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Abstract 

This paper reports on an experiment that 
investigates clarification subdialogues in 
intentionally noisy speech recognition. 
The architecture learns weights for mix-
tures of grounding strategies from exam-
ples provided by a human wizard 
embedded in the system. Results indicate 
that the architecture learns to eliminate 
misunderstandings reliably despite high 
word error rate. 

1 Introduction 

We seek to develop spoken dialogue systems 
(SDSs) that communicate effectively despite un-
certain input. Our thesis is that a task-oriented 
SDS can perform well despite a high degree of 
recognizer noise by relying on context. The SDS 
described here uses FORRSooth, a semi-
synchronous architecture under development for 
task-oriented human-computer dialogue. Our 
immediate goals are to reduce non-
understandings of user utterances (where the 
SDS produces no interpretation) and to eliminate 
misunderstandings (where the SDS misinterprets 
user utterances). The experiment recounted here 
investigates subdialogues consisting of an initial 
user response to a system prompt, and any sub-
sequent turns that might be needed to result in 
full understanding of the original response. Our 
principal finding is that a FORRSooth-based 
SDS learns to build on partial understandings 
and to eliminate misunderstandings despite noi-

sy ASR. 
A FORRSooth-based SDS is intended to inte-

ract effectively “without the luxury of perfect 
components” (Paek and Horvitz, 2000), such as 
high-performance ASR. FORRSooth relies on 
portfolios of strategies for utterance interpreta-
tion and grounding, and learns to balance them 
from its experience. Its confidence in its inter-
pretations is dynamically calibrated against its 
past experience. At each user utterance, FORR-
Sooth selects grounding actions modulated to 
build upon partial interpretations in subsequent 
exchanges with the user. 

The experiment presented here bootstraps the 
SDS with human expertise. In a Wizard of Oz 
(WOz) study, a person (the wizard) replaces se-
lected SDS components. Knowledge is then ex-
tracted from the wizard’s behavior to improve 
the SDS. FORRSooth uses the Relative Support 
Weight Learning (RSWL) algorithm (Epstein and 
Petrovic, 2006) to learn weights that balance its 
individual strategies. Training examples for 
grounding strategies are based upon examples 
produced by an ablated wizard who was re-
stricted to the same information and actions as 
the system (Levin and Passonneau, 2006). 

Our domain is the Andrew Heiskell Braille 
and Talking Book Library. Heiskell’s patrons or-
der their books by telephone, during conversa-
tion with a librarian. The next section of this 
paper presents related work. Subsequent sections 
describe the weight learning, the SDS architec-
ture, and an experiment that challenges the ro-
bustness of utterance interpretation and 
grounding with intentionally noisy ASR. We 
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conclude with a discussion of the results.  

2 Related Work  

Despite increasingly accurate ASR methods, di-
alogue systems often contend with noisy ASR, 
which can arise from performance phenomena 
such as filled pauses (er, um), false starts (fir- 
last name), or noisy transmission conditions. 
SDSs typically experience a higher WER when 
deployed. For example, the WER reported for 
Carnegie Mellon University’s Let’s Go Public! 
went from 17% under controlled conditions to 
68% in the field (Raux et al., 2005).  

To limit communication errors, an SDS can 
rely on strategies to detect and recover from in-
correct recognition output (Bohus, 2007). One 
such strategy, to ask the user to repeat a poorly 
understood utterance, can result in hyperarticula-
tion and decreased recognition (Litman, 
Hirschberg and Swerts, 2006). Prior work has 
shown that users prefer explicit confirmation 
over dialogue efficiency (fewer turns) (Litman 
and Pan, 1999). We hypothesize that this results 
from an inherent tradeoff between efficiency and 
user confidence. We assume that evidence of 
partial understanding increases user confidence 
more than evidence of non-understanding does. 
FORRSooth learns to ask more questions that 
build on partial information, and to make fewer 
explicit confirmations and requests to the user to 
repeat herself. 

While many techniques exist in the literature 
for semantic interpretation in task-oriented, in-
formation-seeking dialogue systems, there is no 
single preferred approach. SDSs rarely combine 
a portfolio of NLU (natural language under-
standing) resources. FORRSooth relies on “mul-
tiple processes for interpreting utterances (e.g., 
structured parsing versus statistical techniques)” 
as in (Lemon, 2003). These range from voice 
search (querying a database directly with ASR 
results) to semantic parsing.  

Dialogue systems should ground their under-
standing of the user’s objectives. To limit com-
munication errors, an SDS can rely on strategies 
to detect and recover from incorrect recognition 
output (Bohus, 2007). In others’ work, the 
grounding status of an utterance is typically bi-
nary (i.e., understood or not) (Allen, Ferguson 
and Stent, 2001; Bohus and Rudnicky, 

2005; Paek and Horvitz, 2000) or ternary (i.e., 
understood, misunderstood, not understood) 
(Bohus and Rudnicky, 2009). FORRSooth’s 
grounding decisions rely on a mixture of strate-
gies, are based on degrees of evidence (Bohus 
and Rudnicky, 2009; Roque and Traum, 2009), 
and disambiguate among candidate interpreta-
tions. Work in (DeVault and Stone, 2009) on 
disambiguation in task-oriented dialogue differs 
from ours in that it addresses genuine ambigui-
ties rather than noise resulting from inaccurate 
ASR.  

3 FORR and RSWL 

FORRSooth is based on FORR (FOr the Right 
Reasons), an architecture for learning and prob-
lem solving (Epstein, 1994). FORR uses se-
quences of decisions from multiple rationales to 
solve problems. Implementations have proved 
robust in game learning, simulated pathfinding, 
and constraint solving. FORR relies on an adap-
tive, hierarchical mixture of resource-bounded 
procedures called Advisors. Each Advisor em-
bodies a decision rationale. Advisors’ opinions 
(comments) are combined to arrive at a decision. 
Each comment pairs an action with a strength 
that indicates some degree of support for or op-
position to that action. An Advisor can make 
multiple comments at once, and can base its 
comments upon descriptives. A descriptive is a 
shared data structure, computed on demand, and 
refreshed only when required. For each decision, 
FORR consults three tiers of Advisors, one tier 
at a time, until some tier reaches a decision.  

FORR learns weights for its tier-3 Advisors 
with RSWL. Relative support is a measure of the 
normalized difference between the comment 
strength (confidence) with which an Advisor 
supports an action compared to other available 
choices. RSWL learns Advisors’ weights from 
their comments on training examples. The de-
gree of reinforcement (positive or negative) to 
an Advisor's weight is proportional to its 
strength and relative support for a decision. 

4 FORRSooth 

FORRSooth is a parallelized version of FORR. 
It models task-oriented dialogue with six FORR-
based services that operate concurrently: INTE-
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RACTION, INTERPRETATION, SATISFACTION, 
GROUNDING, GENERATION, and DISCOURSE. 
These services interpret user utterances with re-
spect to system expectations, manage the con-
versational floor, and consider competing 
interpretations, partial understandings, and alter-
native courses of action. All services have 
access to the same data, represented by descrip-
tives. In this section, we present background on 
SATISFACTION and INTERPRETATION, and pro-
vide additional detail on GROUNDING.  

The role of SATISFACTION is to represent di-
alogue goals, and to progress towards those 
goals through spoken interaction. Dialogue goals 
are represented as agreements. An agreement is 
a subdialogue about a target concept (such as a 
specific book) whose value must be grounded 
through collaborative dialogue between the sys-
tem and the user (Clark and Schaefer, 1989). 
Agreements are organized into an agreement 
graph that represents dependencies among them. 
Task-based agreements are domain specific, 
while grounding agreements are domain inde-
pendent (cf. (Bohus, 2007)). An interpretation 
hypothesis represents the system’s belief that the 
value of a specific target (e.g., a full name or a 
first name) occurred in the user’s speech.  

The role of INTERPRETATION is to formulate 
hypotheses representing the meaning of what the 
user has said. INTERPRETATION relies on tier-3 
Advisors (essentially, mixtures of heuristics). 
Each Advisor constructs comments on speech 
recognition hypotheses. A comment is a seman-
tic concept (hypothesis) with an associated 
strength. More than one Advisor can vote for the 
same hypothesis. Confidence in any one hypo-
thesis is a function of votes, learned weights for 
Advisors, and comment strengths.  

In previous work, we showed that INTERPRE-
TATION Advisors can produce relatively reliable 
hypotheses given noisy ASR, with graceful de-
gradation  as recognition performance decreases 
(Gordon, Passonneau and Epstein, 2011). For 
example, at WER between 0.2 and 0.4, the con-
cept accuracy of the top hypothesis was 80%. 
That work left open how to decide whether to 
use the top INTERPRETATION hypothesis. Here 
FORRSooth learns how to assess its INTERPRE-
TATION confidence, and what grounding actions 
to take given different levels of confidence. 

Over the life of a FORRSooth SDS, INTER-
PRETATION produces hypotheses for the values 
of target concepts. FORRSooth records the mean 
and variance of the comment strengths for each 
INTERPRETATION hypothesis, and uses them to 
calculate INTERPRETATION’s merit. Merit 
represents FORRSooth’s INTERPRETATION con-
fidence as a dynamic, normalized estimate of the 
percentile in which the value falls. Merit compu-
tations improve initially with use of the SDS, 
and can then shift with the user population and 
the data. FORRSooth’s approach differs from 
supervised confidence annotation methods that 
learn a fixed confidence threshold from a corpus 
of human-machine dialogues (Bohus, 2007). 

The role of GROUNDING is to monitor the sys-
tem’s confidence in its interpretation of each us-
er utterance, to provide evidence to the user of 
its interpretation, and to elicit corroboration, fur-
ther information, or tacit agreement. To ground a 
target concept, FORRSooth considers one or 
more hypotheses for the value the user intended, 
and chooses a grounding action commensurate 
with its understanding and confidence.  

GROUNDING updates the agreement graph by 
adding grounding agreements to elicit confirma-
tions or rejections of target concepts, or to dis-
ambiguate among target concepts. A grounding 
agreement’s indicator target represents the ex-
pectation of a user response. Once a sufficiently 
confident INTERPRETATION hypothesis is bound 
to an indicator target, the grounding agreement 
executes side effects that strengthen or weaken 
the hypothesis being grounded. Recursive 
grounding (where the system grounds the user’s 
response to the system’s previous grounding ac-
tion) can result if the system’s expectation has 
not been met by the next system turn.  

GROUNDING makes two kinds of decisions, 
each with its own set of tier-3 Advisors. The 
first, commit bindings, indicates that the system 
is confident in the value of a target concept. In 
this experiment, decisions to commit to a value 
are irrevocable. The other kind of decision se-
lects the next grounding utterance for any target 
concepts that have not yet been bound. The deci-
sion to ground a target concept is made by tier-3 
Advisors that consider the distribution of hypo-
thesis merit, as well as the success or failure of 
the grounding actions taken thus far. 
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5 FX2 

FX2 is a FORRSooth SDS constructed for the 
current experiment. The ten FX2 INTERPRETA-
TION Advisors are described in (Gordon, 
Passonneau and Epstein, 2011). Here we de-
scribe its GROUNDING actions and Advisors.  

FX2 can choose among six grounding actions. 
Given high confidence in a single interpretation, 
it commits to the binding of a target value with-
out confirmation. At slightly lower confidence 
levels, it chooses to implicitly confirm a target 
binding, with or without a hedge (e.g., the tag 
question “right?”). At even lower confidence, 
the grounding action is to explicitly confirm. 
Given competing interpretations with similarly 
high confidence, the grounding action is to dis-
ambiguate between the candidates. Finally, FX2 
can request the user to repeat herself. 

We give two examples of the twenty-three 
FX2 grounding Advisors. Given two interpreta-
tion hypotheses with similar confidence scores, a 
disambiguation Advisor votes to prompt the user 
to disambiguate between them. The strength for 
this grounding action is proportional to the ratio 
of the two hypotheses’ scores. To avoid repeated 
execution of the same grounding action, one 
grounding Advisor votes against actions to re-
peat a prompt for the same target, especially if 
ASR confidence is low. In FX2, RSWL facili-
tates the use of multiple Advisors for INTERPRE-
TATION and GROUNDING by learning weights for 
them that reflect their relative reliability. We de-
scribe next how we collect training examples 
through an ablated wizard experiment. 

6 Experimental Design 

This experiment tests FX2’s ability to learn IN-
TERPRETATION and GROUNDING weights. In 
each dialogue, FX2 introduces itself, prompts 
the subject for her name or a book title, and then 
continues the dialogue until FX2 commits to a 

binding for the concept, or gives up. 
Four undergraduate native English speakers 

(two female, two male) participated. Speech in-
put and output was through a microphone head-
set. The PocketSphinx speech recognizer 
produced ASR output (Huggins-Daines et al., 
2006) with Wall-Street Journal dictation acous-
tic models adapted with ten hours of spontane-
ous speech. We built distinct trigram statistical 
language models for each type of agreement us-
ing names and titles from the Heiskell database. 

We collected three data sets, referenced here 
as baseline, wizard, and learning. Each had two 
agreement graphs: UserName seeks a grounded 
value for the patron's full name, and BookTitle 
seeks a grounded value for a book title. 120 di-
alogues were collected for each dataset.  

FX2 includes an optional wizard component. 
When active, the wizard component displays a 
GUI showing the current interpretation hypo-
theses for target concepts, along with their re-
spective merit. A screen shot for the wizard GUI 
appears in Figure 1. 

A wizard dialogue activates the wizard com-
ponent and uses INTERPRETATION as usual, but 
embeds a person (the wizard) in GROUNDING. 
The wizard’s purpose in this experiment is to 
provide training data for GROUNDING. After 
each user turn, the wizard makes two decisions 
based on data from the GUI: whether to consider 
any target as grounded, and which in a set of 
possible grounding actions to use next. The GUI 
displays what FX2 would choose for each deci-
sion; the wizard can either accept or override it. 

Ordinarily, a FORR-based system begins with 
uniform Advisor weights and learns more ap-
propriate values during its experience. Because 
correct interpretation and grounding are difficult 
tasks, however, we chose here to prime these 
weights and hypothesis merits using training ex-
amples collected during development. Develop-
ment data for INTERPRETATION included 200 
patron names, 400 book titles, and 50 indicator 

Figure 1. The wizard GUI displays hypotheses for a title from a user utterance. 
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concepts. ASR output for each item, along with 
its correct value, became a training example. 
Development data for GROUNDING came from 
20 preliminary wizard dialogues. The develop-
ment data also served to prime hypothesis merit. 

Each subject had 30 dialogues with the sys-
tem for the baseline dataset. For the wizard data 
set, FX2 used the same primed weights and me-
rits as the baseline. The wizard’s grounding ac-
tions and the target graphs on which they were 
based were saved as training examples. Weights 
for GROUNDING Advisors were learned from the 
development data training examples and the 
training examples saved from the wizard data set 
together before collecting the learned data set.  

7 Results and Discussion 

We assess system performance as follows. A 
true positive (tp) here is a dialogue that made no 
grounding errors and successfully grounded the 
root task agreement; a false positive (fp) made at 
least one grounding error (where the system en-
tirely misunderstood the user). A false negative 
(fn) occurs when the system gives up on the 
task. Precision is tp/(tp+fp), recall is tp/(tp+fn), 
and F is their mean. We measure WER using 
Levenshtein edit distance (Levenshtein, 1966). 
Because the audio data is not yet transcribed, we 
estimated average WER from the speaker's first 
known utterance (n=360). Overall estimated 
WER was 66% (54% male, 78% female).  

An ideal system engages in dialogues that 
have high precision, high recall, and economical 
dialogue length (as measured by number of sys-
tem turns). Table 1 reports that data. There is a 
significant increase in precision across the three 
data sets, a small corresponding decrease in re-
call, and an overall gain in F measure. The pre-
cision demonstrated by the system during 
dialogues in the learned data set is as good or 
better than that reported for our best embedded 
human wizards in full dialogue experiments 
(Ligorio, Epstein and Passonneau, 2010).  

Table 2 shows the distribution of the system's 

grounding actions for the three data sets. The 
grounding actions in the learned data set are 
similar to the wizard’s; clearly, RSWL learned 
well. Figure 2 illustrates an effective learned 
grounding behavior in which GROUNDING votes 
to abandon the current grounding strategy on 
turn 5 in favor of an approach designed to elicit 
an utterance from the user more likely to be 
processed correctly by the speech recognizer.  

Our experiment suggests that misunderstand-
ings due to ASR errors can be significantly re-
duced by a close integration between spoken 
language understanding resources and grounding 
behavior, together with the use of fine-grained 
confidence measures. Despite intentionally noisy 
ASR with an estimated average WER of 66%, 
FX2 did not experience a single misunderstand-
ing during 120 clarification dialogues after it had 
trained with RSWL on examples provided by an 
embedded wizard. After training, the system's 
actions closely resembled the wizard's, indicat-
ing that the system’s grounding strategies were 
sufficiently expressive to approximate the wi-
zard's actions. FX2 accommodates a variety of 
independent spoken language understanding re-
sources. It relies on RSWL and on merit, a self-
normalizing estimate of the confidence percen-
tile in which an interpretation hypothesis falls.  

Turn Utterance ASR 
1 What title would you like?  

2 Family and Friends family 
.friends. 

3 

I have two guesses. The first is 
Family and Friends. The 
second is Family Happiness. 
Is it either of these? 

 

4 The first one .nest. 
.first. 

5 Let’s try something else. Is the 
full title Family and Friends?  

6 Yes yes 

Condition Precision Recall F Length 
Baseline 0.65 0.78 0.72 4.36 
Wizard 0.89 0.76 0.83 4.05 
Learned 1.00 0.71 0.86 3.86 

Condition Conf Disambig Repeat Other 
Baseline 0.23 0.19 0.50 0.08 
Wizard 0.09 0.50 0.35 0.06 
Learned 0.15 0.52 0.32 0.01 

Table 1. Performance across three data sets.  Table 2. Distribution of grounding actions. 

 
Figure 2. Example of learned GROUNDING behavior. 
The rightmost column is the top ASR hypothesis. 
Periods delimit unconfident words in the ASR. 
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