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Abstract

Low-latency solutions for syntactic parsing
are needed if parsing is to become an inte-
gral part of user-facing natural language ap-
plications. Unfortunately, most state-of-the-
art constituency parsers employ large prob-
abilistic context-free grammars for disam-
biguation, which renders them impractical
for real-time use. Meanwhile, Graphics Pro-
cessor Units (GPUs) have become widely
available, offering the opportunity to alle-
viate this bottleneck by exploiting the fine-
grained data parallelism found in the CKY
algorithm. In this paper, we explore the de-
sign space of parallelizing the dynamic pro-
gramming computations carried out by the
CKY algorithm. We use the Compute Uni-
fied Device Architecture (CUDA) program-
ming model to reimplement a state-of-the-
art parser, and compare its performance on
two recent GPUs with different architectural
features. Our best results show a 26-fold
speedup compared to a sequential C imple-
mentation.

1 Introduction

Syntactic parsing of natural language is the task of
analyzing the grammatical structure of sentences
and predicting their most likely parse trees (see
Figure 1). These parse trees can then be used in
many ways to enable natural language process-
ing applications like machine translation, ques-
tion answering, and information extraction. Most
syntactic constituency parsers employ a weighted
context-free grammar (CFG), that is learned from
a treebank. The CKY dynamic programming algo-
rithm (Cocke and Schwartz, 1970; Kasami, 1965;
Younger, 1967) is then be used to find the most
likely parse tree for a given sentence of lengthn

in O(|G|n3) time. While often ignored, the gram-
mar constant|G| typically dominates the runtime
in practice. This is because grammars with high
accuracy (Collins, 1999; Charniak, 2000; Petrov et
al., 2006) have thousands of nonterminal symbols
and millions of context-free rules, while most sen-
tences have on average only aboutn = 20 words.

Meanwhile, we have entered a manycore com-
puting era, where the number of processing cores
in computer systems doubles every second year,
while the clock frequency has converged some-
where around 3 GHz (Asanovic et al., 2006).
This opens up new opportunities for increasing
the speed of parsers. We present a general ap-
proach for parallelizing the CKY algorithm that
can handle arbitrary context-free grammars (Sec-
tion 2). We make no assumptions about the size of
the grammar and we demonstrate the efficacy of
our approach by implementing a decoder for the
state-of-the-art latent variable grammars of Petrov
et al. (2006) (a.k.a. Berkeley Parser) on a Graphics
Processor Unit (GPU).

We first present an overview of the general ar-
chitecture of GPUs and the efficient synchroniza-
tion provided by the Compute Unified Device Ar-
chitecture (CUDA (Nickolls et al., 2008)) pro-
gramming model (Section 3). We then discuss
how the hundreds of cores available on a GPU
can enable a fine-grained parallel execution of the
CKY algorithm. We explore the design space
with different thread mappings onto the GPU and
discuss how the various synchronization methods
might be applied in this context (Section 4). Key
to our approach is the observation that the compu-
tation needs to be parallelized over grammar rules
rather than chart cells. While this might have been
difficult to do with previous parallel computing
architectures, the CUDA model provides us with
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Figure 1: An example of a parse tree for the sentence
“I love you .”

fine-grained parallelism and synchronization op-
tions that make this possible.

We empirically evaluate the various parallel im-
plementations on two NVIDIA GPUs (GTX480
and GTX285) in Section 5. We observe that some
parallelization options are architecture dependent,
emphasizing that a thorough understanding of the
programming model and the underlying hardware
is needed to achieve good results. Our implemen-
tation on NVIDIA’s GTX480 using CUDA results
in a 26-fold speedup compared to the original se-
quential C implementation. On the GTX285 GPU
we obtain a 14-fold speedup.

Parallelizing natural language parsers has been
studied previously (see Section 6), however, pre-
vious work has focused on scenarios where only
a limited level of coarse-grained parallelism could
be utilized, or the underlying hardware required
unrealistic restrictions on the size of the context-
free grammar. To the best of our knowledge, this
is the first GPU-based parallel syntactic parser us-
ing a state-of-the-art grammar.

2 Natural Language Parsing

While we assume a basic familiarity with prob-
abilistic CKY parsing, in this section we briefly
review the CKY dynamic programming algorithm
and the Viterbi algorithm for extracting the highest
scoring path through the dynamic program.

2.1 Context-Free Grammars

In this work we focus our attention on con-
stituency parsing and assume that a weighted CFG
is available to us. In our experiments we will use
a probabilistic latent variable CFG (Petrov et al.,
2006). However, our algorithms can be used with
any weighted CFG, including discriminative ones,
such as the ones in Petrov and Klein (2007a) and
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Figure 2: The chart that visualizes the bottom-up pro-
cess of CKY parsing for the sentence “I love you .”

Finkel et al. (2008).1 The grammars in our experi-
ments have on the order of thousands of nontermi-
nals and millions of productions.

Figure 1(a) shows a constituency parse tree.
Leaf nodes in the parse tree, also called termi-
nal nodes, correspond to words in the language.
Preterminals correspond to part-of-speech tags,
while the other nonterminals correspond to phrasal
categories. For ease of exposition, we will say that
terminal productions are part of a lexicon. For ex-
ample, (L1) in Figure 1(b) is a lexical rule provid-
ing a score (of−0.23) for mapping the word ”I” to
the symbol “PRP.” We assume that the grammar
has been binarized and contains onlyunary and
binary productions. We refer to the application of
grammar rules asunary/binary relaxations.

2.2 Sequential CKY Parsing

The CKY algorithm is an exhaustive bottom-
up algorithm that uses dynamic programming
to incrementally build up larger tree structures.
To keep track of the scores of these structures,
a chart indexed by the start and end positions
and the symbol under consideration is used:
scores[start][end][symbol] (see also Figure 2).
After initializing the preterminal level of the chart
with the part-of-speech scores from the lexicon,
the algorithm continues by repeatedly applying all
binary and unary rules in order to build up larger
spans (pseudocode is given in Figure 3). To recon-
struct the highest scoring parse tree we perform a
top-down search. We found this to be more effi-
cient than keeping backpointers.2

One should also note that many real-world ap-
plications benefit from, or even expectn-best lists
of possible parse trees. Using the lazy evaluation
algorithm of Huang and Chiang (2005) the extrac-

1For feature-rich discriminative models a trivially paral-
lelizable pass can be used to pre-compute the rule-potentials.

2This observation is due to Dan Klein,p.c.
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Algorithm: parse(sen, lex, gr)
Input: sen /* the input sentence */

lex /* the lexicon */
gr /* the grammar */

Output: tree /* the most probable parse tree */

1 scores[][][] = initScores();
2 nWords = readSentence(sen);
3 lexiconScores(scores, sen, nWords, lex);
4 for length = 2 to nWords

5 binaryRelax(scores, nWords, length, gr);
6 unaryRelax(scores, nWords, length, gr);
7 tree = backtrackBestParseTree(scores);
8 return tree;

Figure 3: Pseudocode for CKY parsing.

tion of ann-best list can be done with very little
overhead after running a slightly modified version
of the CKY algorithm. Our parallel CKY algo-
rithm could still be used in that scenario.

3 GPUs and CUDA

Graphics Processor Units (GPUs) were origi-
nally designed for processing graphics applica-
tions, where millions of operations can be exe-
cuted in parallel. In order to increase the efficiency
by exploiting this parallelism, typical GPUs (Lind-
holm et al., 2008) have hundreds of processing
cores. For example, the NVIDIA GTX480 GPU
has 480 processing cores calledstream proces-
sors(SP). The processing cores are organized hi-
erarchically as shown in Figure 5: A group of
SPs makes up astreaming multiprocessor(SM). A
number of SMs form a single graphics device. The
GTX480, for example, contains 15 SMs, with 32
SPs in each SM, resulting in the total of 480 SPs.
Despite this high number of processors, it should
be emphasized that simply using a GPU, without
understanding the programming model and the un-
derlying hardware architecture, does not guarantee
high performance.

3.1 Compute Unified Device Architecture

Recently, Nickolls et al. (2008) introduced the
Compute Unified Device Architecture (CUDA). It
allows programmers to utilize GPUs to acceler-
ate applications in domains other than graphics.
CUDA is essentially the programming language
C with extensions for thread execution and GPU-
specific memory access and control. A CUDA
threadis executed on an SP and a group of threads
(called a thread block) is executed on an SM.
CUDA enables the acceleration of a wide range

Algorithm: binaryRelax(scores, nWords, length, gr)
Input: scores /* the 3-dimensional scores */

nWords /* the number of total words */
length /* the current span */
gr /* the grammar */

Output: None

1 for start = 0 to nWords− length

2 end = start + length;
3 foreachsymbol ∈ gr

4 max = FLOAT MIN;
5 foreach ruler per symbol // defined by gr
6 // r is "symbol ⇒ l sym r sym"
7 for split = start + 1 to end− 1
8 // calculate score
9 lscore = scores[start][split][ l sym];
10 rscore = scores[split][end][r sym];
11 score = rule score + lscore + rscore;
12 // maximum reduction
13 if score > max

14 max = score;
15 scores[start][end][symbol] = max;

Figure 4: Binary relaxations in CKY parsing.

of applications in various domains by executing
a number of threads and thread blocks in paral-
lel, which are specified by the programmer. Its
popularity has grown rapidly because it provides a
convenient API for parallel programming. In or-
der to better utilize the massive parallelism in the
GPU, it is typical to have hundreds of threads in a
thread block and have hundreds or even thousands
of thread blocks launched for a singlekernel: a
data-parallel function that is executed by a num-
ber of threads on the GPU.

3.2 Single Instruction Multiple Threads

One of the most important features of the GPU ar-
chitecture is commonly known as Single Instruc-
tion Multiple Threads (SIMT). SIMT means that
threads are executed in bundles (calledwarps),
to amortize the implementation cost for a large
number of processing cores. In typical GPUs, a
warp consists of 32 threads that share the units
for instruction fetching and execution. Thus, a
thread cannot advance to the next instruction if
other threads in the same warp have not yet com-
pleted their own execution. On the other hand,
threads in different warps are truly independent:
they can be scheduled and executed in any or-
der. Inside a warp, if some threads follow differ-
ent execution paths than others, the execution of
the threads with different paths is serialized. This
can happen for example in if-then-else structures
and loop constructs where the branch condition is
based on thread indices. This is called adivergent
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branchand should be avoided as much as possi-
ble when designing parallel algorithms and map-
ping applications onto a GPU. In the programming
model of CUDA, one or more warps are implic-
itly grouped into thread blocks. Different thread
blocks are mapped to SMs and can be executed
independently of one another.

3.3 Shared Memory

Generally speaking, manycore architectures (like
GPUs) have more ALUs in place of on-chip
caches, making arithmetic operations relatively
cheaper and global memory accesses relatively
more expensive. Thus, to achieve good perfor-
mance, it is important to increase the ratio of Com-
pute to Global Memory Access (CGMA) (Kirk
and Hwu, 2010), which can be done in part by
cleverly utilizing the different types of shared on-
chip memory in each SM.

Threads in a thread block are mapped onto the
same SM and can cooperate with one another
by sharing data through the on-chipshared mem-
ory of the SM (shown in Figure 5). This shared
memory has two orders of magnitude less latency
than the off-chipglobal memory, but is very small
(16KB to 64KB, depending on the architecture).
CUDA therefore provides the programmer with
the flexibility (and burden) to explicitly manage
shared memory (i.e., loading a value from global
memory and storing it).

Additionally, GPUs also have so calledtexture
memoryand constant memory. Texture memory
can be written only from the host CPU, but pro-
vides caching and is shared across different SMs.
Hence it is often used for storing frequently ac-
cessed read-only data. Constant memory is very
small and as its name suggests is only appropriate
for storing constants used across thread blocks.

3.4 Synchronization

CUDA provides a set of APIs for thread synchro-
nization. When threads perform a reduction, or
need to access a single variable in a mutually ex-
clusive way,atomic operationsare used. Atomic
operation APIs take as arguments the memory lo-
cation (i.e., pointer of the variable to be reduced)
and the value. However, atomic operations on
global memory can be very costly, as they need
to serialize a potentially large number of threads
in the kernel. To reduce this overhead, one usu-
ally applies atomic operations first to variables de-
clared in the shared memory of each thread block.
After these reductions have completed another set
of atomic operations is done.

In addition, CUDA provides an API
( syncthreads()) to realize a barrier synchro-
nization between threads in the same thread block.
This API forces each thread to wait until all
threads in the block have reached the calling line.
Note that there is no API for the barrier synchro-
nization between all threads in a kernel. Since a
return from a kernel accomplishes a global barrier
synchronization, one can use separate kernels
when a global barrier synchronization is needed.

4 Parallel CKY Parsing on GPUs

The dynamic programming loops of the CKY
algorithm provide various types of parallelism.
While the loop in Figure 3 cannot be parallelized
due to dependencies between iterations, all four
loops in Figure 4 could in principle be parallelized.
In this section, we discuss the different design
choices and strategies for parallelizing the binary
relaxation step that accounts for the bulk of the
overall execution time of the CKY algorithm.

4.1 Thread Mapping

The essential step in designing applications on a
parallel platform is to determine which execution
entity in the parallel algorithm should be mapped
to the underlying parallel hardware thread in the
platform. For a CKY parser with millions of gram-
mar rules and thousands of symbols, one can map
either rules or symbols to threads. At first sight
it might appear that mapping chart cells or sym-
bols to threads is a natural choice, as it is equiva-
lent to executing the first loop in Figure 4 in par-
allel. However, if we map a symbol to a thread,
then it not only fails to provide enough parallelism
to fully utilize the massive number of threads in
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Algorithm: threadBasedRuleBR(scores, nWords, length, gr)
Input: scores /* the 3-dimensional scores */

nWords /* the number of total words */
length /* the current span */
gr /* the grammar */

Output: None

1 for start = 0 to nWords− length in parallel
2 end = start + length;
3 foreach ruler ∈ gr in parallel
4 shared int sh max[NUM SYMBOL] =

FLOAT MIN;
5 // r is "symbol ⇒ l sym r sym"
6 for split = start + 1 to end− 1
7 // calculate score
8 lscore = scores[start][split][ l sym];
9 rscore = scores[split][end][r sym];
10 score = rule score + lscore + rscore;
11 // local maximum reduction
12 if score > local max

13 local max = score;
14 atomicMax(&sh max[symbol], local max);
15 // global maximum reduction
16 foreachsymbol ∈ gr in parallel
17 atomicMax(&scores[start][end][symbol],

sh max[symbol]);

Figure 6: Thread-based parallel CKY parsing.

GPUs,3 but it can also suffer from load imbal-
ance due to the fact that each symbol has a varying
number of rules associated with it. Since threads
in the same warp execute in SIMT fashion, this
load imbalance among threads results in divergent
branches, degrading the performance significantly.
It is therefore advantageous to map rules rather
than symbols to threads.

4.1.1 Thread-Based Mapping

If we map rules to threads, the nested loops in line
3 and line 5 of Figure 4 become one flat loop that
iterates over all rules in the grammar and the loop
can be executed in parallel as shown in line 3 of
Figure 6. Since the grammar we use has about one
million rules, this mapping provides sufficient par-
allelism to fully utilize the GPU, without running
into load imbalance issues. We call this mapping
thread-based mapping.

Unfortunately, thread-based mapping has a ma-
jor drawback. Since each rule is mapped to a dif-
ferent thread, threads for rules with the same par-
ent symbol need to be synchronized in order to
avoid write conflicts. In this mapping, the syn-
chronization can be done only through atomic op-
erations (shown in line 14 and line 17 of Figure 6),
which can be costly.

3#threads/warp × max(#warps)/SM × #SM =
32× 48× 15 = 23,040 threads in the GTX480.

Algorithm: blockBasedRuleBR(scores, nWords, length, gr)
Input: scores /* the 3-dimensional scores */

nWords /* the number of total words */
length /* the current span */
gr /* the grammar */

Output: None

1 for start = 0 to nWords− length in parallel
2 end = start + length;
3 foreachsymbol ∈ gr in parallel
4 shared int sh max = FLOAT MIN;
5 foreach ruler per symbol in parallel
6 // r is "symbol ⇒ l sym r sym"
7 for split = start + 1 to end− 1
8 // calculate score
9 lscore = scores[start][split][ l sym];
10 rscore = scores[split][end][r sym];
11 score = rule score + lscore + rscore;
12 // local maximum reduction
13 if score > local max

14 local max = score;
15 atomicMax(&sh max, local max);
16 // global maximum reduction
17 foreachsymbol ∈ gr in parallel
18 atomicMax(&scores[start][end][symbol], sh max);

Figure 7: Block-based parallel CKY parsing.

4.1.2 Block-Based Mapping

Another mapping can be obtained by exploiting
the two levels of granularity in the GPU archi-
tecture: threads and thread blocks. We can map
each symbol to a thread block, and the rules as-
sociated with each symbol to threads in the re-
spective thread block. This mapping creates a bal-
anced load because an SM can execute any avail-
able thread block independently of other thread
blocks, instead of waiting for other SMs to com-
plete. For example, when the first SM completes
the computation of a thread block (because the as-
sociated symbol has few rules), it can proceed to
the next available thread block (which corresponds
to another symbol). This corresponds to mapping
each iteration of the loop in line 3 of Figure 4 to
thread blocks and the loop in line 5 to threads. We
call this mappingblock-based mappingand pro-
vide pseudocode in Figure 7. The main advantage
of this mapping is that it allows synchronization
without using costly atomic operations.

Another advantage of the block-based mapping
is that we can quickly skip over certain symbols.
For example, the preterminal symbols (i.e. part-
of-speech tags), can only cover spans of length 1
(i.e. single words). In block-based mapping, only
one thread needs to check and determine if a sym-
bol is a preterminal and can be skipped. In con-
trast, in thread-based mapping, every thread in the
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thread block needs to perform the check. Since
this check involves a global memory access, it is
costly. Minimizing the number of global memory
accesses is key to the performance of parallel al-
gorithms on GPUs.

A challenging aspect of the block-based map-
ping comes from the fact that the number of rules
per symbol can exceed the maximum number of
threads per thread block (1,024 or 512 depending
on the GPU architecture). To circumvent this lim-
itation, we introduce virtual symbols, which host
different partitions of the original rules, as shown
in Figure 8. Introducing virtual symbols does not
increase the complexity of the algorithm, because
virtual symbols only exist until we perform the
maximum reductions, at which point they are con-
verted to the original symbols.

4.2 Span-Level Parallelism

Another level of parallelism, which is orthogonal
to the previously discussed mappings, is present
in the first loop in Figure 4. Spans in the same
level in the chart (see Figure 2), are independent
of each other and can hence be executed in par-
allel by mapping them to thread blocks (line 1 of
Figure 6 and Figure 7). Since CUDA provides up
to three-dimensional(x, y, z) indexing of thread
blocks, this can be easily accomplished: we create
two-dimensional grids whose X axis corresponds
to symbols in block-based mapping or simply a
group of rules in thread-based mapping, and the Y
axis corresponds to the spans.

4.3 Thread Synchronization

Thread synchronization is needed to correctly
compute the maximum scores in parallel. Syn-
chronization can be achieved by atomic operations
or by parallel reductions usingsyncthreads()as
explained in Section 3. The most viable synchro-

> > > >

> >

>

step 1

step 2

step 3

Figure 9: Parallel reduction on shared memory between
threads in the same thread block with 8 threads.

nization method will of course vary depending on
the mapping we choose. In practice, only atomic
operations are an option in thread-based mapping,
since we would otherwise need as many execu-
tions of parallel reductions, as the number of dif-
ferent parent symbols in each thread block. In
block-based mapping, on the other hand, both par-
allel reductions and atomic operations can be ap-
plied.

4.3.1 Atomic Operations

In thread-based mapping, to correctly update the
score, each thread needs to call the atomic API
max operation with a pointer to the desired write
location. However, this operation can be very slow
(as we will confirm in Section 5), so that we in-
stead perform a first reduction by calling the API
with a pointer to the shared variable (as shown
in line 14 of Figure 6), and then perform a sec-
ond reduction with a pointer to thescoresarray
(as shown in line 17 of Figure 6). When we
call atomic operations on shared memory, shared
variables need to be declared for all symbols.
This is necessary because in thread-based map-
ping threads in the same thread block can have dif-
ferent parent symbols.

In block-based mapping we can also use atomic
operations on shared memory. However, in this
mapping, all threads in a thread block have the
same parent symbol, and therefore only one shared
variable per thread block is needed for the par-
ent symbol (as shown in line 15 of Figure 7).
All the reductions are performed on this single
shared variable. Compared to thread-based map-
ping, block-based mapping requires a fraction of
the shared memory, and costly atomic operations
on global memory are performed only once (as
shown in line 18 of Figure 7).
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4.3.2 Parallel Reductions

Parallel reduction is another option for updating
scores in block-based mapping. Each thread in the
thread block stores its computed score in an array
declared as a shared variable and performs paral-
lel reduction with a binary-tree order as shown in
Figure 9 (from leaves to the root). When there
are N threads in a thread block, the maximum
score in the thread block is obtained afterlog 2N

steps and stored in the first element in the array.
Note that when implementing the parallel reduc-
tion syncthreads()needs to be called at the end of
each step to ensure that every thread can read the
updated value of the previous step. This approach
can potentially be faster than the inherently serial
atomic operations, but it comes with the cost of us-
ing more shared memory (proportional to the num-
ber of participating threads). This synchroniza-
tion method is in practice only applicable to block-
based mapping and cannot be applied to thread-
based mapping since it assumes that all threads
in a thread block perform reductions for the same
parent symbol.

4.4 Reducing Global Memory Accesses

By now it should be clear that increasing CGMA
and reducing global memory access is important
for high GPU performance. We can approximately
calculate the CGMA ratio of our kernel by count-
ing global memory accesses and arithmetic oper-
ations per thread. There are three global memory
accesses for each binary rule: the left child sym-
bol ID, right child symbol ID, and the rule score
itself. Moreover, there are two global memory ac-
cesses for referencing the scores with left child ID
and right child ID in the split-point loop in line 7
of Figure 4. The loop in line 7 iterates up to the
lengthof the span. The number of global memory
accesses is thus2 · length + 3. On the other hand,
there are only two additions in the kernel, resulting
in a very low CGMA. To improve performance,
we need to increase the CGMA ratio by better uti-
lizing the shared memory. Since shared memory
is rather limited, and global memory accesses to
thescoresarray in line 9 and 10 of Figure 4 spread
over a wide range of memory locations, it is im-
possible to simply transform those global memory
accesses into shared memory accesses. Instead,
we need to modify the access pattern of the kernel
code to meet this constraint.

If we look into the access pattern (ignoring the
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for split = start + 1 to end− 1
lscore = scores[start][split][ l sym];
rscore = scores[split][end][r sym];
score = rule score + lscore + rscore;

for k = 1 to len− 1
lscore = sh scores L[k][unique l sym];
rscore = sh scores R[k][unique r sym];
score = rule score + lscore + rscore;

Figure 10: (a) Chart example illustrating the access pat-
terns of thescoresarray: the shaded cells are the loca-
tions that the threads withstart = 1, end= 4 accesses.
(b) Better memory access patterns with the new arrays

symboldimension of thescoresarray), we can see
that the accesses actually occur only in restricted
locations that can be easily enumerated. For exam-
ple, the accesses are restricted within the shaded
cells in Figure 10(a) when the current cell is (1, 4).
We can thus introduce two arrays (sh scoresL and
sh scoresR) that keep track of the scores of the
children in the shaded cells. These two arrays can
easily fit into shared memory because there are
only about 1000 unique symbols in our grammar
and the sentence lengths are bounded, whereas
the scoresarray can only reside in global mem-
ory. Figure 10(b) shows how the new arrays are
accessed. For each unique left/right child sym-
bol, we need to load the score fromscores to
sh scoresL andsh scoresRonce through a global
memory access. Thus, the number of global mem-
ory access will be reduced when multiple rules
share the same child symbols.

Another way to reduce global memory accesses
is to use texture memory. Recall that texture
memory can be used for caching, but needs to
be initiated from the CPU side and costs over-
head. Moving thescoresarray to texture mem-
ory seems promising since it is frequently read
to obtain the scores of children symbols. How-
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CPU type Core i7 2.80 GHz
System memory 2GB

GPU type GTX285 GTX480
648 MHz 1400 MHz

GPU memory 1GB 1.5GB
#SM 30 15

#SP/SM 8 32
Shared memory/SM 16KB up to 64KB

L1 cache/SM N/A up to 64KB

Table 1: Experimental platforms specifications.

ever, as the array is updated at every iteration
of binary relaxation, we need to update it also
in texture memory by calling a binding API (be-
tween line 4 and 5 in Figure 3). While it can
be costly to bind such a large array every it-
eration, we can reduce this cost by transform-
ing its layout fromscores[start][end][symbol] to
scores[length][start][symbol], where length =
end−start. With the new layout, we only need to
bind the array up to size(length− 1) (rather than
the entire array), significantly reducing the cost of
binding it to texture memory.

5 Experimental Results

We implemented the various versions of the paral-
lel CKY algorithm discussed in the previous sec-
tions in CUDA and measured the runtime on two
different NVIDIA GPUs used in a quad-core desk-
top environment: GTX285 and GTX480. The de-
tailed specifications of the experimental platforms
are listed in Table 1.

The grammar we used is extracted from the pub-
licly available parser of Petrov et al. (2006). It has
1,120 nonterminal symbols including 636 preter-
minal symbols. The grammar has 852,591 binary
rules and 114,419 unary rules. We used the first
1000 sentences from Section 22 of the Wall Street
Journal (WSJ) portion of the Penn Treebank (Mar-
cus et al., 1993) as our benchmark set. We verified
for each sentence that our parallel implementation
obtains exactly the same parse tree and score as
the sequential implementation. We compare the
execution times of various versions of the parallel
parser in CUDA, varying the mapping, synchro-
nization methods and memory access patterns.

Figure 11 shows the speedup of the different
parallel parsers on the two GPUs:Threadstands
for the thread-based mapping andBlock for the
block-based one. The default parallelizes over
spans, whileSSstands for sequential spans, mean-

ing that the computation on spans is executed se-
quentially. GA stands for global atomic synchro-
nization, SA for shared atomic synchronization,
andPR for the parallel reduction.SH stands for
the transformed access pattern for thescoresarray
in the shared memory.tex:rule stands for load-
ing the rule information from texture memory and
tex:scoresfor loading thescoresarray from tex-
ture memory.tex:bothmeans both thetex:ruleand
tex:scoresare applied.

The exhaustive sequential CKY parser was
written in C and is reasonably optimized, taking
5.5 seconds per sentence (or 5,505 seconds for
the 1000 benchmark sentences). This is compa-
rable to the better implementations presented in
Dunlop et al. (2011). As can be seen in Figure
11, the fastest configuration on the GTX285 is
Block+PR+SS+tex:scores, which shows a 17.4×
speedup against the sequential parser. On the
GTX480, Block+PR is the fastest, showing a
25.8× speedup. Their runtimes were 0.32 sec-
onds/sentence and 0.21 seconds/sentence, respec-
tively. It is noteworthy that the fastest configura-
tion differs for the two devices. We provide an
explanation later in this section.

On both the GTX285 and the GTX480,
Thread+GA shows the worst performance as
global atomic synchronization is very costly.
Thread+GAon the GTX285 is even about 8 times
slower than the sequential CKY parser. Note that
although it is still the slowest one,Thread+GAon
the GTX480 actually shows a 4.5× speedup.

On the GTX285,Thread+SA, Block+SA, and
Block+PRshow 6.4×, 8.1×, and 10.1× speedups,
respectively. Perhaps somewhat surprisingly, par-
allelizing over spans actually hurts performance.
By not serializing the computations for spans, we
can get speedups of 13% forThread+SA+SSover
Thread+SAand about 40% forBlock+SA+SSand
Block+PR+SSover their parallel spans versions.
In thread-based mapping, the atomic operations
on shared memory are the bottleneck, so that se-
quential processing of spans makes only a small
difference. On the other hand, inBlock+SAand
Block+PR on the GTX285, the global memory
bandwidth is the major limiting factor since the
same rule is loaded from the global memory re-
dundantly for each span when we parallelize over
spans. Hence, executing spans sequentially re-
moves the redundant global memory loads and
substantially improves the performance.
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Figure 11: Speedups of various versions of parallel CKY parser that have different mappings, synchronization
methods, and different memory access optimizations.

On the GTX285, the transformed access pat-
tern for the scores array along with accesses
to the shared memory (Block+PR+SH) im-
proves the performance by about 10%, show-
ing a 11.1× speedup. Placing thescores ar-
ray in texture memory improves all implemen-
tations. The reduced binding cost due to the
array reorganization results in additional gains
of about 25% forBlock+PR+SS+tex:scoresand
Block+PR+tex:scoresagainstBlock+PR+SSand
Block+PR (for a total speedup of 17.4× and
13.0×, respectively). However, placing the rule
information in texture memory improves the per-
formance little as there are many more accesses to
thescoresarray than to the rule information.

The GTX480 is the Fermi architecture
(NVIDIA, 2009), with many features added to the
GTX285. The number of cores doubled from 240
to 480, but the number of SMs was halved from 30
to 15. The biggest difference is the introduction of
L1 cache as well as the shared memory per SM.
For these reasons, all parallel implementations
are faster on the GTX480 than on the GTX285.
On the GTX480, parallelizing over spans (SS)
does not improve the performance, but actually
degrades it. This is because this GPU has L1
cache and a higher global memory bandwidth, so
that reducing the parallelism actually limits the
performance. Utilizing texture memory or shared
memory for the scores array does not help either.
This is because the GTX480 hardware already
caches the scores array into the L1 cache.

Interestingly, the ranking of the various paral-

lelization configurations in terms of speedup is ar-
chitecture dependent: on the GTX285, the block-
based mapping and sequential span processing are
preferred, and the parallel reduction is preferred
over shared-memory atomic operations. Using
texture memory is also helpful on the GTX285.
On the GTX480, block-based mapping is also pre-
ferred but sequential spans mapping is not. The
parallel reduction is clearly better than shared-
memory atomic operations, and there is no need
for utilizing texture memory on the GTX480. It is
important to understand how the different design
choices affect the performance, since one differ-
ent choices might be necessary for grammars with
different numbers of symbols and rules.

6 Related Work

A substantial body of related work on paralleliz-
ing natural language parsers has accumulated over
the last two decades (van Lohuizen, 1999; Gi-
achin and Rullent, 1989; Pontelli et al., 1998;
Manousopoulou et al., 1997). However, none
of this work is directly comparable to ours, as
GPUs provide much more fine-grained possibil-
ities for parallelization. The parallel parsers in
past work are implemented on multicore systems,
where the limited parallelization possibilities pro-
vided by the systems restrict the speedups that can
be achieved. For example, van Lohuizen (1999)
reports a 1.8× speedup, while Manousopoulou et
al. (1997) claims a 7-8× speedup. In contrast, our
parallel parser is implemented on a manycore sys-
tem with an abundant number of threads and pro-
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cessors to parallelize upon. We exploit the mas-
sive fine-grained parallelism inherent in natural
language parsing and achieve a speedup of more
than an order of magnitude.

Another difference is that previous work has of-
ten focused on parallelizing agenda-based parsers
(van Lohuizen, 1999; Giachin and Rullent, 1989;
Pontelli et al., 1998; Manousopoulou et al., 1997).
Agenda-based parsers maintain a queue of priori-
tized intermediate results and iteratively refine and
combine these until the whole sentence is pro-
cessed. While the agenda-based approach is easy
to implement and can be quite efficient, its po-
tential for parallelization is limited because only
a small number of intermediate results can be han-
dled simultaneously. Chart-based parsing on the
other hand allows us to expose and exploit the
abundant parallelism of the dynamic program.

Bordim et al. (2002) present a CKY parser that
is implemented on a field-programmable gate ar-
ray (FPGA) and report a speedup of up to 750×.
However, this hardware approach suffers from in-
sufficient memory or logic elements and limits the
number of rules in the grammar to 2,048 and the
number of non-terminal symbols. Their approach
thus cannot be applied to real-world, state-of-the-
art grammars.

Ninomiya et al. (1997) propose a parallel CKY
parser on a distributed-memory parallel machine
consisting of 256 nodes, where each node con-
tains a single processor. Using their parallel lan-
guage, they parallelize over cells in the chart, as-
signing each chart cell to each node in the ma-
chine. With a grammar that has about 18,000
rules and 200 nonterminal symbols, they report a
speedup of 4.5× compared to an optimized C++
sequential version. Since the parallel machine has
a distributed-memory system, where the synchro-
nization among the nodes is implemented with
message passing, the synchronization overhead
is significant, preventing them from paralleliz-
ing over rules and nonterminal symbols. As we
saw, parallelizing only over chart cells (i.e., words
or substrings in a sentence) limits the achievable
speedups significantly. Moreover, they suffer from
load imbalance that comes from the different num-
ber of nonteriminal symbols that each node needs
to process in the assigned cell. In contrast, we
parallelize over rules and nonterminal symbols, as
well as cells, and address the load imbalance prob-
lem by introducing virtual symbols (see Figure 8).

It should be noted that there are a also number
of orthogonal approaches for accelerating natural
language parsers. Those approaches often rely
on coarse approximations to the grammar of in-
terest (Goodman, 1997; Charniak and Johnson,
2005; Petrov and Klein, 2007b). These coarse
models are used to constrain and prune the search
space of possible parse trees before applying the
final model of interest. As such, these approaches
can lead to great speed-ups, but introduce search
errors. Our approach in contrast preserves opti-
mality and could in principle be combined with
such multi-pass approaches to yield additional
speed improvements. There are also some opti-
mality preserving approaches based on A∗-search
techniques (Klein and Manning, 2003; Pauls and
Klein, 2009) or grammar refactoring (Dunlop et
al., 2011) that aim to speed up CKY inference. We
suspect that most of the ideas therein are orthogo-
nal to our approach, and therefore leave their inte-
gration into our GPU-based parser for future work.

7 Conclusion

In this paper, we explored the design space for par-
allelizing the CKY algorithm for parsing, which
is widely-used in constituency based natural lan-
guage parsers. We compared various implementa-
tions on two recent NVIDIA GPUs. The fastest
parsers on each GPU are different implementa-
tions, since the GTX480 supports L1 cache while
the GTX285 does not, among other different ar-
chitectural features. Compared to an optimized se-
quential C implementation our parallel implemen-
tation is 26 times faster on the GTX480 and 17
times faster on the GTX285. All our parallel im-
plementations are faster on the GTX480 than on
the GTX285, showing that performance improves
with the addition of more Streaming Processors.
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