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Abstract

This paper presents our preliminary work on
adaptation of parsing technology toward natu-
ral language query processing for biomedical
domain. We built a small treebank of natu-
ral language queries, and tested a state-of-the-
art parser, the results of which revealed that
a parser trained on Wall-Street-Journal arti-
cles and Medline abstracts did not work well
on query sentences. We then experimented
an adaptive learning technique, to seek the
chance to improve the parsing performance on
query sentences. Despite the small scale of the
experiments, the results are encouraging, en-
lightening the direction for effective improve-
ment.

1 Introduction

Recent rapid progress of life science resulted in a
greatly increased amount of life science knowledge,
e.g. genomics, proteomics, pathology, therapeutics,
diagnostics, etc. The knowledge is however scat-
tered in pieces in diverse forms over a large number
of databases (DBs), e.g. PubMed, Drugs.com, Ther-
apy database, etc. As more and more knowledge is
discovered and accumulated in DBs, the need for
their integration is growing, and corresponding ef-
forts are emerging (BioMoby1, BioRDF2, etc.).

Meanwhile, the need for a query language with
high expressive power is also growing, to cope with

1http://www.biomoby.org/
2http://esw.w3.org/HCLSIG BioRDF Subgroup

the complexity of accumulated knowledge. For ex-
ample, SPARQL3 is becoming an important query
language, as RDF4 is recognized as a standard in-
teroperable encoding of information in databases.
SPARQL queries are however not easy for human
users to compose, due to its complex vocabulary,
syntax and semantics. We propose natural language
(NL) query as a potential solution to the problem.
Natural language, e.g. English, is the most straight-
forward language for human beings. Extra training
is not required for it, yet the expressive power is
very high. If NL queries can be automatically trans-
lated into SPARQL queries, human users can access
their desired knowledge without learning the com-
plex query language of SPARQL.

This paper presents our preliminary work for
NL query processing, with focus on syntactic pars-
ing. We first build a small treebank of natural
language queries, which are from Genomics track
(Hersh et al., 2004; Hersh et al., 2005; Hersh et al.,
2006; Hersh et al., 2007) topics (Section 2 and 3).
The small treebank is then used to test the perfor-
mance of a state-of-the-art parser, Enju (Ninomiya
et al., 2007; Hara et al., 2007) (Section 4). The
results show that a parser trained on Wall-Street-
Journal (WSJ) articles and Medline abstracts will
not work well on query sentences. Next, we ex-
periment an adaptive learning technique, to seek the
chance to improve the parsing performance on query
sentences. Despite the small scale of the experi-
ments, the results enlighten directions for effective

3http://www.w3.org/TR/rdf-sparql-query/
4http://www.w3.org/RDF/
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GTREC
04 05 06 07

Declarative 1 0 0 0
Imperative 22 60 0 0
Infinitive 1 0 0 0
Interrogative
- WP/WRB/WDT 3 / 1 / 11 0 / 0 / 0 6 / 22 / 0 0 / 0 / 50
- Non-wh 5 0 0 0
NP 14 0 0 0
Total 58 60 28 50

Table 1: Distribution of sentence constructions

improvement (Section 5).

2 Syntactic Features of Query Sentences

While it is reported that the state-of-art NLP tech-
nology shows reasonable performance for IR or
IE applications (Ohta et al., 2006), NLP technol-
ogy has long been developed mostly for declara-
tive sentences. On the other hand, NL queries in-
clude wide variety of sentence constructions such
as interrogative sentences, imperative sentences, and
noun phrases. Table 1 shows the distribution of the
constructions of the 196 query sentences from the
topics of the ad hoc task of Genomics track 2004
(GTREC04) and 2005 (GTREC05) in their narra-
tive forms, and the queries for the passage retrieval
task of Genomics track 2006 (GTREC06) and 2007
(GTREC07).

GTREC04 set has a variety of sentence construc-
tions, including noun phrases and infinitives, which
are not usually considered as full sentences. In the
2004 track, the queries were derived from interviews
eliciting information needs of real biologists, with-
out any control on the sentence constructions.

GTREC05 consists only of imperative sentences.
In the 2005 track, a set of templates were derived
from an analysis of the 2004 track and other known
biologist information needs. The derived templates
were used as the commands to find articles describ-
ing biological interests such as methods or roles of
genes. Although the templates were in the form
“Find articles describing ...”, actual obtained imper-
atives begin with “Describe the procedure or method
for” (12 sentences), “Provide information about”
(36 sentences) or “Provide information on” (12 sen-
tences).

GTREC06 consists only of wh-questions where a
wh-word constitutes a noun phrase by itself (i.e. its
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Figure 1: The tree structure for an imperative sentence

part-of-speech is the WP in Penn Treebank (Marcus
et al., 1994) POS tag set) or is an adverb (WRB). In
the 2006 track, the templates for the 2005 track were
reformulated into the constructions of questions and
were then utilized for deriving the questions. For ex-
ample, the templates to find articles describing the
role of a gene involved in a given disease is refor-
mulated into the question “What is the role of gene
in disease?”

GTREC07 consists only of wh-questions where a
wh-word serves as a pre-nominal modifier (WDT).
In the 2007 track, unlike in those of last two years,
questions were not categorized by the templates, but
were based on biologists’ information needs where
the answers were lists of named entities of a given
type. The obtained questions begin with “what +
entity type” (45 sentences), “which + entity type” (4
sentences), or “In what + entity type” (1 sentence).

In contrast, the GENIA Treebank Corpus (Tateisi
et al., 2005)5 is estimated to have no imperative sen-
tences and only seven interrogative sentences (see
Section 5.2.2). Thus, the sentence constructions in
GTREC04–07 are very different from those in the
GENIA treebank.

3 Treebanking GTREC query sentences

We built a treebank (with POS) on 196 query sen-
tences following the guidelines of the GENIA Tree-
bank (Tateisi and Tsujii, 2006). The queries were
first parsed using the Stanford Parser (Klein and
Manning, 2003), and manual correction was made

5http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/home/
wiki.cgi?page=GENIA+Treebank

165



 

SBARQ  

 

  

 

SQ  

 

  
 

 
VP 

   

WHNP[i168] 
  

NP[i169→i168] 
 

NP[→i169] PP  

             

WDT NNS VBP   VBN   IN NN 

What toxicities are [ ] associated [ ] with cytarabine 

 

Figure 2: The tree structure for an interrogative sentence

by the second author. We tried to follow the guide-
line of the GENIA Treebank as closely as possible,
but for the constructions that are rare in GENIA, we
used the ATIS corpus in Penn Treebank (Bies et al.,
1995), which is also a collection of query sentences,
for reference.

Figure 1 shows the tree for an imperative sen-
tence. A leaf node with [ ] corresponds to a null
constituent. Figure 2 shows the tree for an inter-
rogative sentence. Coindexing is represented by
assigning an ID to a node and a reference to the
ID to the node which is coindexed. In Figure 2,
WHNP[i168] means that the WHNP node is indexed
as i168, NP[i169→i168] means that the NP node is
indexed as i169 and coindexed to the i168 node, and
NP[→i169] means that the node is coindexed to the
i169 node. In this sentence, which is a passive wh-
question, it is assumed that the logical object (what
toxicities) of the verb (associate) is moved to the
subject position (the place of i169) and then moved
to the sentence-initial position (the place of i168).

As most of the query sentences are either impera-
tive or interrogative, there are more null constituents
compared to the GENIA Corpus. In the GTREC
query treebank, 184 / 196 (93.9%) sentences con-
tained one or more null constituents, whereas in GE-
NIA, 12,222 / 18,541 (65.9%) sentences did. We ex-
pected there are more sentences with multiple null
constituents in GTREC compared to GENIA, due to
the frequency of passive interrogative sentences, but
on the contrary the number of sentences containing
more than one null constituents are 65 (33.1%) in
GTREC, and 6,367 (34.5%) in GENIA. This may be
due to the frequency of relative clauses in GENIA.

4 Parsing system and extraction of
imperative and question sentences

We introduce the parser and the POS tagger whose
performances are examined, and the extraction of
imperative or question sentences from GTREC tree-
bank on which the performances are measured.

4.1 HPSG parser

The Enju parser (Ninomiya et al., 2007)6 is a deep
parser based on the HPSG formalism. It produces
an analysis of a sentence that includes the syntac-
tic structure (i.e., parse tree) and the semantic struc-
ture represented as a set of predicate-argument de-
pendencies. The grammar is based on the standard
HPSG analysis of English (Pollard and Sag, 1994).
The parser finds a best parse tree scored by a max-
ent disambiguation model using a Cocke-Kasami-
Younger (CKY) style algorithm.

We used a toolkit distributed with the Enju parser
for training the parser with a Penn Treebank style
(PTB-style) treebank. The toolkit initially converts
the PTB-style treebank into an HPSG treebank and
then trains the parser on it. We used a toolkit dis-
tributed with the Enju parser for extracting a HPSG
lexicon from a PTB-style treebank. The toolkit ini-
tially converts the PTB-style treebank into an HPSG
treebank and then extracts the lexicon from it.

The HPSG treebank converted from the test sec-
tion was used as the gold-standard in the evaluation.
As the evaluation metrics of the Enju parser, we used
labeled and unlabeled precision/recall/F-score of the
predicate-argument dependencies produced by the
parser. A predicate-argument dependency is repre-
sented as a tuple of 〈wp, wa, r〉, where wp is the
predicate word, wa is the argument word, and r is
the label of the predicate-argument relation, such
as verb-ARG1 (semantic subject of a verb) and
prep-ARG1 (modifiee of a prepositional phrase).

4.2 POS tagger

The Enju parser assumes that the input is already
POS-tagged. We use a tagger in (Tsuruoka et al.,
2005). It has been shown to give a state-of-the-art
accuracy on the standard Penn WSJ data set and also
on a different text genre (biomedical literature) when
trained on the combined data set of the WSJ data and

6http://www-tsujii.is.s.u-tokyo.ac.jp/enju
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the target genre (Tsuruoka et al., 2005). Since our
target is biomedical domain, we utilize the tagger
adapted to the domain as a baseline, which we call
“the GENIA tagger”.

4.3 Extracting imperative and question
sentences from GTREC treebank

In GTREC sentences, two major constructions of
sentences can be observed: imperative and question
sentences. These two types of sentences have differ-
ent sentence constructions and we will observe the
impact of each or both of these constructions on the
performances of parsing or POS-tagging. In order
to do so, we collected imperative and question sen-
tences from our GTREC treebank as follows:

• GTREC imperatives - Most of the impera-
tive sentences in GTREC treebank begin with
empty subjects “(NP-SBJ */-NONE-)”. We ex-
tracted such 82 imperative sentences.

• GTREC questions - Interrogative sentences
are annotated with the phrase label “SBARQ”
or “SQ”, where “SBARQ” and “SQ” respec-
tively denote a wh-question and an yes/no ques-
tion. We extracted 98 interrogative sentences
whose top phrase labels were either of them.

5 Experiments

We examine the POS-tagger and the parser for the
sentences in the GTREC corpus. They are adapted
to each of GTREC overall, imperatives, and ques-
tions. We then observe how the parsing or POS-
tagging accuracies are improved and analyze what
is critical for parsing query sentences.

5.1 Experimental settings
5.1.1 Dividing corpora

We prepared experimental datasets for the follow-
ing four domains:

• GENIA Corpus (GENIA) (18,541 sentences)
Divided into three parts for training (14,849
sentences), development test (1,850 sentences),
and final test (1,842 sentences).

• GTREC overall (196 sentences)
Divided into two parts: one for ten-folds cross
validation test (17-18 × 10 sentences) and the
other for error analysis (17 sentences)

Target GENIA tagger Adapted tagger
GENIA 99.04% -
GTREC (overall) 89.98% 96.54%
GTREC (imperatives) 90.32% 97.30%
GRREC (questions) 89.25% 94.77%

Table 2: Accuracy of the POS tagger for each domain

• GTREC imperatives (82 sentences)
Divided into two parts: one for ten-folds cross
validation test (7-8 × 10 sentences) and the
other for error analysis (7 sentences)

• GTREC questions (98 sentences)
Divided into two parts: one for ten-folds cross
validation test (9 × 10 sentences) and the other
for error analysis (8 sentences)

5.1.2 Adaptation of POS tagger and parser
In order to adapt the POS tagger and the parser to

a target domain, we took the following methods.

• POS tagger - For the GTREC overall / impera-
tives / questions, we replicated the training data
for 100,000 times and utilized the concatenated
replicas and GENIA training data in (Tsuruoka
et al., 2005) for training. For POS tagger, the
number of replicas of training data was deter-
mined among 10n(n = 0, . . . , 5) by testing
these numbers on development test sets in three
of ten datasets of cross validation.

• Enju parser - We used a toolkit in the Enju
parser (Hara et al., 2007). As a baseline model,
we utilized the model adapted to the GENIA
Corpus. We then attempted to further adapt the
model to each domain. In this paper, the base-
line model is called “the GENIA parser”.

5.2 POS tagger and parser performances

Table 2 and 3 respectively show the POS tagging and
the parsing accuracies for the target domains, and
Figure 3 and 4 respectively show the POS tagging
and the parsing accuracies for the target domains
given by changing the size of the target training data.

The POS tagger could output for each word either
of one-best POS or POS candidates with probabili-
ties, and the Enju parser could take either of the two
output types. The bracketed numbers in Table 3 and
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Parser GENIA Adapted
POS Gold GENIA tagger Adapted tagger Gold GENIA tagger Adapted tagger
For GENIA 88.54 88.07 (88.00) - - - -
For GTREC overall 84.37 76.81 (72.43) 83.46 (81.96) 89.00 76.98 (74.44) 86.98 (85.42)
For GTREC imperatives 85.19 78.54 (77.75) 85.71 (85.48) 89.42 74.40 (74.84) 88.97 (88.67)
For GTREC questions 85.45 76.25 (67.27) 83.55 (80.46) 87.33 81.41 (71.90) 84.87 (82.70)

[ using POS candidates with probabilities (using only one best POS) ]

Table 3: Accuracy of the Enju parser for GTREC
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Figure 3: POS tagging accuracy vs. corpus size

the dashed lines in Figure 4 show the parsing accu-
racies when we utilized one-best POS given by the
POS tagger, and the other numbers and lines show
the accuracies given by POS candidates with proba-
bilities. In the rest of this section, when we just say
“POS tagger”, the tagger’s output is POS candidates
with probabilities.

Table 4 and 5 respectively compare the types of
POS tagging and parsing errors for each domain
between before and after adapting the POS tagger,
and Table 6 compares the types of parsing errors for

Correct→ Error GENIA tagger Adapted tagger
For GTREC overall (17 sentences)
NN→ NNP 4 0.6
VB→ NN 4 0
WDT→WP 4 0
NN→ JJ 1 1.9
For GTREC imperative (seven sentences)
FW→ NNP / NN / JJ 7 4
VB→ NN 4 0
NN→ NNP 2 0
For GTREC question (eight sentences)
WDT→WP 3 0
VB→ VBP 2 1
NNS→ VBZ 2 0
(The table shows only error types observed more than
once for either of the taggers)

Table 4: Tagging errors for each of the GTREC corpora

each domain between before and after adapting the
parser. The numbers of errors for the rightmost col-
umn in each of the tables were given by the average
of the ten-folds cross validation results.

In the following sections, we examine the im-
pact of the performances of the POS taggers or the
parsers on parsing the GTREC documents.
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GENIA parser
Error types GENIA tagger Adapted tagger
For GTREC overall (17 sentences)
Failure in detecting verb 12 0.2
Root selection 6 0
Range of NP 5 5
PP-attachment 4 3
Determiner / pronoun 4 1
Range of verb subject 4 4
Range of verb object 3 3
Adjective / modifier noun 2 3
For GTREC imperatives (seven sentences)
Failure in detecting verb 8 0
Root selection 4 0
Range of NP 3 4
PP-attachment 3 1.8
Range of PP 2 2
For GTREC questions (eight sentences)
Range of coordination 5 3
Determiner / pronoun 3 0
PP-attachment 3 1
Range of PP 2 2
Subject for verb 2 1
(The table shows only the types of parsing errors observed more
than once for either of the parsers)

Table 5: Impact of adapting POS tagger on parsing errors

5.2.1 Impact of POS tagger on parsing

In Table 2, for each of the GTREC corpora,
the GENIA tagger dropped its tagging accuracy by
around nine points, and then recovered five to seven
points by the adaptation. According to this behav-
ior of the tagger, Table 3 shows that the GENIA and
the adapted parsers with the GENIA tagger dropped
their parsing accuracies by 6–15 points in F-score
from the accuracies with the gold POS, and then re-
covered the accuracies within two points below the
accuracies with the gold POS. The performance of
the POS tagger would thus critically affect the pars-
ing accuracies.

In Figure 3, we can observe that the POS tagging
accuracy for each corpus rapidly increased only for
first 20–30 sentences, and after that the improvement
speed drastically declined. Accordingly, in Figure 4,
the line for the adapted parser with the adapted tag-
ger (the line with triangle plots) rose rapidly for the
first 20–30 sentences, and after that slowed down.

We explored the tagging and parsing errors, and
analyze the cause of the initial accuracy jump and
the successive improvement depression.

Gold POS
Error types GENIA parser Adapted parser
For GTREC overall (17 sentences)
Range of NP 5 1.3
Range of verb subject 3 2.6
PP-attachment 3 2.7
Whether verb takes

object & complement 3 2.9

Range of verb object 2 1
For GTREC imperatives (seven sentences)
Range of NP 4 1.1
PP-attachment 2 1.6
Range of PP 2 0.3
Preposition / modifier 2 2
For GTREC questions (eight sentences)
Coordination / conjunction 2 2.2
Auxiliary / normal verb 2 2.6
Failure in detecting verb 2 2.6
(The table shows only the types of parsing errors observed more
than once for either of the parsers)

Table 6: Impact of adapting parser on parsing errors

Cause of initial accuracy jump

In Table 4, “VB → NN” tagging errors were
observed only in imperative sentences and drasti-
cally decreased by the adaptation. In a impera-
tive sentence, a verb (VB) usually appears as the
first word. On the other hand, the GENIA tagger
was trained mainly on the declarative sentences and
therefore would often take the first word in a sen-
tence as the subject of the sentence, that is, noun
(NN). When the parser received a wrong NN-tag for
a verb, the parser would attempt to believe the infor-
mation (“failure in detecting verb” in Table 6) and
could then hardly choose the NN-tagged word as a
main verb (“root selection” in Table 6). By adapting
the tagger, the correct tag was given to the verb and
the parser could choose the verb as a main verb.

“WDT→WP” tagging errors were observed only
in the question sentences and also drastically de-
creased. For example, in the sentence “What toxici-
ties are associated with cytarabine?”, “What” works
as a determiner (WDT) which takes “toxicities”,
while the GENIA tagger often took this “What” as a
pronoun (WP) making a phrase by itself. This would
be because the training data for the GENIA tagger
would contain 682 WP “what” and only 27 WDT
“what”. WP “what” could not make a noun phrase
by taking a next noun, and then the parsing of the
parsing would corrupt (“determiner / pronoun” in
Table 5). By adapting the tagger, “WDT” tag was
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given to “What”, and the parser correctly made a
phrase “What toxicities”.

Since the variation of main verbs in GTREC im-
peratives is very small (see Section 2) and that of
interrogatives is also very small, in order to cor-
rect the above two types of errors, we would require
only small training data. In addition, these types of
errors widely occurred among imperatives or ques-
tions, the accuracy improvement by correcting the
errors was very large. The initial rapid improvement
would thus occur.

Cause of improvement depression
“NN → NNP” tagging errors would come from

the description style of words. In the GTREC
queries, technical terms, such as the names of dis-
eases or proteins, sometimes begin with capital char-
acters. The GENIA tagger would take the capi-
talized words not as a normal noun (NN) but as a
proper noun (NNP). By adaptation, the tagger would
have learned the capital usage for terms and the er-
rors then decreased.

However, in order to achieve such improvement,
we would have to wait until a target capitalized term
is added to the training corpus. “FW→ NNP / NN
/ JJ”, “NN→ JJ”, and several other errors would be
similar to this type of errors in the point that, they
would be caused by the difference in annotation pol-
icy or description style between the training data for
the GENIA tagger and the GTREC queries.

“VB→VBP” errors were found in questions. For
example, “affect” in the question “How do muta-
tions in Sonic Hedgehog genes affect developmen-
tal disorders?” was base form (VB), while the GE-
NIA tagger took it as a present tense (VBP) since
the GENIA tagger would be unfamiliar with such
verb behavior in questions. By adaptation, the tag-
ger would learn that verbs in the domain tend to take
base forms and the errors then decreased.

However, the tagger model based on local context
features could not substantially solve the problem.
VBP of course could appear in question sentences.
We observed that a verb to be VBP was tagged with
VB by the adapted tagger. In order to distinguish
VB from VBP, we should capture longer distance
dependencies between auxiliary and main verbs.

In tagging, the fact that the above two types of
errors occupied most of the errors other than the er-

rors involved in the initial jump, would be related
to why the accuracy improvement got so slowly,
which would lead to the improvement depression of
the parsing performances. With the POS candidates
with probabilities, the possibilities of correct POSs
would increase, and therefore the parser would give
higher parsing performances than using only one-
best POSs (see Table 3 and Figure 4).

Anyway, the problems were not substantially
solved. For these tagging problems, just adding the
training data would not work. We might need re-
construct the tagging system or re-consider the fea-
ture designs of the model.

5.2.2 Impact of parser itself on parsing

For the GTREC corpora, the GENIA parser with
gold POSs lowered the parsing accuracy by more
than three points than for the GENIA Corpus, while
the adaptation of the parser recovered a few points
for each domain (second and fifth column in Table
3). Figure 4 would also show that we could improve
the parser’s performance with more training data for
each domain. For GTREC questions, the parsing ac-
curacy dropped given the maximum size of the train-
ing data. Our training data is small and therefore
small irregular might easily make accuracies drop or
rise. 7 We might have to prepare more corpora for
confirming our observation.

Table 6 would imply that the major errors for all
of these three corpora seem not straightforwardly as-
sociated with the properties specific to imperative or
question sentences. Actually, when we explored the
parse results, errors on the sentence constructions
specific to the two types of sentences would hardly
be observed. (“Failure in detecting verb” errors in
GTREC questions came from other causes.) This
would mean that the GENIA parser itself has poten-
tial to parse the imperative or question sentences.

The training data of the GENIA parser consists
of the WSJ Penn Treebank and the GENIA Corpus.
As long as we searched with our extraction method
in Section 4.3, the WSJ and GENIA Corpus seem
respectively contain 115 and 0 imperative, and 432

7This time we could not analyze which training data affected
the decrease, because through the cross validation experiments
each sentence was forced to be once final test data. However,
we would like to find the reason for this accuracy decrease in
some way.
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and seven question sentences. Unlike the POS tag-
ger, the parser could convey more global sentence
constructions from these sentences.

Although the GENIA parser might understand the
basic constructions of imperative or question sen-
tences, by adaptation of the parser to the GTREC
corpora, we could further learn more local construc-
tion features specific to GTREC, such as word se-
quence constructing a noun phrase, attachment pref-
erence of prepositions or other modifiers. The error
reduction in Table 6 would thus be observed.

However, we also observed that several types of
errors were still mostly unsolved after the adapta-
tion. Choosing whether to add complements for
verbs or not, and distinguishing coordinations from
conjunctions seems to be difficult for the parser. If
two question sentences were concatenated by con-
junctions into one sentence, the parser would tend to
fail to analyze the sentence construction for the lat-
ter sentence. The remaining errors in Table 6 would
imply that we should also re-consider the model de-
signs or the framework itself for the parser in addi-
tion to just increasing the training data.

6 Related work

Since domain adaptation has been an extensive re-
search area in parsing research (Nivre et al., 2007),
a lot of ideas have been proposed, including un-
/semi-supervised approaches (Roark and Bacchiani,
2003; Blitzer et al., 2006; Steedman et al., 2003;
McClosky et al., 2006; Clegg and Shepherd, 2005;
McClosky et al., 2010) and supervised approaches
(Titov and Henderson, 2006; Hara et al., 2007).
Their main focus was on adapting parsing models
trained with a specific genre of text (in most cases
PTB-WSJ) to other genres of text, such as biomed-
ical research papers. A major problem tackled in
such a task setting is the handling of unknown words
and domain-specific ways of expressions. However,
as we explored, parsing NL queries involves a sig-
nificantly different problem; even when all words in
a sentence are known, the sentence has a very differ-
ent construction from declarative sentences.

Although sentence constructions have gained lit-
tle attention, a notable exception is (Judge et al.,
2006). They pointed out low accuracy of state-of-
the-art parsers on questions, and proposed super-

vised parser adaptation by manually creating a tree-
bank of questions. The question sentences are anno-
tated with phrase structure trees in the PTB scheme,
although function tags and empty categories are
omitted. An LFG parser trained on the treebank then
achieved a significant improvement in parsing ac-
curacy. (Rimell and Clark, 2008) also worked on
question parsing. They collected question sentences
from TREC 9-12, and annotated the sentences with
POSs and CCG (Steedman, 2000) lexical categories.
They reported a significant improvement in CCG
parsing without phrase structure annotations.

On the other hand, (Judge et al., 2006) also im-
plied that just increasing the training data would not
be enough. We went further from their work, built
a small but complete treebank for NL queries, and
explored what really occurred in HPSG parsing.

7 Conclusion

In this paper, we explored the problem in parsing
queries. We first attempted to build a treebank on
queries for biological knowledge and successfully
obtained 196 annotated GTREC queries. We next
examined the performances of the POS tagger and
the HPSG parser on the treebank. In the experi-
ments, we focused on the two dominant sentence
constructions in our corpus: imperatives and ques-
tions, extracted them from our corpus, and then also
examined the parser and tagger for them.

The experimental results showed that the POS
tagger’s mis-tagging to main verbs in imperatives
and wh-interrogatives in questions critically de-
creased the parsing performances, and that our
small corpus could drastically decrease such mis-
tagging and consequently improve the parsing per-
formances. The experimental results also showed
that the parser itself could improve its own perfor-
mance by increasing the training data. On the other
hand, the experimental results suggested that the
POS tagger or the parser performance would stag-
nate just by increasing the training data.

In our future research, on the basis of our findings,
we would like both to build more training data for
queries and to reconstruct the model or reconsider
the feature design for the POS tagger and the parser.
We would then incorporate the optimized parser and
tagger into NL query processing applications.
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