grid search so as to maximize the F1 score on the de-
velopment data. After training, the classifier can be
used to predict the correct article for NPs from new
unseen sentences.

During testing, every NP in the test data generates
one test example. If the article predicted by the clas-
sifier differs from the observed article and the differ-
ence between the classifier’s confidence score for its
first choice and the classifier’s confidence score for
the observed article is higher than some threshold
parameter t, the observed article is replaced by the
proposed correction. The threshold parameter t is
tuned through a grid search so as to maximize the F1

score on the development data. We found that using
a separate threshold parameter value for each class
worked better than using a single threshold value.

2.3.2 Language Model Filter
All corrections are filtered using a large language

model. Only corrections that strictly increase the
normalized language model score of a sentence are
kept. The normalized language model score is de-
fined as

scorelm =
1
|s|

logPr(s), (2)

where s is the corrected sentence and |s| is the sen-
tence length in tokens. The final set of article correc-
tions is applied to an input sentence (i.e., replacing
the observed article with the predicted article).

2.4 Replacement Preposition Correction

Replacement preposition correction follows the
same strategy as determiner correction, but with a
different confusion set and different features. The

confusion set consists of 36 frequent prepositions
which we adopt from our previous work (Dahlmeier
and Ng, 2011).1 These prepositions account for
the majority of preposition replacement errors in the
HOO 2012 training data. During training, every
prepositional phrase (PP) in the training data which
is headed by a preposition from the confusion set
generates one training example. The class y is the
correct preposition. During testing, every PP in the
test data which is headed by a preposition from the
confusion set generates one test example.

2.5 Missing Preposition Correction

Our system corrects missing and unwanted prepo-
sition errors for the seven most frequently missed
or wrongly inserted prepositions in the HOO 2012
training data. These preposition are about, at, for,
in, of, on, and to. While developing our system, we
found that adding more prepositions did not increase
performance in our experiments.

We treat missing preposition (MT) correction as a
binary classification problem.2 For each preposition
p, we train a binary classifier that predicts the pres-
ence or absence of that preposition. Thus, the con-
fusion set consists only of the preposition p and the
“empty preposition”. During training, we require
examples of contexts where p should be used and
where it should be omitted. As prepositions typi-
cally appear before NPs, we take every NP in the
training data as one training example. If the prepo-
sition p appears right in front of the NP (i.e., the
preposition p and the NP form a PP), the example
is a positive example, otherwise (i.e., another prepo-
sition or no preposition appears before the NP) it
is a negative example. During testing, every NP
which does not directly follow a preposition gener-
ates one test example. If the classifier predicts that
the preposition p should have been used in this con-
text with sufficiently high confidence and inserting
p increases the normalized language model score, p
is inserted before the NP.

1about, along, among, around, as, at, beside, besides, be-
tween, by, down, during, except, for, from, in, inside, into, of,
off, on, onto, outside, over, through, to, toward, towards, under,
underneath, until, up, upon, with, within, without

2Alternatively, missing preposition error correction could be
treated as a multi-class problem, but we found that binary clas-
sifiers gave better performance in initial experiments.
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2.6 Unwanted Preposition Correction

Unwanted preposition correction is treated as a bi-
nary classification problem similar to missing prepo-
sition correction but with different training and test
examples. When training the classifier for preposi-
tion p, every PP where the writer used the preposi-
tion p is one training example. If the gold-standard
annotation labels p as unwanted, the example is a
positive example for deleting p, otherwise it is a
negative example. During testing, every PP with
the preposition p generates one test example. If the
classifier predicts that p should be deleted with suffi-
ciently high confidence and deleting p increases the
normalized language model score, p is deleted.

We found that separate classifiers for missing and
unwanted preposition correction gave slightly bet-
ter results compared to using a single classifier for
both tasks. As the test examples for missing and
unwanted preposition correction of a preposition p
are disjoint, both steps can be performed in paral-
lel. This also prevents the case of the system “con-
tradicting” itself by first inserting a preposition and
later deleting it. We perform missing preposition
correction and unwanted preposition correction for
each preposition in turn, before moving to the next
preposition.

3 Features

In this section, we describe the features used in our
system. The choice of features can have an impor-
tant effect on classification performance. The exact
features used for determiner, replacement preposi-
tion, and missing and unwanted preposition correc-
tion are listed in Tables 1, 2, 3, and 4, respectively.
The features were chosen empirically through exper-
iments on the development data.

The most commonly used features for grammat-
ical error correction are lexical and POS N-grams,
and chunk features. We adopt the features from
previous work by Han et al. (2006), Tetreault and
Chodorow (2008), and Rozovskaya et al. (2011) for
our system. Tetreault et al. (2010) show that parse
features can further increase performance, and we
use the dependency parse features based on their
work. For all the above features, the observed ar-
ticle or preposition used by the writer is “blanked
out” when computing the features. However, we add

the observed article or preposition as an additional
feature for determiner and replacement preposition
correction.

The features described so far are all binary-
valued, i.e., they indicate whether some feature is
present in the input or not. Additionally, we can
construct real-valued features by counting the log
frequency of surface N-grams on the web or in a
web-scale corpus (Bergsma et al., 2009). Web-scale
N-gram count features can harness the power of the
web in connection with supervised classification and
have successfully been used for a number of NLP
generation and disambiguation problems (Bergsma
et al., 2009; Bergsma et al., 2010), although we
are not aware of any previous application in gram-
matical error correction. Web-scale N-gram count
features usually use N-grams of consecutive tokens.
The release of web-scale parsed corpora like the
WaCky project (Baroni et al., 2009) makes it pos-
sible to extend the idea to dependency N-grams of
child-parent tuples over the dependency arcs in the
dependency parse tree, e.g., {(child, node), (node,
parent)} for bigrams, {(child’s child, child, node),
(child, node, parent), (node, parent, parent’s par-
ent)} for trigrams. We collect log frequency counts
for dependency N-grams from a large dependency-
parsed web corpus and use the log frequency count
as a feature. We normalize all real-valued feature
values to a unit interval [0, 1] to avoid features with
larger values dominating features with smaller val-
ues.

4 Experiments

In this section, we report experimental results of our
system on two different data sets: a held-out test
split of the HOO 2012 training data, and the official
HOO 2012 test set.

4.1 Data Sets

The HOO 2012 training data consists of 1,000 doc-
uments together with gold-standard annotation. The
documents are a subset of the 1,244 documents
in the Cambridge Learner Corpus FCE (First Cer-
tificate in English) data set (Yannakoudakis et al.,
2011). The HOO 2012 gold-standard annotation
only contains edits for six determiner and prepo-
sition error types and discards all other gold edits
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Feature Example
Lexical features
Observed article† the
First word in NP† black
Word i before (i = 1, 2, 3)† {on, sat, ..}
Word i before NP (i = 1, 2) {on, sat, ..}
Word + POS i before (i = 1, 2, 3)† {on+IN, sat+VBD, ..}
Word i after (i = 1, 2, 3)† {black, door, ..}
Word after NP period
Word + POS i after (N = 1, 2)† {period+period, .. }
Bag of words in NP† {black, door, mat}
N-grams (N = 2, .., 5)‡ {on X, X black, .. }
Word before + NP† on+black door mat
NP + N-gram after NP { black door mat+period, ..}

(N = 1, 2, 3)†
Noun compound (NC)† door mat
Adj + NC† black+door mat
Adj POS + NC† JJ+door mat
NP POS + NC† JJ NN NN+door mat
POS features
First POS in NP JJ
POS i before (i = 1, 2, 3) {IN, VBD, ..}
POS i before NP (i = 1, 2) {IN, VBD, ..}
POS i after (i = 1, 2, 3) {JJ, NN, ..}
POS after NP period
Bag of POS in NP {JJ, NN, NN}
POS N-grams (N = 2, .., 4) {IN X, X JJ, .. }
Head word features
Head of NP† mat
Head POS NN
Head word + POS† mat+NN
Head number singular
Head countable yes
NP POS + head† JJ NN NN+mat
Word before + head† on+mat
Head + N-gram after NP † mat+period, ..

(N = 1, 2, 3)
Adjective + head† black+mat
Adjective POS + head† JJ+mat
Word before + adj + head† on+black+mat
Word before + adj POS + head† on+JJ+mat
Word before + NP POS + head† on+JJ NN NN+mat
Web N-gram count features
Web N-gram log counts {log freq(on a black),
N = 3, .., 5 log freq(on the black),

log freq(on black),..}
Dependency features
Dep NP head-child† {mat-black-amod, ..}
Dep NP head-parent† mat-on-pobj
Dep child-NP head-parent† {black-mat-on-amod-pobj, ..}
Preposition features
Prep before + head on+mat
Prep before + NC on+door mat
Prep before + NP on+black door mat
Prep before + adj + head on+black+mat
Prep before + adj POS + head on+JJ+mat
Prep before + adj + NC on+black+door mat
Prep before + adj POS + NC on+JJ+door mat
Prep before + NP POS + head on+JJ NN NN+mat
Prep before + NP POS + NC on+JJ NN NN+door mat

Table 1: Features for determiner correction. Exam-
ple: “The cat sat on the black door mat.” † : lexical
tokens in lower case, ‡: lexical tokens in both origi-
nal and lower case

Feature Example
Verb object features
Verb obj† sat on
Verb obj + head† sat on+mat
Verb obj + NC† sat on+door mat
Verb obj + NP† sat on+black door mat
Verb obj + adj + head† sat on+black+mat
Verb obj + adj POS + head† sat on+JJ+mat
Verb obj + adj + NC† sat on+black+door mat
Verb obj + adj POS + NC† sat on+JJ+door mat
Verb obj + NP POS + head† sat on+JJ NN NN+mat
Verb obj + NP POS + NC† sat on+JJ NN NN+door mat

Table 1: (continued)

from the original FCE data set. This can lead to
“wrong” gold edits that produce ungrammatical sen-
tences, like the following sentence

There are a lot of possibilities (ε → of) to
earn some money ...

where the preposition of is inserted before to earn.
The FCE data set contains another edit (to earn →
earning) but this edit is not included in the HOO
2012 gold annotation. This necessarily introduces
noise into the training data as a classifier trained on
this data will learn that inserting of before to earn
is correct. We sidestep this problem by directly us-
ing the FCE data set for training, and applying all
gold edits except the six determiner and preposition
error types. This gives us training data that only
contains those types of grammatical errors that we
are interested in. Note that this only applies to the
training data. For our development and develop-
ment test data, we use the HOO 2012 released data
where the texts contain all types of errors and do
not make use of the annotations in the FCE data
set. For system development, we randomly select
100 documents from the HOO 2012 training data
as our development set (HOO-DEV) and another
100 disjoint documents as our held-out development
test set (HOO-DEVTEST). We train classifiers on
the remaining 1,044 documents of the FCE data set
(FCE(1044)), tune parameters on HOO-DEV, and
test on HOO-DEVTEST. For our final submission,
we train classifiers on all FCE documents, except
those 100 documents in HOO-DEV which are used
for parameter tuning. Finally, we fix all parameters
and re-train the classifiers on the complete FCE cor-
pus (FCE(1244)). This allows us to make maxi-
mum use of the FCE corpus as training data. The
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Features Example
Lexical and POS features
Observed preposition† on
Word i before (i = 1, 2, 3)† {sitting, cat, ..}
Word i after (i = 1, 2, 3)† {the, mat, ..}
N-grams (N = 2, .., 5)‡ {sitting X, X the, .. }
POS N-grams (N = 2, 3) {VBG X, X DT, .. }
Head word features
Head of prev VP† sitting
POS head of prev VP VBG
Head of prev NP† cat
POS head of prev NP NN
Head of next NP† mat
POS head of next NP NN
Head prev NP + head next NP† cat+mat
POS head prev NP NN+NN

+POS head next NP
Head prev VP + head prev NP sitting+cat+mat

+ head next NP†
POS head prev VP VBG+NN+NN

+ POS head prev NP
+ POS head next NP

N-gram before + {sitting+mat}
head of next NP (N = 1, 2)†

Web N-gram count features
Web N-gram log counts {log freq(sitting at),
N = 2, .., 5 log freq(sitting in),

.., log freq(sitting on),
.., log freq(sitting with), ..}

Web dep N-gram log counts {log freq(sitting-at),
N = 2, 3 log freq(sitting-in),

.., log freq(sitting-on),
.., log freq(sitting-with),

.., log freq(at-mat),
.., log freq(on-mat),

.., log freq(with-mat),
.., log freq(sitting-at-mat), ..

.., log freq(sitting-on-mat), ..}
Dependency features
Dep parent† sitting
Dep parent POS VBG
Dep parent relation prep
Dep child† {mat}
Dep child POS {NN}
Dep child relation {pobj}
Dep parent+child† sitting+mat
Dep parent POS+child POS† VBG+NN
Dep parent+child POS† sitting+NN
Dep parent POS+child† VBG+mat
Dep parent+relation† sitting+prep
Dep child+relation† mat+pobj
Dep parent+child+relation† sitting+mat+prep+pobj

Table 2: Features for replacement preposition cor-
rection. Example: “He saw a cat sitting on the mat.”
†: lexical tokens in lower case, ‡: lexical tokens in
both original and lower case

Features Example
Lexical and POS features
Word i before (i = 1, 2, 3)† {sitting, cat, ..}
Word i after (i = 1, 2, 3)† {the, mat, ..}
N-grams (N = 2, .., 5)‡ {sitting X, X the, .. }
POS N-grams (N = 2, 3) {VBG X, X DT, .. }
Head word features
Head of prev VP† sitting
POS head of prev VP VBG
Head of prev NP† cat
POS head of prev NP NN
Head of next NP† mat
POS head of next NP NN
Head prev NP + head next NP† cat+mat
POS head prev NP NN+NN

+ POS head next NP
Head prev VP + head prev NP sitting+cat+mat

+ head next NP†
POS head prev VP VBG+NN+NN

+ POS head prev NP
+ POS head next NP

N-gram before + {sitting+mat, ..}
head of next NP (N = 1, 2)†

Web N-gram count features
Web N-gram log counts {log freq(sitting on the),
N = 3, .., 5 log freq(sitting the),

.. ,log freq(sitting on the mat),

.., log freq(sitting the mat), ..}

Table 3: Features for missing preposition correction.
Example: “He saw a cat sitting the mat.”† : lexical
tokens in lower case, ‡: lexical tokens in both origi-
nal and lower case

Features Example
Web N-gram count features
Web N-gram log counts {log freq(went to home),
N = 3, .., 5 log freq(went home),

.. ,log freq(cat went to home),
.., log freq(cat went home), ..}

Table 4: Features for unwanted preposition correc-
tion. Example: “The cat went to home.”

Data set # Documents # Sentences # Tokens
FCE(1044) 1,044 22,434 339,902
FCE(1244) 1,244 28,033 423,850
HOO-DEV 100 2,798 42,347
HOO-DEVTEST 100 2,674 41,518
HOO-TEST 100 1,393 20,563

Table 5: Overview of the data sets.
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official HOO 2012 test data (HOO-TEST), which
is not part of the FCE corpus, is completely unob-
served during system development. Table 5 gives an
overview of the data. Besides the FCE and HOO
2012 data sets, we use the following corpora. The
Google Web 1T 5-gram corpus (Brants and Franz,
2006) is used for language modeling and collect-
ing N-gram counts, the PukWaC corpus from the
WaCky project (Baroni et al., 2009) is used for col-
lecting web-scale dependency N-gram counts, and
the New York Times section of the Gigaword cor-
pus3 is used for training the re-casing model. All
data sets used in our system are publicly available.

4.2 Resources

We use the following NLP resources in our sys-
tem. Sentence splitting is performed with the NLTK
toolkit.4 For spelling correction, we use the free
software Aspell.5 All words that appear at least ten
times in the HOO 2012 training data are added to the
spelling dictionary. We use the OpenNLP tools (ver-
sion 1.5.2)6 for POS tagging, YamCha (version
0.33) (Kudo and Matsumoto, 2003) for chunk-
ing, and the MaltParser (version 1.6.1) (Nivre et
al., 2007) for dependency parsing. We use Ran-
dLM (Talbot and Osborne, 2007) for language mod-
eling. The re-casing model is built with the Moses
SMT system (Koehn et al., 2007) from the Gigaword
New York Times section and all normal-cased docu-
ments in the HOO 2012 training data. The CuVPlus
English dictionary (Mitton, 1992) is used to deter-
mine the countability of nouns. The CW learning
algorithm is implemented by our group. The source
code is available from our website.7 All resources
used in our system are publicly available.

4.3 Evaluation

Evaluation is performed by computing detection,
recognition, and correction F1 score between the set
of system edits and the set of gold-standard edits
as defined in the HOO 2012 overview paper (Dale
et al., 2012). Detection scores are very similar to
recognition scores (about 1–2% higher). We omit

3LDC2009T13
4http://www.nltk.org
5http://aspell.net
6http://opennlp.apache.org
7http://nlp.comp.nus.edu.sg/software

Step Recognition Correction
P R F1 P R F1

Det 62.26 12.68 21.06 54.09 11.01 18.30
+ RT 64.34 22.41 33.24 57.35 19.97 29.63
+ MT/UT 60.75 28.94 39.20 54.84 26.12 35.39

Table 6: Overall precision, recall, and F1 score on
the HOO-DEVTEST data after determiner correc-
tion (Det), replacement preposition correction (RT),
and missing and unwanted preposition correction
(MT/UT).

detection scores due to space limitations. Evaluation
on the official test set is performed with respect to
two different gold standards: the original gold stan-
dard from Cambridge University Press and a revised
version which was created in the HOO 2012 shared
task in response to change requests from participat-
ing teams. All scores are computed with the official
scorer. The official gold-standard edits are given in
character offsets, while our system internally works
with token offsets. Therefore, all token offsets are
automatically mapped back to character offsets be-
fore we submit our system edits. We only submitted
one run of our system.

Type Recognition Correction
P R F1 P R F1

RD 30.00 5.66 9.52 30.00 5.66 9.52
MD 69.67 41.67 52.15 59.02 35.29 44.17
UD 40.74 11.00 17.32 40.74 11.00 17.32
Det 62.26 27.73 38.37 54.09 24.09 33.33

RT 69.09 33.63 45.24 63.64 30.97 41.67
MT 53.25 35.34 42.49 49.35 32.76 39.38
UT 38.46 12.20 18.52 38.46 12.20 18.52
Prep 59.62 29.95 39.87 55.40 27.83 37.05

Table 7: Individual scores for each error type on the
HOO-DEVTEST data.

4.4 Results

Tables 6 and 8 show the overall precision, recall and
F1 score of our system after each processing step on
the held-out HOO-DEVTEST set and the official test
set, respectively. All numbers are shown in percent-
ages. We note that each processing step improves
the overall performance. The final F1 correction
score on the official test set is 28.70% before revi-
sion and 37.83% after revision, which are the highest
scores achieved by any participating team. Tables 7
and 9 show individual precision, recall, and F1 score
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Step Recognition Correction
P R F1 P R F1

Det 57.76 14.79 23.55 48.28 12.36 19.68
+ RT 58.93 21.85 31.88 47.02 17.44 25.44
+ MT/UT 55.98 25.83 35.35 45.45 20.97 28.70

(a) Before revisions

Step Recognition Correction
P R F1 P R F1

Det 68.10 16.70 26.83 62.93 15.43 24.79
+ RT 71.43 25.37 37.44 63.10 22.41 33.07
+ MT/UT 69.38 30.66 42.52 61.72 27.27 37.83

(b) After revisions

Table 8: Overall precision, recall, and F1 score on the HOO-TEST data after determiner correction (Det),
replacement preposition correction (RT), and missing and unwanted preposition correction (MT/UT).

Type Recognition Correction
P R F1 P R F1

RD 33.33 2.56 4.76 33.33 2.56 4.76
MD 62.24 48.80 54.71 51.02 40.00 44.84
UD 33.33 9.43 14.71 33.33 9.43 14.71
Det 57.76 30.88 40.24 48.28 25.81 33.63

RT 61.54 23.53 34.04 44.23 16.91 24.47
MT 46.15 21.05 28.92 38.46 17.54 24.10
UT 40.00 13.95 20.69 40.00 13.95 20.69
Prep 53.76 21.19 30.40 41.94 16.53 23.71

(a) Before revisions

Type Recognition Correction
P R F1 P R F1

RD 100.00 8.33 15.38 66.67 5.56 10.26
MD 70.41 52.67 60.26 65.31 48.85 55.90
UD 46.67 11.29 18.18 46.67 11.29 18.18
Det 68.10 34.50 45.80 62.93 31.88 42.32

RT 78.85 27.52 40.80 63.46 22.15 32.84
MT 61.54 28.57 39.02 53.85 25.00 34.15
UT 60.00 23.08 33.33 60.00 23.08 33.33
Prep 70.97 27.05 39.17 60.22 22.95 33.23

(b) After revisions

Table 9: Individual scores for each error type on the HOO-TEST data.

for each of the six error types, and for determiners
(Det: aggregate of RD, MD, UD) and prepositions
(Prep: aggregate of RT, MT, UT) on the held-out
HOO-DEVTEST set and the official test set HOO-
TEST, respectively.

5 Discussion

The main differences between our submission to the
HOO 2011 shared task (Dahlmeier et al., 2011) and
to this year’s shared task are the use of the CW learn-
ing algorithm, the use of web-scale N-gram count
features, and the use of the observed article or prepo-
sition as a feature. The CW learning algorithm per-
formed slightly better than the empirical risk mini-
mization batch learning algorithm that we have used
previously while being significantly faster during
training. Adding the web-scale N-gram count fea-
tures showed significant improvements in initial ex-
periments. Using the observed article or preposition
feature allows the classifier to learn a bias against
unnecessary corrections. We believe that our good
precision scores are a result of using this feature.

In our experiments, we tried adding additional
training data from other text corpora: the NUS Cor-
pus of Learner English (NUCLE) (Dahlmeier and
Ng, 2011) and the Gigaword corpus. Unfortunately,
we did not see any consistent improvements over

simply using the FCE corpus. The general rule of
thumb that “more data is better data” did not seem to
hold true in this case. After the evaluation had com-
pleted, we also tried training on additional training
data and tested the resulting system on the official
test set but did not see improvements either. We be-
lieve that no improvements were obtained due to the
similarity between the training and test data, since
all of them are student essays written in response to
question prompts from the Cambridge FCE exam.

6 Conclusion

We have presented the system from the National
University of Singapore that participated in the HOO
2012 shared task. Our system achieves the highest
correction F1 score on the official test set among all
14 participating teams, based on gold-standard edits
both before and after revision.
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VTEX

Akademijos 4
LT-08412 Vilnius, Lithuania

vidas.daudaravicius@vtex.lt

Abstract

This paper describes the system has been
developed for the HOO 2012 Shared Task.
The task was to correct determiner and
preposition errors. I explore the possibil-
ity of learning error correcting rules from
the given manually annotated data using
features such as word length and word
endings only. Furthermore, I employ er-
ror correction ranking based on the ratio
of the sentence probabilities using original
and corrected language models. Our sys-
tem has been ranked for the ninth posi-
tion out of thirteen teams. The best result
was achieved in correcting missing prepo-
sitions, which was ranked for the sixth po-
sition.

1 Introduction

The correct usage of determiners and preposi-
tions is one of the toughest problems in English
language use for non-native speakers, especially
those living in a non-English speaking environ-
ment. The issues have been explored extensively
in the literature (see Leacock et al. (2010)). It
was interesting to find that this error correction
topic was chosen for the HOO 2012 Shared Task.

This paper describes the experimental sys-
tem developed by VTEX team for this task –
to correct determiner and preposition errors in
CLC FCE Dataset. It explores the possibility
of learning error correcting rules from the given
manually annotated data using features such as
word length and word endings only. Further-
more, it employs error correction ranking based
on the ratio of sentence probabilities using orig-
inal and corrected language models.

2 The data

The training data consisted of 1000 files drawn
from the publicly available FCE dataset and
converted into HOO data format (see Dale et
al. (2012)). I used the HOO 2012 training and
test data only. The training data had 8432 man-
ually annotated corrections of the following six
error types:

MD – Missing Determiner;

MT – Missing Preposition;

UD – Unwanted Determiner;

UT – Unwanted Preposition;

RD – Replacement Determiner;

RT – Replacement Preposition.

The total size of the training data was 374680
words. The test data consisted of 100 previ-
ously unseen files without error correction an-
notations. For more details about the training
and test data, see (Dale et al., 2012).

I have not used any other dictionaries, cor-
pora or language processing tools (like taggers
or parsers). Thus, the system is language in-
dependent and based on supervised learning of
manually annotated corrections.

3 Word length and word ending

The training corpus was small and insufficient
to get complete and reliable features and statis-
tics of error corrections based on the corrected
words. Therefore I needed to find features
which describe the contexts of error corrections
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in a more generalized way. After some experi-
mentation, I chose word length and the word last
n characters. Words in the dataset were trans-
formed into tokens using these functions. I have
tested three word transformation combinations:

word – keeps the whole word (e.g. make 7→
make);

2end – takes the length of a word and adds the
last two characters (make 7→ 4 ke );

1end – takes the length of a word and adds the
last character (make 7→ 4 e).

I have also used lists of reserved words that
were used to preserve the primary form of a
word:

corrections – words that were corrected
to/from in HOO 2012 Gold Edits data;

mod – functional words such as: have, has, can,
not, make, made, be, was, were, am, are,
and, or ;

pronouns – pronouns that were not used as
corrections: we, he, she, they, yours, ours,
them.

For instance, using 2end transformation, the
incorrect sentence I feel that festival could be
even better next year was transformed into I 4el
that 8al 5ld be 4en 6er next 4ar, and the cor-
rected sentence into I 4el that the 8al 5ld be 4en
6er next 4ar.

In Section 5, I show that the word length
and ending retain a lot of information about the
word.

Each participating group in HOO 2012 Shared
Task was allowed to submit up to ten runs.
I have submitted nine runs that differ in word
length and word ending only. The different runs
are:

0 – 1end: all words except reserved correction
words were encoded as word length+the last
character;

1 – 2end: all words except reserved correction
words were encoded as word length + two
last characters;

2 – word: no transformations;

3 – 1end+mod: all words except reserved correc-
tion and mod words were encoded as word
length + the last character;

4 – 2end+mod: all words except reserved correc-
tion and mod words were encoded as word
length + two last characters;

5 – 1end+pron: all words except reserved cor-
rection and pronoun words were encoded as
word length + the last character;

6 – 2end+pron: all words except reserved cor-
rection and pronoun words were encoded as
word length + two last characters;

7 – 1end+mod+pron: all words except reserved
correction, pronoun and mod words were en-
coded as word length + the last character;

8 – 2end+mod+pron: all words except reserved
correction, pronoun and mod words were en-
coded as word length + two last characters.

4 Error correction

Error correction consists of the rules that the
system is able to learn, and the actions that
the system is able to apply.

4.1 Error correction rules

Using error correction annotations from Gold
Edits of the training corpus we have built the
error correction rules. The error correction rule
is the error correction and the context of this
correction. From the training corpus I gather
contextual correction rules. The context are to-
kens on the left- or right-hand side of the error
correction. The best choice would be to take at
least two tokens on the left-hand side and two to-
kens on the right-hand side and to express error
correction rule as a 5-gram with the error correc-
tion in the middle. For instance, in the training
data, the error correction of for to about of type
RT is found within the the left-hand side con-
text i asked and the right-hand side context the
discounts.

The main problem of learning of correction
rules was the small size of the training corpus.
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Bigger corpora could help in learning more cor-
rection rules. But it is hard to get bigger corpora
because it is very expensive to prepare them.
Two or three word context on each side of a
corrected fragment can produce good but rarely
applicable correction rules. Therefore, I have
implemented a smoothing technique for generat-
ing new rules that do not appear in the training
data.

I use trigrams to generate smoothed 5-gram
error correction rules. Three types of trigrams
were used for the smoothing:

centered – one token on the left-hand side of
the correction, then the correction and one
token on the right-hand side of the correc-
tion (see line 1 in Table 1);

left – two tokens on the left-hand side of the
correction and the correction (see lines 2
and 3 in Table 1);

right – two tokens on the right-hand side of the
correction and the correction (see lines 4–13
in Table 1).

There are 8432 corrections in the training
data. Figure 1 shows the number of distinct
trigram rules for the different runs described in
Section 3. Most of the trigram rules appear
once. For instance,

L2 L1 type original correction R1 R2

asked RT for about the
i asked RT for about
to asked RT for about

RT for about the camp
RT for about the discounts
RT for about the experience
RT for about the first
RT for about the new
RT for about the news
RT for about the play
RT for about the prise
RT for about the terrible
RT for about the very

Table 1: Trigram error correction rules.

• the most frequent (38 occurrences) left-
context trigram rule without word encoding
is stay in /a/MD ;

• the most frequent (44 occurrences) right-
context trigram rule is on/in/RT july be-
cause; and

• the most frequent (38 occurrences)
centered-context trigram rule is travel
on/in/RT july.

We could expect similar generalization power
for left, right or centered contexts, but in Fig. 1
we can see that the number of distinct right-
hand side contexts is lower by 5% compare to

Figure 1: The number of context trigrams of error corrections for the different runs.
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the number of distinct centered contexts. Sur-
prisingly, the number of trigram rules does not
degrade significantly whether the encoding 1end
is used or not.

The new smoothed 5-gram rules are exten-
sions of the centered trigram rules. The exten-
sion on the left hand-side is the union of centered
trigrams and the left trigrams when the error
correction and L1 match. And the extension on
the right hand-side is the union of the centered
trigrams and the right trigrams when error cor-
rection and R1 match. For instance, the error
correction of for to about of type RT within the
the left-hand side context i asked and the right-
hand side context the discounts is extended as
follows:

• take centered trigram (see line 1 in Table 1);

• take left trigrams, where correction and L1

match (see lines 2 and 3 in Table 1);

• take right trigrams, where correction and
R1 match (see lines 4–13 in Table 1);

• after that I have the following smoothed
rule: L2 = [I, to ], L1 = asked, C =

for/about/MT, R1 = the, R2 = [camp, dis-
counts, experience, first, news, play, prise,
terrible, very ].

This technique allows the generation of error
correction rules that do not appear in the train-
ing data, e.g. in the latter example I generate 18
smoothed 5-gram rules that do not appear in the
training data. The new smoothed 5-gram error
correction rule is boolean operation and the rule
does not contain any probabilistic information.

4.2 Error correction actions

The error correction system applies error correc-
tion rules using the following actions:

do not change – word is kept as is;

insert – missing word is inserted;

delete – unnecessary word is deleted;

replace – word is replaced by another one.

Each action is tested at each word but only
one at a time. In case the context allows to
apply several actions at one place then these ac-
tions are treated as alternatives. Alternative ac-
tions are not combined and no selection between

Doc
ID

Run Rules
applied

OC
ratio

sentence correction

2025

2

the//MD/
that/this/RD/

0.451 is the 8 th july till the end of that month , what do you think ?

that/this/RD/ 0.559 is the 8 th july till end of that month , what do you think ?
the//MD/ 0.633 is the 8 th july till the end of this month , what do you think ?
– 0.785 is the 8 th july till end of this month , what do you think ?

7

the//MD/
that/this/RD/

0.345 3s the 8 2h 4y till the 3d of that 5h , what 2o you 5k ?

that/this/RD/ 0.441 3s the 8 2h 4y till 3d of that 5h , what 2o you 5k ?
the//MD/ 0.533 3s the 8 2h 4y till the 3d of this 5h , what 2o you 5k ?
– 0.683 3s the 8 2h 4y till 3d of this 5h , what 2o you 5k ?

2043

2
/for/UT/ 0.976 i am writing in response to your last letter , to answer and ask

you for some questions .
– 1.035 i am writing in response to your last letter , to answer and ask

you for some questions .

7

/for/UT/ 0.966 i am 7g in 8e to your 4t 6r , to 6r and 3k you for some 9s .
a//MD/
/for/UT/

1.022 i am 7g in a 8e to your 4t 6r , to 6r and 3k you for some 9s .

– 1.025 i am 7g in 8e to your 4t 6r , to 6r and 3k you for some 9s .
a//MD/ 1.085 i am 7g in a 8e to your 4t 6r , to 6r and 3k you for some 9s .

Table 2: Examples of ranking, selection and application of actions for sentence correction.
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them is made at this step. The example of cor-
rection alternatives is shown in Table 2. Besides,
the probability of the action can be taken into
account but I do not do this and all actions are
considered equally possible.

5 Language model

I use language trigram modeling to estimate the
probability of a sentence. The probability of a
sequence of words is estimated as the product of
probabilities of trigrams:

p(x) =
∏

i

p̂(xi |xi−2, xi−1).

To avoid zero probability I have used Kneser–
Ney trigram smoothing (Kneser and Ney, 1995)
technique as follows:

p̂(xi |xi−2, xi−1)

=
max[(freq(xi−2, xi−1, xi)− c3), 0]

max[freq(xi−2, xi−1), 1]

+
c3 ∗ |xi−2, xi−1, •|

max[freq(xi−2, xi−1), 1]

× max[(freq(xi−2, xi−1)− c2), 0]

max[freq(xi−2), 1]

+
c2 ∗ |xi−2, •, •|

max[freq(xi−2), 1]

× max[(freq(xi−2)− c1), 0]

N
+

c1 ∗ T

N
,

where c3 = 0.8, c2 = 0.6, c1 = 0.4, T = | • |, and
N is the corpus size.

I have built two language models: one for the
original language and one for the corrected lan-
guage. The original language model (O) was
built using the corpus without corrections. The
corrected language model (C ) was built using
the corpus with error corrections applied. The
different runs yield different number of token tri-
grams. But the number does not degrade signif-
icantly as we might expect when words are en-
coded with the 1end transformation (see Fig. 2).
Thus, the 1end transformation retains a lot of
information, although, the number of trigrams
of the original language model is always a little
bit higher than the number of trigrams of the
corrected language model.

6 The probability ratio of the
original and corrected language
models

The probability of a sentence depends on the
length of the sentence. The longer the sen-
tence the lower the probability. Error correc-
tion actions can change the length of a sentence.
Thus, it is hard to implement the error correc-
tion system which should rank different length
sentences. Therefore, I have used the ratio of the
probabilities of the sentence using the original
language model (O) and the corrected language

Figure 2: The number of trigrams of the original and corrected language models for different runs.
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Figure 3: The histogram of OC ratio in the test data.

model (C ):

OC ratio =
p̂(O)

p̂(C)
,

where p̂(O) is the probability of a sentence us-
ing the original language model and p̂(C) is the
probability of the same sentence using the cor-
rected language model.

The lower the value of this ratio, the higher
the chance that the sentence is correct, i.e.
closer to corrected language rather than to orig-
inal language. In Fig. 3, I show the histogram of
the highest OC ratios of the corrected test sen-
tences. This histogram shows that most of the
ratios are close to 1, i.e. the probabilities of the
sentence are almost equal using both language
models. The histogram does not depend on the
type of word encoding. In Table 2, I show ex-
amples of corrections and the OC ratios for each
set of corrections. The error correction system
takes corrections which are applied for the sen-
tence with the lowest OC ratio (see Table 2).

7 The results and conclusions

The results for different runs of the error correc-
tion system are shown in the Table 3. The best
determiner and preposition correction F-score
results are achieved with Run 5, which is using
1end + pron encoding: all words except reserved
correction and pronoun words were encoded as

word length + the last character. This result was
ranked for ninth position out of 14 teams.

Nevertheless, the results for different types of
corrections are quite different. The error cor-
rection system was capable of performing UT,
MT and MD type error corrections but hopeless
for UD, RD and RT type error corrections. The
best results are for:

MT – missing preposition error correction, no
encoding is used;

MD - missing determiner error correction, 2end
encoding is used;

UT - unwanted preposition error correction,
any type of encoding except no encoding.

Surprisingly, we had to use whole words for
missing preposition error correction, but never
for unwanted preposition error correction. Our
system was ranked at the seventh position for
UT error correction using F-score.

The result for MT error correction shows that
smoothed 5-gram rule generation was useful and
the whole word should be used. But encoding
with word length should never be used. Our
system is ranked at the sixth position for MT
error correction.

The result for MD error correction shows that
the system degrades when encodings with fewer
characters are used.
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Run
All MT MD

P R F P R F P R F

0 8.15 4.19 5.54 4.65 3.50 4.00 7.84 9.60 8.63
1 24.5 2.87 5.13 12.5 3.51 5.48 34.8 6.40 10.8
2 35.5 2.43 4.54 25.0 3.51 6.15 46.7 5.60 10.0
3 8.41 3.75 5.19 5.56 3.51 4.30 8.27 8.80 8.53
4 25.0 2.87 5.15 13.3 3.51 5.56 34.8 6.40 10.8
5 8.76 4.19 5.67 5.00 3.51 4.12 8.57 9.60 9.06
6 24.5 2.87 5.14 12.5 3.51 5.48 34.8 6.40 10.8
7 9.04 3.75 5.30 5.71 3.51 4.35 9.17 8.80 8.98
8 25.0 2.87 5.15 13.3 3.51 5.56 34.8 6.40 10.8

Run
UT UD RT RD

P R F P R F P R F P R F

0 100 4.65 8.89 4.76 1.89 2.70 1.67 1.47 2.70 0 0 0
1 100 4.65 8.89 0 0 0 16.7 0.74 1.41 0 0 0
2 100 2.33 4.55 0 0 0 20.0 0.74 1.42 0 0 0
3 100 4.65 8.89 0 0 0 16.7 1.47 2.70 0 0 0
4 100 4.65 8.89 0 0 0 16.7 0.74 1.41 0 0 0
5 100 4.65 8.89 4.76 1.89 2.70 16.7 1.47 2.70 0 0 0
6 100 4.65 8.89 0 0 0 16.7 0.74 1.41 0 0 0
7 100 4.65 8.89 0 0 0 16.7 1.47 2.70 0 0 0
8 100 4.65 8.89 0 0 0 16.7 0.74 1.41 0 0 0

Table 3: Scores for correction of different runs.

The main conclusion is that there are no com-
mon features for all error corrections and the
different systems for different error types should
be implemented.
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MD

Team Run Precision Recall F-Score

CU 0 83.33 8.0 14.6
KU 2 1.98 20.0 3.6
LE 0 54.43 34.4 42.16
NA 1 29.09 38.4 33.1
NU 0 51.02 40.0 44.84
TC 3 6.21 7.2 6.67
TH 3 9.54 26.4 14.01
UI 0 51.92 43.2 47.16
UT 6 36.7 32.0 34.19
VA 0 6.4 6.4 6.4
VT 1 34.78 6.4 10.81

MT

Team Run Precision Recall F-Score

CU 1 5.68 8.77 6.9
KU 1 0.51 19.3 1.0
LE 0 50.0 5.26 9.52
NA 3 11.43 7.02 8.7
NU 0 38.46 17.54 24.1
TC 3 4.65 3.51 4.0
UI 5 42.86 15.79 23.08
VA 1 1.71 7.02 2.75
VT 2 25.0 3.51 6.15

UT

Team Run Precision Recall F-Score

CU 1 4.83 39.53 8.61
JU 1 2.91 6.98 4.11
KU 5 60.0 13.95 22.64
LE 1 32.14 20.93 25.35
NA 3 40.91 20.93 27.69
NU 0 40.0 13.95 20.69
TC 9 4.69 30.23 8.13
TH 1 10.32 30.23 15.38
VA 0 12.9 18.6 15.24
VT 0 100.0 4.65 8.89

UD

Team Run Precision Recall F-Score

CU 3 17.86 18.87 18.35
JU 1 4.84 5.66 5.22
KU 8 26.92 13.21 17.72
LE 0 22.67 32.08 26.56
NA 5 40.0 11.32 17.65
NU 0 33.33 9.43 14.71
TC 9 5.11 16.98 7.86
TH 1 38.89 13.21 19.72
UI 2 23.38 33.96 27.69
VA 0 7.06 11.32 8.7
VT 0 4.76 1.89 2.7

Table 4: Scores for correction.
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Abstract

Some grammatical error detection methods,
including the ones currently used by the Edu-
cational Testing Service’s e-rater system (At-
tali and Burstein, 2006), are tuned for pre-
cision because of the perceived high cost
of false positives (i.e., marking fluent En-
glish as ungrammatical). Precision, however,
is not optimal for all tasks, particularly the
HOO 2012 Shared Task on grammatical er-
rors, which uses F-score for evaluation. In this
paper, we extend e-rater’s preposition and de-
terminer error detection modules with a large-
scale n-gram method (Bergsma et al., 2009)
that complements the existing rule-based and
classifier-based methods. On the HOO 2012
Shared Task, the hybrid method performed
better than its component methods in terms of
F-score, and it was competitive with submis-
sions from other HOO 2012 participants.

1 Introduction

The detection of grammatical errors is a challenging
problem that, arguably, requires the use of both lin-
guistic knowledge (e.g., in the form of rules or com-
plex features) and large corpora for statistical learn-
ing. Additionally, grammatical error detection can
be applied in various scenarios (e.g., automated es-
say scoring, writing assistance, language learning),
many of which may benefit from task-specific adap-
tation or tuning. For example, one might want to
take a different approach when detecting errors for
the purpose of providing feedback than when de-
tecting errors to evaluate the quality of writing in
an essay. Thus, it seems desirable to take a flexible

approach to grammatical error detection that incor-
porates multiple, complementary techniques.

In this paper, we extend the preposition and de-
terminer error detection modules currently used in
the Educational Testing Service’s e-rater automated
essay scoring system (Attali and Burstein, 2006) for
the HOO 2012 Shared Task on grammatical errors
(§2). We refer to this set of modules from e-rater as
our “base system” (§3). While the base system uses
statistical methods to learn models of grammatical
English, it also leverages substantial amounts of lin-
guistic knowledge in the form of various hand-coded
filters and complex syntactic features. The base sys-
tem is also tuned for high precision at the expense
of recall in order to avoid a high rate of potentially
costly false positives (i.e., frequent marking of cor-
rect English sentences as ungrammatical).

We apply the pre-existing base system without
modifications but complement it with a large-scale
n-gram method (§5) based on work by Bergsma et
al. (2009). The n-gram method employs very little
linguistic knowledge and instead relies almost ex-
clusively upon corpus statistics. We also tune the
resulting hybrid system with labeled training data
in order to maximize the primary evaluation met-
ric used in the HOO 2012 Shared Task: balanced
F-score, or F1 (§6). We find that the tuned hybrid
system improves upon the recall and F-score of the
base system. Also, in the HOO 2012 Shared Task,
the hybrid system achieved results that were com-
petitive with other submitted grammatical error de-
tection systems (§7).
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2 Task Definition

In this section, we provide a brief overview of the
HOO 2012 Shared Task (Dale et al., 2012). The
task focuses on prepositions and determiners only,
distinguishing the following error types: preposition
selection errors (coded “RT” in the data), extraneous
prepositions (“UT”), missing prepositions (“MT”),
determiner selection errors (“RD”), extraneous de-
terminers (“UD”), and missing determiners (“MD”).

For training and testing data, the shared task uses
short essays from an examination for speakers of En-
glish as a foreign language. The data includes gold
standard human annotations identifying preposition
and determiner errors. These errors are represented
as edits that transform an ungrammatical text into
a grammatical one. Edits consist of start and end
offsets into the original text and a correction string
that should replace the original text at the speci-
fied offsets. The offsets differ by error type: word
selection errors include just the word, extraneous
word errors include an extra space after the word so
that a blank will result in an appropriate amount of
whitespace, and missing word errors specify spans
of length zero.1

There are three subtasks: detection, recognition,
and correction. Each is evaluated according to pre-
cision, recall, and F-score according to a set of
gold standard edits produced by human annotation.
While the correction subtask requires both correct
character offsets and appropriate corrections, the de-
tection and recognition subtasks only consider the
offsets. Detection and recognition are essentially the
same, except that detection allows for loose match-
ing of offsets, which permits mismatches between
the extraneous use (e.g., UT) and word selection
(e.g., RT) error types. For our submission to the
shared task, we chose to tune for the detection sub-
task, and we also chose to avoid the correction task
entirely since the interface to the pre-existing base
system did not give us access to possible corrections.

1The offsets for extraneous word errors prior to punctuation,
a relatively rare occurrence, include a space before the word
rather than after it. Our script for converting our system’s output
into the HOO 2012 format did not account for this, which may
have decreased recognition performance slightly.

3 Base System

As our base system, we repurpose a complex sys-
tem designed to automatically score student essays
(both native and non-native and across a wide range
of competency levels). The system is also used to
give feedback to essay writers, so precision is fa-
vored over recall. There are three main modules in
the essay-scoring system whose purpose it is to de-
tect preposition and determiner errors (as they are
defined in that system). Many of the details have
been reported previously (Chodorow and Leacock,
2000; Han et al., 2004; Han et al., 2006; Chodorow
et al., 2007; Tetreault and Chodorow, 2008), so here
we will only give brief summaries of these modules.

It is important to note that this system was run
without modification. That is, no training of new
models or tuning was carried out specifically for the
shared task. In addition, for the two statistical mod-
ules, we only had access to the final, boolean deci-
sions about whether an error is present or not at a
particular location in text. That is, we did not have
access to confidence scores, and so task-specific tun-
ing for F-score was not an option.

3.1 Preposition Error Detection

The base system detects incorrect and extraneous
prepositions (Chodorow et al., 2007; Tetreault and
Chodorow, 2008). Tetreault and Chodorow (2008)
reports approximately 84% precision and 19% re-
call on both error types combined when evaluating
the system on manually annotated non-native text.

3.1.1 Incorrect Prepositions
The module to detect incorrectly used preposi-

tions consists of a multiclass logistic regression (i.e.,
“Maximum Entropy”) model of grammatical usage,
along with heuristic pre- and post- filters. The mod-
ule works by extracting a set of features from the
“context” around a preposition, generating a distri-
bution over possible prepositions using the model of
grammatical usage, and then flagging an error if the
difference in probability between the text’s original
preposition and an alternative preposition exceeds a
certain threshold. The probability for any correction
also needs to exceed another minimum threshold.
For this work, we used the pre-existing, manually-
set thresholds.
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A pre-filter prevents any contexts that contain
spelling errors from being submitted to the logistic
regression model. The motivation for this is that the
NLP components that provide the features for the
model are unreliable on such data, and since the sys-
tems favors precision over recall, no attempt is made
to correct prepositions where the system cannot rely
on the accuracy of those features.

The logistic regression model of correct preposi-
tion usage is trained on approximately 82 million
words from the San Jose Mercury News2 and texts
for 11th to 12th grade reading levels from the Meta-
Metrics Lexile corpus, resulting in 7 million prepo-
sition contexts. The model uses 25 types of features:
words and part-of-speech tags around the existing
preposition, head verb (or noun) in the preceding
VP (or NP), head noun in the following NP, among
others. NPs and VPs were detected using chunking
rather than full parsing, as the performance of statis-
tical parsers on erroneous text was deemed to be too
poor.

A post-filter rules out certain candidates based on
the following heuristics: (1) if the suggested correc-
tion is an antonym of the original preposition (e.g.,
from vs to), it is discarded; (2) any correction of the
benefactive for is discarded when the head noun of
the following NP is human (detected as a WordNet
hyponym of person or group).

3.1.2 Extraneous Prepositions

Heuristics are applied to detect common occur-
rences of extraneous prepositions in two scenar-
ios: (1) accidentally repeated prepositions (e.g., with
with) and (2) insertion of unnecessary prepositions
in plural quantifier constructions (e.g., some of peo-
ple).

3.2 Determiner Error Detection

There are two separate components that detect er-
rors related to determiners. The first is a filter-based
model that detects determiner errors involving num-
ber and person agreement. The second is a statistical
system that supplements the rule-based system and
detects article errors.

2The San Jose Mercury News is available from the Linguis-
tic Data Consortium (catalog number LDC93T3A).

3.2.1 Filter-based system
The filter-based system combines unsupervised

detection of a set of possible errors (Chodorow and
Leacock, 2000) with hand-crafted filters designed
to reduce this set to the largest subset of correctly
flagged errors and the smallest possible number
of false positives. Chodorow and Leacock (2000)
found that low-frequency bigrams (sequences of two
lexical categories with a negative log-likelihood) are
quite reliable predictors of grammatical errors. Text
is tagged and chunked, and filters that detect likely
cases of NP-internal agreement violations are ap-
plied. These filters will mark, for example, a sin-
gular determiner followed by a plural noun head and
vice versa, or a number disagreement between a nu-
meral and the noun it modifies. This system has
the ability to take advantage of linguistic knowledge,
which contributes to its ability to detect errors with
high precision.

3.2.2 Statistical model
In addition to the hand-crafted filters described

above, there is a statistical component that detects
incorrect, missing and extraneous articles (Han et
al., 2004; Han et al., 2006). This component con-
sists of a multiclass logistic regression that selects
an appropriate article for every NP from a, an, the,
or ε. This model is trained on 31.5 million words
of diverse genres from the MetaMetrics Lexile cor-
pus (from 10th to 12th grade reading levels), or 8
million NP contexts. Again, NPs were determined
by chunking. The model includes various features:
words and POS tags around and within the NP, NP
head information including the countability of the
head noun (estimated automatically from large cor-
pora), etc.

In a cross-validation experiment, the model
achieved approximately 83% accuracy on well-
edited text. In an experiment evaluated on non-
native learner text, the model achieved approxi-
mately 85% agreement with human annotators.

4 Task-Specific Heuristic Filtering

There is not a one-to-one mapping between the def-
initions of determiner and preposition errors as used
in the HOO data set and the definitions used in our
base system. For example, our base system marks
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errors involving every, many and other quantifiers as
determiner errors, while these are not marked in the
current HOO 2012 Shared Task data.

To ensure that our system was aligned with the
HOO 2012 Shared Task, we automatically extracted
lists of the most frequently occurring determiners
and prepositions in the HOO training data. Any RT,
UT, RD or UD edit predicted for a word not in those
lists is automatically discarded. In the training data,
this resulted in the removal of 4 of the 463 RT errors
and 98 of the 361 RD errors detected by the base
system.

5 Large-scale n-Gram Models

In order to complement the high-precision base sys-
tem and increase recall, we incorporate a large
scale n-gram model into our full system. Specifi-
cally, we adapt the SUMLM method from Bergsma
et al. (2009). SUMLM creates confusion sets for
each preposition token in an input text and uses the
Google Web 1T 5-gram Corpus to score each item
in the confusion set.3 We extend SUMLM to sup-
port determiners, extraneous use errors, and missing
word errors.

Consider the case of preposition selection errors.
For a preposition token at position i in an input sen-
tence w, we compute the following score for each
possible alternative v, using Eq. 1.4

s(w, i, v) =

∑
n=2...5

∑
x∈G(w,i,n,v)

log(count(x))

|G(w, i, n, v)|
(1)

The function G(w, i, n, v) returns the set of n-
grams in w that include the word at position i and

3The Google Web 1T 5-gram Corpus is available from the
Linguistic Data Consortium (catalog number LDC2006T13).
We plan to test other corpora for n-gram counts in future work.

4The n-gram approach considers all of the following words
to be prepositions: to, of, in, for, on, with, at, by, as, from, about,
up, over, into, down, between, off, during, under, through,
around, among, until, without, along, within, outside, toward,
inside, upon, except, onto, towards, besides, beside, and under-
neath. It considers all of the following words to be determiners:
a, an, and the. The sets of possible prepositions and determiners
for the base system are not exactly the same. Part of speech tags
are not used in the n-gram system except to identify insertion
points for missing prepositions and determiners.

replace that word, wi, with v. For example, if w =
Mary and John went at the store to buy milk, n = 4,
i = 4, and v = to, then G(w, i, n, v) returns the
following 4-grams:

• and John went to

• John went to the

• went to the store

• to the store to

The expression log(count(x)) is the natural loga-
rithm of the number of times the n-gram x occurred
in the corpus.5 |G(w, i, n, v)| is the number of n-
gram count lookups, used to normalize the scores.
Note that this normalization factor is not included in
the original SumLM. When v is an alternative prepo-
sition not near the beginning or end of a sentence,
|G(w, i, n, v)| = 14 since there are 14 n-gram count
lookups in the numerator. Or, for example, if i = 0,
indicating that the preposition occurs at the begin-
ning of the sentence, |G(w, i, n, v)| = 4.6

Next, we compute the ratio of the score of each
alternative to the score for the original, using Eq. 2.

r(w, i, v) =
s(w, i, v)
s(w, i, wi)

(2)

We then identify the best scoring alternative, re-
quiring that its score be higher than the original (i.e.,
r(w, i, v) > 1). The procedure is the same for deter-
miners, except, of course, that the set of alternatives
includes determiners rather than prepositions.

To extend the method from Bergsma et al. (2009)
for extraneous prepositions and determiners, we
simply set v to be a blank and sum over j = 3 . . . 5
instead. |G(w, i, n, v)|will then be 12 instead of 14,
since bigrams from the original sentence, which be-
come unigrams when replacing wi with a blank, are
excluded.

To identify positions at which to flag selection or
extraneous use errors, we simply scan for words that
match an item in our sets of possible prepositions
and determiners. To extend the method for missing

5We use the TrendStream system (Flor, 2012) to retrieve n-
gram counts efficiently.

6Our n-gram counts do not include start- or end-of-sentence
symbols. Also, all n-grams are case-normalized with numbers
replaced by a special symbol.
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Algorithm 1 tune(W, y, ŷ α, αmin):
The hill-climbing algorithm for optimizing the n-
gram method’s penalty parameters q. W consists
of the training set texts. ŷ is a set of candidate edits.
y is a set of gold standard edits. α is an initial step
size, and αmin is a minimum step size.

qallbest ← 0
scoreallbest ← eval(qallbest,W,y, ŷ)
while α > αmin do

scorebest ← −∞
qbest ← qallbest

for qtmp ∈ perturb(qbest, α) do
scoretmp ← eval(qtmp,W,y, ŷ)
if scoretmp > scorebest then

qbest ← qtmp

scorebest ← scoretmp

end if
end for
if scorebest > scoreallbest then

qallbest ← qbest
scoreallbest ← scorebest

else
α← 0.5 ∗ α

end if
end while
return qallbest

word errors, however, we apply a set of heuristics to
identify potential insertion points.7

6 Tuning

The n-gram approach in §5 generates a large num-
ber of possible edits of different types. In this sec-
tion, we describe how we filter edits using their
scores and how we combine them with edits from
the base system (§3).

As described above, for an alternative v to be con-
sidered as a candidate edit, the value of r(w, i, v) in
Eq. 2 must be greater than a threshold of 1, indicat-
ing that the alternative scores higher than the origi-
nal word. However, we observed low precision dur-
ing development when including all candidate ed-
its and decided to penalize the ratios. Bergsma et
al. (2009) discuss raising the threshold, which has

7The heuristics are based on those used in Gamon (2010)
(personal communication).

a similar effect. Preliminary experiments indicated
that different edits (e.g., extraneous preposition edits
and preposition selection edits) should have differ-
ent penalties, and we also want to avoid edits with
overlapping spans. Thus, for each location with one
or more candidate edits, we select the best according
to Equation 3 and filter out the rest.

v∗ = arg max
v

r(w, i, v)− penalty(wi, v) (3)

penalty(wi, v) is a function that takes the current
word wi and the alternative v and returns one of 6
values: qRT for preposition selection, qUT for extra-
neous prepositions, qMT for missing prepositions,
qRD for determiner selection, qUD for extraneous
determiners, and qMD for missing determiners.

If the value for r(w, i, v∗)−penalty(wi, v
∗) does

not exceed 1, we exclude it from the output.
We tune the vector q of all the penalties to op-

timize our objective function (F-score, see §7) on
the training set using the hill-climbing approach de-
scribed in Algorithm 1. The algorithm initializes
the parameter vector to all zeros, and then itera-
tively evaluates candidate parameter vectors that re-
sult from taking positive and negative steps of size
α in each direction (steps with negative penalties
are skipped). The best step is taken if it improves
the current score, according to the eval function,
which returns the training set F-score after filtering
based on the current parameters.8 This process pro-
ceeds until there is no improvement. Then, the step
size α is halved, and the whole process is repeated.
The algorithm proceeds as such until the step size
becomes lower than a specified minimum αmin.

When merging edits from the base system and the
n-gram approach, the hybrid system always prefers
edits from the base system if any edit spans overlap,
equivalent to including them in Eq. 3 and assigning
them a penalty of −∞.9 Note that the set of pre-
dicted edits y passed as input to the tune algorithm

8Our implementation of the tuning algorithm uses the HOO
2012 Shared Task’s evalfrag.py module to evaluate the F-
score for the error detection subtask.

9If the base system produces overlapping edits, we keep
them all. If there are overlapping edits from the n-gram sys-
tem that have the same highest value for the penalized score in
Equation 3 and do not overlap with any base system edits, we
keep them all.
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Figure 1: The architecture of the hybrid system. Different
steps are discussed in different parts of the paper: “base
system” in §3, “n-gram system” in §5, “heuristic filter-
ing” in §4, and “tuning” and “filtering” in §6.

includes edits from both the base and n-gram meth-
ods.

Figure 1 illustrates the processes of training and
of producing test output from the hybrid system.

7 Results

Table 1 presents results for the HOO 2012 detec-
tion subtask, including errors of all types. The re-
sults here, reproduced from Dale et al. (2012), are
prior to applying participant-suggested revisions to
the set of gold standard edits.10 We include four
variations of our approach: the base system (§3, la-
beled “base”); the n-gram system (§5, labeled “n-
gram”) by itself, tuned without edits from the base
system; the hybrid system, tuned with edits from the
base system (“hybrid”); and a variation of the hy-

10After submitting our predictions for the shared task, we
noticed a few minor implementation mistakes in our code re-
lated to the conversion of edits from the base system (§3) and
the task-specific heuristic filtering (§4). We corrected them and
retrained our system. The detection F-scores for the original
and corrected implementations were as follows: 26.45% (orig-
inal) versus 26.23% (corrected) for the base system, 30.70%
(original) versus 30.45% (corrected) for the n-gram system,
35.65% (original) versus 35.24% (corrected) for the hybrid sys-
tem, and 31.82% (original) versus 31.45% (corrected) for the
hybridindep system. Except for this footnote, all results in this
paper are for the original system.

run P R F
base 0 52.63 17.66 26.45
n-gram – 25.87 37.75 30.70
hybrid 1 33.59 37.97 35.65
hybridindep 2 24.88 44.15 31.82
UI 8 37.22 43.71 40.20

Table 1: Precision, recall, and F-score for the combined
preposition and determiner error detection subtask for
various methods, before participant-suggested revisions
to the gold standard were applied. All values are percent-
ages. Official run numbers are shown in the “run” col-
umn. The “n-gram” run was not part of our official sub-
mission. For comparison, “UI” is the submission, from
another team, that achieved the highest detection F-score
in the HOO 2012 Shared Task.

brid system (“hybridindep”) with the penalties tuned
independently, rather than jointly, to maximize F-
score for detection of each error type. For compari-
son, we also include the best performing run for the
detection subtask in terms of F-score (labeled “UI”).

We observe that the base and n-gram systems ap-
pear to complement each other well for this task: the
base system achieved 26.45% F-score, and the n-
gram system achieved 30.70%, while the hybrid sys-
tem, with penalties tuned jointly, achieved 35.65%.
Table 2 shows further evidence that the two systems
have complementary performance. We calculate the
overlap between each system’s edits and the gold
standard. We see that only a small number of edits
are predicted by both systems (38 in total, 18 cor-
rect and 20 incorrect), and that the base system pre-
dicts 62 correct edits that the n-gram method does
not predict, and similarly the n-gram method pre-
dicts 92 correct edits that the base system does not
predict. The table also verifies that the base system
exhibits high precision (only 68 false positives in to-
tal) while the n-gram system is tuned for higher re-
call (286 false positives).

Not surprisingly, when the n-gram method’s
penalties were tuned independently (“hybridindep”)
rather than jointly, the overall score was lower, at
31.82% F-score. However, tuning independently
might be desirable if one were concerned with
performance on specific error types or if macro-
averaged F-score were the objective.

The hybrid system performed quite competitively
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(1) All models had a UD very strange long shoes made from black skin . . .

(2) I think it is a great idea to organise this sort of festival because most of UT people enjoy it.

Figure 2: Examples of errors detected by the base system and missed by the n-gram models.

(3) We have to buy for UT some thing.

(4) I am ε MD good diffender.

Figure 3: Examples of errors detected by the n-gram system and missed by the base model.

∈ gold /∈ gold
∈ base /∈ base ∈ base /∈ base

∈ n-gram 18 92 20 266
/∈ n-gram 62 276 48 —

Table 2: The numbers of edits that overlap in the hybrid
system’s output and the gold standard for the test set. The
hybrid system’s output is broken down by whether edits
came from the base system (§3) or the n-gram method
(§5). The empty cell corresponds to hypothetical edits
that were in neither the gold standard or the system’s out-
put (e.g., edits missed by annotators), which we cannot
count.

compared to the other HOO 2012 submissions,
achieving the 3rd best results out of 14 teams for
the detection and recognition subtasks. The per-
formance of the “UI” system was somewhat higher,
however, at 40.20% F-score compared to the hybrid
system’s 35.65%. We speculate that our hybrid sys-
tem’s performance could be improved somewhat if
we also tuned the base system for the task.

8 Error Analysis

It is illustrative to look at some examples of edits
that the base system correctly detects but the n-gram
model does not, and vice versa. Figure 2 shows ex-
amples of errors detected by the base system, but
missed by the n-gram system. Example (1) illus-
trates that the n-gram model has no concept of syn-
tactic structure. The base system, on the other hand,
carries out simple processing including POS tagging
and chunking, and is therefore aware of at least some
longer-distance dependencies (e.g., a . . . shoes). Ex-

ample (2) shows the effectiveness of the heuris-
tics based on quantifier constructions mentioned in
§3.1.2. These heuristics were developed by devel-
opers familiar with the kinds of errors that language
learners frequently make, and are therefore more tar-
geted than the general n-gram method.

Figure 3 shows examples of errors detected by the
n-gram system but missed by the base system. Ex-
ample (3) shows an example of where the base sys-
tem does not detect the extraneous preposition be-
cause it only searches for these in certain quantifier
constructions. Example (4) contains a spelling error,
which confuses the determiner error detection sys-
tem. It has not seen the misspelling often enough to
be able to reliably judge whether it needs an article
or not before it, and so errs on the side of caution.
When diffender is correctly spelled as defender, the
base system does detect that there is a missing article
in the sentence.

There were a small number of cases where dialect
caused a mismatch between our system’s error pre-
dictions and the gold standard. For example, an ho-
tel is not marked as an error in the gold standard
since it is correct in many dialects. However, it was
always corrected to a hotel by our system. Our sys-
tem also often corrected determiners before the noun
camp, since in American Standard English it is more
usual to talk about going to Summer Camp rather
than going to a/the Summer Camp.

Although the task was to detect preposition and
determiner errors in isolation, there was sometimes
interference from other errors in the sentence. This
impacted the task in two ways. Firstly, in a sentence
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with multiple errors, it was sometimes possible to
correct it in multiple ways, not all of which involved
preposition or determiner errors. For example, you
could correct the phrase a women by either chang-
ing the a to the, deleting the a entirely or replacing
women with woman. The last change would not fall
under the category of determiner error, and so there
was sometimes a mismatch between the corrections
predicted by the system and the gold standard cor-
rections. Secondly, the presence of multiple errors
impacted the task when a gold standard correction
depended on another error in the same sentence be-
ing corrected in a particular way. For example, you
could correct I’m really excited to read the book. as
I’m really excited about reading the book., however
if you add the preposition about without correcting
to read this correction results in the sentence becom-
ing even more ungrammatical than the original.11

9 Conclusion

In this paper, we have described a hybrid system
for grammatical error detection that combines a pre-
existing base system, which leverages detailed lin-
guistic knowledge and produces high-precision out-
put, with a large-scale n-gram approach, which re-
lies almost exclusively on simple counting of n-
grams in a massive corpus. Though the base system
was not tuned at all for the HOO 2012 Shared Task,
it performed well in the official evaluation. The two
methods also complemented each other well: many
of the predictions from one did not appear in the out-
put of the other, and the F-score of the hybrid system
was considerably higher than the scores for the indi-
vidual methods.
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Abstract

Previous work on automated error recognition
and correction of texts written by learners of
English as a Second Language has demon-
strated experimentally that training classifiers
on error-annotated ESL text generally outper-
forms training on native text alone and that
adaptation of error correction models to the
native language (L1) of the writer improves
performance. Nevertheless, most extant mod-
els have poor precision, particularly when at-
tempting error correction, and this limits their
usefulness in practical applications requiring
feedback.

We experiment with various feature types,
varying quantities of error-corrected data, and
generic versus L1-specific adaptation to typi-
cal errors using Naı̈ve Bayes (NB) classifiers
and develop one model which maximizes pre-
cision. We report and discuss the results for
8 models, 5 trained on the HOO data and
3 (partly) on the full error-coded Cambridge
Learner Corpus, from which the HOO data is
drawn.

1 Introduction

The task of detecting and correcting writing errors
made by learners of English as a Second Language
(ESL) has recently become a focus of research.

The majority of previous papers in this area
have presented machine learning methods with mod-
els being trained on well-formed native English
text (Eeg-Olofsson and Knutsson, 2003; De Felice
and Pulman, 2008; Gamon et al., 2008; Han et al.,
2006; Izumi et al., 2003; Tetreault and Chodorow,

2008; Tetreault et al., 2010). However, some recent
approaches have explored ways of using annotated
non-native text either by incorporating error-tagged
data into the training process (Gamon, 2010; Han
et al., 2010), or by using native language-specific
error statistics (Rozovskaya and Roth, 2010b; Ro-
zovskaya and Roth, 2010c; Rozovskaya and Roth,
2011). Both approaches show improvements over
the models trained solely on well-formed native text.

Training a model on error-tagged non-native
text is expensive, as it requires large amounts of
manually-annotated data, not currently publically
available. In contrast, using native language-specific
error statistics to adapt a model to a writer’s first or
native language (L1) is less restricted by the amount
of training data.

Rozovskaya and Roth (2010b; 2010c) show that
adapting error corrections to the writer’s L1 and in-
corporating artificial errors, in a way that mimics
the typical error rates and confusion patterns of non-
native text, improves both precision and recall com-
pared to classifiers trained on native data only. The
approach proposed in Rozovskaya and Roth (2011)
uses L1-specific error correction patterns as a dis-
tribution on priors over the corrections, incorporat-
ing the appropriate priors into a generic Naı̈ve Bayes
(NB) model. This approach is both cheaper to im-
plement, since it does not require a separate classi-
fier to be trained for every L1, and more effective,
since the priors condition on the writer’s L1 as well
as on the possible confusion sets.

Some extant approaches have achieved good re-
sults on error detection. However, error correction
is much harder and on this task precision remains
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low. This is a disadvantage for applications such
as self-tutoring or writing assistance, which require
feedback to the user. A high proportion of error-
ful suggestions is likely to further confuse learners
and/or non-native writers rather than improve their
writing or assist learning. Instead a system which
maximizes precision over recall returning accurate
suggestions for a small proportion of errors is likely
to be more helpful (Nagata and Nakatani, 2010).

In section 2 we describe the data used for train-
ing and testing the systems we developed. In sec-
tion 3 we describe the preprocessing of the ESL text
undertaken to provide a source of features for the
classifiers. We also discuss the feature types that
we exploit in our classifiers. In section 4 we de-
scribe and report results for a high precision system
which makes no attempt to generalize from train-
ing data. In section 5 we describe our approach to
adapting multiclass NB classifiers to characteristic
errors and L1s. We also report the performance of
some of these NB classifiers on the training and test
data. In section 6 we report the official results of
all our submitted runs on the test data and also on
the HOO training data, cross-validated where appro-
priate. Finally, we briefly discuss our main results,
further work, and lessons learnt.

2 Cambridge Learner Corpus

The Cambridge Learner Corpus1 (CLC) is a large
corpus of learner English. It has been developed
by Cambridge University Press in collaboration with
Cambridge Assessment, and contains examination
scripts written by learners of English from 86 L1
backgrounds. The scripts have been produced by
language learners taking Cambridge Assessment’s
ESL examinations.2

The linguistic errors committed by the learners
have been manually annotated using a taxonomy of
86 error types (Nicholls, 2003). Each error has been
manually identified and tagged with an appropriate
code, specifying the error type, and a suggested cor-
rection. Additionally, the scripts are linked to meta-
data about examination and learner. This includes
the year of examination, the question prompts, the

1http://www.cup.cam.ac.uk/gb/elt/catalogue/subject/
custom/item3646603/Cambridge-International-Corpus-
Cambridge-Learner-Corpus

2http://www.cambridgeesol.org/

learner’s L1, as well as the grades obtained. The cur-
rent version of the CLC contains about 20M words
of error-annotated scripts from a wide variety of ex-
aminations.

The HOO training and test datasets are drawn
from the CLC. The training dataset is a reformatted
1000-script subset of a publically-available subset of
CLC scripts produced by learners sitting the First
Certficate in English (FCE) examination.3 This ex-
amination assesses English at an upper-intermediate
level, so many learners sitting this exam still man-
ifest a number of errors motivated by the conven-
tions of their L1s. The CLC-FCE subcorpus was ex-
tracted, anonymized, and made available as a set of
XML files by Yannakoudakis et al. (2011).4

The HOO training dataset contains scripts from
FCE examinations undertaken in the years 2000 and
2001 written by speakers of 16 L1s. These scripts
can be divided into two broad L1 typological groups,
Asian (Chinese, Thai, Korean, Japanese) and Euro-
pean (French, Spanish, Italian, Portuguese, Catalan,
Greek, Russian, Polish). The latter can be further
subdivided into Slavic (Russian, Polish) and Ro-
mance. In turn, the Romance languages differ in ty-
pological relatedness with, for example, Portuguese
and Spanish being closer than Spanish and French.
Error coding which is not relevant to preposition or
determiner errors has been removed from the train-
ing data so that only six error type annotations are
retained for training: incorrect, missing or unnec-
essary determiners (RD, MD, UD) and prepositions
(RT, MT, UT).

One consequence of this reformatting is that the
contexts of these errors often contain further errors
of different types that are no longer coded. The idea
is that errors should be considered in their natural
habitat, and that correcting and copy-editing the sur-
rounding text would create an artificial task. On the
other hand, not correcting anything makes it difficult
in some cases and nigh impossible in others to de-
termine whether a given determiner or preposition is
correct or not. The error-coding in the CLC in such
cases (provided the writer’s intent is deemed recov-
erable) depends not only on the original text, but also
on the correction of nearby errors.

3http://www.cambridgeesol.org/exams/general-english/fce.
html

4http://ilexir.co.uk/applications/clc- fce-dataset/
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Certain errors even appear as a direct result of
correcting others: for instance, the phrase to sleep
in tents has been corrected to to sleep in a tent in
the CLC; this ends up as a ‘correction’ to to sleep
in a tents in the HOO dataset. This issue is diffi-
cult to avoid given that the potential solutions are all
labour-intensive (explicit indication of dependencies
between error annotations, completely separate error
annotation for different types of errors, or manual re-
moval of spurious errors after extraction of the types
of error under consideration), and we mention it here
mainly to explain the origin of some surprising an-
notations in the dataset.

A more HOO-specific problem is the ‘[removal
of] elements [from] some of [the] files [...] to
dispose of nested edits and other phenomena that
caused difficulties in the preprocessing of the data’
(Dale et al., 2012). This approach unfortunately
leads to mutilated sentences such as I think if we
wear thistoevery wherespace ships. This mean. re-
placing the original I think if we wear this clothes we
will travel to every where easier than we use cars,
ships, planes and space ships. This mean the engi-
neering will find the way to useless petrol for it, so it
must useful in the future.

The HOO test set consists of 100 responses to
individual prompts from FCE examinations set be-
tween 1993 and 2009, also drawn from the CLC.
As a side effect of removing the test data from the
full CLC, we have discovered that the distribution of
L1s, examination years and exam prompts is differ-
ent from the training data. There are 27 L1s exem-
plified, a superset of the 16 seen in the HOO train-
ing data; about half are Romance, and the rest are
widely distributed with Asian and Slavic languages
less well represented than in the training data.

In the experiments reported below, we make use
of both the HOO training data and the full 20M
words of error-annotated CLC, but with the HOO
test data removed, to train our systems. Whenever
we use the larger training set we refer to this as the
full CLC below.

3 Data Preprocessing

We parsed the training and test data (see Section
2) using the Robust Accurate Statistical Parsing
(RASP) system with the standard tokenization and

My friend was (MD: a) good student

Grammatical Relations (GRs):
(ncsubj be+ed:3 VBDZ friend:2 NN1 )
(xcomp be+ed:3 VBDZ student:6 NN1)
(ncmod student:6 NN1 good:5 JJ)
(det friend:2 NN1 My:1 APP$)

*(det student:6 NN1 a:4 AT1)

Figure 1: RASP GR output

sentence boundary detection modules and the unlex-
icalized version of the parser (Briscoe et al., 2006)
in order to broaden the space of candidate fea-
tures types. The features used in our experiments
are mainly motivated by the fact that lexical and
grammatical features have been shown in previous
work to be effective for error detection and correc-
tion. We believe RASP is an appropriate tool to
use with ESL text because the PoS tagger deploys
a well-developed unknown word handling mecha-
nism, which makes it relatively robust to noisy in-
put such as misspellings, and because the parser de-
ploys a hand-coded grammar which indicates un-
grammaticality of sentences and markedness of con-
structions and is encoded entirely in terms of PoS
tag sequences. We utilize the open-source version
of RASP embedded in an XML-handling pipeline
that allows XML-encoded metadata in the CLC and
HOO training data to be preserved in the output,
but ensures that unannotated text is passed to RASP
(Andersen et al., 2008).

Relevant output of the system is shown in Fig-
ure 1 for a typical errorful example. The grammati-
cal relations (GRs) form a connected, directed graph
of typed bilexical head-dependent relations (where a
non-fragmentary analysis is found). Nodes are lem-
matized word tokens with associated PoS tag and
sentence position number. Directed arcs are labelled
with GR types. In the factored representation shown
here, each line represents a GR type, the head node,
the dependent node, and optional subtype informa-
tion either after the GR type or after the dependent.
In this example, the asterisked GR would be missing
in the errorful version of the sentence. We extract the
most likely analysis for each sentence based on the
most probable tag sequence found by the tagger.

Extraction of the lexical and grammatical infor-
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mation from the parser output is easier when a deter-
miner or preposition is present than when it is miss-
ing. During training, for all nouns, we checked for a
det relation to a determiner, and whenever no det
GR is present, we checked whether the noun is pre-
ceded by an MD annotation in the XML file. For
missing prepositions, we have only extracted cases
where a noun is governed by a verb with a dobj
relation, and cases where a noun is governed by an-
other noun with an ncmod (non-clausal modifier)
relation. For example, in It’s been a long time since
I last wrote you, in absence of the preposition to the
parser would ‘recognize’ a dobj relation between
you and wrote, and this case would be used as a
training example for a missing preposition, while I
trusted him with the same dobj relation between
trusted and him would be used as a training exam-
ple to correct unwanted use of a preposition as in I
trusted *to him.

3.1 Feature Types
In all the experiments and system configurations
described below, we used a similar set of features
based on the following feature templates.

For determiner errors:

• Noun lemma: lemma of the noun that gov-
erns the determiner

• Noun PoS: PoS tag of the noun

• Distance from Noun: distance in num-
ber of words to the governed determiner

• Head lemma: head lemma in the shortest
grammatical relation in which the noun is de-
pendent

• Head PoS: as defined above, but with PoS tag
rather than lemma

• Distance from Head: distance in num-
ber of words to the determiner from head, as
defined above (for Head lemma)

• GR type to Noun: a GR between Head
and Noun.

For instance for the example shown in Figure 1, the
noun lemma is student, the noun PoS is NN1, the

distance from the noun is 2, the head lemma is be,
the head PoS is VBDZ, and the distance from the
head is 1, while the GR type to the noun is xcomp.

For preposition errors:

• Preposition (P): target preposition

• Head lemma (H): head lemma of the GR in
which the preposition is dependent

• Dependent lemma (D): dependent
lemma of the GR in which the preposition is
head.

For instance, in I am looking forward to your reply,
P is to, H is look and D is reply.

In contrast to work by Rozovskaya and Roth,
amongst others, we have not used word context fea-
tures, but instead focused on grammatical context in-
formation for detecting and correcting errors. We
also experimented with some other feature types,
such as n-grams consisting of the head, preposition
and dependent lemmas, but these did not improve
performance on the cross-validated HOO training
data, perhaps because they are sparser and the train-
ing set is small. However, there are many other po-
tential feature types, such as PoS n-grams or syn-
tactic rule types, and so forth that we don’t explore
here, despite their probable utility. Our main focus
in these experiments is not on optimal feature engi-
neering but rather on the issues of classifier adaption
to errors and high precision error correction.

4 A Simple High Precision Correction
System

We have experimented with a number of approaches
to maximizing precision and have not outperformed
a simple model that doesn’t generalize from the
training data using machine learning techniques. We
leverage the large amount of error-corrected text in
the full CLC to learn reliable contexts in which er-
rors occur and their associated corrections. For the
HOO shared task, we tested variants of this approach
for missing determiner (MD) and incorrect prepo-
sition (RT) errors. Better performing features and
thresholds used to define contexts were found by
testing variants on the HOO training data. The fea-
ture types from section 3.1 deployed for the MD
system submitted for the official run were Noun
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lemma, Noun PoS, GR types to Noun and
GR types from Noun (set of GRs which has
the noun as head). For the RT system, all three P, H,
and D features were used to define contexts. A con-
text is considered reliable if it occurs at least twice
in the full CLC and more than 75% of the time it
occurs with an error.

The performance of this system on the training
data was very similar to performance on the test data
(in contrast to our other runs). We also explored L1-
specific and L1-group variants of these systems; for
instance, we split the CLC data into Asian and Eu-
ropean languages, trained separate systems on each,
and then applied them according to the L1 meta-
data supplied with the HOO training data. However,
all these systems performed worse than the best un-
adapted system.

The results for the generic, unadapted MD and RT
systems appear as run 0 in Tables 4–9 below. These
figures are artefactually low as we don’t attempt to
detect or correct UD, UT, RD or MT errors. The
actual results computed from the official runs solely
for MD errors are for detection, recognition and cor-
rection: 83.33 precision and 7.63 recall, which gives
an F-measure of 13.99; the RT system performed at
66.67 precision, 8.05 recall and 14.37 F-measure on
the detection, recognition and correction tasks. De-
spite the low recall, this was our best submitted sys-
tem in terms of official correction F-score.

5 Naı̈ve Bayes (NB) (Un)Adapted
Multiclass Classifiers

Rozovskaya and Roth (2011) demonstrate on a
different dataset that Naı̈ve Bayes (NB) can out-
perform discriminative classifiers on preposition
error detection and correction if the prior is adapted
to L1-specific estimates of error-correction pairs.
They compare the performance of an unadapted
NB multiclass classifier, in which the prior for a
preposition is defined as the relative probability
of seeing a specific preposition compared to a
predefined subset of the overall PoS class (which
they call the Conf(usion) Set):

prior(p) =
C(p)∑

q∈ConfSet C(q)
,

to the performance of the same NB classfier with
an adapted prior which calculates the probability of
a correct preposition as:

prior(c, p, L1) =
CL1(p, c)

CL1(p)
,

where CL1(p) is the number of times preposition
p is seen in texts written by learners with L1 as
their native language, and CL1(p, c) is the number
of times c is the correct preposition when p is used.

We applied Rozovskaya and Roth’s approach to
determiners as well as prepositions, and experi-
mented with priors calculated in the same way for
L1 groups as well as specific L1s. We also com-
pared L1-adaptation to generic adaption to correc-
tions, calculated as:

prior(c, p) =
C(p, c)

C(p)
,

We have limited the set of determiners and prepo-
sitions that our classifiers aim to detect and correct,
if necessary. Our confusions sets contain:

• Determiners: no determiner, the, a, an;

• Prepositions: no preposition, in, of, for,
to, at, with, on, about, from, by, after.

Therefore, for determiners, our systems were only
aimed at detecting and correcting errors in the use of
articles, and we have not taken into account any er-
rors in the use of possessive pronouns (my, our, etc.),
demonstratives (this, those, etc.), and other types of
determiners (any, some, etc.). For prepositions, it is
well known that a set of about 10 of the most fre-
quent prepositions account for more than 80% of all
prepositional usage (Gamon, 2010).

We have calculated the upper bounds for the train-
ing and test sets when the determiner and preposi-
tion confusion sets are limited this way. The upper
bound recall for recognition (i.e., ability of the clas-
sifier to recognize that there is an error, dependent on
the fact that only the chosen determiners and prepo-
sitions are considered) is calculated as the propor-
tion of cases where the incorrect, missing or unnec-
essary determiner or preposition is contained in our
confusion set. For the training set, it is estimated at
91.95, and for the test at 93.20. Since for correction,
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the determiner or preposition suggested by the sys-
tem should also be contained in our confusion set,
upper bound recall for correction is slightly lower
than that for recognition, and is estimated at 86.24
for the training set, and at 86.39 for the test set.
These figures show that the chosen candidates dis-
tribute similarly in both datasets, and that a system
aimed at recognition and correction of only these
function words can obtain good performance on the
full task.

The 1000 training scripts were divided into 5 por-
tions pseudo-randomly to ensure that each portion
contained approximately the same number of L1-
specific scripts in order not to introduce any L1-
related bias. The results on the training set pre-
sented below were averaged across 5 runs, where in
each run 4 portions (about 800 scripts) were used
for training, and one portion (about 200 scripts) was
used for testing.

We treated the task as multi-class classification,
where the number of classes equates to the size of
our confusion set, and when the classifier’s decision
is different from the input, it is considered to be er-
rorful. For determiners, we used the full set of fea-
tures described in section 3.1, whereas for preposi-
tions, we have tried two different feature sets: only
head lemma (H), or Hwith the dependent lemma (D).

We ran the unadapted and L1-adapted NB classi-
fiers on determiners and prepositions using the fea-
tures defined above. The results of these preliminary
experiments are presented below.

5.1 Unadapted and L1-adapted NB classifiers

Tables 1 to 3 below present results averaged over
the 5 runs for the unadapted classifiers. We report
the results in terms of recall, precision and F-score
for detection, recognition and correction of errors as
defined for the HOO shared task.5

We have experimented with two types of L1-
specific classification: classifier1 below is a
combination of 16 separate multiclass NB classi-
fiers, each trained on a specific L1 and applied to
the corresponding parts of the data. Classifier2
is a replication of the classifier presented in Ro-
zovskaya and Roth (2011), which uses the priors

5For precise definitions of these measures see
www.correcttext.org/hoo2012

adapted to the writer’s L1 and to the chosen deter-
miner or preposition at decision time. The priors
used for these runs were estimated from the HOO
training data.

We present only the results of the systems that use
H+D features for prepositions, since these systems
outperform systems using H only. Tables 1, 2 and
3 below show the comparative results of the three
classifiers averaged over 5 runs, with all errors, de-
terminer errors only, and preposition errors only, re-
spectively.

Detection Recognition Correction
R P F R P F R P F

U 60.69 21.32 31.55 50.57 17.73 26.25 34.38 12.05 17.85
C1 64.51 16.17 25.85 50.25 12.56 20.10 30.95 7.74 12.39
C2 33.74 16.51 22.15 28.50 13.96 18.72 16.51 8.10 10.85

Table 1: All errors included. Unadapted classifier (U) vs.
two L1-adapted classifiers (C1 and C2). Results on the
training set.

Detection Recognition Correction
R P F R P F R P F

U 54.42 33.25 41.25 50.09 30.60 30.83 40.70 24.84 30.83
C1 61.19 20.25 30.42 52.20 17.27 25.94 40.57 13.43 20.17
C2 40.56 15.88 22.81 37.24 14.58 20.94 23.20 9.08 13.04

Table 2: Determiner errors. Unadapted classifier (U) vs.
two L1-adapted classifiers (C1 and C2). Results on the
training set.

Detection Recognition Correction
R P F R P F R P F

U 65.71 16.89 26.87 50.90 13.09 20.83 28.95 7.45 11.84
C1 66.96 13.86 22.97 48.51 10.05 16.65 22.70 4.70 7.79
C2 27.45 17.06 21.00 21.00 13.07 16.09 10.79 6.73 8.27

Table 3: Preposition errors. Unadapted classifier (U) vs.
two L1-adapted classifiers (C1 and C2). Results on the
training set.

The results show some improvement with a com-
bination of classifiers trained on L1-subsets in terms
of recall for detection and recognition of errors, and
a slight improvement in precision using L1-specific
priors for preposition errors. However, in general,
unadapted classifiers outperform L1-adapted classi-
fiers with identical feature types. Therefore, we have
not included L1-specific classifiers in the submitted
set of runs.

5.2 Submitted systems
For the official runs, we trained various versions of
the unadapted and generic adapted NB classifiers.
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We trained all the adapted priors on the full CLC
dataset in the expectation that this would yield more
accurate estimates. We trained the unadapted priors
and the NB features as before on the HOO training
dataset. We also trained the NB features on the full
CLC dataset and tested the impact of the preposi-
tion feature D (dependent lemma of the GR from the
preposition, i.e., the head of the preposition comple-
ment) with the different training set sizes. For all
runs we used the full set of determiner features de-
scribed in section 3.1.

The full set of multiclass NB classifiers submitted
is described below:

• Run1: unadapted, trained on the HOO data. H
feature for prepositions;

• Run2: unadapted, trained on the HOO data. H
and D features for prepositions;

• Run3: a combination of the NB classifiers
trained for each of the used candidate words
separately. H and D features are used for prepo-
sitions;

• Run4: generic adapted, trained on HOO data.
H feature for prepositions;

• Run5: generic adapted, trained on HOO data.
H and D features for prepositions;

• Run6: unadapted, trained on the full CLC. H
feature for prepositions;

• Run7: unadapted, trained on the full CLC. H
and D features for prepositions.

The classifiers used for runs 1 and 2 differ from
the ones used for runs 6 and 7 only in the amount
of training data. None of these classifiers involve
any adaptation. The classifiers used for runs 4 and
5 involve prior adaptation to the input determiner
or preposition, adjusted at decision time. In run
3, a combination of classifiers trained on the input
determiner- or preposition-specific partitions of the
HOO training data are used. At test time, the appro-
priate classifier from this set is applied depending on
the preposition or determiner chosen by the learner.

To limit the number of classes for the classifiers
used in runs 1–3 and 6–7, we have combined the
training cases for determiners a and an in one class

a/an; after classification one of the variants is chosen
depending on the first letter of the next word. How-
ever, for the classifiers used in runs 4–5, we used
priors including confusions between a and an.

The results for these runs on the training data are
shown in Tables 4 to 6 below.

Detection Recognition Correction
R P F R P F R P F

0 5.54 81.08 10.37 5.32 77.95 9.97 4.90 71.70 9.17
1 60.14 18.57 28.37 48.21 14.88 22.74 32.71 10.09 15.43
2 60.69 21.32 31.55 50.57 17.73 26.25 34.38 12.05 17.85
3 50.09 27.54 35.52 45.99 25.23 32.57 28.78 15.80 20.39
4 25.39 25.48 25.39 22.10 22.23 22.13 12.23 12.33 12.26
5 31.17 22.33 25.94 26.28 18.88 21.90 14.50 10.46 12.11
6 62.41 10.73 18.31 49.95 8.57 14.63 32.66 5.60 9.57
7 62.92 11.60 19.59 52.29 9.61 16.24 34.32 6.31 10.66

Table 4: Training set results, all errors

Detection Recognition Correction
R P F R P F R P F

0 5.02 82.98 9.46 5.02 82.98 9.46 4.81 79.57 9.07
1–2 54.42 33.25 41.25 50.09 30.60 30.83 40.70 24.84 30.83
3 58.50 62.22 60.22 57.41 61.07 59.11 46.33 49.25 47.68

4–5 34.93 31.09 32.68 33.66 30.01 31.52 19.74 17.66 18.51
6–7 58.65 8.11 14.24 53.90 7.43 13.06 40.61 5.60 9.84

Table 5: Training set results, determiner errors

Detection Recognition Correction
R P F R P F R P F

0 5.87 78.30 10.93 5.59 74.49 10.40 4.97 66.28 9.25
1 64.71 14.04 23.06 46.54 10.11 16.61 25.86 5.61 9.22
2 65.71 16.89 26.87 50.90 13.09 20.83 28.95 7.45 11.84
3 42.63 16.53 23.81 36.18 14.04 20.22 13.74 5.35 7.70
4 16.85 19.27 17.97 12.24 14.03 13.06 5.81 6.67 6.21
5 27.49 16.89 20.88 19.96 12.30 15.19 10.03 6.20 7.65
6 64.69 14.03 23.06 46.51 10.10 16.60 25.83 5.61 9.22
7 65.68 16.89 26.87 50.87 13.09 20.82 28.92 7.44 11.84

Table 6: Training set results, preposition errors

The results on the training data show that use
of the D feature improves the performance of all
the preposition classifiers. Use of the full CLC for
training improves recall, but does not improve pre-
cision for prepositions, while for determiners pre-
cision of the classifiers trained on the full CLC
is much worse. Adaptation of the classifiers with
determiner/preposition-specific priors slightly im-
proves precision on prepositions, but is damaging
for recall. Therefore, in terms of F-score, unadapted
classifiers outperform adapted ones. The over-
all best-performing system on the cross-validated
training data is Run3, which is trained on the
determiner/preposition-specific data subsets and ap-
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plies an input-specific classifier to test data. How-
ever, the result is due to improved performance on
determiners, not prepositions.

6 Official Evaluation Results

The results presented below are calculated using the
evaluation tool provided by the organizers, imple-
menting the scheme specified in the HOO shared
task. The results on the test set, presented in Ta-
bles 7–9 are from the final official run after correc-
tion of errors in the annotation and score calculation
scripts.

Detection Recognition Correction
R P F R P F R P F

0 4.86 76.67 9.15 4.65 73.33 8.75 4.65 73.33 8.75
1 34.46 13.04 18.92 22.83 8.64 12.54 13.53 5.12 7.43
2 35.73 14.04 20.16 23.47 9.22 13.24 12.26 4.82 6.92
3 19.24 12.10 14.86 14.59 9.18 11.27 5.71 3.59 4.41
4 9.51 14.95 11.63 7.19 11.30 8.79 5.29 8.31 6.46
5 15.43 14.31 14.85 10.78 10.00 10.38 6.77 6.28 6.51
6 55.60 11.15 18.58 41.86 8.40 13.99 28.54 5.73 9.54
7 56.66 11.59 19.24 42.49 8.69 14.43 27.27 5.58 9.26

Table 7: Test set results, all errors

Detection Recognition Correction
R P F R P F R P F

0 4.37 83.33 8.30 4.37 83.33 8.30 4.37 83.33 8.30
1–2 8.73 7.61 8.13 4.80 4.18 4.47 4.37 3.80 4.07

3 6.11 11.29 7.93 5.24 9.68 6.80 5.24 9.68 6.80
4–5 6.11 9.72 7.51 4.80 7.64 5.90 4.80 7.64 5.90
6–7 51.09 8.53 14.63 44.10 7.37 12.63 35.37 5.91 10.13

Table 8: Test set results, determiner errors

Detection Recognition Correction
R P F R P F R P F

0 5.33 72.22 9.92 4.92 66.67 9.16 4.92 66.67 9.16
1 57.79 14.29 22.91 39.75 9.83 15.76 22.13 5.47 8.77
2 59.43 15.41 24.47 40.98 10.63 16.88 19.67 5.10 8.10
3 29.10 11.31 16.28 23.36 9.08 13.07 6.15 2.39 3.44
4 12.71 19.75 15.46 9.43 14.65 11.47 5.74 8.92 6.98
5 24.18 16.12 19.34 16.39 10.93 13.12 8.61 5.74 6.89
6 57.79 14.29 22.91 39.75 9.83 15.76 22.13 5.47 8.77
7 59.43 15.41 24.47 40.98 10.63 16.88 19.67 5.10 8.10

Table 9: Test set results, preposition errors

The test set results for NB classifiers (Runs 1–
7) are significantly worse than our preliminary re-
sults obtained on the training data partitions, espe-
cially for determiners. Use of additional training
data (Runs 6 and 7) improves recall, but does not im-
prove precision. Adaptation to the input preposition
improves precision as compared to the unadapted
classifier for prepositions (Run 4), whereas training

on the determiner-specific subsets improves preci-
sion for determiners (Run 3). However, generally
these results are worse than the results of the similar
classifiers on the training data subsets.

We calculated the upper bound recall for our clas-
sifiers on the test data. The upper bound recall on
the test data is 93.20 for recognition, and 86.39 for
correction, given our confusion sets for both deter-
miners and prepositions. However, the actual upper
bound recall is 71.82, with upper bound recall on
determiners at 71.74 and on prepositions at 71.90,
because 65 out of 230 determiner errors, and 68 out
of 243 preposition errors are not considered by our
classifiers, primarily because when the parser fails to
find a full analysis, the grammatical context is often
not recovered accurately enough to identify missing
input positions or relevant GRs. This is an inher-
ent weakness of using only parser-extracted features
from noisy and often ungrammatical input. Taking
this into account, some models (Runs 1, 2, 6 and 7)
achieved quite high recall.

We suspect the considerable drop in precision is
explained by the differences in the training and test
data. The training set contains answers from learners
of a smaller group of L1s from one examination year
to a much more restricted set of prompts. The well-
known weaknesses of generative NB classifiers may
prevent effective exploitation of the additional infor-
mation in the full CLC over the HOO training data.
Experimentation with count weighting schemes and
optimized interpolation of adapted priors may well
be beneficial (Rennie et al., 2003).
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Abstract

In this paper, we describe the Korea Univer-
sity system that participated in the HOO 2012
Shared Task on the correction of preposition
and determiner errors in non-native speaker
texts. We focus our work on training the sys-
tem on a large collection of error-tagged texts
provided by the HOO 2012 Shared Task or-
ganizers and incrementally applying several
methods to achieve better performance.

1 Introduction

In the literature, there have been efforts aimed at de-
veloping grammar correction systems designed es-
pecially for non-native English speakers. A typi-
cal approach is to train statistical models on well-
formed texts written by native English speakers and
apply the learned models to non-native speaker texts
to correct textual errors based on given context. This
approach, however, fails to model the types of errors
that non-native speakers usually make. Recent stud-
ies demonstrate that it is possible to improve the per-
formance of error correction systems by training the
models on error-annotated non-native speaker texts
(Han et al., 2010; Dahlmeier and Ng, 2011; Gamon,
2010). Most recently, a large collection of training
data consisting of preposition and determiner errors
made by non-native English speakers has been re-
leased in the HOO (Helping Our Own) 2012 Shared
Task, which aims at promoting the research and de-
velopment of automated tools for assisting authors
in writing (Dale et al., 2012).

In this paper, we introduce our error correction
system that participated in the HOO 2012 Shared

Task, where the goal is to correct errors in the use of
prepositions and determiners by non-native speakers
of English. We mainly focus our efforts on training
the system using the non-native speaker texts pro-
vided in the HOO 2012 Shared Task. We also share
our experience in handling some issues that emerged
while exclusively using the non-native speaker texts
for training our system. In the following sections,
we will describe the system in detail.

2 System Architecture

The goal of our system is to detect and correct prepo-
sition and determiner errors in a given text. Our sys-
tem consists of two types of classifiers, namely edit
and insertion classifiers. Inputs for the two types
of classifiers are noun phrases (NP), verb phrases
(VP), and prepositional phrases (PP); we initially
pre-process the text given for training/testing by us-
ing the Illinois Chunker1 and the Stanford Part-of-
Speech Tagger (Toutanova et al., 2003). For learn-
ing the classifiers, we use maximum entropy models,
which have been successfully applied to many tasks
in natural language processing. We particularly use
Le Zhang’s Maximum Entropy Modeling Toolkit2

for implementation.

2.1 Edit Classifiers
The role of an edit classifier is to check the source
preposition/determiner word originally chosen by
the author in a given text. If the source word
is incorrect, the classifier replaces it with a bet-
ter choice. For every preposition/determiner word,

1Available at http://cogcomp.cs.illinois.edu
2Available at http://homepages.inf.ed.ac.uk/lzhang10/
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we train a classifier using examples that are ob-
served in training data. The choice for preposi-
tions is limited to eleven prepositions (about, at,
as, by, for, from, in, of, on , to, with) that most
frequently occur in the training data, and the can-
didates for determiner choice are the and a/an. In
summary, we train a total of thirteen edit classifiers,
one for each source preposition or determiner. For
each edit classifier, the set of candidate outputs con-
sists of the source preposition/determiner word it-
self, other confusable preposition/determiner words,
and no preposition/determiner in case the source
word should be deleted. Note that the number of
confusable words for each source preposition is de-
cided flexibly, depending on examples observed in
the training data; a similar approach has been pro-
posed earlier by Rozovskaya and Roth (2010a). For
a particular source preposition/determiner word in
the test data, the system decides whether to correct
it or not based on the output of the classifier for that
source word.

2.2 Insertion Classifier

Although the edit classifiers described above are
capable of deciding whether a source preposi-
tion/determiner word that appears in the test data
should be replaced or removed, a large proportion
of common mistakes for non-native English writers
consists of missing prepositions/determiners (i.e.,
leaving them out by mistake). To deal with those
types of errors, we train a special classifier for inser-
tions. A training or testing event for this particular
classifier is any whitespace before or after a word
in a noun or verb phrase that is a potential loca-
tion for a preposition or determiner. Table 1 shows
the five simple heuristic patterns based on part-of-
speech tags that the system uses in order to locate
potential sites for prepositions/determiners. Note
that s is a whitespace to be examined, an asterisk (*)
means wildcard, and NN includes the tags that start
with NN, such as NNS, NNP, and NNPS. VB is also
treated in the same manner as NN. The set of can-
didate outputs consists of the eleven prepositions,
the two determiners, and no preposition/determiner
class. Once a candidate position for insertion is de-
tected in the test data, the system decides whether to
make an insertion or not based on the output of the
insertion classifier.

Pattern Example
s+NN I’ll give you all information
s+*+NN I need few days
s+VB It may seem relaxing at beginning
s+*+VB Buy new colored clothes
VB+s I’m looking forward your reply

Table 1: Patterns of candidates for insertion

2.3 Features
Both edit and insertion classifiers can be trained us-
ing three types of features described below.

• LEX/POS/HEAD This feature set refers to the
contextual features from a window of n tokens
to the right and left that are practically used in
error correction studies (Rozovskaya and Roth,
2010b; Han et al., 2010; Gamon, 2010). Such
features include lexical features, part-of-speech
tags, and head words of the preceding and the
following chunks of the source word. In this
work, we set n to be 3.

• HAN This represents the set of features specifi-
cally used in the work of Han et al. (2010); they
demonstrate that a model trained on non-native
speaker texts can outperform one trained solely
on well-formed texts.

• L13 L1 refers to the first language of the au-
thor. There have been some efforts to leverage
L1 information for improving error correction
performance. For example, Rozovskaya and
Roth (2011) propose an algorithm for adapting
a learned model to the L1 of the author. There
have been many studies leveraging writers’ L1.
In this work, we propose to directly utilize L1
information of the authors as features. We also
leverage additional features by combining L1
and individual head words that govern or are
governed by VP or NP.

3 Additional Methods for Improvement

The training data provided in the HOO 2012 Shared
Task consists of exam scripts drawn from the pub-
licly available FCE dataset (Yannakoudakis et al.,

3L1 information was provided in the training data but not in
the test data. Therefore, the benefits of using L1 remain incon-
clusive in this paper.
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a/an the NULL
6028 114 203

Table 2: Training data distribution for a/an classifier

about as at by for from
0 3 2510 1 2 3
in of on to with NULL
75 7 20 30 3 41

Table 3: Training data distribution for at classifier

2011) with textual errors annotated in HOO data
format. From this data, we extract examples for
training our classifiers. For example, let w be a
source word that we specifically want our classifier
to learn. Every use of w that appears in the train-
ing data may be an example that the classifier can
learn from. However, it is revealed that for all w,
there are always many more examples where w is
used correctly than examples where w is replaced or
removed. Table 2 and Table 3 respectively show the
class distributions of all examples for source words
a/an and at that are observable from the whole train-
ing data for training a/an- and at-specific classifiers.
We can see that various classes among the training
data are unevenly represented. When training data is
highly skewed as shown in the two tables, construct-
ing a useful classifier becomes a challenging task.
We observed from our preliminary experiments that
classifiers learned on highly unbalanced data hardly
tend to correct the incorrect choices made by non-
native speakers. Therefore, we investigate two sim-
ple ways to alleviate this problem.

3.1 Filtering Examples Less Likely to be
Incorrect

As mentioned above, there are many more exam-
ples where the source preposition/determiner is used
without any error. One straightforward way to ad-
just the training data distribution is to reduce the
number of examples where the source word is less
likely to be replaced or removed by using language
model probabilities. If a language model learned on
a very large collection of well-formed texts returns
a very high language model probability for a source
word surrounded by its context, it may be reason-

Class Initial After After
Distribution Filtering Adding

about 0 0 528
as 3 3 275
at 2510 2367 2367
by 1 1 207
for 2 2 1159

from 3 3 550
in 75 75 1521
of 7 7 1454
on 20 20 541
to 30 30 2309

with 3 3 727
NULL 41 41 41

Table 4: Refined data distribution for at classifier

able to assume that the source word is used correctly.
Therefore we build a language model trained on the
English Gigaword corpus by utilizing trigrams. Be-
fore providing examples to the classifiers for train-
ing or testing, we filter out those that have very high
language model probabilities above a pre-defined
threshold value.

3.2 Adding Artificial Errors

Our second approach is to introduce more artificial
examples to the training data, so that the class dis-
tribution of all training examples becomes more bal-
anced. For example, if we aim at adding more train-
ing examples for a/an classifier, we would extract
correct phrases such as “the different actor” from the
training data and artificially convert it into “a differ-
ent actor” so that an example of a/an being corrected
to the is also provided to a/an classifier for training.
When adding aritificial examples into the training
data, we avoid the number of examples belonging
to each class exceeding the number of cases where
the source word is not replaced or removed. Table
4 demonstrates the results of both the filtering and
adding approaches for training the a/an classifier.

4 Experiments

4.1 Runs

This section describes individual runs that we sub-
mitted to the HOO 2012 Shared Task organizers. Ta-
ble 5 represents the setting of each run.
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Runs Models Features Filtering Adding
Threshold

Run0 LM n/a n/a
Run1 ME LEX/POS/HEAD X X
Run2 ME HAN X X
Run3 ME LEX/POS/HEAD -2 X
Run4 ME LEX/POS/HEAD -2 O
Run5 ME LEX/POS/HEAD, L1 -2 O
Run6 ME LEX/POS/HEAD, L1, age -2 O
Run7 ME Insertion: POS/HEAD X X

Other: LEX/POS/HEAD
Run8 ME LEX/POS/HEAD -3 X

Table 5: The explanation of each runs

• Run0 This is a baseline run that represents the
language model approach proposed by Gamon
(2010). We train our language model on Giga-
word corpus, utilizing trigrams with interpola-
tion and Kneser-Ney discount smoothing.

• Run1, 2 Run1 and 2 represent our system us-
ing the LEX/POS/HEAD feature sets and HAN
feature sets respectively. Neither additional
method described in Section 3 is applied.

• Run3, 8 These runs represent our system us-
ing LEX/POS/HEAD features (Run1), where
examples that are less likely to be incorrect are
filtered out by consulting our language model.
The threshold value is set to −2 and −3 for
Runs 3 and 8 respectively.

• Run4 This particular run is one where we intro-
duce additional errors in order to make the class
distribution of the training data for the classi-
fiers more balanced. This step is incrementally
applied in the setting of Run3.

• Run5, 6 Run5 and 6 are when we consider L1
information and age respectively as additional
features for training the classifiers. The basic
setup is same as Run4.

• Run7 This run represents our system with
its insertion classifier trained using POS and
HEAD features only. No LEX features are
used.

Runs Precision Recall F-score
Run0 1.45 15.45 2.65
Run1 1.35 10.82 2.39
Run2 1.23 11.48 2.22
Run3 1.33 10.6 2.36
Run4 1.19 11.26 2.15
Run5 1.02 10.38 1.87
Run6 0.99 9.93 1.79
Run7 1.16 11.26 2.1
Run8 1.46 11.04 2.58

Table 6: Correction before test data revisions

5 Results

Table 6 shows the correction scores of the individual
runs that we originally submitted. Unfortunately, we
should confess that we made a vital mistake while
generating the runs from 1-8; the modules imple-
mented for learning the insertion classifier had some
bugs that we could not notice during the submission
time. Because of this, our system was unable to han-
dle MD and MT type errors properly. This is the
reason why the performance figures of our runs are
very low. For reference, we include Tables 7-10 that
illustrate the performance of our individual runs that
we calculated by ourselves using the test data and
the evaluation tool provided by the organizers.

We can observe that Run3 outperforms Run1 and
Run4 performs better than Run3, which demon-
strates that our attempts to improve the system per-
formance by adjusting training data for classifiers
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Runs Precision Recall F-score
Run1 42.67 7.06 12.12
Run2 49.28 7.51 13.03
Run3 47.62 6.62 11.63
Run4 45.45 7.73 13.21
Run5 33.82 10.15 15.62
Run6 8.68 18.54 11.82
Run7 33.33 10.82 16.33
Run8 50.0 7.28 12.72

Table 7: Recognition before test data revisions (system
revised)

Runs Precision Recall F-score
Run1 32.0 5.3 9.09
Run2 42.03 6.4 11.11
Run3 34.92 4.86 8.53
Run4 37.66 6.4 10.94
Run5 26.47 7.94 12.22
Run6 5.68 12.14 7.74
Run7 24.49 7.95 12.0
Run8 42.42 7.28 10.79

Table 8: Correction before test data revisions (system re-
vised)

help. Moreover, we can also see that L1 informa-
tion helps when directly used for training features.

6 Conclusion

This was our first attempt to participate in a shared
task that involves the automatic correction of gram-
matical errors made by non-native speakers of En-
glish. In this work, we tried to focus on investigating
simple ways to improve the error correction system
learned on non-native speaker texts. While we had
made some critical mistakes on the submitted runs,
we were able to observe that our method can poten-
tially improve error correction systems.
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Abstract

This is the report for the CNGL ILT team en-
try to the HOO 2012 shared task. A Naive-
Bayes-based classifier was used in the task
which involved error detection and correction
in ESL exam scripts. The features we use in-
clude n-grams of words and POS tags together
with features based on the external Google N-
Grams corpus. Our system placed 11th out
of 14 teams for the detection and recognition
tasks and 11th out of 13 teams for the correc-
tion task based on F-score for both preposition
and determiner errors.

1 Introduction

The HOO 2012 shared task seeks to apply compu-
tational methods to the correction of certain types
of errors in non-native English texts. The previous
year’s task, (Dale and Kilgarriff, 2011), focused on
a larger scale of errors and a corpus of academic ar-
ticles. This year’s task focuses on six error types in a
corpus of non-native speaker text. The scope of the
errors is as follows:1

Error Code Description Example
RT Replace Preposition When I arrived at London
MT Missing preposition I gave it John
UT Unnecessary preposition I told to John that
RD Replace determiner Have the nice day
MD Missing determiner I have car
UD Unnecessary determiner There was a lot of the traffic

Table 1: Error types for HOO 2012 Shared Task

In Section 2, we give a brief summary of the data
for the shared task and in Section 3 we explain the

1http://correcttext.org/hoo2012/
errortypes.html last verified, May 10, 2012

individual steps in the system. Section 4 details the
different configurations for each of the runs submit-
ted and finally, Section 5 presents the results.

2 Training data

The training data for this shared task has been pro-
vided by Cambridge University Press and consists of
scripts from students sitting the Cambridge ESOL
First Certificate in English (FCE) exams. The top-
ics of the texts are comparable as they have been
drawn from two consecutive exam years. The data is
provided in XML format and contains 1000 original
exam scripts, together with a standoff file containing
edits of the type described in Section 1 above, also
in XML format. These edits consist of offset infor-
mation, edit type information and before and after
text for correction. The results for the shared task
were presented in this format.

The test data consists of 100 exam scripts drawn
from a new corpus of exam scripts.

Some extra metadata is present in the source files,
including information about the student’s mother
tongue and the age-range of the student, however the
mother tongue data is not present in the test set.

3 Approach

The approach we have chosen for this task involves
the use of supervised machine-learning algorithms
in a four-part classification task.

3.1 Overview of the system

The first part of the task involves identification of
edits in the training data, perhaps the most challeng-
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ing given the large imbalance of edits vs non-edits
in the data.

The next step concerns classification of edits into
the six types described above, and the final task
involves correction of edits, replacing or adding
prepositions and determiners, and possibly in some
cases removal of same.

There is a fourth step involved which reassesses
the classification and correction based on some sim-
ple heuristics, using POS tags of the head word of
each instance. If the headword is not a preposition
and the system has marked a replace preposition er-
ror at that position, this error will be removed from
the system. Likewise when the headword is not a
determiner and a replace determiner error has been
marked. If the replacement suggested is the same
as the original text (in some cases this occurs), the
edit is also removed. Another case for removal in
this fashion includes an error type involving a miss-
ing determiner error where the head word is neither
a noun or an adjective. In some cases the system
reported and corrected an error suggesting the same
text as was originally there, i.e no change. These
cases are also removed from the end result.

3.2 Classification

We utilise the freely available Weka machine learn-
ing toolkit (Hall et al., 2009), and the algorithm used
for classification in each step is Naive Bayes.

3.2.1 Representing the data

We represent each word in the training data as a
vector of features. There are 39 basic features used
in the detection process, and 42 in the classification
and training step. The first 7 features contain in-
formation which is not used for classification but is
used to create the edit structures, such as start offset,
end offset, native language, age group and source
filename and part information. These features in-
clude the current word plus the four preceding and
following words, POS and spell-checked versions of
each, together with bigrams of the two following and
two preceding words with spell-checked and POS
versions for these. Information on speaker age and
native language is also included although native lan-
guage information is not present in the test set.

3.2.2 Additional processing
All tokens have been lower-cased and punctuation

has been removed. POS information for each token
has been added. The open-source POS tagger from
the OpenNLP tools package (OpenNLP, 2012) has
been used to this end. Spell correction facility has
been provided using the basic spellchecker in the
Lucene information retrieval API(Gospodnetic and
Hatcher, 2005) and the top match string as provided
by this spell correcting software is used in addition
to each feature. The basic maximum entropy model
for English is used for the POS tagger.

We had also planned to include features based
on the Google Books n-gram corpus, (Michel et al.,
2011) which is freely available on the web, but un-
fortunately did not get to include them in the ver-
sion submitted due to errors which were found in the
scripts for generating the features late in the process.
Nevertheless, we describe these features in Section
3.3 and present some cross-validation results from
the training data for the detection step in Section 5.1.

3.3 Google N-grams Features

3.3.1 Motivation
The Google Books N-Grams2 is a collection of

datasets which consist of all the sequences of words
(n-grams) extracted from millions of books (Michel
et al., 2011). The “English Million” dataset contains
more more than 500 millions distinct n-grams3, from
size 1 to 5. for every n-gram, its frequency, page
frequency (number of pages containing it) and book
frequency (number of books containing it) are pro-
vided.

In this Shared Task, we aim to use the Google N-
grams as a reference corpus to help detecting the
errors in the input. The intuition is the following:
if an error occurs, comparing the frequency of the
input n-grams against the frequency of other possi-
bilities in the Google N-grams data might provide
useful indication on the location/type of the error.
For example, given the input “I had to go in a li-
brary”, The Google N-grams contain only 36,716
occurrences of the trigram “go in a”, but 244,098
occurrences of “go to a”, which indicates that the
latter is more likely.

2http://books.google.com/ngrams/datasets
3The least frequent n-grams were discarded.
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However there are several difficulties in using
such a dataset:

• Technical limitations. Extracting information
from the dataset can take a lot of time because
of the size of the data, thus the range of ap-
proaches is restricted by efficiency constraints.

• Quality of the data. The Google N-grams were
extracted automatically using OCR, which
means that the dataset can contain errors or un-
expected data (for example, the English dataset
contains a significant number of non-English
words).

This is why the Google N-grams must be used
cautiously, and only as an indication among others.

3.3.2 Method
Our goal is to add features extracted from the

Google N-grams dataset to the features described
above, and feed the supervised classification process
with these. Before computing the features, a list L
of “target expressions” is extracted from the train-
ing data, which contains all the words or sequences
of words (determiners and prepositions) which oc-
cur in a correction. Then, given an input sentence
A1 . . . Am and a position n in this sentence, two
types of information are extracted from the Google
data:

• Specific indications of whether an error exists
at this position:

1. No change: the frequency of the input se-
quence An−1An and An−1AnAn+1 ;

2. Unnecessary word(s): the frequency of the
sequence An−1An+1 if A ∈ L;

3. Missing word(s): the frequency of the se-
quence XAn (resp. An−1XAn for tri-
grams) for any target expression X ∈ L;

4. Replacement: if A ∈ L, the frequency of
XAn+1 (resp. An−1XAn+1 for trigrams)
for any target expression X ∈ L;

• Generic indications taking the context into ac-
count: for length N from 1 to 5 in a window
An−4 . . . An+4, 16 combinations are computed
based only on the fact the n-grams appear in the

Google data; for example, one of these combi-
nations is the normalized sum for the 4 5-grams
in this window of 0 or 1 (the n-gram occurs or
does not).

Additionally, several variants are considered:

• bigrams or trigrams for “specific” features;

• binary values for “specific” features: 1 if the
n-gram appears, 0 otherwise;

• keep only the “generic” features and the first
three features.

4 Run configurations

Ten runs were submitted to the organisers based on
different configurations. Modification of the data
was carried out using both instance reduction and
feature selection techniques. The system facilitated
the use of different training data for each of the three
main classification steps.

4.1 Least frequent words filter

Before classification, the data is preprocessed by re-
placing all the least frequent words with a default
value (actually treated as missing values by the clas-
sifier). This is intended to help the classifier focus
on the most relevant indications and to prevent over-
specification of the classification model.

4.2 Instance reduction filters

4.2.1 POSTrigrams filter
The POS trigrams filter works as follows: during

the training stage, the sequences of POS tags for the
words current-1.current.current+1 are extracted for
each instance, together with its corresponding class.
Every POS trigram is then associated with the fol-
lowing ratio:

Frequency of true instances
Frequency of false instances

Then, when predicting the class, the filter is applied
before running the classifier: the sequences of tri-
grams are extracted for each instance, and are com-
pared against the corresponding ratio observed dur-
ing the training stage; the instance is filtered out if
the ratio is lower than some threshold N%. In Table

259



Run Detection Classification Correction
0 R1 Normal Normal
1 R20 Normal Normal
2 Full F12 Normal
3 R10 Normal Normal
4 R30 Normal Normal
5 F12 F12 Normal
6 R4new Normal Normal
7 R4 + F12 F12 Normal
8 R4 Normal Normal
9 R2 Normal Normal

Table 2: Run configurations

2, the label RN refers to the percentage (N) used as
cut-off in the experiments.

This filter is intended to reduce the impact of the
fact that the classes are strongly unbalanced. It per-
mits discarding a high number of false instances,
while removing only a small number of true in-
stances. However, as a side effect, it can cause the
classifier to miss some clues which were in the dis-
carded instances.

4.2.2 CurrentPlusOrMinusOne filter

The current plusorminus one filter works as fol-
lows: A list of all current.current+1 word bigrams
is made from the error instances in the training data,
along with all current-1.current bigrams. The non-
error instances in the training data are then filtered
based on whether an instance contains an occur-
rence of any current.current+1 or current-1.current
bigram in the list.

4.3 Feature selection filters

4.3.1 F12

During preliminary experiments, selecting a sub-
set of 12 features produced classification accuracy
gains in the detection and classification steps of the
process using ten-fold cross validation on the train-
ing set. These twelve features were: current, cur-
rent+1.current+2, current-1.current-2, currentSC,
currentPOS, current-1, current-2, current+1, cur-
rent+2, current+1SC, and current-1SC. The SC
postfix refers to the spell-corrected token, with POS
referring to the part-of-speech tag. The F12 config-
uration filter removes all other features except these.

5 Results

Table 3 displays the results for both preposition and
determiner errors which were obtained by the sys-
tem on the preliminary test set before teams sub-
mitted their revisions. Table 4 refers to the results
obtained by the system after the revised errors were
removed/edited.

Task Rank Run Precision Recall F-Score
Detection 11 9 5.33 25.61 8.82

Recognition 11 9 4.18 20.09 6.92
Correction 11 9 2.66 12.8 4.41

Table 3: Overall results on original data: TC

Task Rank Run Precision Recall F-Score
Detection 11 8 6.56 26.0 10.48

Recognition 11 8 4.91 19.45 7.84
Correction 11 8 3.09 12.26 4.94

Table 4: Overall results on revised data: TC

5.1 Some detailed results (detection)

The results reported here were obtained on the train-
ing data only, using 5-fold cross-validation, and only
for the detection task. We have studied various set-
tings for the parameters; figure 1 shows a global
overview of the performance depending on several
parameters (we show only a few different values in
order to keep the graph readable).

The results show that the Google features con-
tribute positively to the performance, but only
slightly: the F1 score is 0.6% better on average. This
overview also hides the fact that some combinations
of values work better together; for instance, contrary
to the fact that not filtering the POS trigrams per-

Run3 Recall Precision F
Detection 9.05 7.42 8.15
Correction 4.19 3.44 3.78
Recognition 9.05 7.42 8.15
Run8 Recall Precision F
Detection 22.51 5.44 8.76
Correction 11.25 2.72 4.38
Recognition 22.51 5.44 8.76
Run9 Recall Precision F
Detection 25.61 5.33 8.82
Correction 12.80 2.66 4.41
Recognition 20.09 4.18 6.92

Table 5: Top results on original test data
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Figure 1: Average F-score depending on several parameters.
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forms better on average, the best performances are
obtained when filtering, as shown in figure 2.

Figure 2: F-score (%) w.r.t POS trigrams filter threshold.
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• Minimum frequency4 (preprocessing, see 4.1).
4Remark: the values used as “minimum frequencies” re-

ported in this paper can seem unusually high. This is due to
the fact that, for technical reasons, the thresholds were applied
globally to the data after it had been formatted as individual in-
stances, each instance containing a context window of 9 words.
As a consequence a threshold of N means that a given word
must occur at least N/9 times in the original input data.

As shown in Figure 2, using a high threshold
helps the classifier build a better model.

• POS trigrams filter (see 4.2.1.) Even if not fil-
tering at all performs better on average, the best
cases are obtained with a low threshold. Addi-
tionally, this parameter can be used to balance
between recall and precision (when one wants
to favor one or the other).

• Size of the context window. Results can show
important differences depending on the size
of the window, but no best configuration was
found in general for this parameter.

• Google features (see 3.3.2.) The Google fea-
tures help slightly in general, and are used in
the best cases that we have obtained. How-
ever there is no significantly better approach
between using the original frequencies, simpli-
fying these to binary values, or even not using
the list of target expressions.

6 Conclusions

The task of automated error correction is a difficult
one, with the best-performing systems managing ap-
prox. 40 % F-score for the detection, recognition
and correction (Dale et al., 2012). There are several
areas where our system’s performance might be im-
proved. The spellcheck dictionary which was used
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was a general one and this resulted in many spelling
corrections which were out of context. A more tai-
lored dictionary employing contextual awareness in-
formation could be beneficial for the preprocessing
step.

Multi-word corrections were not supported by the
system due to how the instances were constructed
and these cases were simply ignored, to the detri-
ment of the results.

In the basic feature set, the majority of features
were based on word unigrams, however more n-
gram features could improve results as these were
found to perform well during classification.

There were many different ways to exploit the
Google N-Grams features and it may be the case
that better combinations of features can be found for
each of the classification steps.

Finally, very little time was spent tuning the
datasets for the classification and correction step as
opposed to the detection phase, this is another part of
the system where fine-tuning parameters could im-
prove performance.
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Abstract

In this paper we describe the technical im-
plementation of our system that participated
in the Helping Our Own 2012 Shared Task
(HOO-2012). The system employs a num-
ber of preprocessing steps and machine learn-
ing classifiers for correction of determiner and
preposition errors in non-native English texts.
We use maximum entropy classifiers trained
on the provided HOO-2012 development data
and a large high-quality English text collec-
tion. The system proposes a number of highly-
probable corrections, which are evaluated by a
language model and compared with the origi-
nal text. A number of deterministic rules are
used to increase the precision and recall of the
system. Our system is ranked among the three
best performing HOO-2012 systems with a
precision of 31.15%, recall of 22.08% and F1-
score of 25.84% for correction of determiner
and preposition errors combined.

1 Introduction

The Helping Our Own Challenge (Dale and Kilgar-
riff, 2010) is a shared task that was proposed to ad-
dress automated error correction of non-native En-
glish texts. In particular, the Helping Our Own 2012
Shared Task (HOO-2012) (Dale et al., 2012) focuses
on determiners and prepositions as they are well-
known sources for errors produced by non-native
English writers. For instance, Bitchener et al. (2005)
reported error rates of respectively 20% and 29%.

Determiners are in particular challenging because
they depend on a large discourse context and world
knowledge, and moreover, they simply do not exist

in many languages, such as Slavic and South-East
Asian languages (Ghomeshi et al., 2009). The use
of prepositions in English is idiomatic and thus very
difficult for learners of English. On the one hand,
prepositions connect noun phrases to other words in
a sentence (e.g. . . . by bus), on the other hand, they
can also be part of phrasal verbs such as carry on,
hold on, etc.

In this paper we describe our system implemen-
tation and results in HOO-2012. The paper is struc-
tured as follows. Section 2 gives the task definition,
errors addressed, data resources and evaluation cri-
teria and metrics. Section 3 shows some background
and related work. Section 4 gives the full system de-
scription, while Section 5 reports and discusses the
results of the experiments. Section 6 concludes with
an error analysis and possible further improvements.

2 HOO-2012 Tasks and Resources

2.1 Tasks

In the scope of HOO-2012 the following six possible
error types1 are targeted:

• Replace determiner (RD):
Have the nice day. → Have a nice day.

• Missing determiner (MD):
That is great idea. → That is a great idea.

• Unnecessary determiner (UD):
I like the pop music. → I like pop music.

1The set of error tags is based on the Cambridge University
Press Error Coding System, fully described in (Nicholls, 2003).
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• Replace preposition (RT):
In the other hand. . . → On the other hand. . .

• Missing preposition (MT):
She woke up 6 o’clock. → She woke up at 6
o’clock.

• Unnecessary preposition (UT):
He must go to home. → He must go home.

2.2 Data
The HOO development dataset consists of 1000
exam scripts drawn from a subset of the CLC FCE
Dataset (Yannakoudakis et al., 2011). This corpus
contains texts written by students who attended the
Cambridge ESOL First Certificate in English exam-
ination in 2000 and 2001. The entire development
dataset comprises 374680 words, with an average
of 375 words per file. The test data consists of a
further 100 files provided by Cambridge University
Press (CUP), with 18013 words, and an average of
180 words per file.

Type # Dev # Test A # Test B

RD 609 38 37
MD 2230 125 131
UD 1048 53 62

Det 3887 217 230

RT 2618 136 148
MT 1104 57 56
UT 822 43 39

Prep 4545 236 243

Total 8432 453 473

Words/Error 44.18 39.77 38.08

Table 1: Data error statistics.

Counts of the different error types are provided in
Table 1. The table shows counts for the development
dataset (‘Dev’) and two versions of the gold stan-
dard test data: the original version as derived from
the CUP-provided dataset (‘Test A’), and a revised
version (‘Test B’) which was compiled in response
to requests for corrections from participating teams.
The datasets and the revision process are further ex-
plained in (Dale et al., 2012).

2.3 Evaluation Criteria and Metrics

For evaluation in the HOO framework, a distinction
is made between scores and measures. The com-
plete evaluation mechanism is described in detail in
(Dale and Narroway, 2012) and on the HOO-2012
website.2

Scores Three different scores are used:

1. Detection: does the system determine that an
edit of the specified type is required at some
point in the text?

2. Recognition: does the system correctly deter-
mine the extent of the source text that requires
editing?

3. Correction: does the system offer a correction
that is identical to that provided in the gold
standard?

Measures For each score, three measures are cal-
culated: precision (1), recall (2) and F -score (3).

precision =
tp

tp+ fp
(1)

recall =
tp

tp+ fn
(2)

where tp is the number of true positives (the num-
ber of instances that are correctly found by the sys-
tem), fp the number of false positives (the number
of instances that are incorrectly found), and fn the
number of false negatives (missing results).

Fβ = (1 + β2)
precision · recall

β2 · precision+ recall
(3)

where β is used as a weight factor regulating the
trade-off between recall and precision. We use the
balanced F -score, i.e. β = 1, such that recall and
precision are equally weighted.

Combined We provide results on prepositions and
determiners combined, and for each of these two
subcategories separately. We also report on each of
the different error types separately.

2See http://www.correcttext.org/hoo2012.

264



3 Related Work

HOO-2012 follows on from the HOO-2011 Shared
Task Pilot Round (Dale and Kilgarriff, 2011). That
task targeted a broader range of error types, and used
a much smaller dataset.

Most work on models for determiner and preposi-
tion generation has been developed in the context of
machine translation output (e.g. (Knight and Chan-
der, 1994), (Minnen et al., 2000), (De Felice and
Pulman, 2007) and (Toutanova and Suzuki, 2007)).
Some of these methods depend on full parsing of
text, which is not reliable in the context of noisy
non-native English texts.

Only more recently, models for automated error
detection and correction of non-native texts have
been explicitly developed and studied. Most of these
methods use large corpora of well-formed native En-
glish text to train statistical models, e.g. (Han et al.,
2004), (Gamon et al., 2008) and (De Felice and Pul-
man, 2008). Yi et al. (2008) used web counts to de-
termine correct article usage, while Han et al. (2010)
trained a classifier solely on a large error-tagged
learner corpus for preposition error correction.

4 System Description

4.1 Global System Workflow
The system utilizes a hybrid approach that combines
statistical machine learning classifiers and a rule-
based system. The global system architecture is pre-
sented in Figure 1. This section describes the global
system workflow. The subsequent sections elabo-
rate on the machine learning classifiers and heuris-
tics implemented in the system.

The system workflow is divided in the following
processing steps:

1. Text Preprocessing: The system performs a
preliminary text analysis by automated spelling
correction and subsequent syntactic analysis,
such as tokenization and part-of-speech (POS)
tagging.

2. Error Detection, Recognition and Correction:
The system identifies if a correction is needed,
and the type and extent of that correction. Two
families of error correction tasks that separately
address determiners and prepositions are per-
formed in parallel.

3. Correction validation: Once a correction has
been proposed, it is validated by a language
model derived from a large corpus of high-
quality English text.

4.1.1 Text Preprocessing
In HOO-2012, texts submitted for automated cor-

rections are written by learners of English. Besides
the error types that are addressed in HOO-2012, mis-
spellings are another type of highly-frequent errors.
For example, one student writes the following: In my
point of vue, Internet is the most important discover
of the 2000 centery.

When using automated natural language process-
ing tools, incorrect spelling (and grammar) can in-
troduce an additional bias. To reduce the bias propa-
gated from the preprocessing steps, the text is first
automatically corrected by the open-source spell
checker GNU Aspell.3

At the next step, the text undergoes a shallow syn-
tactic analysis that includes sentence boundary de-
tection, tokenization, part-of-speech tagging, chunk-
ing, lemmatization, relation finding and preposi-
tional phrase attachment. These tasks are performed
by MBSP (De Smedt et al., 2010).4

4.1.2 Error Detection, Recognition and
Correction

In general, the task of automated error correction
is addressed by a number of subtasks of finding the
position in text, recognizing the type of error, and
the proposal for a correction. In our implementation
we approach these tasks in a two-step approach as
proposed in (Gamon et al., 2008). With two families
of errors, the system therefore employs four classi-
fiers in total.

For determiner error corrections, a classifier (C1
in Figure 1) first predicts whether a determiner is
required in the observed context. If it is required,
another classifier (C2 in Figure 1) estimates which
one. The same approach is employed for the prepo-
sition error correction task (classifiers C3 and C4 in
Figure 1). The details on how the classifiers were
implemented are highlighted in Section 4.2.

3http://aspell.net/
4MBSP is a text analysis system based on the TiMBL and

MBT memory based learning applications developed at CLiPS
and ILK (Daelemans and van den Bosch, 2005).
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Figure 1: System architecture.

4.1.3 Correction Validation
Our error correction system implements a correc-

tion validation mechanism as proposed in (Gamon et
al., 2008). The validation mechanism makes use of
a language model that is derived from a large corpus
of English. We use a trigram language model trained
on the English Gigaword corpus with a 64K-word
vocabulary (using interpolated Kneser-Ney smooth-
ing with a bigram cutoff of 3 and trigram cutoff of
5).

The language model serves to increase the pre-
cision at the cost of recall as false positives can be
confusing for learners for English. The original sen-
tence and the error-corrected version are passed to
the language model. Only if the difference in proba-
bility of being generated by the language model ex-
ceeds a heuristic threshold (estimated using a tuning
set) is the correction finally accepted.

4.2 Machine Learning Classifiers

As already mentioned, the system employs four ma-
chine learning classifiers in total (C1–C4 — two for
each family of errors). Classifiers C1 and C3 re-
spectively estimate the presence of determiners and
prepositions in the observed context. If one is ex-
pected, the second set of classifiers estimates which
one is the most likely.

For the determiner choice classifier (C2), we re-
strict the determiner choice class values to the indef-
inite and definite articles: a/an and the. The prepo-
sition choice class values for the preposition choice
classifier (C4) are restricted to set of the following
10 common prepositions: on, in, at, for, of, about,
from, to, by, with and (other).

All the classifiers are implemented by discrimina-
tive maximum entropy classification models (ME)
(Ratnaparkhi, 1998). Such models have been proven
effective for a number of natural language process-
ing tasks by combining heterogeneous forms of evi-
dence (Ratnaparkhi, 2010).

Training Classifiers and Inference As training
instances we consider each noun phrase (NP) in ev-
ery sentence of the training data. For the binary clas-
sifiers (C1 and C3), a positive example is a noun
phrase that follows a determiner/preposition, and a
negative example is one that does not. The multi-
class classifiers (C2 and C4) are trained respectively
to distinguish specific instances of determiners (defi-
nite and indefinite for C2) and the set of prepositions
mentioned above. For each classifier, a training in-
stance is represented by the following features:

• Tokens in NP.

• Tokens’ POS tags in NP.

• Tokens’ lemmas in NP.

• Tokens in a contextual window of 3 tokens to
the left and to the right from the potential cor-
rection position.

• Tokens’ POS tags in a contextual window of 3
tokens from the potential correction position.

• Tokens’ lemmas in a contextual window of 3
tokens from the potential correction position.

• Trigrams of concatenated tokens before and af-
ter NP.
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• Trigrams of concatenated tokens’ POS tags be-
fore and after NP.

• Trigrams of concatenated tokens’ lemmas be-
fore and after NP.

• Head noun in NP.

• POS tag of head noun in NP.

• Lemma of head noun in NP.

Once the classification models have been derived,
the classifiers are ready to be employed in the sys-
tem. For the text correction task, each sentence
undergoes the same preprocessing analysis as de-
scribed in Section 4.1.1. Then, for each noun phrase
in the input sentence, we extract the feature con-
text, and use the models to predict the need for
the presence of a determiner or preposition, and if
so, which one. Our system only accepts classifier
predictions if they are obtained with a high confi-
dence. The confidence thresholds were empirically
estimated from pre-evaluation experiments with a
tuning dataset (Section 5.1).

4.3 Rule-based Modules
Our system also has a number of rule-based mod-
ules. The first rule-based module is in charge of
making the choice between a and an if the deter-
miner type classifier (C2) predicts the presence of
an indefinite determiner. The choice is determined
by a lookup in the CMU pronouncing dictionary5

(a/an CMU Dictionary in Figure 1). In this dictio-
nary each word entry is mapped to one or a number
of pronunciations in the phonetic transcription code
system Arpabet. If the pronunciation of the word
that follows the estimated correction position starts
with a consonant, a is used; if it starts with a vowel,
an is selected.

The second rule-based module corrects confusion
errors of determiner-noun agreement, e.g. this/these
and that/those (Definite Determiner in Figure 1). It
is implemented by introducing rules with patterns
based on whether the noun was tagged as singular
or plural.

The third rule-based module is used to filter out
unnecessary corrections proposed by the classifiers

5http://www.speech.cs.cmu.edu/cgi-bin/
cmudict

(C1-C4) and augmented by the already described
rule-based modules. Each correction is examined
against the input text and if it yields a different text
than the original input text, such a correction is con-
sidered as a necessary correction.

However, sometimes automatically proposed cor-
rections have to be rejected because they are out of
scope of the addressed errors. We do not replace
possessive determiners such as my, your, his, our,
their by the definite article the. Similarly, some
prepositions can be grouped in opposite pairs, for
example from and to, for which we do not propose
any correction as it requires a deep semantic analysis
of text.

5 Experiments and Results

In this section we describe the pre-evaluation exper-
iments and the results of the final evaluation on the
HOO-2012 test set. Table 2 shows the characteris-
tics of the datasets used in the experiments.

Dataset Sentences Tokens

HOO training 21925 340693
HOO tuning 2560 40966
HOO held-out 2749 42325

Reuters 207083 5487021
Wikipedia 53370 1430428

HOO test 1376 20606

Table 2: Datasets used.

5.1 Pre-Evaluation Experiments

In the course of system development, we split the
files in the HOO development dataset into a train-
ing set (80%), a tuning set (10%) and a held-out test
set (10%). From the beginning it was clear that the
provided development dataset alone was too small to
address the automated error correction tasks by em-
ploying machine learning classification techniques.
Additionally to that dataset, we used a set of Reuters
news data and the Wikipedia corpus for training the
classifiers.

Once the classification models had been derived,
the system was evaluated on the tuning data and ad-
justed in order to increase the overall performance.
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After that, the system was evaluated on the held-out
test set for which the results are shown in Table 3.

Type Precision Recall F1-score

Det 64.11 14.89 24.17
Prep 52.32 16.38 25.32
All 60.19 15.38 24.50

Table 3: Correction results on held-out test set.

5.2 Final System Configuration and Evaluation
Results

For the final evaluation, we retrained the models us-
ing the complete HOO development data (again, in
addition to the Reuters and Wikipedia corpus men-
tioned above). The number of training instances are
shown in Table 4.

Classifier # Training instances

C1 1746128
C2 530885
C3 1763784
C4 706775

Table 4: Number of training instances used for the
ME models.

In the HOO framework, precision and recall are
weighted equally. However, in the domain of error
correction for non-native writers, precision is prob-
ably more important because false positives can be
very confusing and demotivating for learners of En-
glish. For this reason, we submitted two different
runs which also gave us insights into the impact of
the language model. ‘Run 0’ denotes the system ex-
cluding the language model and using lower thresh-
olds, such that neither precision nor recall is favored
in particular, while ‘Run 1’ focuses on precision
by using the language model as a filter, and having
higher thresholds. Thus, we present the results for
two different runs on the final HOO test set, both
before and after manual revision (see Section 2.2).
Table 5 presents the results for recognition and Ta-
ble 6 those for correction.

The difficulty of the HOO 2012 Shared Task is
reflected by rather low system performance levels

(Dale et al., 2012). Nonetheless, we observed some
interesting patterns. In terms of the overall system
performance, our system achieved better results for
determiner errors than for preposition errors.

With respect to determiners, missing determiners
are handled best by our system, while unnecessary
determiners and replacement errors are more diffi-
cult. Concerning prepositions, missing prepositions
are found to be the most challenging. This confirms
the difficulty of choosing the right preposition due to
the large number of possible alternatives, and their
sometimes subtle differences in usage and meaning.

While ‘Run 1’ achieved a higher precision (at the
cost of recall), ‘Run 0’ performed better in terms of
overall performance (F1-score). This result can be
explained by the relative small size and limited tun-
ing of the language model. Moreover, it also shows
that the use of the F1-score might not be the most
informative evaluation metric in this context.

6 Conclusions

Determiners and prepositions present real chal-
lenges for non-native English writers. For auto-
mated determiner and preposition error correction
in HOO-2012, we implemented a hybrid system
that combines statistical machine learning classifiers
and a rule-based system. By employing a language
model for correction validation, the system achieved
a precision of 42.16%, recall of 9.49% and F1-score
of 15.50%. Without the language model, a preci-
sion of 31.15%, recall of 22.08% and F1-score of
25.84% were reached, and our system was ranked
third in terms of F1-score.

Three major bottlenecks were identified in the im-
plementation: (i) spelling errors should first be cor-
rected due to the noisy input texts; (ii) classifier
thresholds must be carefully adjusted to minimize
false positives; and (iii) overall, preposition errors
are handled worse than determiner errors, although
there is also a large difference among the various er-
ror types.

For future work, we will focus on models that ex-
plicitly utilize the writer’s background. Also, a full
evaluation of the system should include a thorough
user-centric study with evaluation criteria and met-
rics beyond the traditional precision, recall and F -
score.
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Type Precision Recall F1-score

RD 17.95 17.95 17.95
MD 60.76 38.40 47.06
UD 22.67 32.08 26.56

Det 37.31 33.18 35.12

RT 55.88 13.97 22.35
MT 50.00 5.26 9.52
UT 14.77 30.23 19.85

Prep 27.34 14.83 19.23

All 33.33 23.62 27.65

(a) Run 0 (before revision)

Type Precision Recall F1-score

RD 19.44 17.95 18.67
MD 65.82 39.69 49.52
UD 26.67 32.26 29.20

Det 40.93 34.50 37.44

RT 61.76 14.09 22.95
MT 50.00 5.36 9.68
UT 15.91 35.90 22.05

Prep 29.69 15.57 20.43

All 29.47 24.74 29.47

(b) Run 0 (after revision).

Type Precision Recall F1-score

RD 37.50 7.69 12.77
MD 66.67 12.80 21.48
UD 16.67 1.89 3.39

Det 52.63 9.22 15.69

RT 51.61 11.76 19.16
MT 40.00 3.51 6.45
UT 32.14 20.93 25.35

Prep 42.19 11.44 18.00

All 46.08 10.38 16.94

(c) Run 1 (before revision).

Type Precision Recall F1-score

RD 37.50 8.33 13.64
MD 79.17 14.50 24.52
UD 33.33 3.23 5.88

Det 63.16 10.48 17.98

RT 54.84 11.41 18.89
MT 40.00 3.57 6.56
UT 35.71 25.64 29.85

Prep 45.31 11.89 18.83

All 51.96 11.21 18.43

(d) Run 1 (after revision).

Table 5: Recognition results of the runs on the test set.
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Type Precision Recall F1-score

RD 17.95 17.95 17.95
MD 54.43 34.40 42.16
UD 22.67 32.08 26.56

Det 34.72 30.88 32.68

RT 50.00 12.50 20.00
MT 50.00 5.26 9.52
UT 14.77 30.23 19.85

Prep 25.78 13.98 18.13

All 31.15 22.08 25.84

(a) Run 0 (before revision)

Type Precision Recall F1-score

RD 17.95 19.44 18.67
MD 59.49 35.88 44.76
UD 26.67 32.26 29.20

Det 38.34 32.31 35.07

RT 55.88 12.75 20.77
MT 50.00 5.36 9.68
UT 15.91 35.90 22.05

Prep 28.13 14.81 19.41

All 34.27 23.26 27.71

(b) Run 0 (after revision).

Type Precision Recall F1-score

RD 37.50 7.69 12.77
MD 62.50 12.00 20.13
UD 16.67 1.89 3.39

Det 50.00 8.76 14.90

RT 41.94 9.56 15.57
MT 40.00 3.51 6.45
UT 32.14 20.93 25.35

Prep 37.50 10.17 16.00

All 42.16 9.49 15.50

(c) Run 1 (before revision).

Type Precision Recall F1-score

RD 37.50 8.33 13.64
MD 75.00 13.74 23.23
UD 33.33 3.23 5.88

Det 60.05 10.04 17.23

RT 45.16 9.40 15.56
MT 40.00 3.57 6.56
UT 35.71 25.64 29.85

Prep 40.63 10.66 16.88

All 48.04 10.36 17.04

(d) Run 1 (after revision).

Table 6: Correction results of the runs on the test set.
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Abstract

We describe the University of Illinois (UI) sys-
tem that participated in the Helping Our Own
(HOO) 2012 shared task, which focuses on
correcting preposition and determiner errors
made by non-native English speakers. The
task consisted of three metrics: Detection,
Recognition, and Correction, and measured
performance before and after additional revi-
sions to the test data were made. Out of 14
teams that participated, our system scored first
in Detection and Recognition and second in
Correction before the revisions; and first in
Detection and second in the other metrics af-
ter revisions. We describe our underlying ap-
proach, which relates to our previous work in
this area, and propose an improvement to the
earlier method, error inflation, which results
in significant gains in performance.

1 Introduction

The task of correcting grammar and usage mistakes
made by English as a Second Language (ESL) writ-
ers is difficult: many of these errors are context-
sensitive mistakes that confuse valid English words
and thus cannot be detected without considering the
context around the word.

Below we show examples of two common ESL
mistakes considered in this paper:

1. “Nowadays ∅*/the Internet makes us closer and closer.”

2. “I can see at*/on the list a lot of interesting sports.”

In (1), the definite article is incorrectly omitted.
In (2), the writer uses an incorrect preposition.

This paper describes the University of Illinois sys-
tem that participated in the HOO 2012 shared task
on error detection and correction in the use of prepo-
sitions and determiners (Dale et al., 2012). Fourteen
teams took part in the the competition. The scoring
included three metrics: Detection, Recognition, and
Correction, and our team scored first or second in
each metric (see Dale et al. (2012) for details).

The UI system consists of two components, a de-
terminer classifier and a preposition classifier, with
a common pre-processing step that corrects spelling
mistakes. The determiner system builds on the ideas
described in Rozovskaya and Roth (2010c). The
preposition classifier uses a combined system, build-
ing on work described in Rozovskaya and Roth
(2011) and Rozovskaya and Roth (2010b).

Both the determiner and the preposition systems
apply the method proposed in our earlier work,
which uses the error distribution of the learner data
to generate artificial errors in training data. The orig-
inal method was proposed for adding artificial er-
rors when training on native English data. In this
task, however, we apply this method when training
on annotated ESL data. Furthermore, we introduce
an improvement that is conceptually simple but very
effective and which also proved to be successful in
an earlier error correction shared task (Dale and Kil-
garriff, 2011; Rozovskaya et al., 2011). We identify
the unique characteristics of the error correction task
and analyze the limitations of existing approaches to
error correction that are due to these characteristics.
Based on this analysis, we propose the error infla-
tion method (Sect. 6.2).

In this paper, we first briefly discuss the task (Sec-
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tion 2) and present our overall approach (Section
3. Next, we describe the spelling correction mod-
ule (Section 4). Section 5 provides an overview of
the training approaches for error correction tasks.
We present the inflation method in Section 6. Next,
we describe the determiner error correction system
(Section 7), and the preposition error correction
module (Section 8). In Section 9, we present the
performance results of our system in the competi-
tion. We conclude with a brief discussion (Section
10).

2 Task Description

The HOO 2012 shared task focuses on correcting
determiner and preposition errors made by non-
native speakers of English. These errors are some of
the most common and also some of the most difficult
for ESL learners (Leacock et al., 2010); even very
advanced learners make these mistakes (Rozovskaya
and Roth, 2010a).

The training data released by the task organizers
comes from the publicly available FCE corpus (Yan-
nakoudakis et al., 2011). The original FCE data set
contains 1244 essays written by non-native English
speakers and is corrected and error-tagged using a
detailed error classification schema. The HOO train-
ing data contains 1000 of those files.1 The test data
for the task consists of an additional set of 100 stu-
dent essays, different from the 1244 above.

Since the HOO task focuses on determiner and
preposition mistakes, only annotations marking
preposition and determiner mistakes were kept.
Note that while the other error annotations were
removed, the errors still remain in the HOO data.
More details can be found in Dale et al. (2012).

3 System Overview

Our system consists of two components that address
individually article2 and preposition errors and use
the same pre-processing.

1In addition, the participating teams were allowed to use for
training the remaining 244 files of this corpus, as well as any
other data. We also use a publicly available data set of native
English, Google Web 1T corpus (Brants and Franz, 2006), in
one of our models.

2We will use the terms ‘article-’ and ‘determiner errors’ in-
terchangeably: article errors constitute the majority of deter-
miner errors, and we address only article mistakes.

The first pre-processing step is correcting spelling
errors. Since the essays were written by students of
English as a Second language, and these essays were
composed on-the-fly, they contain a large number of
spelling errors. These errors add noise to the context
around the target word (article or preposition). Good
context is crucial for robust detection and correction
of article and preposition mistakes.

After spelling errors are corrected, we run a sen-
tence splitter, part-of-speech tagger3 and shallow
parser4 (Punyakanok and Roth, 2001) on the data.
Both the article and the preposition systems use fea-
tures based on the output of these tools.

We made a 244-document subset of the FCE data
a held-out set for development. The results in Sec-
tions 7 and 8 give performance on this held-out set,
where we use the HOO data (1000 files) for train-
ing. The actual performance in the task (Section 9)
reflects the system trained on the whole set of 1244
documents.

Our article and preposition modules build on the
elements of the systems described in Rozovskaya
and Roth (2010b), Rozovskaya and Roth (2010c)
and Rozovskaya and Roth (2011). All article sys-
tems are trained using the Averaged Perceptron
(AP) algorithm (Freund and Schapire, 1999), im-
plemented within Learning Based Java (Rizzolo and
Roth, 2010). Our preposition systems combine the
AP algorithm with the Naı̈ve Bayes (NB) classifier
with prior parameters adapted to the learner data
(see Section 5). The AP systems are trained using
the inflation method (see Section 6.2).

We submitted 10 runs. All of our runs achieved
comparable performance. Sections 7 and 8 describe
our modules.

4 Correcting Spelling Errors

Analysis of the HOO data made clear the need for
a variety of corrections beyond the immediate scope
of the current evaluation. When a mistake occurs in
the vicinity of a target (i.e. preposition or article) er-
ror, it may result in local cues that obscure the nature
of the desired correction.

3http://cogcomp.cs.illinois.edu/page/
software view/POS

4http://cogcomp.cs.illinois.edu/page/
software view/Chunker
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The following example illustrates such a problem:
“In my opinion your parents should be arrive in the
first party of the month becouse we could be go in
meeting with famous writer, travelled and journalist
who wrote book about Ethiopia.”

In this sample sentence, there are multiple errors
in close proximity: the misspelled word becouse; the
verb form should be arrive; the use of the word party
instead of part; the verb travelled instead of a noun
form; an incorrect preposition in (in meeting).

The context thus contains a considerable amount
of noise that is likely to negatively affect system per-
formance. To address some of these errors, we run a
standard spell-checker over the data.

We use Jazzy5, an open-source Java spell-checker.
The distribution, however, comes only with a US
English dictionary, which also has gaps in its cov-
erage of the language. The FCE corpus prefers UK
English spelling, so we use a mapping from US to
UK English6 to automatically correct the original
dictionary. We also keep the converted US spelling,
since our preposition module makes use of native
English data, where the US spelling is prevalent.

The Jazzy API allows the client to query a word,
and get a list of candidate corrections sorted in or-
der of edit distance from the original term. We
take the first suggestion and replace the original
word. The resulting substitution may be incorrect,
which may in turn mislead the downstream correc-
tion components. However, manual evaluation of
the spelling corrections suggested about 80% were
appropriate, and experimental evaluation on the cor-
pus development set indicated a modest overall im-
provement when the spell-checked documents were
used in place of the originals.

5 Training for Correction Tasks

The standard approach to correcting context-
sensitive ESL mistakes follows the methodology of
the context-sensitive spelling correction task that ad-
dresses such misspellings as their and there (Carl-
son et al., 2001; Golding and Roth, 1999; Golding
and Roth, 1996; Carlson and Fette, 2007; Banko and
Brill, 2001).

Following Rozovskaya and Roth (2010c), we dis-

5http://jazzy.sourceforge.net/
6http://www.tysto.com/articles05/q1/20050324uk-us.shtml

tinguish between two training paradigms in ESL er-
ror correction, depending on whether the author’s
original word choice is used in training as a feature.
In the standard context-sensitive spelling correction
paradigm, the decision of the classifier depends only
on the context around the author’s word, e.g. arti-
cle or preposition, and the author’s word itself is not
taken into consideration in training.

Mistakes made by non-native speakers obey cer-
tain regularities (Lee and Seneff, 2008; Rozovskaya
and Roth, 2010a). Adding knowledge about typ-
ical errors to a model significantly improves its
performance (Gamon, 2010; Rozovskaya and Roth,
2010c; Dahlmeier and Ng, 2011). Typical errors
may refer both to speakers whose first language is
L1 and to specific authors. For example, non-native
speakers whose first language does not have articles
tend to make more articles errors in English (Ro-
zovskaya and Roth, 2010a).

Since non-native speakers’ mistakes are system-
atic, the author’s word choice (the source word)
carries a lot of information. Models that use the
source word in training (Han et al., 2010; Gamon,
2010; Dahlmeier and Ng, 2011) learn which errors
are typical for the learner and thus significantly out-
perform systems that only look at context. We call
these models adapted. Training adapted models re-
quires annotated data, since in native English data
the source word is always correct and thus cannot be
used by the classifier.

In this work, we use two methods of adapting a
model to typical errors that have been proposed ear-
lier. Both methods were originally developed for
models trained on native English data: they use a
small amount of annotated ESL data to generate er-
ror statistics. The artificial errors method is based
on generating artificial errors7 in correct native En-
glish training data. The method was implemented
within the Averaged Perceptron (AP) algorithm (Ro-
zovskaya and Roth, 2010c; Rozovskaya and Roth,
2010b), a discriminative learning algorithm, and this
is the algorithm that we use in this work. The NB-
priors method is a special adaptation technique for
the Naı̈ve Bayes algorithm (Rozovskaya and Roth,
2011). While NB-priors improves both precision

7For each task, only relevant errors are generated – for ex-
ample, article mistakes for the article correction task.
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and recall, the artificial errors approach suffers
from low recall due to error sparsity (Sec. 6.1).

In this work, in the preposition correction task,
we use the NB-priors method without modifications
(as described in the original paper). We use the ar-
tificial errors approach both for article and prepo-
sition error correction but with two important mod-
ifications: we train on annotated ESL data instead
of native data, and use the proposed error inflation
method (described in Section 6) to increase the error
rate in training.

6 Error Inflation

In this section, we show why AP (Freund and
Schapire, 1999), a discriminative classifier, is sen-
sitive to the error sparsity of the data, and propose
a method that addresses the problems raised by this
sensitivity.

6.1 Error Sparsity and Low Recall

The low recall of the AP algorithm is related to the
nature of the error correction tasks, which exhibit
low error rates. Even for ESL writers, over 90% of
their preposition and article usage is correct, which
makes the errors very sparse (Rozovskaya and Roth,
2010c). The low recall problem is, in fact, a special
case of a more general problem where there is one
or a small group of dominant features that are very
strongly correlated with the label. In this case, the
system tends to predict the label that matches this
feature, and tends to not predict it when that fea-
ture is absent. In error correction, which tends to
have a very skewed label distribution, this results in
very few errors being detected by the system: when
training on annotated data with naturally occurring
errors and using the source word as a feature, the
system will learn that in the majority of cases the
source word corresponds to the label, and will tend
to over-predict it, which will result in low recall.

In the artificial errors approach, errors are sim-
ulated according to real observed mistakes. Ta-
ble 1 shows a sample confusion matrix based on
preposition mistakes in the FCE corpus; we show
four rows, but the entire table contains 17 rows and
columns, one for each preposition, and each entry
shows Prob(pi|pj), the probability that the author’s
preposition is pi given that the correct preposition

is pj . The matrix also shows the preposition count
for each source and label in the data set. Given the
entire matrix and the counts, it is also possible to
generate the matrix in the other direction and obtain
Prob(pj |pi), the probability that the correct prepo-
sition is pj given that the author’s preposition is pi.
This other matrix is used for adapting NB with the
priors method.

The confusion matrix is sparse and shows that the
distribution of alternatives for each source preposi-
tion is very different from that of the others. This
strongly suggests that these errors are systematic.
Additionally, most prepositions are used correctly,
so the error rate is very low (the error rate can be
estimated by looking at the matrix diagonal in the
table; for example, the error rate for the preposition
about is lower than for into, since 94.4% of the oc-
currences of label about are correct, but only 76.8%
of label into are correct).

The artificial errors thus model the two proper-
ties that we mentioned: the confusability of differ-
ent preposition pairs and the low error rate, and the
artificial errors are similarly sparse.

6.2 The Error Inflation Method
Two extreme choices for solving the low recall prob-
lem due to error sparsity are: (1) training without the
source word feature or (2) training with this feature,
where the classifier relies on it too much. Models
trained without the source feature have very poor
precision. While the NB-priors method does have
good recall, our expectation is that with the right ap-
proach, a discriminative classifier will also improve
recall, but maintain higher precision as well.

We wish to reduce the confidence that the system
has in the source word, while preserving the knowl-
edge the model has about likely confusions and con-
texts of confused words. To accomplish this, we re-
duce the proportion of correct examples, i.e. exam-
ples where the source and the label are the same,
by some positive constant < 1.0 and distribute the
extra probability mass among the typical errors in
an appropriate proportion by generating additional
error examples. This inflates the proportion of ar-
tificial errors in the training data, and hence the er-
ror rate, while keeping the probability distribution
among likely corrections the same. Increasing the
error rate improves the recall, while the typical er-
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Label Sources
on about into with as at by for from in of over to

(648) (700) (54) (733) (410) (880) (243) (1394) (515) (2213) (1954) (98) (1418)
on (598) 0.846 0.003 0.003 0.008 0.013 - 0.003 0.022 - 0.076 0.013 0.001 0.009
about (686) 0.004 0.944 - 0.007 - - - 0.022 0.005 0.002 0.016 0.001 -
into (55) 0.001 - 0.768 - - - 0.011 0.011 - 0.147 - - 0.053
with (710) 0.001 0.006 - 0.934 - 0.001 0.007 0.004 0.001 0.027 0.003 - 0.015

Table 1: Confusion matrix for preposition errors. Based on data from the FCE corpus for top 17 most frequent English
prepositions. The left column shows the correct preposition. Each row shows the author’s preposition choices for that label and
Prob(source|label). The sources among, between, under and within are not shown for lack of space; they all have 0 probabilities
in the matrix. The numbers next to the targets show the count of the label (or source) in the data set.

ror knowledge ensures that high precision is main-
tained. This method causes the classifier to rely on
the source feature less and increases the contribu-
tion of the features based on context. The learning
algorithm therefore finds a more optimal balance be-
tween the source feature and the context features.

Algorithm 1 shows the pseudo-code for generat-
ing training data; it takes as input training examples,
the confusion matrix CM as shown in Table 1, and
the inflation constant, and generates artificial source
features for correct training examples.8 An infla-
tion constant value of 1.0 simulates learner mistakes
without inflation. Table 2 shows the proportion of
artificial errors created in training using the inflation
method for different inflation rates.

Algorithm 1 Data Generation with Inflation
Input: Training examples E with correct sources, confusion matrix
CM , inflation constant C
Output: Training examples E with artificial errors
for Example e in E do

Initialize lab← e.label, e.source← e.label
Randomize targets ∈ CM [lab]
Initialize flag← False
for target t in targets do

if flag equals True then
Break

end if
if t equals lab then

Prob(t) = CM [lab][t] · C
else

Prob(t) =
1.0−CM [lab][lab]·C
1.0−CM [lab][lab]

· CM [lab][t]

end if
x← Random[0, 1]
if x < Prob(t) then

e.source← t
flag← True

end if
end for

end for
return E

8When training on native English data, all examples are cor-
rect. When training on annotated learner data, some examples
will contain naturally occurring mistakes.

Inflation rate
1.0 (Regular) 0.9 0.8 0.7 0.6 0.5

7.7% 15.1% 22.6% 30.1% 37.5% 45.0%

Table 2: Artificial errors. Proportion of generated artificial
preposition errors in training using the inflation method (based
on the FCE corpus).

7 Determiners

Table 4 shows the distribution of determiner errors
in the HOO training set. Even though the majority
of determiner errors involve article mistakes, 14% of
errors are personal and possessive pronouns.9 Most
of the determiner errors involve omitting an article.
Similar error patterns have been observed in other
ESL corpora (Rozovskaya and Roth, 2010a).

Our system focuses on article errors. Because
the majority of determiner errors are omissions, it is
very important to target this subset of mistakes. One
approach would be to consider every space as a pos-
sible article insertion point. However, this method
will likely produce a lot of noise. The standard
approach is to consider noun-phrase-initial contexts
(Han et al., 2006; Rozovskaya and Roth, 2010c).

Error type Example
Repl. 15.7% “Can you send me the*/a letter back writing

what happened to you recently.”
Omis. 57.5% “Nowadays ∅*/the Internet makes us closer and

closer.”
Unnec. 26.8% “One of my hobbies is the*/∅ photography.”

Table 4: Distribution of determiner errors in the HOO
training data.

9e.g. “Pat apologized to me for not keeping the*/my secrets.”
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Feature Type Description
Word n-grams wB, w2B, w3B, wA, w2A, w3A, wBwA, w2BwB, wAw2A, w3Bw2BwB, w2BwBwA, wBwAw2A,

wAw2Aw3A, w4Bw3Bw2BwB, w3w2BwBwA, w2BwBwAw2A, wBwAw2Aw3A, wAw2Aw3w4A
POS features pB, p2B, p3B , pA, p2A, p3A, pBpA, p2BpB, pAp2A, pBwB, pAwA, p2Bw2B, p2Aw2A, p2BpBpA, pBpAp2A,

pAp2Ap3A
NP1 headWord, npWords, NC, adj&headWord, adjTag&headWord, adj&NC, adjTag&NC, npTags&headWord, npTags&NC
NP2 headWord&headPOS, headNumber
wordsAfterNP headWord&wordAfterNP, npWords&wordAfterNP, headWord&2wordsAfterNP, npWords&2wordsAfterNP,

headWord&3wordsAfterNP, npWords&3wordsAfterNP
wordBeforeNP wB&fi ∀i ∈ NP1

Verb verb, verb&fi ∀i ∈ NP1

Preposition prep&fi ∀i ∈ NP1

Table 3: Features used in the article error correction system. wB and wA denote the word immediately before and after
the target, respectively; and pB and pA denote the POS tag before and after the target. headWord denotes the head of the NP
complement. NC stands for noun compound and is active if second to last word in the NP is tagged as a noun. Verb features are
active if the NP is the direct object of a verb. Preposition features are active if the NP is immediately preceded by a preposition. adj
feature is active if the first word (or the second word preceded by an adverb) in the NP is an adjective. npWords and npTags denote
all words (POS tags) in the NP.

7.1 Determiner Features

The features are presented in Table 3. The model
also uses the source article as a feature.

7.2 Training the Determiner System

Model Detection Correction
AP (natural errors) 30.75 28.97
AP (inflation) 34.62 32.02

Table 5: Article development results: AP with inflation. The
performance shows the F-Score for the 244 held-out documents
of the original FCE data set. AP with inflation uses the constant
value of 0.8.

The article classifier is based on the artificial er-
rors approach (Rozovskaya and Roth, 2010c). The
original method trains a system on native English
data. The current setting is different, since the FCE
corpus contains annotated learner errors. Since the
errors are sparse, we use the error inflation method
(Section 6.2) to boost the proportion of errors in
training using the error distribution obtained from
the same training set. The effectiveness of this
method is demonstrated by the system performance:
we obtain the top or second result in every metric.
Note also that the article system does not use addi-
tional data for training.

Table 5 compares the performance of the system
trained on natural errors with the performance of the
system trained with the inflation method. We found
that any value of the inflation constant between 0.9
and 0.5 will give a boost in performance. We use

several values; the top determiner model uses the in-
flation constant of 0.8.

8 Prepositions

Table 6 shows the distribution of the three types of
preposition errors in the HOO training data. The
FCE annotation distinguishes between preposition
mistakes and errors involving the infinitive marker
to, e.g. “He wants ∅*/to go there.”, which are anno-
tated as verb errors. Since in the competition only
article and preposition annotations are kept, these
errors are not annotated, and thus we do not target
these mistakes.

Error type Example
Repl. 57.9% “I can see at*/on the list a lot of interesting

sports.”
Omis. 24.0% “I will be waiting ∅*/for your call.”
Unnec. 18.1% “Despite of */∅ being tiring , it was rewarding”

Table 6: Distribution of preposition errors in the HOO
training data.

To detect missing preposition errors, we use a set
of rules, mined from the training data, to identify
possible locations where a preposition might have
been incorrectly omitted. Below we show examples
of such contexts.

• “I will be waiting ∅*/for your call.”
• “But now we use planes to go ∅*/to far places.”

8.1 Preposition Features
All features used in the preposition module are lex-
ical: word n-grams in the 4-word window around
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Feature Type Description
Word n-ngram features in the 4-word window
around the target

wB, w2B, w3B , wA, w2A, w3A, wBwA, w2BwB, wAw2A, w3Bw2BwB,
w2BwBwA, wBwAw2A, wAw2Aw3A, w4Bw3Bw2BwB, w3w2BwBwA,
w2BwBwAw2A, wBwAw2Aw3A, wAw2Aw3w4A

Preposition complement features compHead, wB&compHead, w2BwB&compHead

Table 7: Features used in the preposition error correction system. wB and wA denote the word immediately before and
after the target, respectively; the other features are defined similarly. compHead denotes the head of the preposition complement.
wB&compHead, w2BwB&compHead are feature conjunctions of compHead with wB and w2BwB, respectively.

the target preposition, and three features that use the
head of the preposition complement (see Table 7).
The NB-priors classifier, which is part of our model,
can only make use of the word n-gram features; it
uses n-gram features of lengths 3, 4, and 5. AP is
trained on the HOO data and uses n-grams of lengths
2, 3, and 4, the head complement features, and the
author’s preposition as a feature.

Model Detection Correction
AP (inflation) 34.64 27.51
NB-priors 38.76 26.57
Combined 41.27 29.35

Table 8: Preposition development results: performance of
individual and combined systems. The performance shows
the F-Score for the 244 held-out documents of the original FCE
data set.

8.2 Training the Preposition System
We train two systems. The first one is an AP model
trained on the FCE data with inflation (similar to
the article system). Correcting preposition errors re-
quires more data to achieve performance compara-
ble to article error correction, due to the task com-
plexity (Gamon, 2010). Moreover, given that the
development and test data are quite different,10 it
makes sense to use a model that is independent of
those, to avoid overfitting. We combine the AP
model with a model trained on native English data.
Our second system is an NB-priors classifier trained
on the the Google Web 1T 5-gram corpus (Brants
and Franz, 2006). We use training data to replace the
prior parameters of the model (see Rozovskaya and
Roth, 2011 for more detail). The NB-priors model
does not target preposition omissions.

10The data contains essays written on prompts, so that the
training data may contain several essays written on the same
prompt and thus will be very similar in content. In contrast,
we expected that the test data will likely contain essays on a
different set of prompts.

The NB-priors model outperforms the AP classi-
fier. The two models are also very different due to
the different learning algorithms and the type of the
data used in training. Our final preposition model
is thus a combination of these two, where we take
as the base the decisions of the NB-priors classifier
and add the AP model predictions for cases when
the base model does not flag a mistake. Table 8
shows the results. The combined model improves
both the detection and correction scores. Our prepo-
sition system ranked first in detection and recogni-
tion and second in correction.

Model Detection Correction
AP (natural errors) 13.50 12.73
AP (inflation) 21.31 32.02

Table 9: Preposition development results: AP with infla-
tion. The performance shows the F-Score for the 244 held-out
documents of the original FCE data set. AP with inflation uses
the constant value of 0.7.

9 Test Performance

A number of revisions were made to the test data
based on the input from the participating teams af-
ter the initial results were obtained, where each team
submitted proposed edits to correct annotation mis-
takes. We show both results.

Table 10 shows results before the revisions were
made. Row 1 shows the performance of the de-
terminer system for the three metrics. This system
achieved the best score in correction, and the second
best scores in detection and recognition. The system
is described in Section 7.2, with the exception that
the final system for the article correction is trained
on the entire FCE data set.

Table 10 (row 2) presents the results on prepo-
sition error correction. The system is described in
Section 8.2 and is a combined model of AP trained
with inflation on the FCE data set and NB-priors
model trained on the Google Web 1T corpus. The
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Model Detection Recognition Correction
Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

Articles 40.00 37.79 38.862 38.05 35.94 36.972 35.61 33.64 34.601

Prepositions 38.21 45.34 41.471 31.05 40.25 35.061 20.36 24.15 22.092

Combined 37.22 43.71 40.201 34.23 36.64 35.391 26.39 28.26 27.292

Table 10: Performance on test before revisions. Results are shown before revisions were made to the data. The rank of the
system is shown as a superscript.

Model Detection Recognition Correction
Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

Articles 43.90 39.30 41.472 45.98 34.93 39.702 41.46 37.12 39.172

Prepositions 41.43 47.54 44.271 37.14 42.62 39.691 26.79 30.74 28.632

Combined 43.56 42.92 43.241 38.97 39.96 39.462 32.58 33.40 32.992

Table 11: Performance on test after revisions. Results are shown after revisions were made to the data. The rank of the system
is shown as a superscript.

preposition system achieved the best scores in detec-
tion and recognition, scoring second in correction.

Row 3 shows the performance of the combined
system. This system was ranked first in detection
and recognition, and second in correction.

Table 11 shows our performance after the revi-
sions were applied.

10 Discussion

The HOO 2012 shared task follows the HOO 2011
pilot shared task (Dale and Kilgarriff, 2011), where
the data was fully corrected and error-tagged and
the participants could address any types of mistakes.
The current task allows for comparison of individ-
ual systems for each error type considered. This is
important, since to date it has been difficult to com-
pare different systems due to the lack of a bench-
mark data set.

The data used for the shared task has many errors
besides the preposition and determiner errors; the
annotations for these have been removed. One un-
desirable consequence of this approach is that some
complex errors that involve either an article or a
preposition mistake but depend on other corrections
on neighboring words, e.g. a noun of a verb, may
result in ungrammatical sequences.

Clearly, the task of annotating all requisite correc-
tions is a daunting task, and it is preferable to iden-
tify subsets of these corrections that can be tackled
somewhat independently of the rest, and these more
complex cases present a problem.

To address these conflicting needs, we propose
that the scope of all “final” corrections be marked,
without necessarily specifying all individual correc-
tions necessary to transform the original text into

correct English. Edits that plausibly require correc-
tions to their context to resolve correctly could then
be treated as out of scope, and ignored by spelling
correction systems even though in other contexts,
those same edits would be in scope.

11 Conclusion

We have demonstrated how a competitive system for
preposition and determiner error correction can be
built using techniques that address the error sparsity
of the data and the overfitting problem. We built on
our previous work and presented the error inflation
method that can be applied to the earlier proposed
artificial errors approach to boost recall. Our de-
terminer system used error inflation and trained a
model using only the annotated FCE corpus. Our
preposition system combined the FCE-trained sys-
tem with a native-data model that was adapted to
learner errors, using the NB-priors approach pro-
posed earlier. Both of the systems showed compet-
itive performance, scoring first or second in every
task ranking.
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Abstract

This paper describes the Nara Institute of Sci-
ence and Technology (NAIST) error correc-
tion system in the Helping Our Own (HOO)
2012 Shared Task. Our system targets prepo-
sition and determiner errors with spelling cor-
rection as a pre-processing step. The re-
sult shows that spelling correction improves
the Detection, Correction, and Recognition F-
scores for preposition errors. With regard to
preposition error correction, F-scores were not
improved when using the training set with cor-
rection of all but preposition errors. As for
determiner error correction, there was an im-
provement when the constituent parser was
trained with a concatenation of treebank and
modified treebank where all the articles ap-
pearing as the first word of an NP were re-
moved. Our system ranked third in preposi-
tion and fourth in determiner error corrections.

1 Introduction

Researchers in natural language processing have fo-
cused recently on automatic grammatical error de-
tection and correction for English as a Second Lan-
guage (ESL) learners’ writing. There have been a lot
of papers on these challenging tasks, and remark-
ably, an independent session for grammatical error
correction took place in the ACL-2011.

The Helping Our Own (HOO) shared task (Dale
and Kilgarriff, 2010) is proposed for improving the
quality of ESL learners’ writing, and a pilot run with
six teams was held in 2011.

The HOO 2012 shared task focuses on the cor-
rection of preposition and determiner errors. There

has been a lot of work on correcting preposition and
determiner errors, where discriminative models such
as Maximum Entropy and Averaged Perceptron (De
Felice and Pulman, 2008; Rozovskaya and Roth,
2011) and/or probablistic language models (Gamon,
2010) are generally used.

In addition, it is pointed out that spelling and
punctuation errors often disturb grammatical error
correction. In fact, some teams reported in the
HOO 2011 that they corrected spelling and punc-
tuation errors before correcting grammatical errors
(Dahlmeier et al., 2011).

Our strategy for HOO 2012 follows the above
procedure. In other words, we correct spelling er-
rors at the beginning, and then train classifiers for
correcting preposition and determiner errors. The
result shows our system achieved 24.42% (third-
ranked) in F-score for preposition error correc-
tion, 29.81% (fourth-ranked) for determiners, and
27.12% (fourth-ranked) for their combined.

In this report, we describe our system architec-
ture and the experimental results. Sections 2 to 4
describe the system for correcting spelling, prepo-
sition, and determiner errors. Section 5 shows the
experimental design and results.

2 System Architecture for Spelling
Correction

Spelling errors in second language learners’ writing
often disturb part-of-speech (POS) tagging and de-
pendency parsing, becoming an obstacle for gram-
matical error detection and correction tasks. For ex-
ample, POS tagging for learners’ writing fails be-
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e.g. I think it is *verey/very *convent/convenient for the group.
without spelling error correction: ... (‘it’, ‘PRP’), (‘is’, ‘VBZ’), (‘verey’, ‘PRP’), (‘convent’, ‘NN’), ...
with spelling error correction : ... (‘It’, ‘PRP’), (‘is’, ‘VBZ’), (‘very’, ‘RB’), (‘convenient’, ‘JJ’), ...

Figure 1: POS tagging for learners’ writing without and with spelling error correction.

cause of misspelled words (Figure 1).1

To reduce errors derived from misspelled words,
we conduct spelling error correction as a pre-
processing task. The procedure of spelling error cor-
rection we use is as follows. First of all, we look for
misspelled words and suggest candidates by GNU
Aspell2, an open-source spelling checker. The can-
didates are ranked by the probability of 5-gram lan-
guage model built from Google N-gram (Web 1T
5-gram Version 1)3 (Brants and Franz, 2006) with
IRST LM Toolkit (Federico and Cettolo, 2007).4 Fi-
nally, according to the rank, we changed the mis-
spelled word into the 1-best candidate word.

In a preliminary experiment, where we use the
original CLC FCE dataset,5 our spelling error cor-
rection obtains 52.4% of precision, 72.2% of recall,
and 60.7% of F-score.

We apply the spelling error correction to the train-
ing and test sets provided, and use both spelling-
error and spelling-error-free sets for comparison.

3 System Architecture for Preposition
Error Correction

There are so many prepositions in English. Because
it is difficult to perform multi-class classification,
we focus on twelve prepositions: of, in, for, to, by,
with, at, on, from, as, about, since, which account
for roughly 91% of preposition usage (Chodorow et
al., 2010).

The errors are classified into three categories ac-
cording to their ways of correction. First, replace-
ment error indicates that learners use a wrong
preposition. For instance, with in Example (1) is a

1The example is extracted from the CLC FCE dataset and
part-of-speech tagged by Natural Language Toolkit (NLTK).
http://www.nltk.org/

2GNU Aspell 0.60.6.1 http://aspell.net/
3http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?

catalogId=LDC2006T13
4irstlm5.70 http://sourceforge.net/projects/irstlm/
5In the CLC FCE dataset, misspelled words are corrected

and tagged with a label “S”.

replacement error.

I went there withby bus. (1)

Second, insertion error points out they incor-
rectly inserted a preposition, such as “about” in Ex-
ample (2).6

We discussed aboutNONE the topic. (2)

Third, deletion error means they fail to write
obligatory prepositions. For example, “NONE” in
Example (3) is an deletion error.

This is the place to relax NONEin. (3)

Replacement and insertion error correction can be
regarded as a multi-class classification task at each
preposition occurrence. However, deletion errors
differ from the other two types of errors in that they
may occur at any place in a sentence. Therefore, we
build two models, a combined model for replace-
ment and insertion errors and a model for deletion
errors, taking the difference into account.

For the model of replacement and insertion errors,
we simultaneously perform error detection and cor-
rection with a single model.

For the model of deletion errors, we only check
whether direct objects of verbs need prepositions,
because it is time consuming to check all the gaps
between words. Still, it covers most deletion errors.7

We merge the outputs of the two models to get the
final output.

We used two types of training sets extracted from
the original CLC-FCE dataset. One is the “gold”
set, where training sentences are corrected except
for preposition errors. In the gold set, spelling er-
rors are also corrected to the gold data in the corpus.
The other is the “original” set, which includes the

6“NONE” means there are no words.
72,407 out of 5,324 preposition errors in CLC-FCE are be-

tween verbs and nouns.
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Type Name Description (NP and PRED refer a noun phrase and a predicate.)
Lexical Token n-gram Token n-grams in a 2 word window around the preposition

POS n-gram POS n-grams in a 2 word window around the preposition
HEAD PREC VP The head verb in the preceding verb phrase
HEAD PREC NP The head noun in the preceding noun phrase
HEAD FOLLOW NP The head noun in the following noun phrase

Parsing HEAD Head of the preposition
HEAD POS POS of the head
COMP Complement of the preposition
COMPLEMENT POS POS of the complement
HEAD RELATION Prep-Head relation name
COMPLEMENT RELATION Prep-Comp relation name

Phrase Structure PARENT TAG TAG of the preposition’s parent
GRANDPARENT TAG TAG of the preposition’s grandparent
PARENT LEFT Left context of the preposition parent
PARENT RIGHT Right context of the preposition’s parent

Web N-gram COUNT For the frequency fprep,i of i (3 to 5) window size phrase including
the preposition prep, the value of log100(fi + 1)

PROPORTION The proportion pprep,i (i is 3 to 5).
pprep,i =

fprep,i∑
k∈T fk,i

, given the set of target prepositions T .

Semantic WORDNET CATEGORY WordNet lexicographer classes which are about 40 broad semantic
categories for all words used as surface features. As De Felice and
Pulman (2008) did not perform word sense disambiguation, neither
did we.

Table 1: Baseline features for English preposition error correction.

original CLC-FCE plain sentences.
We performed sentence splitting using the im-

plementation of Kiss and Strunk (2006) in NLTK
2.0.1rc2. We conducted dependency parsing by
Stanford parser 1.6.9.8

We used the features described in (Tetreault et al.,
2010) as shown in Table 1 with Maximum Entropy
(ME) modeling (Berger et al., 1996) as a multi-class
classifier. We used the implementation of Maximum
Entropy Modeling Toolkit9 with its default parame-
ters. For web n-gram calculation, we used Google
N-gram with a search system for giga-scale n-gram
corpus, called SSGNC 0.4.6.10

4 System Architecture for Determiner
Error Correction

We focused on article error correction in the deter-
miner error correction subtask, because the errors
related to articles significantly outnumber the errors
unrelated to them. Though more than twenty types
of determiners are involved in determiner error cor-
rections of the HOO training set, over 90% of errors

8http://nlp.stanford.edu/software/lex-parser.shtml
9https://github.com/lzhang10/maxent

10http://code.google.com/p/ssgnc/

are related to three articles a, an and the. We defined
article error correction as a multi-class classification
problem with three classes, a, the and null article,
and assumed that target articles are placed at the left
boundary of a noun phrase (NP). The indefinite ar-
ticle an was normalized to a in training and testing,
and restored to an later in an example-based post-
processing step. If the system output was a and the
word immediately after a appeared more frequently
with an than with a in the training corpus, a was re-
stored to an. If the word appeared equally frequently
with a and an or didn’t appear in the training corpus,
a was restored to an if the word’s first character was
one of a, e, i, o, u.

Each input sentence was parsed using the Berke-
ley Parser11 with two models, “normal” and
“mixed”. The “normal” model was trained on a tree-
bank of normal English sentences. In preliminary
experiments, the “normal” model sometimes mis-
judged the span of NPs in ESL writers’ sentences
due to missing articles. So we trained the “mixed”
model on a concatenation of the normal treebank
and a modified treebank in which all the articles ap-
pearing as the first word of an NP were removed. By

11version 1.1, http://code.google.com/p/berkeleyparser/
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Name Description
HeadNounWord The word form of the head noun
HeadNounTag The POS tag of the head noun
ObjOfPrep Indicates that the head noun is an object of a preposition
PrepWord The word form of the preposition
PrepHeadWord The word form of the preposition’s syntactic parent
PrepHeadTag The POS tag of the preposition’s syntactic parent

ContextWindowTag
The POS tag of the words in a 3 word window
around the candidate position for the article

ContextWindowWord
The word form of the word immediately following
the candidate position for the article

ModByDetWord The word form of the determiner that modifies the head noun
ModByAdjWord The word form of the adjective that modifies the head noun
ModByAdjTag The POS tag of the adjective that modifies the head noun
ModByPrep Indicates that the head noun is modified by a preposition
ModByPrepWord The word form of the preposition that modifies the head noun
ModByPossesive Indicates that the head noun is modified by a possesive
ModByCardinal Indicates that the head noun is modified by a cardinal number
ModByRelative Indicates that the head noun is modified by a relative clause

Table 2: Feature templates for English determiner correction.

augmenting the training data for the parser model
with sentences lacking articles, the span of NPs that
lack an article might have better chance of being cor-
rectly recognized. In addition, dependency informa-
tion was extracted from the parse using the Stanford
parser 1.6.9.

For each NP in the parse, we extracted a feature
vector representation. We used the feature templates
shown in Table 2, which are inspired by (De Felice,
2008) and adapted to the CFG representation.

For the parser models, we trained the “normal”
model on the WSJ part of Penn Treebank sections
02-21 with the NP annotation by Vadas and Curran
(2007). The “mixed” model was trained on the con-
catenation of the WSJ part and its modified version.
For the classification model, we used the written part
of the British National Corpus (BNC) in addition to
the CLC FCE Dataset, because the amount of in-
domain data was limited. In examples taken from
the CLC FCE Dataset, the true labels after the cor-
rection were used. In examples taken from the BNC,
the article of each NP was used as the label. We
trained a linear classifier using opal12 with the PA-I
algorithm. We also used the feature augmentation

12http://www.tkl.iis.u-tokyo.ac.jp/∼ynaga/opal/

Subsystem Parameters
Run Spelling Preposition Determiner

0 no change gold mixed
1 no change gold normal
2 no change original mixed
3 no change original normal
4 corrected gold mixed
5 corrected gold normal
6 corrected original mixed
7 corrected original normal

Table 3: Distinct configurations of the system.

approach of (Daumé III, 2007) for domain adapta-
tion.

5 Experiment and Result

Previously undisclosed data extracted from the
CLC-FCE dataset was provided as a test set by the
HOO organizers. The test set includes 100 essays
and each contains 180.1 word tokens on average.

We defined eight distinct configurations based
on our subsystem parameters (Table 3). The offi-
cial task evaluation uses three metrics (Detection,
Recognition, and Correction), and three measures
Precision, Recall, and F-score were computed13 for

13For details about the evaluation metrics, see http://
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Detection Correction Recognition
Run R P F R P F R P F

0 29.58 34.09 31.67 19.86 22.90 21.27 26.71 30.78 28.60
1 28.69 36.41 32.09 19.42 24.64 21.72 25.82 32.77 28.88
2∗ 28.91 37.21 32.54 20.97 26.98 23.60 26.26 33.80 29.56
3 28.03 40.18 33.02 20.52 29.43 24.18 25.38 36.39 29.90
4 30.24 33.66 31.86 20.75 23.09 21.86 27.37 30.46 28.83
5 29.13 35.57 32.03 19.64 23.98 21.60 26.26 32.07 28.88
6 29.35 36.23 32.43 21.41 26.43 23.65 26.26 32.42 29.02
7 28.25 38.67 32.65 20.30 27.29 23.46 25.16 34.44 29.08

Table 4: Result for preposition and determiner errors combined before revisions.
∗We re-evaluated the Run2 because we submitted the Run2 with the same condition as Run0.

Detection Correction Recognition
Spelling Preposition R P F R P F R P F

no change gold 25.00 34.70 29.06 14.40 20.00 16.74 20.76 28.82 24.13
no change original 23.30 42.63 30.13 16.52 30.23 21.36 19.91 36.43 25.75
corrected gold 26.69 34.80 30.21 15.25 19.88 17.26 22.45 29.28 25.41
corrected original 24.57 41.13 30.76 16.52 27.65 20.68 20.33 34.04 25.46

Table 5: Result for preposition errors before revisions.

each metric.
Table 4 to Table 9 show the overall results of our

systems. In terms of the effect of pre-processing,
spelling correction improved the F-score of Detec-
tion, Correction, and Recognition for preposition er-
rors after revision, whereas there were fluctuations
in other conditions. This may be because there were
a few spelling errors corrected in the test set.14 An-
other reason why no stable improvement was found
in determiner error correction is because spelling
correction often produces nouns that affect the de-
terminer error detection and correction more sensi-
tively than prepositions. For example, a misspelled
word *freewho / free who was corrected as freezer.
This type of error may have increased false posi-
tives. The example *National Filharmony / the Na-
tional Philharmony was corrected as National Flem-
ing, where the proper noun Fleming does not need a
determiner and this type of error increased false neg-
atives.

As for preposition error correction, the classifier
performed better when it was trained with the “origi-
nal” set rather than the error-corrected (all but prepo-
sition errors) “gold” set. The reason for this is that
the gold set is trained with the test set that contains

correcttext.org/hoo2012/eval.html
14There was one spelling correction per document in average.

several types of errors which the original CLC-FCE
dataset also contains. Therefore, the “original” clas-
sifier is more optimised and suitable for the test set
than the “gold” one.

For determiner error correction, the “mixed”
model improved precision and F-score in the addi-
tional experiments.

5.1 Error Analysis of Preposition Correction
We briefly analyze some errors in our proposed
model according to the three categories of errors.

First, most replacement errors require deep under-
standing of context. For instance, for in Example (4)
must be changed to to. However, modifications of is
also often used, so it is hard to decide either to or of
is suitable based on the values of N-gram frequen-
cies.

Its great news to hear you have been given
extra money and that you will spend it in
modifications forto the cinema.

(4)

Second, most insertion errors need a grammatical
judgement rather than a semantic one. For instance,
“in” in Example (5) must be changed to “NONE.”

Their love had always been kept inNONE se-
cret

(5)

In order to correct this error, we need to recog-
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Detection Correction Recognition
Spelling Determiner R P F R P F R P F

no change mixed 34.10 33.18 33.63 25.80 25.11 25.45 33.17 32.28 32.72
no change normal 32.25 37.43 34.65 24.88 28.87 26.73 31.33 36.36 33.66
corrected mixed 33.64 32.30 32.95 26.72 25.66 26.18 32.71 31.41 32.05
corrected normal 31.33 35.78 33.41 24.42 27.89 26.04 30.41 34.73 32.43

Table 6: Result for determiner errors before revisions.

Detection Correction Recognition
Run R P F R P F R P F

0 31.28 37.65 34.18 22.62 27.22 24.71 28.54 34.35 31.17
1 30.44 40.33 34.69 22.19 29.41 25.30 27.69 36.69 31.56
2∗ 31.07 41.76 35.63 23.04 30.96 26.42 28.11 30.96 32.24
3 30.23 45.25 36.24 22.62 33.86 27.12 27.27 40.82 32.69
4 31.92 37.10 34.31 23.46 27.27 25.22 29.17 33.90 31.36
5 30.86 39.35 34.59 22.41 28.57 25.11 28.11 35.84 31.51
6 31.71 40.87 35.71 23.89 30.79 26.90 28.75 37.05 32.38
7 30.65 43.80 36.06 22.83 32.62 26.86 27.69 39.57 32.58

Table 7: Result for preposition and determiner errors combined after revisions.
∗We re-evaluated the Run2 because we submitted the Run2 with the same condition as Run0.

nize “keep” takes an object and a complement; in
Example (5) “love” is the object and “secret” is
the complement of “keep” while the former is left-
extraposed. A rule-based approach may be better
suited for these cases than a machine learning ap-
proach.

Third, most deletion errors involve discrimination
between transitive and intransitive. For instance,
“NONE” in Example (6) must be changed to “for”,
because “wait” is intransitive.

I’ll wait NONEfor your next letter. (6)

To deal with these errors, we may use rich knowl-
edge about verbs such as VerbNet (Kipper et al.,
2000) and FrameNet (Baker et al., 1998) in order
to judge whether a verb is transitive or intransitive.

5.2 Error Analysis of Determiner Correction

We conducted additional experiments for determiner
errors and report the results here because the sub-
mitted system contained a bug. In the submit-
ted system, while the test data were parsed by the
“mixed” model, the training data and the test data
were parsed by the default grammar provided with
Berkeley Parser. Moreover, though there were about
5.5 million sentences in the BNC corpus, only about

2.7 million of them had been extracted. Though
these errors seem to have improved the performance,
it is difficult to specify which errors had positive ef-
fects.

Table 10 shows the result of additional experi-
ments. Unlike the submitted system, the “mixed”
model contributed toward a higher precision and F-
score. Though the two parser models parsed the
sentences differently, the difference in the syntactic
analysis of test sentences did not always led to dif-
ferent output by the downstream classifiers. On the
contrary, the classifiers often returned different out-
puts even for an identically parsed sentence. In fact,
the major source of the performance gap between the
two models was the number of the wrong outputs
rather than the number of correct ones. While the
“mixed” model without spelling correction returned
146 outputs, of which 83 were spurious, the “nor-
mal” model without spelling correction produced
209 outputs, of which 143 were spurious. This may
suggest the difference of the two models can be at-
tributed to the difference in the syntactic analysis of
the training data.

One of the most frequent types of errors com-
mon to the two models were those caused by mis-
spelled words. For example, when your letter was
misspelled to be *yours letter, it was regarded as an
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Detection Correction Recognition
Spelling Preposition R P F R P F R P F

no change gold 26.63 38.23 31.40 17.62 25.29 20.77 23.36 33.52 27.53
no change original 26.22 49.61 34.31 18.44 34.88 24.12 22.54 42.63 29.49
corrected gold 28.27 38.12 32.47 18.44 24.86 21.17 25.00 33.70 28.70
corrected original 27.86 48.22 35.32 19.26 33.33 24.41 24.18 41.84 30.64

Table 8: Result for preposition errors after revisions.

Detection Correction Recognition
Spelling Determiner R P F R P F R P F

no change mixed 35.37 36.32 35.84 27.94 28.69 28.31 34.06 34.97 34.51
no change normal 33.62 41.17 37.01 27.07 33.15 29.80 32.31 39.57 35.57
corrected mixed 34.93 35.39 35.16 28.82 29.20 29.01 33.62 34.07 33.84
corrected normal 32.75 39.47 35.79 26.63 32.10 29.11 31.44 37.89 34.36

Table 9: Result for determiner errors after revisions.

Detection Correction Recognition
Spelling Determiner R P F R P F R P F

no change mixed 27.39 43.15 33.51 23.04 36.30 28.19 27.39 43.15 33.51
no change normal 28.69 31.57 30.06 22.61 24.88 23.69 28.69 31.57 30.06
corrected mixed 27.39 41.44 31.98 22.61 34.21 27.22 26.96 40.79 32.46
corrected normal 30.43 33.33 31.82 24.34 26.67 25.45 30.00 32.86 31.36

Table 10: Result of additional experiments for determiner errors after revisions.

NP without a determiner resulting in a false posi-
tive such as *a yours letter. Among the other types
of errors, several seemed to be caused by the infor-
mation from the context window. For instance, the
system output for It was last month and ... was it
was *the last month and .... It is likely that the word
last triggered the misinsertion here. Such kind of
errors might be avoided by conjunctive features of
context information and the head word. Last but not
least, compound errors were also frequent and prob-
ably the most difficult to solve. For example, it is
quite difficult to correct *for a month to per month
if we are dealing with determiner errors and prepo-
sition errors separately. A more sophisticated ap-
proach such as joint modeling seems necessary to
correct this kind of errors.

6 Conclusion

This report described the architecture of our prepo-
sition and determiner error correction system. The
experimental result showed that spelling correction
advances the performance of Detection, Correction
and Recognition for preposition errors. In terms of
preposition error correction, F-scores were not im-

proved when the error-corrected dataset was used.
As to determiner error correction, there was an im-
provement when the constituent parser was trained
on a concatenation of treebank and modified tree-
bank where all the articles appearing as the first
word of an NP were removed.
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Abstract

We describe the Valkuil.net team entry for the
HOO 2012 Shared Task. Our systems consists
of four memory-based classifiers that generate
correction suggestions for middle positions in
small text windows of two words to the left
and to the right. Trained on the Google 1TB 5-
gram corpus, the first two classifiers determine
the presence of a determiner or a preposition
between all words in a text in which the actual
determiners and prepositions are masked. The
second pair of classifiers determines which is
the most likely correction given a masked de-
terminer or preposition. The hyperparameters
that govern the classifiers are optimized on
the shared task training data. We point out a
number of obvious improvements to boost the
medium-level scores attained by the system.

1 Introduction

Our Valkuil.net team entry, known under the abbre-
viation ’VA’ in the HOO 2012 Shared Task (Dale
et al., 2012), is a simplistic text correction system
based on four memory-based classifiers. The goal of
the system is to be lightweight: simple to set up and
train, fast in execution. It requires a (preferably very
large) corpus to train on, and a closed list of words
which together form the category of interest—in the
HOO 2012 Shared Task context, the two categories
of interest are prepositions and determiners.

As a corpus we used the Google 1TB 5-gram cor-
pus (Brants and Franz, 2006), and we used two lists,
one consisting of 47 prepositions and one consist-
ing of 24 determiners, both extracted from the HOO

2012 Shared Task training data. Using the Google
corpus means that we restricted ourselves to a sim-
ple 5-gram context, which obviously places a limit
on the context sensitivity of our system; yet, we were
able to make use of the entire Google corpus.

Memory-based classifiers have been used for con-
fusible disambiguation (Van den Bosch, 2006) and
agreement error detection (Stehouwer and Van den
Bosch, 2009).1 In both studies it is argued that
fast approximations of memory-based discrimina-
tive classifiers are effective and efficient modules for
spelling correction, particularly because of their in-
sensitivity to the number of classes to be predicted.
They can act as simple binary decision makers (e.g.
for confusible pairs: given this context, is then or
than more likely?), and at the same time they can
handle missing word prediction with up to millions
of possible outcomes, all in the same model. Van
den Bosch (2006) also showed consistent log-linear
performance gains in learning curve experiments,
indicating that more training data continues to be
better for these models even at very large amounts
of training data. The interested reader is referred to
the two studies for more details.

2 System

Our system centers around four classifiers that all
take a windowed input of two words to the left of
the focus, and two words to the right. The focus
may either be a position between two words, or a
determiner or a preposition. In case of a position

1A working context-sensitive spelling checker for Dutch
based on these studies is released under the name Valkuil.net;
see http://valkuil.net – hence the team name.
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preposition? determiner?

which preposition? which determiner?

no preposition no determiner

no no

yes yes

preposition determiner

Figure 1: System architecture. Shaded rectangles are the four classifiers.

between two words, the task is to predict whether
the position should actually be filled by a preposition
or a determiner. When the focus is on a determiner
or preposition, the task may be to decide whether it
should actually be deleted, or whether it should be
replaced.

The main system architecture is displayed in Fig-
ure 1. The classifiers are the shaded rectangular
boxes. They are all based on IGTree, an efficient
decision tree learner (Daelemans et al., 1997), a fast
approximation of memory-based or k-nearest neigh-
bor classification, implemented within the TiMBL2

software package (Daelemans et al., 2010).
The first two classifiers, preposition? and de-

terminer?, are binary classifiers that determine
whether or not there should be a preposition or a de-
terminer, respectively, between two words to the left
and two words to the right:

• The preposition? classifier is trained on all
118,105,582 positive cases of contexts in the
Google 1 TB 5-gram corpus in which one of the
47 known prepositions are found to occur in the
middle position of a 5-gram. To enable the clas-
sifier to answer negatively to other contexts,
roughly the same amount of negative cases of
randomly selected contexts with no preposition
in the middle are added to form a training set
of 235,730,253 cases. In the participating sys-

2http://ilk.uvt.nl/timbl

tem we take each n-gram as a single token, and
ignore the Google corpus token counts. We
performed a validation experiment on a single
90%-10% split of the training data; the classi-
fier is able to make a correct decision on 89.1%
of the 10% heldout cases.

• Analogously, the determiner? classifier takes
all 132,483,802 positive cases of 5-grams with
a determiner in the middle position, and adds
randomly selected negative cases to arrive at a
training set of 252,634,322 cases. On a 90%–
10% split, the classifier makes the correct deci-
sion in 88.4% of the 10% heldout cases.

The second pair of classifiers perform the multi-
label classification task of predicting which preposi-
tion or determiner is most likely given a context of
two words to the left and to the right. Again, these
classifiers are trained on the entire Google 1TB 5-
gram corpus:

• The which preposition? classifier is trained on
the aforementioned 118,105,582 cases of any
of the 47 prepositions occurring in the middle
of 5-grams. The task of the classifier is to gen-
erate a class distribution of likely prepositions
given an input of the four words surrounding
the preposition, with 47 possible outcomes. In
a 90%-10% split experiment on the complete
training set, this classifier labels 59.6% of the
10% heldout cases correctly.
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• The which determiner? classifier, by analogy,
is trained on the 132,483,802 positive cases of
5-grams with a determiner in the middle po-
sition, and generates class distributions com-
posed of the 24 possible class labels (the pos-
sible determiners). On a 90%-10% split of the
training set, the classifier predicts 63.1% of all
heldout cases correctly.

Using the four classifiers and the system architec-
ture depicted in Figure 1, the system is capable of
detecting missing and unnecessary cases of preposi-
tions and determiners, and of replacing prepositions
and determiners by other more likely alternatives.
Focusing on the preposition half of the system, we
illustrate how these three types of error detection and
correction are carried out.

First, Figure 2 illustrates how a missing preposi-
tion is detected. Given an input text, a four-word
window of two words to the left and two words to the
right is shifted over all words. At any word which is
not in the list of prepositions, the binary preposi-
tion? classifier is asked to determine whether there
should be a preposition in the middle. If the classi-
fier says no, the window is shifted to the next posi-
tion and nothing happens. If the classifier says yes
beyond a certainty threshold (more on this in Sec-
tion 3), the which preposition? classifier is invoked
to make a best guess on which preposition should be
inserted.

preposition?

which preposition?

no preposition

no

yes

preposition

missing 
preposition 
suggestion

Figure 2: Workflow for detecting a missing preposition.

Second, Figure 3 depicts the workflow of how a
preposition deletion is suggested. Given an input
text, all cases of prepositions are sought. Instances
of two words to the left and right of each preposi-

tion are created, and these context windows are pre-
sented to the preposition? classifier. If this classi-
fier says no beyond a certainty threshold, the system
signals that the preposition currently in focus should
be deleted.

preposition?

which preposition?

no preposition

no

yes

preposition

suggested 
deletion of 
preposition

Figure 3: Workflow for suggesting a preposition deletion.

Third, Figure 4 illustrates how a replacement sug-
gestion is generated. Just as with the detection of
deletions, an input text is scanned for all occurrences
of prepositions. Again, contextual windows of two
words to the left and right of each found preposi-
tion are created. These contexts are presented to the
which preposition? classifier, which may produce a
different most likely preposition (beyond a certainty
threshold) than the preposition in the text. If so, the
system signals that the original preposition should
be replaced by the new best guess.

Practically, the system is set up as a master pro-
cess (implemented in Python) that communicates
with the four classifiers over socket connections.
The master process performs all necessary data con-
version and writes its edits to the designated XML
format. First, missing prepositions and determin-
ers are traced according to the procedure sketched
above; second, the classifiers are employed to find
replacement errors; third, unnecessary determiners
and prepositions are sought. The system does not
iterate over its own output.
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preposition?

which preposition?

no preposition

no

yes

preposition

suggested 
replacement 
of preposition

different?

Figure 4: Workflow for suggesting a preposition replace-
ment.

3 Optimizing the system

When run unfiltered, the four classifiers tend to over-
predict errors massively. They are not very accurate
(the binary classifiers operate at a classification ac-
curacy of 88–89%; the multi-valued classifiers per-
form at 60–63%). On the other hand, they produce
class distributions that have properties that could be
exploited to filter the classifications down to cases
where the system is more certain. This enables us
to tune the precision and recall behavior of the clas-
sifiers, and, for instance, optimize on F-Score. We
introduce five hyperparameter thresholds by which
we can tune our four classifiers.

First we introduce two thresholds for the two bi-
nary classifiers preposition? and determiner?:

M — When the two binary preposition? and de-
terminer? classifiers are used for detecting
missing prepositions or determiners, the posi-
tive class must be M times more likely than the
negative class.

U — In the opposite case, when the two binary clas-
sifiers are used for signalling the deletion of an
unnecessary preposition or determiner, the neg-
ative class must be U times more likely than the
positive class.

For the two multi-label classifiers which prepo-
sition? and which determiner? we introduce three

Optimizing on
Task Thresh. Precision Recall F-Score
Prep. M 30 10 20

U 30 4 4
DS 5 50 50
F 50 5 5
R 10 20 20

Det. M 30 10 20
U 30 2 2
DS 5 50 20
F 50 5 20
R 10 20 20

Table 1: Semi-automatically established thresholds that
optimize precision, recall, and F-Score. Optimization
was performed on the HOO 2012 Shared Task training
data.

thresholds (which again can be set separately for de-
terminers and prepositions):

DS — the distribution size (i.e. the number of la-
bels that have a non-zero likelihood according
to the classifier) must be smaller than DS. A
large DS signals a relatively large uncertainty.

F — the frequency of occurrence of the most likely
outcome in the training set must be larger than
F . Outcomes with a smaller number of occur-
rences should be distrusted more.

R — if the most likely outcome is different from the
preposition or determiner currently in the text,
the most likely outcome should be at least R
times more likely than the current preposition
or determiner. Preferably the likelihood of the
latter should be zero.

On the gold training data provided during the
training phase of the HOO 2012 Shared Task we
found, through a semi-automatic optimization pro-
cedure, three settings that optimized precision, re-
call, and F-Score, respectively. Table 3 displays the
optimal settings found. The results given in Sec-
tion 4 always refer to the system optimized on F-
Score, listed in the rightmost column of Table 3.

The table shows that most of the ratio thresholds
found to optimize F-Score are quite high; for ex-
ample, the preposition? classifier needs to assign
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a likelihood to a positive classification that is at least
20 times more likely than the negative classification
in order to trigger a missing preposition error. The
threshold for marking unnecessary prepositions is
considerably lower at 4, and even at 2 for determin-
ers.

4 Results

The output of our system on the data provided dur-
ing the test phase of the HOO 2012 Shared Task was
processed through the shared task evaluation soft-
ware. The original test data was revised in a correc-
tion round in which a subset of the participants could
suggest corrections to the gold standard. We did not
contribute suggestions for revisions, but our scores
slightly improved after revisions. Table 4 summa-
rizes the best scores of our system optimized on F-
Score, before and after revisions. Our best score is
an overall F-Score of 14.24 on error detection, af-
ter revisions. Our system performs slightly better on
prepositions than on determiners, although the dif-
ferences are small. Optimizing on F-Score implies
that a reasonable balance is found between recall
and precision, but overall our results are not impres-
sive, especially not in terms of correction.

5 Discussion

We presented a preposition and determiner error de-
tection and correction system, the focus task of the
HOO 2012 Shared Task. Our system consists of
four memory-based classifiers and a master process
that communicates with these classifiers in a simple
workflow. It takes several hours to train our system
on the Google 1TB 5-gram corpus, and it takes in the
order of minutes to process the 1,000 training doc-
uments. The system can be trained without need-
ing linguistic knowledge or the explicit computation
of linguistic analysis levels such as POS-tagging or
syntactic analyses, and is to a large extent language-
independent (it does rely on tokenization).

This simple generic approach leads to mediocre
results, however. There is room for improvement.
We have experimented with incorporating the n-
gram counts in the Google corpus in our classi-
fiers, leading to improved recall (post-competition).
It still remains to be seen if the Google corpus is
the best corpus for this task, or for the particu-

lar English-as-a-second-language writer data used
in the HOO 2012 Shared Task. Another likely im-
provement would be to limit which words get cor-
rected by which other words based on confusion
statistics in the training data: for instance, the train-
ing data may tell that ’my’ should rarely, if ever, be
corrected into ’your’, but our system is blind to such
likelihoods.
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Before revisions After revisions
Task Evaluation Precision Recall F-Score Precision Recall F-Score
Overall Detection 12.5 15.23 13.73 13.22 15.43 14.24

Recognition 10.87 13.25 11.94 11.59 13.53 12.49
Correction 6.16 7.51 6.77 7.25 8.46 7.8

Prepositions Detection 13.44 14.41 13.91 14.23 14.75 14.49
Recognition 11.46 12.29 11.86 12.65 13.11 12.88
Correction 7.51 8.05 7.77 8.7 9.02 8.85

Determiners Detection 11.04 15.21 12.79 11.71 15.28 13.26
Recognition 10.37 14.29 12.02 10.7 13.97 12.12
Correction 5.02 6.91 5.81 6.02 7.86 6.82

Table 2: Best scores of our system before (left) and after (right) revisions. Scores are reported at the overall level (top),
on prepositions (middle), and determiners (bottom).
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Abstract 

Grammatical error correction has been an active 

research area in the field of Natural Language 

Processing. In this paper, we integrated four 

distinct learning-based modules to correct 

determiner and preposition errors in leaners’ 

writing. Each module focuses on a particular 

type of error. Our modules were tested in 

well-formed data and learners’ writing. The 

results show that our system achieves high 

recall while preserves satisfactory precision. 

1. Introduction 

Researchers have demonstrated that prepositions 

and determiners are the two most frequent error 

types for language learners (Leacock et al, 2010). 

According to Swan and Smith (2001), preposition 

errors might result from L1 interference. Chen and 

Lin (2011) also reveal that prepositions are the 

most perplexing problem for Chinese-speaking 

EFL learners mainly because there are no clear 

preposition counterparts in Chinese for learners to 

refer to. On the other hand, Swan and Smith (2001) 

predict that the possibility of determiner errors 

depends on learners’ native language. The 

Cambridge Learners Corpus illustrates that 

learners of Chinese, Japanese, Korean, and Russian 

might have a poor command of determiners.  

In view of the fact that a large number of 

grammatical errors appear in non-native speakers’ 

writing, more and more research has been directed 

towards the automated detection and correction of 

such errors to help improve the quality of that 

writing (Dale and Kilgarriff, 2010). In recent years, 

preposition error detection and correction has 

especially been an area of increasingly active 

research (Leacock et al, 2010). The HOO 2012 

shared task also focuses on error detection and 

correction in the use of prepositions and 

determiners (Dale et al., 2012).  

Many studies have been done at correcting 

errors using hybrid modules: implementing distinct 

modules to correct errors of different types. In 

other word, instead of using a general module to 

correct any kind of errors, using different modules 

to deal with different error types seems to be more 

effective and promising. In this paper, we propose 

four distinct modules to deal with four kinds of 

determiner and preposition errors (inserting 

missing determiner, replacing erroneous 

determiner, inserting missing preposition, and 

replacing erroneous prepositions). Four 

learning-based approaches are used to detect and 

correct the errors of prepositions and determiners.   

In this paper, we describe our methods in the 

next section. Section 3 reports the evaluation 

results. Then we conclude this paper in Section 4.  

2. System Description 

2.1 Overview 

In this sub-section, we give a general view of our 

system. Figure 1 shows the architecture of the 

integrated error detection and error correction 

system. The input of the system is a sentence in a 

learner’s writing. First, the data is pre-processed 

using the GeniaTagger tool (Tsuruoka et al., 2005), 

which provides the base forms, part-of-speech tags, 

chunk tags and named entity tags. The tag result of 
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the sample sentence “This virus affects the defense 

system.” is shown in Table 1. The determiner error 

detection module then directly inserts the missing 

determiners and deletes the unnecessary 

determiners. Meanwhile, the error determiners are 

replaced with predicted answers by the determiner 

error correction module. After finishing the 

determiner error correction, the preposition error 

detection and correction module detects and 

corrects the preposition errors of the modified 

input sentence.  

In the following subsections, we first introduce 

the training and testing of the determiner error 

detection and correction modules (Section 3.2). 

Then in section 3.3 we focus on the training and 

testing of the preposition error detection and 

correction modules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. System Architecture (Run-Time) 

 

 

Word Base form POS Chunk NE 

This This DT B-NP O 
virus virus NN I-NP O 
affects affect VBZ B-VP O 

the the DT B-NP O 

defence defence NN I-NP O 

system system NN I-NP O 

. . . O O 

Table 1. The tag result of sample sentence. 

2.2 Determiners 

In this section, we investigate the performance of 

two maximum entropy classifiers (Ratnaparkhi, 

1997), one for determining whether a noun phrase 

has a determiner or not and the other for selecting 

the appropriate determiner if one is needed.  

 From the British National Corpus (BNC), we 

extract 22,552,979 noun phrases (NPs). For 

determining which features are useful for this task, 

all NPs are divided into two sets, 20 million cases 

as a training set and the others as a validation set.  

For the classifier (named the DetClassifier 

hereafter) trained for predicting whether a NP has a 

determiner or not, the label set contains two labels: 

“Zero” and “DET.” On the other hand, for the 

classifier (named the SelClassifier hereafter) which 

predicts appropriate determiners, the label set 

contains 9 labels: the, a, an, my, your, our, one, 

this, their. (In the training data, there are 7,249,218 

cases with those labels.) 

Both of the classifiers use contextual and 

syntactic information as features to predict the 

labels. The features include single features such as 

the headword of the NP, the part of speech (PoS) 

of the headword, the words and  PoSs in the 

chunks before or after the NP (pre-NP, post-NP), 

and all words and PoSs in the NP (excluding the 

determiner if there was one), etc. We also combine 

the single features to form more specific features 

for better performance. 

At run time, the given data are also tagged and 

all features for each NP in the data are extracted 

for classification. For testing, all determiners at the 

beginning of the NPs are ignored if they exist. At 

first, the DetClassifier is used to determine 

whether a NP needs a determiner or not. If the 

classifier predicts that the NP should not have a 

determiner but it does, there is an “UD” 

(Unnecessary determiner) type mistake. In contrast, 

Preposition Error 

Choice 

Determiner Error 

Detection 
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Choice 

Preposition Error 
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Input 
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if the classifier predicts that the NP should have a 

determiner but it does not, there is a “MD” type 

mistake. For both “MD” (Missing determiner) and 

“RD” (Replace determiner) mistake types, we 

would use the SelClassifier to predict which 

determiner is more appropriate for the given NP.  

2.3 Prepositions 

2.3.1 Preposition Error Detection 

In solving other problems in natural language 

processing, supervised training methods suffers 

from the difficulty of acquiring manually labeled 

data. This may not be the case with grammatical 

language error correction. Although high quality 

error learner’s corpora are not currently available 

to the public to provide negative cases, any 

ordinary corpus can used as positive cases at 

training time. 

In our method, we use an ordinary corpus to 

train a Conditional Random Field (CRF) tagger to 

identify the presence of a targeted lexical category. 

The input of the tagger is a sentence with all words 

in the targeting lexical category removed. The 

tagger will tag every word with a positive or 

negative tag, predicting the presence of a word in 

the targeted lexical category. In this paper, we 

choose the top 13 most frequent prepositions: of, to, 

in, for, on, with, as, at, by, from, about, like, since. 

Conditional Random Field 

The sequence labeling is the task of assigning 

labels from a finite set of categories sequentially to 

a set of observation sequences. This problem is 

encountered not only in the field of computational 

linguistics, but also many others, including 

bioinformatics, speech recognition, and pattern 

recognition. 

Traditionally sequence labeling problems are 

solved using the Hidden Markov Model (HMM). 

HMM is a directed graph model in which every 

outcome is conditioned on the corresponding 

observation node and only the previous outcomes. 

Conditional Random Field (CRF) is considered 

the state-of-the-art sequence labeling algorithm. 

One of the major differences of CRF is that it is 

modeled as a undirected graph. CRF also obeys the 

Markov property, with respect to the undirected 

graph, every outcome is conditioned on its 

neighboring outcomes and potentially the entire 

observation sequence. 

 

 

Figure 2. Simplified view of HMM and CRF 

 

Supervised Training 

Obtaining labeled training data is relatively easy 

for this task, that is, it requires no human labeler. 

For this task, we will use this method to target the 

lexical category preposition. To produce training 

data, we simply use an ordinary English corpus 

and use the presence of prepositions as the 

outcome, and remove all prepositions. For example, 

the sentence  

 

“Miss Hardbroom ’s eyes bored into Mildred 

like    a    laser-beam    the    moment    

they    came into view .” 

 

will produce  

 

“Miss _Hardbroom _’s _eyes _bored +Mildred 

_like _a _laser-beam _the _moment _they 

_came  +view .”  

 

where the underscores indicate no preposition 

presence and the plus signs indicate otherwise. 

Combined with additional features described in 

following sections, we use the CRF model to train 

a preposition presence detection tagger. Features 

additional to the words in the sentence are their 

corresponding lemmas, part-of-speech tags, upper 

or lower case, and word suffix. 

At runtime, we first remove all prepositional 

words in the user input sentence, generate 

additional features, and use the trained tagger to 

predict the presence of prepositions in the altered 

sentence. By comparing the tagged result with the 

original sentence, the system can output insertion 

and/or deletion of preposition suggestions. 

The process of generating features is identical to 

producing the training set. To generate 
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part-of-speech tag features at runtime, one simple 

approach is to use an ordinary POS tagger to 

generate POS tags to the tokens in the altered 

sentences, i.e. English sentences without any 

prepositions. A more sophisticated approach is to 

train a specialized POS tagger to tag English 

sentences with their prepositions removed. A 

state-of-the-art part-of-speech tagger can achieve 

around 95% precision. In our implementation, we 

find that using an ordinary POS tagger to tag 

altered sentences yield near 94% precision, 

whereas a specialized POS tagger performed 

around 1% higher precision. 

We used a small portion of the British National 

Corpus (BNC) to train and evaluate our tagger (1M 

and 10M tokens, i.e. words and punctuation marks). 

The British National Corpus contains over 100 

million words of both written (90%) and spoken 

(10%) British English. The written part of the BNC 

is sampled from a wide variety of sources, 

including newspapers, journals, academic books, 

fictions, letter, school and university essays. A 

separate portion of the BNC is selected to evaluate 

the performance of the taggers. The test set 

contains 322,997 tokens (31,916 sentences). 

 

2.3.2 Preposition Error Correction 

Recently, the problem of preposition error 

correction has been viewed as a word sense 

disambiguation problem and all prepositions are 

considered as candidates of the intended senses. In 

previous studies, well-formed corpora and learner 

corpora are both used in training the classifiers. 

However, due to the limited size of learner corpora, 

it is difficult to use the learner corpora to train a 

classifier. A more feasible approach is to use a 

large well-formed corpus to train a model in 

choosing prepositions. Similar to the determiner 

error correction, we choose the maximum entropy 

model as our classifier to choose appropriate 

prepositions underlying certain contexts. In order 

to cover a large variety of genres in learners’ 

writing, we use a balanced well-formed corpus, the 

BNC, to train a maximum entropy model.  

Our context features include four feature 

categories which are introduced as follows.  
 Word feature (f1): Word features include a 

window of five content words to the left and 

right with their positions. 

 Head feature (f2): We select two head words 

in the left and right of prepositions with their 

relative orders as head features. For example, 

in Table 2, we select the first head word, face, 

with its relative order, Rh1, as one of the 

head features of preposition, to. More 

specifically, “Rh1=face” denotes first head 

word, face, right of the preposition, to. 

 Head combine feature (f3): Combine any 

two head features described above to get six 

features. For example, L1R2 denotes two 

head words surrounding the preposition. 

 Phrase combine feature (f4): Combine the 

head words of noun phrase and verb phrase 

where the preposition is between the phrases. 

For example, V_N feature denotes the head 

words of verb phrase and noun phrase where 

the preposition is followed by noun phrase 

and is preceded by verb phrase. 
   

 
Word Feature 

(f1) 

Lw1=leaving, Rw1=face,  

Rw2= chronic, Rw3= condition 

Head Feature 

(f2) 

Lh1=them, Lh2=leaving, 

Rh1=face, Rh2=condition 

Head Combine 

Feature (f3) 

L1L2= them_leaving,  

L1R1= them_face,  

L1R2= them_condition, … 

Phrase Combine 

Feature (f4) 

N_N= them_condition,  

V_N= leaving_condition,  

N_V= them_face,  

V_V= leaving_face 

Table 2. Features example for leaving them to face this 

chronic condition 

At run time, we extract the features of each 

preposition in learners’ writings and ask the model 

to predict the preposition. The preposition error 

detection model described in section 2.3.1 first 

removes all prepositions from test sentences and 

then marks the “presence” and “absence” labels in 

every blank of a sentence. For each blank labeled 

“presence”, the correction model predicts the 

preposition which best fits the blank underlying the 

contexts. The correction model does not predict 

when the blanks are labeled “absence”. Although 

some blanks labeled “absence” may still 

correspond to prepositions, we decide to reduce 

some recall score to ensure the accuracy of the 

results. 
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3. Experimental Results 

In this section, we present the experimental results 

of the determiner and preposition modules 

respectively.   

3.1 Determiners 

Table 3 shows the performance of the 

DetClassifier of individual feature and Table 4 

shows the performance of the SelClassifier. We 

also wonder how the size of training data 

influences the performance of the models. Table 5 

and 6 show the precision of modes of different 

sizes of training data with the best feature “whole 

words in NP and last word of pre-NP.” Because the 

performance converges while using more than 5 

million training cases, we use only 1 million 

training cases to investigate the performance of 

using multiple features.  When using all features, 

the precision increases from 84.8% to 85.8% for 

DetClassifier, and from 39.8% to 56.0% for 

SelClassifier. 

We also implement another data-driven model 

for determiner selection (including zero) by using 

the 5gram of Web 1T corpus. The basic concept of 

the model is to use the frequency of determiners 

which fit the context of the given test data to 

choose the determiner candidates. If the frequency 

of the determiner using in the given NP is lower 

than other candidate determiners, we would use the 

most frequent one as the suggestion. However, 

according to our observation during testing, we 

find that the model tends to cause false alarms. To 

reduce the probability of false alarm, we set a high 

threshold for the ratio f1/f2 where f1 is the frequency 

of the used determiner and f2 is the frequency of 

the most frequent determiner. The suggestion is 

accepted only when the ratio exceeds the threshold.  

The major limitation of the proposed method is 

that some errors are ignored due to parsing errors. 

For example, the given data “the them” should be 

considered as one NP with the “UD” type error. 

However, the parser would give the chunk result 

“the [B-NP] them [B-NP]” and the error would not 

be recognized. It might need some rules to handle 

these exceptions. Another weakness of the 

proposed methods is that the less frequently used 

determiners are usually considered as errors and 

suggested to be replaced with more frequently used 

ones. For example, possessives such as ‘my’ 

and ’your’, are usually replaced with “the.” We 

need to integrate more informative features to 

improve performance. 

 
Features Precision 

head/PoS 79.1% 

word/PoS of pre-NP 70.0% 

word/PoS of all words in NP 85.9% 

PoS of all words in NP 77.8% 

word/PoS of post-NP 71.8% 

whole words in NP 87.2% 

last word/PoS of pre-NP and head/PoS 92.3% 

whole words in NP and last word of 

pre-NP 

96.8% 

Table 3. Precision of features used in the DetClassifier 

 
Features Precision 

head/PoS 55.2% 

word/PoS of pre-NP 49.5% 

word/PoS of all words in NP 53.9% 

PoS of all words in NP 45.3% 

word/PoS of post-NP 46.1% 

whole words in NP 60.4% 

last word/PoS of pre-NP and head/PoS 65.3% 

whole words in NP and last word of 

pre-NP 

70.8% 

Table 4. Precision of features used in the SelClassifier 

 
Size Precision 

1,000,000 84.8% 

5,000,000 96.8% 

10,000,000 96.8% 

15,000,000 96.8% 

20,000,000 96.8% 

Table 5. Precision of different training size for the 

DetClassifier 

 
Size Precision 

1,000,000 39.8% 

3,000,000 43.2% 

5,000,000 44.5% 

7,000,000 61.6% 

7,249,218 70.8% 

Table 6. Precision of different training size for the  
 SelClassifier 
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3.2 Prepositions 

Two sets of evaluation were carried out for 

detection. First, we use a randomly-selected 

portion of the BNC containing 1 million tokens to 

train our tokenizer targeting the 34 highest 

frequency prepositions. Second, we use a larger 

training corpus containing 10 million tokens, also 

randomly selected from the BNC, and target a 

smaller set of the 13 highest frequency 

prepositions, due to the fact that these 13 

prepositions can cover over 90% of the preposition 

errors found in the development set. 

We evaluate the trained taggers using two 

different metrics. First we evaluate the overall 

tagging precision, which is defined as 

 

Poverall   =  # of correctly tagged words  / # of 

all words  

Ppresence =  # correctly tagged PRESENCE / #  

all words labeled with PRESENCE 

 
Since most answer tags are Non-presence, 

Poverall is not informative, we therefore focus on 

Ppresense, and further evaluate the recall of presence, 

defined as: 

 

Rpresence = # correctly tagged PRESENCE  / # 

word should be tagged with PRESENCE  

 

We then evaluate on Precision and Recall of the 

PRESENCE tag using different probabilities to 

threshold the CRF tagging results. Then we show 

the result of two evaluation sets. On the left is the 

tagger train with 1 million tokens, targeting 34 

prepositions. On the right is the tagger trained with 

10 million tokens, targeting 13 prepositions. Only 

the latter tagger is used for producing the 

submitted runs. 

We used the development data released as part 

of HOO 2012 Shared Task as the gold standard for 

the evaluation of our preposition correction module. 

In order to observe the effect of different feature 

sets in training, we first extracted the MT and RT 

instances marked by the gold standard and then ask 

the correction module to correct these prepositions 

directly. Table 7 shows the precision of the models 

trained on different feature sets. The definition of 

precision is the same as the definition in the HOO 

2012 Shared Task. The results shows that the 

model trained using four feature sets achieved 

higher precision.   

Features Precision 

MT RT MT+RT 

f1 43.62% 39.15% 40.48% 

f1+f2 52.58% 43.47% 46.18% 

f1+f2+f3 55.20% 46.77% 49.27% 

f1+f2+f3+f4 55.11% 47% 49.41% 

Table 7. The feature selection and accuracy of the 

preposition correction module. 

 

In addition to the evaluation on the effect of 

different feature sets, we also conducted an 

evaluation done on the development data of HOO 

2012 Shared Task to observe the performance of 

the correction model when combined with the 

detection model. The correction model corrected 

three different types of preposition errors, MT, RT 

and MT+RT simultaneously (Table 8). 
 

 

  MT RT MT+RT 

Precision 1.16% 3.80% 4.96% 

Recall 29.86% 41.14% 37.79% 

  

Table 8. Precision and recall scores of the correction 

modules when combined with the detection module.  

 

Note that when we only corrected the 

preposition errors marked MT by preposition error 

detection module, the precision and recall are both 

lower than that of RT. The amount of false alarm 

instances of detection module in MT seems to be 

too high, thus in this paper, we won’t correct the 

instance marked MT to insure the higher precision 

of overall preposition correction. 

 

4. Conclusion 

In this paper, we integrate four learning-based 

methods in determiner and preposition error 

detection and correction. The integrated system 

simply parses and tags the test sentences and then 

corrects determiners and prepositions step by step. 

The training of our system relies on well-formed 

corpora and thus seems to be easier to 

re-implement it. The large well-formed corpus 

might also insure higher recall.  

In the future, we plan to integrate the system in 

a more flexible way. The detection modules could 
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pass probabilities to the correction modules. The 

correction modules thus could decide whether to 

correct the instances or not. In addition, we plan to 

reduce the false alarm rate of the detection module. 

Besides, a more considerable evaluation would be 

conducted in the near future. 
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Abstract

In this paper, we describe the UKP Lab system
participating in the HOO 2012 Shared Task on
preposition and determiner error correction.
Our focus was to implement a highly flexi-
ble and modular system which can be easily
augmented by other researchers. The system
might be used to provide a level playground
for subsequent shared tasks and enable further
progress in this important research field on top
of the state of the art identified by the shared
task.

1 Introduction

UKP Lab already participated in the previous HOO
Shared Task in 2011. Our knowledge-based system
(Zesch, 2011) was targeted towards detecting real-
word spelling errors, but performed also well on a
number of other error classes.1 However, it was not
competitive for article and preposition errors where
supervised systems based on confusion sets consti-
tute the state of the art. Thus, we tailor the HOO
2011 system towards correcting article and prepo-
sition errors, but also implement a supervised ap-
proach based on confusion sets (Golding and Sch-
abes, 1996; Jones and Martin, 1997; Carlson et al.,
2001).

We decided to implement a basic system that
should be as flexible as possible and might serve as a
basis for experiments in future rounds of the shared
task. We also plan to model the most successful

1http://clt.mq.edu.au/research/projects/hoo/hoo2011/reports/
hoo2011-UDposter.pdf

systems in our framework as soon as the system de-
scriptions are made available.2 This might provide
a level playground for subsequent shared tasks and
enable real progress in this important field on top of
the state of the art identified by the HOO shared task.

2 Supervised Error Detection

We implement a generic framework for article and
preposition error detection based on the open-source
DKPro framework.3 DKPro is a collection of soft-
ware components for natural language processing
based on the Apache UIMA framework (Ferrucci
and Lally, 2004). It comes with a collection of
ready-made modules which can be combined to
form more complex applications.

Our goal is to develop a system which is as flex-
ible as possible with respect to (i) linguistic pre-
processing, (ii) the extraction of features, and (iii)
the applied classification method. We will make the
source code publicly available as part of the DKPro
infrastructure and hope that this will lower the ob-
stacles for participating in future rounds of the HOO
Shared Task.

We also provide a reference implementation of the
HOO 2012 experiments based on the DKPro Lab
framework (Eckart de Castilho and Gurevych, 2011)
which enables (i) parameter sweeping, (ii) modeling
of interdependent tasks (like e.g. training and test
cycles), (iii) generating performance reports, and
(iv) storing all experimental results in a convenient
manner.

2We invite other participating teams to help with this effort.
3http://code.google.com/p/dkpro-core-asl/
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2.1 Linguistic Preprocessing
For our basic implementation, we only use a few
preprocessing steps. We tokenize and sentence split
the data with the default DKPro segmenter, and
then use TreeTagger (Schmid, 2004) to POS-tag and
chunk the sentences. However, the framework al-
lows the effortless addition of other preprocessing
components, e.g. parsing or named-entity recogni-
tion.

2.2 Feature Extraction
We implement a generic feature extraction process
based on the ClearTK project (Ogren et al., 2008).
ClearTK provides a set of highly flexible feature ex-
tractors that access the annotations (e.g. POS tags,
chunks, etc.) created by the linguistic preprocessing.

One important decision during training is to de-
cide which instances should be used for feature ex-
traction. In the simplest setting, each token is used to
generate an instance, but this would result in a very
high number of negative instances for every positive
instance. For the error classes RT/UT and RD/UD, a
more balanced distribution of instances can be easily
enforced by only creating a positive instance if the
token equals an element in the corresponding confu-
sion set. We create a negative instance by removing
or changing the article/preposition.

For articles, we use the confusion set:

{a, an, the, this}4

For prepositions, we use the confusion set:

{as, at, but, by, for, from, in, of, on, out,
over, since, than, to, up, with}

The confusion set is a parameter to the feature ex-
traction method and can be changed easily. This also
makes it possible to apply the framework to other er-
ror classes, e.g. for correcting frequently confused
words like (accept, except) or (than, then).

Table 1 lists the set of basic features implemented
in the reference system. As our goal was to imple-
ment a highly flexible system, we put more effort
in the overall architecture than in the feature engi-
neering. N-gram features are computed based on the

4In the official runs, an was not part of the confusion set, but
was specially handled in a post-processing step. In the current
version of the framework, we removed this heuristic and now
treat an as a normal part of the confusion set.

Google Web1T n-gram corpus (Brants and Franz,
2006) which is accessed using jWeb1T.5

The listed features can be improved in many
ways, e.g. the chunk feature could also encode the
type of the chunk. As the framework allows to easily
add new feature extractors, we are going to integrate
the most successful features from the shared task.
Due to the modular architecture of ClearTK, the im-
plemented feature extractors could even be re-used
for other classification tasks unrelated to spelling
correction.

2.3 Classification

ClearTK provides a wide range of adapters to well
known machine learning frameworks and classifica-
tion tools. As of April 2012, the following adapters
are supported:

• LIBSVM6

• MALLET7 (McCallum, 2002)

• OpenNLP Maxent8

• SVMlight9 (Joachims, 1999)

• SVMlight-TK10 (Moschitti, 2006)

• Weka11 (Hall et al., 2009)

As we can easily switch the classifier, we tried
a wide range of classifiers, but SVM worked gen-
erally best. For the official runs, we used SVM as
implemented in the Weka toolkit with the parameter
“BuildLogisticModels” which allows to base a de-
tection decision on the confidence of the classifier in
order to improve precision.

3 Knowledge-based Error Detection

Besides the supervised system described above, we
also apply our knowledge-based system from the
HOO 2011 Pilot Round (Zesch, 2011). We re-
implemented two state-of-the-art approaches: the

5code.google.com/p/jweb1t/
6http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
7http://mallet.cs.umass.edu/
8http://opennlp.apache.org/
9http://svmlight.joachims.org/

10http://disi.unitn.it/moschitti/Tree-Kernel.htm
11http://www.cs.waikato.ac.nz/ml/weka/

303



Name Description Range of Values / Examples

pos−2−1

The neighboring POS tags. For the example we
assume “IN NNP DT NN VBD”.

IN-NNP
pos−2 IN
pos−1 NNP
pos+1 NN
pos+2 VBD
pos+1+2 NN-VBD

chunk−1

Whether the neighboring tokens are part of a chunk.
For the example, we assume “in the [United States]”.

O
chunk+1 B
chunk+2 I
chunk+1+2 B-I

vowel+1 Whether the next token starts with a vowel or not. 0/1
cons+1 Whether the next token starts with a consonant or not. 0/1
sign+1 Any sign that is not an alphabetic character. 0/1

n-gram(t−1{x→ y})
Let f(n-gram) be the frequency of the n-gram in a
certain corpus. All n-gram features are then computed
as f(xt+1t+2)

f(t+1t+2)
− f(yt+1t+2)

f(t+1t+2)

n-gram(“{the→ a} big house”);
f(“the big house”) = 100;
f(“a big house”) = 50;
f(“big house”) = 1000;
100
1000
− 50

1000
= 0.05

n-gram({x→ y}t+1)
n-gram(t−1{x→ y}t+1)
n-gram(t−2t−1{x→ y})
n-gram({x→ y}t+1t+2)

Table 1: List of features used for classification.

knowledge-based approach (Hirst and Budanitsky,
2005) and the statistical approach (Mays et al., 1991;
Wilcox-OHearn et al., 2008). Both approaches mea-
sure the contextual fitness of a word and the sur-
rounding context. For that purpose, the knowledge-
based approach computes the semantic relatedness
of a target word with all other words in a certain con-
text window. This approach is not suitable for cor-
recting article or preposition errors, as these word
classes are not linked to the context via lexical-
semantic relations. Thus, we only use the statisti-
cal approach that computes the probability of a sen-
tence based on a n-gram language model. We use
the Google Web1T n-gram data (Brants and Franz,
2006).

Although being generally applicable to article
and preposition errors, the statistical approach needs
some adaptations in order to achieve acceptable per-
formance. In the original definition, the approach
computes the probability of all alternative sentences
where the target word is replaced with a word from
the vocabulary that has low edit distance to the tar-
get word. This results in a very high false detection
rate. Thus, we (i) limit detections to positions where
an article or preposition is already present, and (ii)
select the substitution candidate not from all tokens
with low edit distance to the original token, but only

from the appropriate confusion set.
As the statistical approach is purely based on n-

gram frequencies, while this is only one feature of
the supervised approach, we expect the supervised
approach to outperform our adapted knowledge-
based system by a wide margin.

4 Experimental Setup

We model all experiment pipelines in the previously
described framework. As training data, we use the
publicly available Brown corpus (Francis W. Nelson
and Kuçera, 1964), but limit training to 3,700 ran-
domly selected sentences in order to speed up the
training process.

4.1 Unofficial Runs

Due to technical problems, we were not able to sub-
mit all runs in time. We therefore report also unof-
ficial runs which we evaluated on the test data that
was available for participants for a limited amount
of time.12 Although we did not tailor the unofficial
runs in any way towards the test data, they have cer-
tainly a different status than the official runs. We do
not consider this as a major problem, as our basic

12HOO 2012 test data was subject to a strict license and
needed to be deleted after the evaluation period.
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Detection Recognition Correction
Description Run P R F P R F P R F

Baselines
Always the - 7.09 6.13 6.58 7.09 6.13 6.58 2.00 1.69 1.81
Always of - 11.51 28.54 16.40 11.51 28.54 16.40 1.53 3.81 2.19

Unofficial

2011 Articles; α = .005 - 9.62 8.47 9.00 9.62 8.47 9.00 0.96 0.85 0.90
2011 Prepositions; α = .005 - 18.11 23.04 20.28 18.11 23.04 20.28 9.00 11.42 10.05
2012 Naive Bayes - 9.35 39.32 15.11 9.35 39.32 15.11 1.26 5.29 2.03
2012 SVM - 10.46 33.40 15.93 10.46 33.40 15.93 2.71 8.67 4.13

Official
θRD = 0.95; θRT = 0.8 UD0 8.64 7.73 8.16 4.94 4.42 4.66 1.48 1.32 1.40
θRD = 0.8; θRT = 0.7 UD1 8.36 15.45 10.85 4.18 7.73 5.43 1.19 2.21 1.55
θRD = 0.5; θRT = 0.3 UD2 8.94 31.13 13.88 5.51 19.21 8.57 1.20 4.19 1.87

Table 2: HOO 2012 test data: Results (in %) for article and preposition errors combined.

feature set is not competitive with the best perform-
ing systems anyway.

We implemented two baseline systems, one for
articles and one for prepositions. The baselines re-
place every occurrence of an article/preposition with
the most frequent article/preposition from the confu-
sion set (the for articles, of for prepositions).

We also apply the adapted HOO 2011 statistical
approach in two versions as described above: one
adapted towards articles, and one adapted towards
prepositions.

Finally, we use the new framework for supervised
error correction based on the basic feature set de-
scribed above with two classifiers: Naive Bayes and
SVM as implemented in the Weka toolkit version
3.7.5. We treat the correction task as a multi-class
problem and only target the error classes RD, RT,
UD, UT. The remaining error classes MD and MT
(missing articles and prepositions) are more chal-
lenging, as it is less obvious how to create good
training data from a non-error annotated corpus.

4.2 Official Runs

The three runs that were officially submitted are
also based on the SVM implementation in Weka,
but we applied the parameter “BuildLogisticMod-
els” which allows to base a detection decision on
the confidence of the classifier in order to improve
precision. We tuned parameters on the training data
and report three runs for the threshold combinations
(θRD, θRT ) = (0.95, 0.8), (0.8, 0.7), and (0.5, 0.3).

5 Results

Table 2 summarizes the results of all runs. As ex-
pected, the basic feature set used in our experiments
is not competitive with the top-performing systems
in the shared task.13 However, some observations
can be made from the relative differences between
the scores. The thresholds applied in the official runs
are not working as expected, as precision is not in-
fluenced, while recall drops a lot. The HOO 2011
system based on the statistical approach performs
quite well for prepositions, but not for articles. Its
performance is comparable to the supervised runs,
but this is only due to the limited feature set used in
our experiment.

As mentioned above, our focus was to implement
a highly flexible and modular system for supervised
error correction which can be easily augmented by
other researchers. We plan to model the most suc-
cessful systems in our framework as soon as the sys-
tem descriptions are made available, and we invite
other participating teams to help with this effort. The
system might provide a level playground for subse-
quent shared tasks and enable further progress in this
important field of research.
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ual of information to accompany a standard corpus of
present-day edited American English, for use with dig-
ital computers.

Andrew R. Golding and Yves Schabes. 1996. Com-
bining Trigram-based and feature-based methods for
context-sensitive spelling correction. In Proceedings
of the 34th annual meeting on Association for Com-
putational Linguistics, pages 71–78, Morristown, NJ,
USA. Association for Computational Linguistics.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The WEKA Data Mining Software: An Update.
SIGKDD Explorations, 11(1).

Graeme Hirst and Alexander Budanitsky. 2005. Correct-
ing real-word spelling errors by restoring lexical cohe-
sion. Natural Language Engineering, 11(1):87–111,
March.

Thorsten Joachims. 1999. Making large-scale SVM
learning practical. In B. Scholkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods - Sup-
port Vector Learning.

Michael P Jones and James H Martin. 1997. Contex-
tual spelling correction using latent semantic analy-
sis. In Proceedings of the Fifth Conference on Ap-
plied Natural Language Processing, pages 166–173,
Morristown, NJ, USA. Association for Computational
Linguistics.

Eric Mays, Fred. J Damerau, and Robert L Mercer. 1991.
Context based spelling correction. Information Pro-
cessing & Management, 27(5):517–522.

Andrew Kachites McCallum. 2002. MALLET: A Ma-
chine Learning for Language Toolkit.

Alessandro Moschitti. 2006. Making tree kernels practi-
cal for natural language learning. In Proceedings of
the Eleventh International Conference on European
Association for Computational Linguistics, Trento,
Italy.

Philip V. Ogren, Philipp G. Wetzler, and Steven Bethard.
2008. ClearTK: A UIMA Toolkit for Statistical Nat-
ural Language Processing. In Towards Enhanced
Interoperability for Large HLT Systems: UIMA for
NLP workshop at Language Resources and Evaluation
Conference (LREC).

Helmut Schmid. 2004. Efficient Parsing of Highly Am-
biguous Context-Free Grammars with Bit Vectors. In
Proceedings of the 20th International Conference on
Computational Linguistics (COLING 2004), Geneva,
Switzerland.

Amber Wilcox-OHearn, Graeme Hirst, and Alexander
Budanitsky. 2008. Real-word spelling correction with
trigrams: A reconsideration of the Mays, Damerau,
and Mercer model. In Proceedings of the 9th inter-
national conference on Computational linguistics and
intelligent text processing (CICLing).

Torsten Zesch. 2011. Helping Our Own 2011: UKP
Lab System Description. In Proceedings of the Help-
ing Our Own Working Group Session at the 13th Eu-
ropean Workshop on Natural Language Generation,
pages 260–262.

306



The 7th Workshop on the Innovative Use of NLP for Building Educational Applications, pages 307–315,
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Abstract

The growth of open-access technical publica-
tions and other open-domain textual informa-
tion sources means that there is an increas-
ing amount of online technical material that
is in principle available to all, but in prac-
tice, incomprehensible to most. We propose
to address the task of helping readers com-
prehend complex technical material, by us-
ing statistical methods to model the “prereq-
uisite structure” of a corpus — i.e., the se-
mantic impact of documents on an individual
reader’s state of knowledge. Experimental re-
sults using Wikipedia as the corpus suggest
that this task can be approached by crowd-
sourcing the production of ground-truth labels
regarding prerequisite structure, and then gen-
eralizing these labels using a learned classifier
which combines signals of various sorts. The
features that we consider relate pairs of pages
by analyzing not only textual features of the
pages, but also how the containing corpora is
connected and created.

1 Introduction and Motivation

Nicholas Carr has argued in his recent popular book
“The Shallows” that existing Internet technologies
encourage “shallow” processing of recent and pop-
ular information, at the expense of “deeper”, con-
templative study of less immediately-accessible in-
formation (Carr, 2011) . While Carr’s hypothesis is
difficult to formalize rigorously, it seems intuitively
plausible. For instance, user-generated content from
Twitter and Facebook is mainly comprised of short,
shallow snippets of information. Most current re-
search in AI (and more broadly in computer science)
does not seem likely to reverse this trend: e.g., work

in crowdsourcing has concentrated on tasks that can
be easily decomposed into small pieces, and much
current NLP research aims at facilitating short-term
“shallow” goals, such as answering well-formulated
questions (e.g., (Kwok et al., 2001)) and extracting
concrete facts (e.g., (Etzioni et al., 2006; Yates et al.,
2007; Carlson et al., 2010)). This raises the ques-
tion: what can AI do to facilitate deep, contempla-
tive study?

In this paper we address one aspect of this larger
goal. Specifically, we consider automation of a
novel task—using AI methods to facilitate the “deep
comprehension” of complex technical material. We
conjecture that the primary reason that technical
documents are difficult to understand is lack of mod-
ularity: unlike a self-contained document written for
a general reader, technical documents require cer-
tain background knowledge to comprehend—while
that background knowledge may also be available in
other on-line documents, determining the proper se-
quence of documents that a particular reader should
study is difficult.

We thus formulate the problem of comprehending
technical material as a probabilistic planning prob-
lem, where reading a document is an operator that
will probabilistically change the state of knowledge
K(u, t) of a user u at time t, in a manner that de-
pends on u’s prior knowledge K(u, t − 1). Solving
this task requires, among other things, understand-
ing the effect of reading individual documents d —
specifically, the concepts that are explained by d,
and the concepts that are prerequisites for compre-
hending d. This paper addresses this problem. In
particular, we consider predicting whether one page
in Wikipedia is a prerequisite of another.

More generally, we define the “prerequisite struc-
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Figure 1: The prerequisite structure rooted at the page “Conditional Random Fields”, omitting nodes that would
already be known a typical CS graduate student.

Variable (Mathematics) Random Variable Probability Distribution
Conditional Independence Statistical Model Graphical Model

Discriminative Model Markov Random Field
Gradient Descent Parameter Learning Maximum Likelihood

Inference Dynamic Programming Viterbi Algorithm
Markov Chain Expectation Maximization Algorithm Baum Welch Algorithm

Hidden Markov Model CRF

Figure 2: A plan for comprehending “Conditional Random Fields” (to be read left-to-right, top-to-bottom). Horizontal
lines indicate breaks between independent sections of the subgraph.

ture” for a corpus as a graph, where nodes are con-
cepts to comprehend, and a directed edge d → d′

corresponds to the assertion “understanding d′ is a
prerequisite to understanding d”. For Wikipedia, we
assume a one-to-one correspondence between doc-
ument titles and concepts explicated by (i.e., post-
conditions of) these documents. Figure 2 presents
a small example of a prerequisite structure, and in-
dicates how it might be used to construct a plan for
comprehending a specific concept.

Focusing on Wikipedia has several advantages.
First, it is densely linked, and hence a document d
will likely be linked directly to any prerequisite page
d′. (However, not all hyperlinks will indicate a pre-
requisite.) Second, Wikipedia’s standardized format
makes textual analysis easier. Finally, there is a great
deal of social information available about how docu-
ments are used by the Wikipedia community. These
properties make it easy for us to explore the infor-
mativeness of different types of information with re-
spect to predicting prerequisite structure.

Our overall plan for producing a prerequisite
structure for a corpus is first, to use crowdsourc-

ing approaches to obtain a subset of the prerequisite
structure; and second, to extrapolate this structure
to the entire corpus using machine learning. Below,
we first describe datasets that we have collected,
based on five technical concepts in Wikipedia from
five different fields. We then outline the specifics of
our procedure for annotating prerequisite structure,
using Amazon’s Mechanical Turk, and demonstrate
that meaningful signals about prerequisite structure
can be obtained using a classifier that exploits sev-
eral sources: graph analysis of Wikipedia’s link
graph; graph analysis of a bipartite graph relating
Wikipedia pages to Wikipedians that have edited
these pages; and textual analysis. We complete our
experimental analysis of the prerequisite-structure
prediction task by discussing and evaluating the de-
gree to which prerequisite-structure prediction is
domain-independent, and the degree to which differ-
ent subareas of Wikipedia (e.g., biology vs computer
science) require different predictors.

After discussing related work, we return in the
concluding remarks to the overarching goal of fa-
cilitating comprehension, and discuss the relation-
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Target Concept #Nodes #Edges #Edits
Global Warming 19,170 501,608 1,490,967
Meiosis 19,811 444,100 880,684
Newton’s Laws of Motion 15,714 436,035 795,988
Parallel Postulate 14,966 363,462 858,785
Public-key cryptography 16,695 371,104 1,003,181

Table 1: Target concepts used in the experiments.

ship of the current study to these goals. Specifi-
cally we note that facilitating comprehension also
requires understanding a user’s goals, and her initial
state of knowledge, in addition to understanding the
prerequisite structure of the corpus. We also discuss
the relationship between planning and prerequisite-
structure prediction and suggest that use of appro-
priately robust planning methods may lead to good
comprehension plans, even with imperfectly pre-
dicted prerequisite structure.

2 Experiments

As discussed above, we focus in this paper
on predicting prerequisite structure in Wikipedia.
While most Wikipedia pages are accessible to a
general reader, there are many pages that de-
scribe technical concepts, such as “conditional
random fields”, “cloud radiative forcing”, and
“Corticotropin-releasing factor”. Most of these tech-
nical pages are not self-contained: for instance,
to read and comprehend the page on “conditional
random fields”, one will have to first understand
“graphical model”, and so on, as suggested by Fig-
ure 1. In this section, we evaluate the following
questions:

• Can we train a statistical classifier for prereq-
uisite classification in a target domain, where
the classifier is trained on out of domain (i.e.,
non-target domain) data annotated using Ama-
zon Mechanical Turk service?

• What are the effects of different types of signals
on the performance of such a classifier?

• How does out of domain training compare to in
domain training?

2.1 Experimental Setup
For our experiments, we choose five targets from
differing areas for experimentation, listed in Table 1.

Several of the techniques we used are based on graph
analysis. The full graphs associated with Wikipedia
are unwieldy to use for experimentation because of
their size: therefore, for each target concept, we ex-
tracted a moderate-sized low-conductance subgraph
of Wikipedia’s link graph containing the target, us-
ing a variant of the PageRank-Nibble algorithm (An-
dersen et al., 2006).1. As parameters we used α =
0.15 and ε = 10−7, yielding graphs with approx-
imately 15-20,000 nodes and 350-500,000 edges
each. We also collected the edit history for each
page in every subgraph forming a second graph for
each sub-domain 2. On average, each page from
these subgraphs had been edited about 20 times, by
about 8 unique editors. Details are given in Table 1.

For classification, we used a Maximum Entropy
(MaxEnt) classifier. Given a pair of Wikipedia pages
x = (d, d

′
) connected by a directed edge (hyperlink)

from d to d
′
, the classifier will predict with probabil-

ity p(+1|x) whether the main concept in page d
′

is
a prerequisite for the main concept in page d. The
classifier has the form

p(y|x) =
exp(w · φ(x, y))∑

y′∈Y exp(w · φ(x, y′))
, y ∈ Y = {−1,+1}

where φ(x, y) is a feature function which represents
the pair of pages x = (d, d

′
) in a high dimensional

space, and w is the parameter vector of the classifier
which is estimated from training data. We use the
Mallet package3 to train and evaluate classifiers. For
the experiments in this paper, we shall exploit the
following types of features:

WikiHyperlinks: Features include the random
walk with restart (RWR) score (Tong et al.,
2006) of the target concept page d

′
starting

from the source page d. Additional features
include the PageRank score of the target and
source pages.

1Specifically, we used the “ApproximatePageRank” method
from (Andersen et al., 2006) to find a set of nodes S containing
a low-conductance subgraph, but did not prune S to find the
lowest-conductance subgraph of it with a “sweep”. The version
of Wikipedia’s link graph we used was DBPedia’s version 3.7
(Auer et al., 2007)

2Specifically, a bipartite graph connecting pages and editors.
We used a version of Wikipedia’s edit history extracted by other
researchers (Leskovec et al., 2010), discarding edits marked as
“minor” by the editor.

3Mallet package: http://mallet.cs.umass.edu/
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Domain
Time (s) / Worker

# HITs κ
Evaluation / HIT

Meiosis 38 3 400 0.50
Public-key Cryp. 26 3 200 0.63
Parallel Postulate 41 3 200 0.55
Newton’s Laws 20 5 400 0.47
Global Warming 14 5 400 0.56
Average 27.8 - - 0.54

Table 2: Statistics about the Gold-standard data prepared
using Amazon Mechanical Turk. Also shown are the
averaged κ statistics-based inter-annotator agreement in
each domain. The last row corresponds to the κ value
averaged across all five domains.

WikiEdits: This includes one feature—the
analogous RWR score on the graph of edit in-
formation.

WikiPageContent: Features in this category
are derived from the contents of the two
Wikipedia pages d and d

′
. Examples include:

the category identity of the source page; the
category identity of the target page; whether
the titles of d

′
and d are mentioned in the first

sentence of d; the name of the first section in d
which contains a link to d

′
; whether there is any

overlap in categories between the two pages;
whether d is also linked from d

′
; and the log of

the number of times d′ is linked form d. We use
the JWPL library (http://jwpl.googlecode.com)
for efficient and structured access to Wikipedia
pages from a recent dump obtained on Jan 4,
2012.

2.1.1 Gold-standard Annotation from
Mechanical Turk4

In order to evaluate different prerequisite classi-
fication systems and also to train the MaxEnt clas-
sifier, we collected gold prerequisite decisions us-
ing Amazon Mechanical Turk (AMT). Since prepar-
ing annotated gold data for entire graphs in Table 1
would be prohibitively expensive, we used the fol-
lowing strategy to sample a smaller subgraph from
the larger domain-specific subgraph, which in turn
will be used for training and evaluation purposes.
Preliminary investigation suggested that most of the
pages in the prerequisite structure rooted at a target

4Amazon Mechanical Turk: http://mturk.amazon.com

concept d are connected to d via many short hyper-
link paths. Hence, for each target domain, we first
selected the top 20 nodes with highest RWR scores,
relative to the target concept, in the subgraph for that
target concept (as listed in Table 1.) We then sam-
pled a total of 400 edges from these selected nodes,
with outgoing edges from a node sampled with a fre-
quency proportional to its RWR score. Thus, using
this strategy, we selected up to 400 pairs of pages
(d, d

′
), where each pair has a hyperlink from d to d′.

Classification of a pair of hyperlinked Wikipedia
pages (d, d

′
) into one of the four following classes

constituted a Human Intelligence Task (HIT): (1) d
′

is a prerequisite of d; (2) d is a prerequisite of d
′
; (3)

the two pages are unrelated; (4) Don’t know. Sub-
sequently, based on the feedback from the workers,
a fifth option was also added: the two concepts are
related, but they don’t have any prerequisite relation-
ship between them. Based on the available workers
and turnaround time, the number of assignments per
HIT (i.e., number of unique workers assigned to a
particular HIT) was either 3 or 5; and the number
of HITs used was either 200 or 400. Depending on
the hardness of domain and availability of workers
opting to work on a domain, reward per HIT assign-
ment was varied from $0.02 (for Global Warming
and Newton’s Laws) to $0.08 (for Public-key Cryp-
tography, Meiosis and Parallel Postulate). This data
collection stage spanning all five domains was com-
pleted in about a week at a total cost of $278. Statis-
tics about the data are presented in Table 25.

Starting with the AMT data collected as above,
we next created a binary-labeled training dataset,
where each instance corresponds to a pair of pages.
We ignored all “Don’t Know” labels, treated option
(1) above as vote for the corresponding prerequisite
edge, and treated all other options as votes against.
We then assigned the final label for a node pair using
majority vote (breaking ties arbitrarily).

2.1.2 Consistency of labels
In contrast to standard setup of gold data prepara-

tion where a single annotator is guaranteed to pro-
vide feedback on every instance, the situation in
case of Mechanical Turk-based annotation is differ-
ent, as the workers are at liberty to choose the HITs
(or instances) they want to work on. This makes

5The dataset is available upon request from the authors.
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Figure 3: Comparison of performance between the Max-
Ent classifier (right bar in each group) against a random
baseline (left bar in each group) in all five domains. On
average, the MaxEnt classifier results in an 8.6% absolute
improvement in accuracy.

standard κ statistics-based inter-annotator computa-
tion (Fleiss, 1981) inapplicable in the current set-
ting. We circumvented this problem by first select-
ing all workers with at least 100 feedbacks, and then
computing pairwise κ statistics between all pairs of
these frequent workers. These κ statistics were aver-
aged across each domain, and also averaged across
all domains. The results, also shown in Table 2,
show moderate agreement (recall that κ = 0 indi-
cates no correlation). We are encouraged to observe
that moderate level of agreement is possible even in
this setting, where there is no control over worker
background and quality. We next explore whether
this level of agreement is sufficient to train statisti-
cal classifiers.

2.2 Prerequisite Classification

In this section, we explore whether it is possible to
train a MaxEnt classifier to determine prerequisite
structure in a target domain, with the training per-
formed in “leave one domain out” manner, where
the training data originates from domains other than
the target domain. For example, for classifications in
the target domain, say “Global Warming”, we train
the classifier with annotated data from the remaining
four domains (or whatever domains are available).
We note that training on “out of domain”, if it is
successful, has several benefits. First, a successful
training strategy in this setup removes any need to
have labeled data in each target domain of interest,

which is particularly relevant as labeled data is ex-
pensive to prepare. Second, a classifier trained just
once can be repeatedly used across multiple domains
without requiring retraining.

Accuracies of MaxEnt classifiers trained using the
“leave one domain out” strategy are shown in Fig-
ure 3; we report the test accuracy on each target do-
main, as well as the average across domains. Perfor-
mance of a random classifier is presented as a base-
line. Classes in the train and test sets were balanced
by oversampling the minority class. From Figure 3,
we observe that it is indeed possible to train pre-
requisite classifiers in an out of domain setting, us-
ing data from the Amazon Mechanical Turk service;
on average, the classifier outperforms the random
baseline with 8.6% absolute improvement in classi-
fication accuracy. We also experimented with other
rule-based classifiers6, and in all cases, the trained
MaxEnt classifier outperformed these baselines. Al-
though more sophisticated training strategies and
more clever feature engineering would likely yield
further improvements, we find it encouraging that
even a relatively straightforward classification tech-
nology along with a basic set of features was able to
achieve significant improvement in performance on
the novel task of prerequisite prediction.

2.3 Feature Ablation Experiments
The MaxEnt classifier evaluated in the previous
section had access to all three types of features:
WikiEdits, WikiHyperLinks, and WikiPageContent,
as described in the beginning of this section. In or-
der to evaluate the contribution of each such sig-
nal, we created ablated versions of the full Max-
Ent classifier which uses only one of these three
subsets. We call these thee variants: MaxEnt-
WikiEdits, MaxEnt-WikiHyperLinks, and MaxEnt-
WikiPageContent, respectively. Average accuracies
across all five domains comparing these three vari-
ants, in comparison to the Random baseline and
the full classifier (MaxEnt-Full, as in previous sec-
tion) are presented in Table 3. From this, we ob-
serve that all three variants perform better than the
random baseline, with maximum gains achieved
by the MaxEnt-WikiPageContent classifier, which
uses page content-based features exclusively. We

6For example, classify d
′

as a prerequisite for d if d
′

is
linked from the first paragraph in d.
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System Accuracy
Random 50.22
MaxEnt-WikiEdits 51.62
MaxEnt-WikiHyperlinks 52.70
MaxEnt-WikiPageContent 57.84
MaxEnt-Full 58.82

Table 3: Comparison of accuracies (averaged across all
five domains) of the full MaxEnt classifier with its ablated
versions which use a subset of the features, and also the
random baseline. The full classifier, which exploits all
three types of signals (viz., WikiEdits, WikiHyperlinks,
and WikiPageContent) achieves the highest performance.

Domain
Wiki- Wiki- WikiPage-

All
Edits HyperLinks Content

Meiosis 5.4 2.4 0.3 1
Public-key

-0.7 -1.8 15.1 17.1
Crypto.
Parallel 3.1 6.1 11.7 14.7
Postulate
Newton’s

-0.2 6.2 3.9 3.9
Laws
Global

-7.7 0.1 5.8 6.8
Warming

Table 4: Accuracy gains (absolute) relative to the Ran-
dom baseline achieved by the full MaxEnt classifier as
well as its ablated versions trained with three different
subsets of the full classifier. Positive gains are marked in
bold.

also note that the full classifier MaxEnt-Full, is
able to effectively combine three types of signals
improving performance even further. In Table 4,
we present a per-domain breakdown of the gains
achieved by these four classifiers over the random
baseline. From this, we observe that the MaxEnt-
WikiEdits classifier outperforms the random base-
line only in 2 out of 5 domains. This might be due
to the fact that the MaxEnt-WikiEdits uses uses only
one feature—the RWR score of the target page rela-
tive to the source page on the Wikipedia edits graph.
We hope that use of more discriminating features
should further help this classifier. From Table 4, we
also observe that MaxEnt-WikiHyperLinks is able to
outperform the random baseline in 4 out of 5 cases,
and the MaxEnt-WikiPageContent (as well as the
full classifier) outperforms the random baseline in
all 5 domains, sometimes with large gains (as in the
case of Public-key Cryptography domain).
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Figure 4: Accuracy comparison of out of domain (left bar
in each group) and in domain training (right bar in each
group) for the five domains. From this we observe that
good generalization performance is possible even when
there is no in domain training data available.

2.4 Effect of Out of Domain Training

All the classifiers evaluated in previous sections
were trained in an out of domain setting, i.e., the
training data originated from domains outside the
domain in which the classifier is applied and eval-
uated. This has several benefits, as noted above. An
alternative and more standard way to train classi-
fiers is to have the training and evaluation data be
from the same domain (below, the in-domain set-
ting). While such a classifier will require labeled
training from each domain of interest, it is nonethe-
less of interest to compare in-domain and out-of-
domain learning. If there are substantive differences,
this could be used to improve prerequisite-structure
predictor in a subdomain (e.g., biology), or may
suggest alternative training methods (e.g., involving
transfer learning).

Motivated by this, for each domain, we com-
pare the performances of the out-of-domain and in-
domain classification performances. The results are
shown in Figure 4. On average, we observe that the
out-of-domain classifier is able to achieve 93% of
the performance of the in-domain classifier. We note
that this is encouraging for domain-independent
prerequisite-structure prediction, as this suggests
that for the prerequisite classification task, close to
optimal (i.e., in-domain performance) is possible
when the classifiers are trained in an out-of-domain
setting.
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3 Related Work

We believe the task of prerequisite structure predic-
tion to be novel; however, it is clearly related to a
number of other well-studied research problems.

In light of our emphasis on Wikipedia, a con-
nection can be drawn between identifying prerequi-
sites and measuring the semantic relatedness of con-
cepts using Wikipedia’s link structure (Yeh et al.,
2009). We consider here a related but narrower
question, namely whether an inter-page link will im-
prove comprehension for a specific reader.

In the area of intelligent tutoring and educational
data mining, recent research has looked at enriching
textbooks with authoritative web content (Agrawal
et al., 2010). Also, the problem of detecting pre-
requisite structure from differential student perfor-
mance on tests has been considered (e.g., (Pavlik
et al., 2008; Vuong et al., 2011)). Our proposal con-
siders discovering prerequisite structure from text,
rather than from exercises, and relies on different
signals.

Research in adaptive hypermedia (surveyed else-
where (Chen and Magoulas, 2005)) has goals similar
to ours. Most adaptive hypermedia systems operate
in narrow domains, which precludes use of some of
the crowd-based signals we consider here. In this lit-
erature, a distinction is often made between “adapt-
ability” (the ability for a user to modify a presenta-
tion of hypermedia) and “adaptivity” (the ability of
a system to adapt to a user’s needs.) In this frame-
work, our project focuses on adding “adaptivity” to
existing corpora via a prerequisite structure, and our
principle contribution to this area is identifying tech-
niques that learn to combine textual features and so-
cial, crowd-based signals in order to usefully guide
comprehension.

Another related area is data-mining logs of Web
usage, as surveyed by Pierrakos et al (Pierrakos
et al., 2003). Our focus here is on facilitating a
particular type of Web usage, comprehension, rather
than more commonly-performed tasks like site nav-
igation and purchasing.

A number of “open education” resources exist, in
which information can be organized into sharable
modules with known prerequisites between them
(e.g., Connexions (Baraniuk, 2008)). We focus here
on discovering prerequisite structure with machine-

learning methods rather than simply encoding it.
Similarly, a Wikimedia project7 has developed in-
frastructure allowing a user to manually assemble
Wikipedia pages into e-books. Our focus is on guid-
ing the process of finding and ordering the sections
of these books, not the infrastructure for generating
them. We also note that one widely-used way for
complex technical concepts to be broadly commu-
nicated is by writers or teams of writers, and pre-
vious researchers have investigated understanding
how collaborative writers work (Noël and Robert,
2004), and even developed tools for collaborative
writing (Zheng et al., 2006). Our work focuses on
tools to empower readers, rather than writers.

4 Conclusion

In this paper, we motivated the goal of “crowdsourc-
ing” the task of helping readers comprehend com-
plex technical material, by using machine learning
to predict prerequisite structure from not only docu-
ment text, but also crowd-generated data such as hy-
perlinks and edit logs. While it is not immediately
obvious that this task is feasible, our experiments
suggest that relatively reliable features to predict
prerequisite structure exist, and can be successfully
combined using standard machine learning methods.

To achieve the broader goal of facilitating com-
prehension, predicting prerequisite structure is not
enough. Another important subproblem is using pre-
dicted prerequisites to build a feasible plan. As part
of ongoing work, we are exploring use of modern
optimization methods (such as Integer Linear Pro-
gramming) to compute “reading plans” that mini-
mize a weighted linear combination of expected user
effort and probability of plan “failure”8.

We also plan to explore another major subprob-
lem associated with facilitating comprehension—
personalizing a reading plan. Clearly, even if d′ is
a prerequisite for d, a user interested in d need not
first read a page explaining d′, if she already under-
stands d′; instead, a reading plan based on prereq-
uisite structure should be adjusted based on what is
believed about the user’s prior knowledge state. In

7See http://en.labs.wikimedia.org/wiki/Wiki to print, the
“Wiki to Print” project.

8A plan “failure” means that the plan not actually satisfy all
necessary prerequisites, leading to imperfect comprehension on
the part of the reader after she executes the plan.
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the context of Wikipedia comprehension, one possi-
ble signal for predicting an individuals’ prior knowl-
edge is the Wikipedia edit log: if we assume that
editors tend to edit things they know, the edit log
indicates which concepts tend to be jointly known,
and hence collaborative-filtering methods might be
able to more completely predict a user’s knowledge
given partial information about her knowledge—just
as collaborative-filtering is often used now to extrap-
olate user preference’s from knowledge of others’
joint preferences.

Besides contributing to the goal of facilitating
comprehension, we believe that the specific problem
of predicting prerequisite structure in Wikipedia is
a task of substantial independent interest. Prereq-
uisite structure can be thought of as a sort of ex-
planatory discourse structure, which is overlaid on
a hyperlink graph; hence, scaling up our methods
and applying them to all of Wikipedia would iden-
tify a canonical broad-coverage instance of such ex-
planatory discourse. This could be re-used for other
tasks much as lexical resources like WordNet are:
for instance, consider identifying explanatory dis-
course in an external technical text (e.g., a textbook)
by soft-matching it to the Wikipedia structure, us-
ing existing techniques to match the external text to
Wikipedia (Agrawal et al., 2010; Mihalcea and Cso-
mai, 2007; Milne and Witten, 2008).
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Abstract

To support vocabulary acquisition and read-
ing comprehension in a second language, we
have developed a system to display sense-
appropriate examples to learners for difficult
words. We describe the construction of the
system, incorporating word sense disambigua-
tion, and an experiment we conducted testing
it on a group of 60 learners of English as a
second language (ESL). We show that sense-
specific information in an intelligent reading
system helps learners in their vocabulary ac-
quisition, even if the sense information con-
tains some noise from automatic processing.
We also show that it helps learners, to some
extent, with their reading comprehension.

1 Introduction and Motivation

Reading texts in a second language presents the
language learner with a number of comprehension
problems, including the problem of interpreting
words that are unknown or are used in unfamiliar
ways. These problems are exacerbated by the preva-
lence of lexical ambiguity. Landes et al. (1998) re-
port that more than half the content words in English
texts are lexically ambiguous, with the most frequent
words having a large number of meanings. The
word face, for example, is listed in WordNet (Fell-
baum, 1998) with twelve different nominal senses;
although not all are equally prevalent, there is still
much potential for confusion.

To address this, we have designed an online read-
ing assistant to provide sense-specific lexical in-
formation to readers. By sense-specific, we refer

to information applicable only for one given sense
(meaning) of a word. In this paper, we focus on
the system design and whether such a system can be
beneficial. Our experiment with learners illustrates
the effectiveness of such information for vocabulary
acquisition and reading comprehension.

The problem of lexical ambiguity in reading com-
prehension is a significant one. While dictionar-
ies can help improve comprehension and acquisition
(see, e.g., Prichard, 2008), lexical ambiguity may
lead to misunderstandings and unsuccessful vocabu-
lary acquisition (Luppescu and Day, 1993), as learn-
ers may become confused when trying to locate an
appropriate meaning for an unknown word among
numerous sense entries. Luppescu and Day showed
that readers who use a (printed) dictionary have im-
proved comprehension and acquisition, but to the
detriment of their reading speed.

For electronic dictionaries as well, lexical am-
biguity remains a problem (Koyama and Takeuchi,
2004; Laufer and Hill, 2000; Leffa, 1992; Prichard,
2008), as readers need specific information about a
word as it is used in context in order to effectively
comprehend the text and thus learn the word. Kulka-
rni et al. (2008) demonstrated that providing readers
with sense-specific information led learners to sig-
nificantly better vocabulary acquisition than provid-
ing them with general word meaning information.

We have developed an online system to provide
vocabulary assistance to learners of English as a
Second Language (ESL), allowing them to click
on unfamiliar words and see lexical information—
target word definitions and examples—relevant to
that particular usage. We discuss previous online
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systems in section 2. Importantly, the examples we
present are from the COBUILD dictionary (Sinclair,
2006), which is designed for language learners. To
present these for any text, our system must map au-
tomatic word sense disambiguation (WSD) system
output (using WordNet senses (Fellbaum, 1998)) to
COBUILD, as covered in section 3, where we also
describe general properties of the web system.

The main contribution of this work is to investi-
gate whether high-quality sense-specific lexical in-
formation presented in an intelligent reading system
helps learners in their vocabulary acquisition and
reading comprehension and to investigate the effect
of automatic errors on learning. We accordingly ask
the following research questions:

1. Does sense-specific lexical information facili-
tate vocabulary acquisition to a greater extent
than: a) no lexical information, and b) lexical
information on all senses of each chosen word?

2. Does sense-specific lexical information facili-
tate learners’ reading comprehension?

The method and analysis for investigating these
questions with a group of 60 ESL learners is given in
section 4, and the results are discussed in section 5.

2 Background

While there are many studies in second language
acquisition (SLA) on providing vocabulary and
reading assistance (e.g., Prichard, 2008; Luppescu
and Day, 1993), we focus on outlining intelligent
computer-assisted language learning (ICALL) sys-
tems here (see also discussion in Dela Rosa and Es-
kenazi, 2011). Such systems hold the promise of al-
leviating some problems of acquiring words while
reading by providing information specific to each
word as it is used in context (Nerbonne and Smit,
1996; Kulkarni et al., 2008). The GLOSSER-RuG
system (Nerbonne and Smit, 1996) disambiguates
on the basis of part of speech (POS). This is helpful
in distinguishing verbal and nominal uses, for ex-
ample, but is, of course, ineffective when a word
has more than one sense in the same POS (e.g.,
face). More effective is the REAP Tutor (Heilman
et al., 2006), which uses word sense disambigua-
tion to provide lexicographic information and has

been shown to benefit learners by providing sense-
specific lexical information (Dela Rosa and Eske-
nazi, 2011; Kulkarni et al., 2008).

We build from this work by further demonstrat-
ing the utility of sense-specific information. What
distinguishes our work is how we build from the no-
tion that the lexical information provided needs to
be tuned to the capacities of ESL learners. For ex-
ample, definitions and illustrative examples should
make use of familiar vocabulary if they are to aid
language learners; example sentences directly taken
from corpora or from the web seem less appropriate
because the information in them might be less ac-
cessible (Groot, 2000; Kilgarriff et al., 2008; Segler
et al., 2002). On the other hand, examples con-
structed by lexicographers for learner dictionaries
typically control for syntactic and lexical complexity
(Segler et al., 2002). We thus make use of examples
from a dictionary targeting learners.

Specifically, we make use of the examples from
the Collins COBUILD Student’s Dictionary (Sin-
clair, 2006), as it is widely used by ESL learners.
The content in COBUILD is based on actual English
usage and derived from analysis of a large corpus of
written and spoken English, thereby providing au-
thentic examples (Sinclair, 2006). COBUILD also
focuses on collocations in choosing example sen-
tences, so that the example sentences present nat-
ural, reliable expressions, which can play an im-
portant role in learners’ vocabulary acquisition and
reading comprehension. We discuss this resource
more in section 3.3.

3 The web system

To support vocabulary acquisition and reading com-
prehension for language learners, we have designed
a system for learners to upload texts and click on
words in order to obtain sense-appropriate examples
for difficult words while reading, as shown in fig-
ure 1. Although the experiment reported upon here
focused on 2 preselected texts, the system is able to
present lexical information for any content words.
Beyond the web interface, the system has three com-
ponents: 1) a system manager, 2) a natural language
processing (NLP) server, and 3) a lexical database.
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Figure 1: A screenshot showing the effect of clicking on unveiling and receiving sense-specific information

3.1 System manager

The system manager controls the interaction among
each learner, the NLP server, and the lexical
database. When the manager receives a raw text as
an input from the learner, it first sends the input text
to the server and returns an analyzed text (i.e., tok-
enized, POS-tagged, and sense-tagged) back to the
learner, with content words made clickable. Then,
when the learner clicks on a word while reading, the
manager sends the word with its sense information
to the lexical database and brings the word with its
sense-specific lexical information back to the learner
from the lexical database.

Upon completion of the reading, the manager
sends the learner to a page of tests—i.e., a read-
ing test and a vocabulary test, as described in sec-
tion 4—and records the responses.

3.2 NLP preprocessing

To convert raw input into a linguistically-analyzed
text, the system relies on several basic NLP modules
for tokenizing, lemmatizing, POS tagging, and col-
location identification. Although for some internal
testing with different WSD systems we used other
third-party software (e.g., the Stanford POS tagger

(Toutanova et al., 2003)), our word sense disam-
biguator (see below) provides tokenization, lemma-
tization, and POS tagging, as well as collocation
identification. Since the words making up a colloca-
tion may be basic, learners can easily overlook them,
and so we intend to improve this module in the fu-
ture, to reduce underflagging of collocations.

3.3 Lexical database

The lexical database is used to provide a sense-
appropriate definition and example sentences of an
input word to a learner. To obtain the sense-
appropriate information, we must perform word
sense disambiguation (WSD) on the input text. We
use SenseRelate::AllWords (SR:AW) (Pedersen and
Kolhatkar, 2009) to perform WSD of input texts, as
this system has broad coverage of content words.
Given that SR:AW does not outperform the most fre-
quent sense (MFS) baseline, we intend to explore
using the MFS in the future, as well as other WSD
systems, such as SenseLearner (Mihalcea and Cso-
mai, 2005). However, the quality of SR:AW (F-
measure of 54–61% on different corpora) is suffi-
cient to explore in our system and gives us a point
to work from. Indeed, as we will see in section 5.3,
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while SR:AW makes errors, vocabulary learning is,
in some ways, perhaps not dramatically impeded.

Even with a WSD system, pointing to appropriate
examples is complicated by the fact that the database
of learner-appropriate examples is from one repos-
itory (COBUILD, see section 2), while automatic
WSD systems generally use senses from another
(WordNet). The lexical database, then, is indexed by
WordNet senses, each of which points to an appro-
priate corresponding COBUILD sense. While we
would prefer disambiguating COBUILD senses di-
rectly, we are not aware of any systems which do
this or any COBUILD sense-tagged data to train a
system on. If the benefits for vocabulary acquisition
gained by providing learner-friendly examples from
COBUILD merit it, future work could explore build-
ing a collection of COBUILD-tagged data to train
a WSD system—perhaps a semi-automatic process
using the automatic system we describe next.

To build a lexical database covering all words, we
built a word sense alignment (WSA) system; this
is also in line with a related research agenda in-
vestigating the correspondences between sense in-
ventories (Eom et al., 2012). Space limitations pre-
clude a more detailed discussion, but the WSA sys-
tem works by running SR:AW on COBUILD exam-
ples in order to induce a basic alignment structure
between WordNet and COBUILD. We then post-
process this structure, relying on a heuristic of favor-
ing flatter alignment structures—i.e., links spread
out more evenly between senses in each inventory.1

Iteratively replacing one link with another, to give
flatter structures, we weight each type of proposed
alignment and accept a new alignment if the weight
combined with the probability originally assigned
by the WSD system is the best improvement over
that of the original alignment structure. After all
these steps, the alignments give the lexical database
for linking WSD output to COBUILD senses.

We consider alignment structures wherein each
WordNet sense maps to exactly one COBUILD
sense, to match the task at hand, i.e., mapping each
disambiguated WordNet sense to a single set of
COBUILD examples. This assumption also makes
postprocessing feasible: instead of considering an

1The general idea is to use information about the alignment
structure as a whole; flatter alignments is a convenient heuristic,
in lieu of having any other additional information.

exponential number of alignment structures, we con-
sider only a polynomial number.

Having collected alignment judgments from lin-
guistics students and faculty, we evaluated the sys-
tem against a small set of nine words, covering 63
WordNet senses (Eom et al., 2012). The WSA sys-
tem had a precision of 42.7% (recall=44.5%) when
evaluating against the most popular sense, but a
precision of 60.7% (recall=36.5%) when evaluating
against all senses that seem to be related. We focus
on precision since it is important to know whether
a learner is being pointed to a correct set of exam-
ples or not; whether there are other possibly relevant
examples to show is less important. In Eom et al.
(2012), we discuss some difficulties of aligning be-
tween the two resources in the general case; while
some senses go unaligned between the resources,
this was not the case for the words used in this study.

For this study, since we use pre-determined in-
put texts, we also created gold-standard information,
where each word in the text is manually given a link
to the appropriate COBUILD information; note that
here there is no intermediate WordNet sense to ac-
count for. This lets us gauge: a) whether the gold-
standard information is helpful to learners, and b)
comparatively speaking, what the effects are of us-
ing the potentially noisy information provided by the
functioning system.

4 The study

We now turn to evaluating whether this set-up
of providing sense-specific lexical information can
lead learners to improve their vocabulary acquisition
and their reading comprehension.

4.1 Method

4.1.1 Participants
The participants were recruited from three univer-

sities and a private institute in Seoul, Korea, giv-
ing 60 participants (34 male, 26 female). They
ranged in age from 21 to 39 (avg.=23.8) and the
length of studying English ranged from 8 to 25 years
(avg.=11.32).

The 40 participants from the three universities
were taking English courses to prepare for English
proficiency testing. The 20 participants from the
private institute were mostly university graduates
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taking teacher training courses designed for ele-
mentary English teachers. All participants were
intermediate-level learners, scoring between 15 and
21 on the reading section of the TOEFL iBT R©. We
targeted intermediate learners, so as to test the sys-
tem with learners generally able to understand texts,
yet still encounter many unknown words.

The 60 participants were randomly assigned to
one of four groups, with 15 participants in each
group. The first three received some treatment,
while the fourth was a control group:

1. Gold Senses (GS): reading with support of gold
standard sense-specific lexical information

2. System Senses (SS): reading with support of
system-derived sense-specific lexical informa-
tion

3. All Senses (AS): reading with support of lexi-
cal information of all senses of the chosen word

4. No Senses (NS): reading without any support
of lexical information

For example, when presented with the example
in (1), if chains is clicked, the GS learners see the
correct sense, as in (2a), along with associated ex-
ample sentences (not shown). The automatic system
happens to be incorrect, so the SS learners see a re-
lated, though incorrect, sense and examples, as in
(2b). The AS learners will see those two senses and
examples, as well as the three others for chain. And
the NS learners have no chance to click on a word.

(1) There’s a chance that there will be new items
if you shop at any of the retail chains that
use the “fast fashion” model of business.

(2) a. Gold: A chain of shops, hotels, or other
businesses is a number of them owned
by the same person or company.

b. System: A chain of things is a group of
them existing or arranged in a line.

4.1.2 Materials
Reading texts After piloting various reading texts
and drawing on the ESL teaching experience of
two of the authors, two texts deemed appropriate
for learners at the (high-)intermediate level were
adopted: Fashion Victim (adapted from Focus on
Vocabulary 1: Bridging Vocabulary (Schmitt et al.,

Fashion Victim Sleep Research
resilient.a, chain.n,
conscience.n, cradle.n,
expenditure.n, mend.v,
outfit.n, sector.n,
unveil.v

alternate.a, trivial.a,
deliberately.r, aspect.n,
fatigue.n, obedience.n,
agitate.v, banish.v,
indicate.v, resist.v,
trigger.v

Table 1: Target words used in the study

2011), 589 words) and Sleep Research (adapted
from The Official SAT Study Guide (The College
Board, 2009), 583 words).

The texts were modified to simplify their syntax,
to use more ambiguous words in order to allow for
a stronger test of the system, and to shorten them to
about 600 words. The texts were placed in the online
system, and all content words were made clickable.

Target words A total of 20 target words (9 from
Fashion Victim, 11 from Sleep Research) were se-
lected by piloting a number of possible words with
20 learners from a similar population and identify-
ing ones which were the most unfamiliar, which also
had multiple senses. They appear in table 1.

Reading comprehension tests For reading com-
prehension, two tests were developed, each with
4 multiple-choice and 6 true-false questions. The
questions focused on general content, and partici-
pants could not refer back to the text to answer the
questions. For the multiple-choice questions, more
than one answer could be selected, and each choice
was scored as 1 or 0 (e.g., for 5 choices, the maxi-
mum score for the question was 5); for the true-false
questions, answers were scored simply 1 or 0. The
maximum score for a test was 21.

Vocabulary tests There were one pretest and four
immediate posttests, one of which had the same for-
mat as the pretest. The pretest and all immediate
posttests had the same 30 words (20 target and 10
distractor words). Of 10 distractors, five were words
appearing in the text (obscure.a, correlation.n, in-
tervention.n, discipline.v, facilitate.v), and five were
target words but used with a sense that was different
from the one used in the reading passage (deliber-
ately.r, chain.n, outfit.n, mend.v, indicate.v). Each
test consisted of a word bank and sentences with
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blanks (cf. Kim, 2008). For the pretest, the sentences
were taken from other sources, whereas the posttest
sentences came from the reading texts themselves.

Although we used four posttests in order to test
different kinds of vocabulary learning (giving more
or fewer hints at meaning), we focus on one posttest
in this paper, the one which matches the form of the
pretest. Each correct answer was scored as 1; incor-
rect as 0.

4.1.3 Procedure
The pretest was administered two weeks before

the actual experiment and posttests, so as to prevent
learners from focusing on those words. Participants
who knew more than 16 out of the 20 target words
were excluded from the experiment.

After reading one text, learners took a reading
comprehension test. Then, they did the same for the
second text. After these two rounds, they took the
series of vocabulary posttests.

4.1.4 Data analysis
We ran a variety of tests to analyze the data.2

First, we ran Levene’s test of homogeneity of vari-
ances, to test whether the variances of the error be-
tween groups were equal at the outset of the study.
This makes it clearer that the effects from the main
tests are due to the variables of interest and not from
inherent differences between groups (Larson-Hall,
2010).

Secondly, to test the first research question about
whether participants show better vocabulary acqui-
sition with sense-specific lexical information, we
used a repeated-measures analysis of variance (RM
ANOVA). Time (pre/post) was the within-subject
variable and Group (GS, SS, AS, NS) was the
between-subject. Post-hoc pairwise comparisons
were run in the case of significant results, to deter-
mine which groups differed from each other. We
also examined the pre-post gain only for the target
words which were clicked and for which we might
thus expect more improvement.

Thirdly, to test the second research question about
whether participants improved in reading compre-
hension, we used a one-way ANOVA, with reading
comprehension scores as a dependent variable and

2We used SPSS,version 20.0, http://www-01.ibm.
com/software/analytics/spss/

Pretest Posttest
Mean SD Mean SD

GS 10.73 (54%) 3.43 15.93 (80%) 3.96
SS 10.93 (55%) 2.82 15.47 (77%) 3.80
AS 10.87 (54%) 3.34 13.47 (67%) 3.83
NS 10.87 (54%) 3.25 11.27 (56%) 3.39

Table 3: Descriptive statistics across groups for vocabu-
lary acquisition (Mean = average, SD = standard devia-
tion, percentage out of all 20 answers in parentheses)

the four groups as an independent variable, to ex-
plore if there was any significant main effect of the
group on reading comprehension scores. Post-hoc
tests were then used, in order to determine specifi-
cally which groups differed from each other.

In order to gauge the effect of automatic system
errors—distinguishing the SS (System Senses) and
GS (Gold Senses) conditions—on vocabulary acqui-
sition, we also examined target words where the sys-
tem gave incorrect information.

5 Results and Discussion

5.1 Vocabulary acquisition

Since the first research question is to examine the
improvement between the pretest and the posttest,
the test of homogeneity of variance was carried
out to ensure that the pretest/posttest scores of the
participants across the four groups showed similar
variances. Levene’s test of homogeneity of vari-
ances suggested that the 4 groups could be con-
sidered to have similar variances on both the pre-
test (F (3, 55) = 0.49, p = 0.69) and the post-test
(F (3, 56) = 0.13, p = 0.94), meaning that this as-
sumption underlying the use of ANOVA was met.

Looking at the descriptive statistics in table 3,
none of the groups differed from each other by more
than a quarter of a point (or 1 percentage point) on
the pretest. Thus, the groups are also comparable
with respect to their levels of performance on the
pre-test.

Turning to the results of the treatments in ta-
ble 3, the four groups show larger differences on
their posttest. The GS and SS groups show the clear-
est gains, suggesting greater vocabulary acquisition
than the AS and NS groups, as expected. If we look
at percentage gain, GS gained 26% and SS 23%,
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Partial Obs.
Source df df2 F p Eta2 Power

Test of Within-Subjects Effects
Time 1 56 62.67 <0.01 0.53 1.00
Time*Group 3 56 7.20 <0.01 0.28 0.98

Test of Between-Subjects Effects
Group 3 56 1.71 0.18 0.08 0.42

Table 2: Results of RM ANOVA comparing vocabulary test scores across the four groups over time

while AS gained only 13% and NS 2%.
In order to examine whether the above differ-

ences among groups were statistically significant, a
repeated-measures ANOVA was run on those pretest
and posttest scores, with Group as the between-
subject variable and Time as the within-subject vari-
able. The results of the RM ANOVA are presented
in table 2.

With respect to the within-subject variable, the ef-
fect of Time shows a statistically significant differ-
ence (F (1, 56) = 62.67, p < .001, partial eta2=
0.53). In other words, not considering Group, there
is evidence of improvement from pre to posttest.

Most crucially related to the first research ques-
tion about whether the groups would have different
amounts of vocabulary acquisition over time, we see
a significant Time*Group effect (F (3, 56) = 7.20,
p < .001, partial eta2= 0.28). The partial eta2 val-
ues for Time (0.53) and Time*Group (0.28) in ta-
ble 2 represent large effect sizes which thus provide
strong evidence for the differences.

Two sets of post-hoc comparisons were con-
ducted. The first comparisons, in table 4, show sig-
nificant mean differences between the pretest and
posttest for three groups (GS, SS, AS), whereas no
significant difference is observed in the NS group,
meaning that the three groups who received lexi-
cal information showed improvement whereas the
group who received no information did not.

Then, a second set of post-hoc tests were run to
compare the three groups which showed significant
pre-post gains (GS, SS, AS). In table 5, the Contrast
Estimate (Est.) looks at the differences in the mean
pre-post gains and shows that the GS group is sig-
nificantly different from the AS group, whereas the
difference between the mean gains of the SS and AS
groups is not quite significant. (The GS-SS contrast

Mean Std.
Group I J Diff. Error p

GS pre post -5.20 0.80 <0.01
SS pre post -4.23 0.80 <0.01
AS pre post -2.60 0.80 <0.01
NS pre post -0.40 0.80 0.62

Table 4: Post-hoc comparisons for Time*Group, for vo-
cabulary acquisition

Group
Contrast Est. Sig.
GS-AS 2.60 0.02
SS-AS 1.93 0.09
GS-SS 0.67 0.56

Table 5: Contrast results for Time*Group, where the de-
pendent variable is the difference in mean pre-post gains

is non-significant.) In other words, these post-hoc
comparisons on the Time*Group interaction effect
found a significant difference between the GS and
AS groups in their vocabulary learning over time,
with the GS group showing greater pretest-posttest
improvement, whereas the SS’s group apparent ad-
vantage over the AS group with their mean gains fell
slightly short of statistical signficance.

Clicked words In addition to analyzing learners’
performance on the overall scores of their pretest
and posttest, we examine their performance over
their pretest and posttest only on words they clicked
while reading, as well as how much they clicked.
In the three treatments, we find: GS, 28.27 words
clicked on average (7.00 target words); SS, 21.80
(5.93); and AS, 20.87 (5.60). Although these dif-
ferences are not statistically significant, the appar-
ent trend may suggest that the GS group realized
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Pretest Posttest
Mean SD Mean SD Gain

GS 40% 32% 85% 22% 45%
SS 25% 18% 81% 25% 56%
AS 23% 25% 68% 32% 45%

Table 6: Descriptive statistics for vocabulary acquisition
for clicked words (percentage correct)

they could get high-quality lexical information from
clicking words and so clicked more often.

Examining only clicked target words, the test of
homogeneity confirmed the error variance of all par-
ticipants were equivalent at the outset of the study
(p = 0.15). The percentages correct of the words
that were clicked in the pretest and posttest are in
table 6. The pre to post gain here conveys a gen-
eral trend: for the words participants clicked on, they
showed improvement, with larger gains than for all
words (compare the best gain of 26% in table 3).
As with all words, in the RM ANOVA the effect
of Time shows a statistically significant difference
(F (1, 42) = 96.20, p < 0.01). However, the ef-
fect of Time*Group shows no significant difference
in this case (F (2, 42) = 0.60, p = 0.55).

Despite non-significance, two potentially interest-
ing points emerge which can be followed up on in
the future: 1) descriptively speaking, the SS group
shows the largest gain between pretest and posttest
(56%); and 2) the AS group shows as much improve-
ment as the GS group (45%). This may come from
the fact that the number of senses listed for many
clicked words was small enough (e.g., 2–3) to find
an appropriate sense. Future work could investigate
a greater number of target words to verify and shed
more light on these trends.

Discussion In sum, our results suggest a positive
answer to the first research question about whether
sense-specific lexical information leads learners to
better vocabulary acquisition. The results from
several different analyses suggest that: 1) learn-
ers provided with lexical information during read-
ing have more vocabulary acquisition, with sense-
specific information having a greater increase; 2)
learning gains appear to be greater for the subset of
clicked target words than for all words (though fur-
ther research is needed to substantiate this); and 3)

Mean SD
GS 35.80 (85%) 3.98
SS 37.07 (88%) 2.46
AS 34.93 (83%) 3.08
NS 33.27 (79%) 3.69

Table 7: Descriptive statistics for reading comprehension

Source df df2 F p
Group 3 56 4.01 0.01

Table 8: Results of one-way ANOVA for reading com-
prehension scores

they seem to check the meaning more when disam-
biguated correctly (again needing further research).

5.2 Reading comprehension
The second research question explores whether
sense-specific lexical information facilitates reading
comprehension. The descriptive statistics for read-
ing comprehension mean scores of the four groups
are in table 7. The difference among the reading
comprehension mean scores of the four groups was
within about 4 points, corresponding to a 9% differ-
ence (SS, 88%; NS, 79%). The GS and SS groups
have the highest values, but only small differences.

In order to examine whether the above differ-
ences among groups were statistically significant,
a one-way ANOVA was run on reading compre-
hension scores. The test of homogeneity of vari-
ances confirmed the error variances were equivalent
(p = 0.42). The results of the one-way ANOVA are
in table 8.

As shown, the effect of Group shows a sta-
tistically significant difference, indicating that the
groups are different in their reading comprehension
(F (3, 56) = 4.01, p = 0.01). With this significant
difference in reading comprehension performance, it
is necessary to locate where the differences existed
among the groups. Tukey post0hoc tests compared
all four groups in pairs and revealed a significant
difference between the SS group and the NS group
(p = 0.007), with no significant differences between
the other pairs.3

To some extent, the results support the idea that
3GS vs. SS: p = 0.68; GS vs. AS: p = 0.87; GS vs. NS:

p = 0.12; SS vs. AS: p = 0.24; AS vs. NS: p = 0.46.
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System Pretest Posttest Accuracy
Appropriate + (16) + (14) 88% (14/16)

- (42) + (32) 76% (32/42)
Inappropriate + (12) + (10) 83% (10/12)

- (18) + (9) 50% (9/18)

Table 9: Pre/Posttest performance for SS condition,
summed over learners, broken down by whether system
sense was appropriate (+ = learner got correct; - = learner
got incorrect; numbers in parentheses = actual values)

sense-specific lexical information facilitates learn-
ers’ reading comprehension. Curiously, the GS
group, which received more accurate sense infor-
mation than the SS group, was not found to outper-
form the control group (p = 0.12)—despite descrip-
tively showing slightly higher reading comprehen-
sion scores. This issue warrants future investigation.

5.3 Quality of sense information

We have observed some differences between the
Gold Senses (GS) and System Senses (SS) con-
ditions, but we still want to explore to what ex-
tent the learners in SS group were impacted by
words which were incorrectly disambiguated. There
were nine words which the automatic system incor-
rectly assigned senses to (inappropriate target-sense
words),4 and eleven words which it correctly as-
signed. One can see the different performance for
these two types in table 9, for words that learners
clicked on.

There are two take-home points from this table.
First, when learners were correct in the pretest, they
generally did not un-learn that information, regard-
less of whether they were receiving correct sense in-
formation or not (88% vs. 83%). This is important,
as it seems to indicate that wrong sense information
is not leading learners astray. However, the second
point is that when learners were wrong in the pretest,
they were in general able to learn the sense with cor-
rect information (76%), but not as effectively when
given incorrect information (50%). This, unsurpris-
ingly, shows the value of correct sense information.

4aspect.n, chain.n, conscience.n, expenditure.n, sector.n, ag-
itate.v, banish.v, indicate.v, resist.v

6 Summary and Outlook

We have developed a web system for displaying
sense-specific information to language learners and
tested it on a group of 60 ESL learners. We showed
that sense-specific information in an intelligent read-
ing system can help learners in their vocabulary ac-
quisition and, to some extent, may also help with
overall reading comprehension. We also showed
preliminary results suggesting that learners might
learn more of the words whose definitions they
check than words they simply encounter while read-
ing. We can also be optimistic that, while there is
still much room for improvement in presenting sense
information automatically, errors made by the sys-
tem do not seem to interfere with language learners’
previously-known meanings.

There are a number of avenues to pursue in the fu-
ture. One thing to note from the results was that the
group receiving help in the form of all senses (AS)
demonstrated relatively high performance in vo-
cabulary acquisition and reading comprehension, at
times similar to the groups receiving sense-specific
information (GS, SS). This may be related to the
small number of sense entries of the target words
(average = 2.95), and a further study should be done
on target words with more sense entries, in addition
to validating some of the preliminary results pre-
sented in this paper regarding clicked words. Sec-
ondly, the word sense disambiguation methods and
construction of the lexical database can be improved
to consistently provide more accurate sense infor-
mation. Finally, as mentioned earlier, there are pre-
processing improvements to be made, such as im-
proving the search for collocations.
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Abstract

There is a rise in interest in the evaluation of
meaning in real-life applications, e.g., for as-
sessing the content of short answers. The ap-
proaches typically use a combination of shal-
low and deep representations, but little use is
made of the semantic formalisms created by
theoretical linguists to represent meaning.

In this paper, we explore the use of the un-
derspecified semantic formalism LRS, which
combines the capability of precisely repre-
senting semantic distinctions with the ro-
bustness and modularity needed to represent
meaning in real-life applications.

We show that a content-assessment approach
built on LRS outperforms a previous approach
on the CREG data set, a freely available cor-
pus of answers to reading comprehension ex-
ercises by learners of German. The use of such
a formalism also readily supports the integra-
tion of notions building on semantic distinc-
tions, such as the information structuring in
discourse, which we show to be useful for con-
tent assessment.

1 Introduction

There is range of systems for the evaluation of short
answers. While the task is essentially about eval-
uating sentences based on their meaning, the ap-
proaches typically use a combination of shallow and
deep representations, but little use is made of the se-
mantic formalisms created by theoretical linguists to
represent meaning. One of the reasons for this is that
semantic structures are difficult to derive because of

the complex compositionality of natural language.
Another difficulty is that form errors in the input cre-
ate problems for deep processing, which is required
for extracting semantic representations.

On the other hand, semantic representations have
the significant advantage that they on the one hand
abstract away from variation in the syntactic real-
ization of the same meaning and on the other hand
clearly expose those distinctions which do make a
difference in meaning. For example, the difference
between dog bites man and man bites dog is still
present in deeper syntactic or semantic representa-
tions, while semantic representations abstract way
from meaning-preserving form variation, such as the
active-passive alternation (dog bites man – man was
bitten by dog). This suggests that sufficiently robust
approaches using appropriate semantic formalisms
can be useful for the evaluation of short answers.

In this paper, we explore the use of Lexical Re-
source Semantics (Richter and Sailer, 2003), one
of the underspecified semantic formalisms combin-
ing the capability of precisely representing seman-
tic distinctions with the robustness and modularity
needed to represent meaning in real-life applica-
tions. Specifically, we address the task of evaluating
the meaning of answers to reading comprehension
exercises.

We will base our experiments on the freely avail-
able data set used for the evaluation of the CoMiC-
DE system (Meurers et al., 2011), which does not
use semantic representations. The data consists of
answers to reading comprehension exercise written
by learners of German together with questions and
corresponding target answers.
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2 Related Work

There are several systems which assess the content
of short answers. Mitchell et al. (2002) use hand-
crafted patterns which indicate correct answers to a
question. Similarly, Nielsen et al. (2009) use manu-
ally annotated word-word relations or ”facets”. Pul-
man and Sukkarieh (2005) use machine learning
to automatically find such patterns. Other systems
evaluate the correctness of answers by comparing
them to one or more manually annotated target an-
swers. C-Rater (Leacock and Chodorow, 2003) and
the system of Mohler et al. (2011) compare the syn-
tactic parse to the parse of target answers. A com-
parison of a range of content assessment approaches
can be found in Ziai et al. (2012).

The work in this paper is most similar to a line
of work started by Bailey and Meurers (2008), who
present a system for automatically assessing an-
swers to reading comprehension questions written
by learners of English. The basic idea is to align
the student answers to a target answer using a par-
allel approach with several levels on which words
or chunks can be matched to each other. Classifica-
tion is done by a machine learning component. The
CoMiC-DE system for German is also based on this
approach (Meurers et al., 2011).

In terms of broader context, the task is related
to the research on Recognizing Textual Entailment
(RTE) (Dagan et al., 2006). In particular, align-
ment (e.g., MacCartney et al., 2008, Sammons et al.,
2009) and graph matching approaches (Haghighi et
al., 2005, Rus et al., 2007) are broadly similar to our
approach.

3 General Setup

3.1 Empirical challenge: CREG

Our experiments are based on the freely available
Corpus of Reading comprehension Exercises in Ger-
man (CREG, Ott et al., 2012) . It consists of texts,
questions, target answers, and corresponding student
answers written by learners of German. For each
student answer, two independent annotators evalu-
ated whether it correctly answers the question. An-
swers were only assessed with respect to meaning;
the assessment is in principle intended to be inde-
pendent of grammaticality and orthography. The

task of our system is to decide which answers cor-
rectly answer the given question and which do not.

3.2 Formal basis: Lexical Resource Semantics
Lexical Resource Semantics (LRS) (Richter and
Sailer, 2003) is an underspecified semantic formal-
ism which embeds model-theoretic semantic lan-
guages like IL or Ty2 into constraint-based typed
feature structure formalisms as used in HPSG. It
is formalized in the Relational Speciate Reentrancy
Language (RSRL) (Richter, 2000).

While classical formal semantics uses fully ex-
plicit logical formulae, the idea of underspecified
formalisms such as LRS is to derive semantic rep-
resentations which are not completely specified and
subsume a set of possible resolved expressions, thus
abstracting away from ambiguities, in particular, but
not exclusively, scope ambiguities.

As an example for the representations, consider
the ambiguous example (1) from the CREG corpus.

(1) Alle
all

Zimmer
rooms

haben
have

nicht
not

eine
a

Dusche.
shower

‘Not every room has a shower.’
‘No room has a shower.’

The LRS representation of (1) is shown in Figure
1, where INCONT (INTERNAL CONTENT) encodes
the core semantic contribution of the head, EXCONT

(EXTERNAL CONTENT) the semantic representation
of the sentence, and PARTS is a list containing the
subterms of the representation.

INCONT haben(e)
EXCONT A

PARTS

〈A, haben(e), ∀x1(B→ C),
zimmer(x1), ∃x2 (D ∧ E), ¬ F,
dusche(x2), subj(e,x1), obj(e,x2)
∃e(haben(e) ∧ subj(e,x1) ∧ obj(e,x2)

〉


E

x2(D & E)

(haben(e) & subj(e,x1) & obj(e,x2))

    F

A

x1(B    C)

zimmer(x1) dusche(x2)

E

e 

    A

Figure 1: LRS and dominance graph for (1)

The representation also includes a set of subterm
constraints, visualized as a dominance graph at the
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bottom of the figure. The example (1) has several
readings, which is reflected in the fact that the rel-
ative scope of the two quantifiers and the negation
is not specified. The different readings of the sen-
tence can be obtained by identifying each of the
meta-variables A, . . . , F with one of the subformu-
las. Meta-variables are labels that indicate where a
formula can be plugged in; they are only part of the
underspecified representation and do not occur in the
resolved representation.

This illustrates the main strengths of an under-
specified semantic formalism such as LRS for prac-
tical applications. All elements of the semantic rep-
resentation are explicitly available on the PARTS list,
with dominance constraints and variable bindings
providing separate control over the structure of the
representation. The underspecified nature of LRS
also supports partial analyses for severely ill-formed
input or fragments, which is problematic for clas-
sical approaches to semantic compositionality such
as Montague semantics (Montague, 1973). Another
advantage of LRS as an underspecified formalism
is that it abstracts away from the computationally
costly combinatorial explosion of possible readings
of ambiguous sentences, yet it also is able to rep-
resent fine-grained semantic distinctions which are
difficult for shallow semantic methods to capture.

3.3 Our general approach

In a first step, LRS representations for the student
answer, the target answer, and the question are auto-
matically derived on the basis of the part-of-speech
tags assigned by TreeTagger (Schmid, 1994) and the
dependency parses by MaltParser (Nivre and Hall,
2005) in the way discussed in Hahn and Meurers
(2011). In this approach, LRS structures are de-
rived in two steps. First, surface representations
are mapped to syntax-semantics-interface represen-
tations, which abstract away from some form vari-
ation at the surface. In the second step, rules map
these interface representations to LRS representa-
tions. The approach is robust in that it always results
in an LRS structure, even for ill-formed sentences.

Our system then aligns the LRS representations
of the target answer and the student answer to each
other and also to the representation of the ques-
tion. Alignment takes into account both local crite-
ria, in particular semantic similarity, and global cri-

teria, which measure the extent to which the align-
ment preserves structure on the level of variables and
dominance constraints.

The alignments between answers and the question
are used to determine which elements of the seman-
tic representations are focused in the sense of In-
formation Structure (von Heusinger, 1999; Kruijff-
Korbayová and Steedman, 2003; Krifka, 2008), an
active field of research in linguistics addressing the
question how the information in sentences is pack-
aged and integrated into discourse.

Overall meaning comparison in our approach is
then done based on a set of numerical scores com-
puted from potential alignments and their quality.
Given its LRS basis, we will call the system CoSeC-
DE (Comparing Semantics in Context).

4 Aligning Meaning Representations

The alignment is done on the level of the PARTS lists,
on which all elements of the semantic representation
are available:
Definition 1. An alignment a between two LRS
representations S and T with PARTS lists pn1 and
qm1 is an injective partial function from {1,...,n} to
{1,...,m}.

Requiring a to be injective ensures that every ele-
ment of one representation can be aligned to at most
one element of the other representation. Note that
this definition is symmetrical in the sense that the
direction can be inverted simply by inverting the in-
jective alignment function.

To automatically derive alignments, we define a
maximization criterion which combines three fac-
tors measuring different aspects of alignment qual-
ity. In addition to i) the similarity of the align-
ment links, the quality Q of the alignment a takes
into account the structural correspondence between
aligned elements by evaluating the consistency of
alignments ii) with respect to the induced variable
bindings θ and, and iii) with respect to dominance
constraints:

Q(a, θ|S, T ) = linksScore(a|S, T )

· variableScore(θ)
· dominanceScore(a|S, T )

(1)

The approach thus uses a deep representation ab-
stracting away from the surface, but the meaning
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comparison approach on this deep level is flat, yet
at the same time is able to take into account struc-
tural criteria. In consequence, the approach is mod-
ular because it uses the minimal building blocks of
semantic representations, but is able to make use of
the full expressive power of the semantic formalism.

4.1 Evaluating the Quality of Alignment Links
The quality of an alignment link between two ex-
pressions is evaluated by recursively evaluating the
similarity of their components. In the base case,
variables can be matched with any variable of the
same semantic type:
sim(xτ , yτ ) = 1
Meta-variables can be matched with any meta-

variable of the same semantic type:
sim(Aτ ,Bτ ) = 1
For predicates with arguments, both the predicate

name and the arguments are compared:

sim(P1(a
k
1), P2(b

k
1)) =

sim(P1, P2) ·
k∏
i=1

sim(ai, bi)
(2)

If the predicates have different numbers of argu-
ments, similarity is zero. Linguistically well-known
phenomena where the number of arguments of se-
mantically similar predicates differ do not cause a
problem for this definition, because semantic roles
are linked to the verbal predicate via grammatical
function terms such as subj and obj predicating over
a Davidsonian event variable, as in Figure 1.1

For formulas with generalized quantifiers, the
quantifiers, the variables, the scopes and the restric-
tors are compared:

sim(Q1x1(φ ◦ ψ), Q2x2(σ ◦ τ)) =

sim(Q1, Q2) · sim(x1, x2)

·sim(φ, σ) · sim(ψ, τ)

(3)

Lambda abstraction is dealt with analogously.
The similarity sim(P1, P2) of names of predicates
and generalized quantifiers takes into account sev-
eral sources of evidence and is estimated as the max-
imum of the following quantities:

1In this paper, we simply use grammatical function names
in place of semantic role labels in the formulas. A more sophis-
ticated, real mapping from syntactic functions to semantic roles
could usefully be incorporated.

As a basic similarity, the Levenshtein distance
normalized to the interval [0,1] (with 1 denoting
identity and 0 total dissimilarity) is used. This ac-
counts for the high frequency of spelling errors in
learner language.

Synonyms in GermaNet (Hamp and Feldweg,
1997) receive the score 1.

For numbers, the (normalized) difference
|n1−n2|

max(n1,n2) is used.
For certain pairs of dissimilar elements which be-

long to the same category, constant costs are de-
fined. This encourages the system to align these el-
ements, unless the structural factors, i.e., the quality
of the unifier and the consistency with dominance
constraints, discourage this. Such constants are de-
fined for pairs of grammatical function terms. Other
constants are defined for pairs of numerical terms
and for pairs of terms encoding affirmative and neg-
ative natural language expressions and logical nega-
tion.

Having defined how to compute the quality for
single alignment links, we still need to define how to
compute the combined score of the alignment links,
which we define to be the sum of the qualities of the
links:

linksScore(a|pn1 , qm1 ) =
n∑
k=1

{
sim(pk, qa(k)) if a(k) is defined,
µNULL else.

(4)

The quality of a given overall alignment thus is
determined by the quality of the alignment links of
the PARTS elements which are aligned. For those
PARTS elements not aligned, a constant cost µNULL
must be paid, which, however, may be smaller than
a costly alignment link in another overall alignment.

4.2 Evaluating Unifiers

Alignments between structurally corresponding se-
mantic elements should be preferred. For situations
in which they structurally do not correspond, this
may have the effect of dispreferring the pairing of
elements which in terms of the words on the surface
are identical or very similar. Consider the sentence
pair in (2), where Frau in (2a) syntactically corre-
sponds to Mann in (2b).
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(2) a. Eine
a

Frau
woman

sieht
sees

einen
a

Mann
man

‘A woman sees a man.’

b. Ein
a

Mann
man

sieht
sees

eine
a

Frau
woman

‘A man sees a woman.’

On the level of the semantic representation, this
is reflected in the correspondence between the vari-
ables x1 and y1, both of which occur as arguments
of subj, as shown in Figure 2.

sehen(e)
      C D

E

2y
frau(   )2y

obj(e,   )2y

sehen(e)

mann(   )2x
      C D

E

2x

obj(e,   )2x

      A B

E

1x

frau(   )1x

subj(e,   )1x

      A B

E

1y

mann(   )1y

subj(e,   )1y

Figure 2: An excerpt of an alignment between the PARTS
lists of (2a) on the left and (2b) on the right. Dotted align-
ment links are the ones only plausible on the surface.

Our solution to capture this distinction is to use
the concept of a unifier, well-known from logic pro-
gramming. A unifier for terms φ, ψ is a substitu-
tion θ such that φθ = ψθ. Every alignment in-
duces a unifier, which unifies all variables which are
matched by the alignment.

The alignment in Figure 2 (without the dotted
links) induces the unifier
θ1 = [(x1, y1) 7→ z1; (x2, y2) 7→ z2].

If links between the matching predicates mann and
frau, respectively, are added, one also has to unify x1

with y2 and x2 with y1 and thus obtains the unifier
θ2 = [(x1, x2, y1, y2) 7→ z].

Intuitively, a good unifier unifies only variables
which correspond to the same places in the seman-
tic structures to be aligned. In the case of Figure 2,
choosing an alignment including the dotted links re-
sults in the unifier θ2 which unifies x1 and x2 – yet
they are structurally different, with one belonging to
the subject and the other one to the object.

In general, it can be expected that an alignment
which preserves the structure will not unify two dis-
tinct variables from the same LRS representation,
since they are known to be structurally distinct. So

we want to capture the information loss resulting
from unification. This intuition is captured by (5),
which answers the following question: Given some
variable z in a unified expression, how many addi-
tional bits do we need on average2 to encode the
original pair of variables x, y in the PARTS lists p
and q, respectively?

H(θ) =
1

Zp,q

∑
z∈Ran(θ)

Wθ(z) log(Wθ(z)) (5)

where Wθ(z) = |{x ∈ V ar(p)|xθ = z}|
· |{y ∈ V ar(q)|yθ = z}|

(6)

Zp,q = |V ar(p)| · |V ar(q)| (7)

The value of a unifier θ is then defined as follows:

variableScore(θ) =

(
1− H(θ)

Ĥ

)k
(8)

where k is a numerical parameter with 0 ≤ k ≤ 1
and Ĥ is a (tight) upper bound on H(θ) obtained
by evaluating the worst unifier, i.e., the unifier that
unifies all variables Ĥ = log(Zp,q).

4.3 Evaluating consistency with dominance
constraints

While evaluating unifiers ensures that alignments
preserve the structure on the level of variables, it is
also important to evaluate their consistency with the
dominance structure of the underspecified semantic
representations, such as the one we saw in Figure 1.
Consider the following pair:

(3) a. Peter
Peter

kommt
comes

und
and

Hans
Hans

kommt
comes

nicht.
not

‘Peter comes and Hans does not come.’

b. Peter
Peter

kommt
comes

nicht
not

und
and

Hans
Hans

kommt.
comes

‘Peter does not come and Hans comes.’

While the words and also the PARTS lists of the
sentences are identical, they clearly differ in mean-
ing. Figure 3 on the next page shows the LRS domi-
nance graphs for the two sentences together with an

2For simplicity, it is assumed that every combination in
V ar(p)× V ar(q) occurs the same number of times.
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alignment between them. The semantic difference
between the two sentences is reflected in the posi-
tion of the negation in the dominance graph: while
it dominates kommen(e2) ∧ subj(e2,hans) in (3a), it
dominates kommen(f1) ∧ subj(f1,peter) in (3b).

To account for this issue, we evaluate the consis-
tency of the alignment with respect to dominance
constraints. An alignment a is optimally consistent
with respect to dominance structure if it defines an
isomorphism between its range and its domain with
respect to the relation / ‘is dominated by’.

Figure 3 shows an alignment which aligns all
matching elements in (3b) and (3a). The link be-
tween the negations violates the isomorphism re-
quirement: the negation dominates kommen(e2) ∧
subj(e2,hans) in (3a), while it does not dominate the
corresponding elements in (3b). An optimally con-
sistent alignment will thus leave the negations un-
aligned. Unaligned negations can later be used in
the overall meaning comparison as strong evidence
that the sentences do not mean the same.

dominanceScore measures how ”close” a is to
defining an isomorphism. We use the following sim-
ple score, which is equal to 1 if and only if a defines
an isomorphism:

dominanceScore(a|S, T ) =

1

1 +
∑

i,j∈Dom(a) κ


pi / pj ,
pi . pj ,
qa(i) / qa(j),

qa(i) . qa(j)


(9)

where κ is a function taking four truth values as its
arguments. It measures the extent to which the iso-
morphism requirement is violated by an alignment.
κ(t1, t2, t1, t2) is defined as 0 because there is no
violation if the dominance relation between pi and
pj is equal to that between the elements they are
aligned with, qa(i) and qa(j). For other combinations
of truth values, κ should be set to values greater than
zero, empirically determined on a development set.

4.4 Finding the best alignment
Because of the use of non-local criteria in the max-
imization criterion Q(a, θ|S, T ) defined in equation
(1), an efficient method is needed to find the align-
ment maximizing the criterion. We exploit the struc-

ture inherent in the set of possible alignments to ap-
ply the A* algorithm (Russel and Norvig, 2010). We
first generalize the notion of an alignment.

Definition 2. A partial alignment of order i is an
index i together with an alignment which does not
have alignment links for any pj with j > i.

A partial alignment can be interpreted as a class
of alignments which agree on the first i elements.

Definition 3. The refinements ρ(a) of the partial
alignment a (of order i) are the partial alignments b
such that (1) b is of order i+1, and (2) a and b agree
on {1, ..., i}.

Intuitively, refinements of an alignment of order i
are obtained by deciding how to align element i+1.
ρ induces a tree over the set of partial alignments,
whose leaves are exactly the complete alignments.

A simple optimistic estimate for the value of all
complete descendants of an alignment a of order i is
given by the following expression:

optimistic(a, θ|S, T ) = variableScore(θ)

·dominanceScore(a, S, T )

·(linksScorei(a, θ|p, q)+
n∑

k=i+1

heuristic(k, a, pn1 , q
m
1 ))

(10)

where linksScorei is the sum in (4) restricted
to 1 ≤ k ≤ i, and heuristic(k, a, pn1 , q

m
1 ) is

0 if pk is aligned and a simple, optimistic esti-
mate for the quality of the best possible align-
ment link containing pk if pk is unaligned. It
is estimated as the maximum of µNULL and
max{sim(pk, qj) | qj unaligned}.

The estimate in (10) is optimistic in the sense
that it provides an upper bound on the values of all
complete alignments below a. It defines a mono-
tone heuristic and thus allows complete and optimal
search using the A* algorithm. To obtain an efficient
implementation, additional issues such as the order
of elements in the PARTS lists were taken care of. As
they do not play a role for the conceptualization of
our approach, they are not discussed here.

The crucial part at this point of the discussion
is that the A* search can determine the best align-
ment between two PARTS lists. As mentioned in
the overview in section 3.3, we compute three such
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(F & G)

E

e2

(C & D)

E

e1

kommen(e1) subj(e1,peter)

kommen(e2) subj(e2,hans)

A & B

E

(M & N)

E

f2

(K & L)

E

f1

kommen(f1) subj(f1,peter)

kommen(f2) subj(f2,hans)

H & I
J

Figure 3: Alignment between the dominance graphs of (3a) and (3b). The red dotted link violates isomorphism.

alignments: between the student and the target an-
swer, between the question and the student answer,
and between the question and the target answer.

5 From Alignment to Meaning Comparison

Based on the three alignments computed using the
just discussed algorithm, we now explore different
options for computing whether the student answer
is correct or not. We discuss several alternatives,
all involving the computation of a numerical score
based on the alignments. For each of these scores, a
threshold is empirically determined, over which the
student answer is considered to be correct.

Basic Scores The simplest score, ALIGN, is com-
puted by dividing the alignment quality Q between
the student answer and the target answer as defined
in equation (1) by the number of elements in the
smaller PARTS list. Two other scores are computed
based on the number of alignment links between
student and target answer, which for the EQUAL-
Student score is divided by the number of elements
of the PARTS list of the student answer, and for the
EQUAL-Target score by those of the target answer.

For dealing with functional elements, i.e., predi-
cates like subj, obj, quantifiers and the lambda op-
erator, we tried out three options. The straight case
is the one mentioned above, treating all elements on
the PARTS list equally (EQUAL). As a second op-
tion, to see how important the semantic relations be-
tween words are, and how much is just the effect of
the elements themselves, we defined a score which
ignores functional elements (IGNORE). A third pos-
sibility is to weight elements so that functional and
non-functional ones differ in impact (WEIGHTED).

Each of the three scores (EQUAL, IGNORE,
WEIGHTED) is either divided by the number of el-
ements of the PARTS list of the student answer or

the target, resulting in six scores. In addition, three
more scores result from computing the average of
the student and target answer scores.

Information Structure Scores Basing meaning
comparison on actual semantic representation also
allows us to directly take into account Information
Structure as a structuring of the meaning of a sen-
tence in relation to the discourse. Bailey and Meur-
ers (2008), Meurers et al. (2011), and Mohler et al.
(2011) showed that excluding those parts of the an-
swer which are mentioned (given) in the question
greatly improves classification accuracy. Meurers
et al. (2011) argue that the relevant linguistic as-
pect is not whether the material was mentioned in
the question, but the distinction between focus and
background in Information Structure (Krifka, 2008).
The focus essentially is the information in the an-
swer which selects between the set of alternatives
that the question raises.

This issue becomes relevant, e.g., in the case of
‘or’ questions, where the focused information de-
termining whether the answer is correct is explicitly
given in the question. This is illustrated by the ques-
tion in (4) with target answer (5a) and student an-
swer (5b), from the CREG corpus. While all words
in the answers are mentioned in the question, the
part of the answers which actually answer the ques-
tion are the focused elements shown in boldface.

(4) Ist
is

die
the

Wohnung
flat

in
in

einem
a

Altbau
old building

oder
or

Neubau?
new building

(5) a. Die
the

Wohnung
flat

ist
is

in
in

einem
a

Altbau.
old.building

b. Die
the

Wohnung
flat

ist
is

in
in

einem
a

Neubau.
new.building
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To realize a focus-based approach, one naturally
needs a component which automatically identifies
the focus of an answer in a question-answer pair. As
a first approximation, this currently is implemented
by a module which marks the elements of the PARTS

lists of the answers for information structure. El-
ements which are not aligned to the question are
marked as focused. Furthermore, in answers to ‘or’
questions, it marks as focused all elements which
are aligned to the semantic contribution of a word
belonging to one of the alternatives. ‘Or’ questions
are recognized by the presence of oder (‘or’) and the
absence of a wh-word.

While previous systems simply ignored all words
given in the question during classification, our sys-
tem aligns all elements and recognizes givenness
based on the alignments. Therefore, givenness is
still recognized if the surface realization is differ-
ent. Furthermore, material which incidentally is also
found in the question, but which is structurally dif-
ferent, is not assumed to be given.

Scores using information structure were obtained
in the way of the BASIC scores but counting only
those elements which are recognized as focused
(FOCUS). For comparison, we also used the same
scores with givenness detection instead of focus de-
tection, i.e., in these scores, all elements aligned to
the question were excluded (GIVEN).

Annotating semantic rather than surface represen-
tations for information structure has the advantage
that the approach can be extended to cover focus-
ing of relations in addition to focusing of entities.
The general comparison approach also is compat-
ible with more sophisticated focus detection tech-
niques capable of integrating a range of cues, in-
cluding syntactic cues and specialized constructions
such as clefts, or prosodic information for spoken
language answers – an avenue we intend to pursue
in future research.

Dissimilar score We also explored one special-
ized score paying particular attention to dissimi-
lar aligned elements, as mentioned in section 4.1.
Where a focused number is aligned to a different
number, or a focused polarity expression is aligned
to the opposite polarity, or a logical negation is not
aligned, then 0 is returned as score, i.e., the student
answer is false. In all other cases, the DISSIMILAR

score is identical to the WEIGHTED-Average FOCUS

score, i.e., the score based on the average of the stu-
dent and target scores with weighting and focus de-
tection.

6 Experiments

6.1 Corpus

We base the experiments on the 1032 answers from
the CREG corpus which are used in the evaluation
of the CoMiC-DE system reported by Meurers et al.
(2011). The corpus is balanced, i.e., the numbers of
correct and of incorrect answers are the same. It con-
tains only answers where the two human annotators
agreed on the binary label.

6.2 Setup

The alignment algorithm contains a set of numeri-
cal parameters which need to be determined empir-
ically, such as µNULL and the function κ. In a first
step, we optimized these parameters and the weights
used in the WEIGHTED scores using grid search on
a development set of 379 answers. These answers
are from CREG, but do not belong to the 1032 an-
swers used for testing. We used the accuracy of the
DISSIMILAR score as performance metric.

In our experiment, we explored each score sep-
arately to predict which answers are correct and
which not. For each score, classification is based
on a threshold which is estimated as the arithmetic
mean of the average score of correct and the average
score of incorrect answers. Training and testing was
performed using the leave-one-out scheme (Weiss
and Kulikowski, 1991). When testing on a particular
answer, student answers answering the same ques-
tion were excluded from training.

6.3 Results

Figure 4 shows the accuracy results obtained in our
experiments together with the result of CoMiC-DE
on the same dataset. With an accuracy of up to
86.3%, the WEIGHTED-Average FOCUS score out-
perform the 84.6% reported for CoMiC-DE (Meur-
ers et al., 2011) on the same dataset. This is remark-
able given that CoMiC-DE uses several (but com-
parably shallow) levels of linguistic abstraction for
finding alignment links, whereas our approach is ex-
clusively based on the semantic representations.
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Score BASIC GIVEN FOCUS

ALIGN 77.1
EQUAL

Student 69.8 75.3 75.2
Target 70.0 75.5 75.2
Average 76.6 80.8 80.7

IGNORE

Student 75.8 80.1 80.3
Target 77.2 82.2 82.3
Average 79.8 84.7 84.9

WEIGHTED

Student 75.0 80.6 80.7
Target 76.1 83.3 83.3
Average 80.9 86.1 86.3

DISSIMILAR 85.9
CoMiC-DE 84.6

Figure 4: Classification accuracy of CoSeC-DE

The fact that WEIGHTED-Average outperforms
the IGNORE-Average scores shows that the inclu-
sion of functional element (i.e., predicates like subj,
obj), which are not available to approaches based
on aligning surface strings, improves the accuracy.3

On the other hand, the lower performance of EQUAL

shows that functional elements should be treated dif-
ferently from content-bearing elements.

Of the 13.7% answers misclassified by
WEIGHTED-Average FOCUS, 53.5% are false
negatives and 46.5% are false positives.

We also investigated the impact of grammaticality
on the result by manually annotating a sample of 220
student answers for grammatical well-formedness,
66% of which were ungrammatical. On this sam-
ple, grammatical and ungrammatical student an-
swers were evaluated with essentially the same ac-
curacy (83% for ungrammatical answers, 81% for
grammatical answers).

The decrease in accuracy of the COMBINED score
over the best score can be traced to some yes-no-
questions which have an unaligned negation but are
correct. On the other hand, testing only on answers
with focused numbers results in an accuracy of 97%.

The performance of GIVEN and FOCUS scores

3We also evaluated IGNORE scores using parameter values
optimized for these scores, but their performance was still be-
low those of the corresponding WEIGHTED-Average scores.

compared to BASIC confirms that information struc-
turing helps in targeting the relevant parts of the an-
swers. Since CoMiC-DE also demotes given mate-
rial, the better GIVEN results of our approach must
result from other aspects than the information struc-
ture awareness. Unlike previous approaches, the FO-
CUS scores support reference to the material focused
in the answers. However, since currently the FOCUS

scores only differs from the GIVEN scores for alter-
native questions, and the test corpus only contains
seven answers to such ‘or’ questions, we see no se-
rious quantitative difference in accuracy between the
FOCUS and GIVENNESS results.

While the somewhat lower accuracy of the score
ALIGN shows that the alignment scores are not suf-
ficient for classification, the best-performing scores
do not require much additional computation and do
not need any information that is not in the align-
ments or the automatic focus annotation.

7 Future Work

The alert reader will have noticed that our ap-
proach currently does not support many-to-many
alignments. As is known, e.g., from phrase-based
machine translation, this is an interesting avenue for
dealing with non-compositional expressions, which
we intend to explore in future work. The align-
ment approach can be adapted to such alignments
by adding a factor measuring the quality of many-to-
many links to linkScore (4) and optimistic (10).

8 Conclusion

We presented the CoSeC-DE system for evaluating
the content of answers to reading comprehension
questions. Unlike previous content assessment sys-
tems, it is based on formal semantics, using a novel
approach for aligning underspecified semantic rep-
resentations. The approach readily supports the in-
tegration of important information structural differ-
ences in a way that is closely related to the informa-
tion structure research in formal semantics and prag-
matics. Our experiments showed the system to out-
perform our shallower multi-level system CoMiC-
DE on the same CREG-1032 data set, suggesting
that formal semantic representations can indeed be
useful for content assessment in real-world contexts.
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Vasile Rus, Arthur Graesser, and Kirtan Desai. 2007.
Lexico-syntactic subsumption for textual entailment.

335



Recent Advances in Natural Language Processing IV:
Selected Papers frp, RANLP 2005, pages 187–196.

Stuart Russel and Peter Norvig. 2010. Artificial Intelli-
gence. A Modern Approach. Pearson, 2nd edition.

Mark Sammons, V.G.Vinod Vydiswaran, Tim Vieira,
Nikhil Johri, Ming-Wei Chang, Dan Goldwasser,
Vivek Srikumar, Gourab Kundu, Yuancheng Tu, Kevin
Small, Joshua Rule, Quang Do, and Dan Roth. 2009.
Relation Alignment for Textual Entailment Recogni-
tion. In Text Analysis Conference (TAC).

Helmut Schmid. 1994. Probabilistic part-of-speech tag-
ging using decision trees. In Proceedings of the In-
ternational Conference on New Methods in Language
Processing, pages 44–49.

Klaus von Heusinger. 1999. Intonation and Information
Structure. The Representation of Focus in Phonology
and Semantics. Habilitationssschrift, Universität Kon-
stanz, Konstanz, Germany.

Sholom M. Weiss and Casimir A. Kulikowski. 1991.
Computer systems that learn. Morgan Kaufmann, San
Mateo, CA.

Ramon Ziai, Niels Ott, and Detmar Meurers. 2012.
Short answer assessment: Establishing links between
research strands. In Proceedings of the 7th Workshop
on Innovative Use of NLP for Building Educational
Applications (BEA-7) at NAACL-HLT 2012, Montreal.

336



Author Index

Andersen, Øistein, 242
Anisimoff, Ilya, 54

Bandyopadhyay, Sivaji, 201
Becker, Lee, 1
Beigman Klebanov, Beata, 63
Berck, Peter, 289
Bethard, Steven, 12
Bhaskar, Pinaki, 201
Bhat, Suma, 180
Boyd, Adriane, 208
Briscoe, Ted, 33, 242

Cahill, Aoife, 233
Cavalli-Sforza, Violetta, 127
Chang, Jason S., 80, 295
Chang, Joseph, 295
Chen, Lei, 73, 122
Chen, Mei-Hua, 80, 295
Chen, Miao, 86
Chen, Yi-Chun, 295
Chodorow, Martin, 44
Ciul, Mike, 127
Cohen, William, 307

Dahlmeier, Daniel, 216
Dale, Robert, 54
Daudaravicius, Vidas, 225
Dickinson, Markus, 95, 316

Eom, Soojeong, 316

Ferraro, Francis, 116
Flor, Michael, 105
Futagi, Yoko, 105

Gardent, Claire, 147
Ghosh, Aniruddha, 201
Graff, Dave, 127

Haase, Jens, 302
Hahn, Michael, 326
Hang, Haojie, 12
Hayashibe, Yuta, 281
Heilman, Michael, 233
Higgins, Derrick, 63
Huang, Chung-Chi, 80
Huang, Fei, 122
Huang, Shi-Ting, 80
Huang, Shih-Ting, 295

Jang, Hyeju, 136

Kanashiro, Lis, 281
Ketelhut, Diane Jass, 22
Kochmar, Ekaterina, 242
Kolomiyets, Oleksandr, 263
Komachi, Mamoru, 281
Kondo, Shuhei, 281
Kruszewski, German, 147
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