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Abstract

We use automatically extracted acoustic
features to detect speech which is gener-
ated under stress, achieving 76.24% accu-
racy with a binary logistic regression. Our
data are task-oriented human-human dia-
logues in which a time-limit is unexpect-
edly introduced partway through. Anal-
ysis suggests that we can detect approxi-
mately when this event occurs. We also
consider the importance of normalizing
the acoustic features by speaker, and de-
tecting stress in new speakers.

1 Introduction

The term stressed speech can refer to speech
generated under psychological stress (Sigmund et
al., 2007). Stress alters an individual’s mental
and physiological state, which then affects their
speech. The ability to identify stressed speech
would be very valuable to Spoken Dialogue Sys-
tems (SDSs), especially in “stressful” applications
such as search-and-rescue robots. Speech recog-
nizers are usually trained on normal speech, and
so can struggle badly on other speech. Tech-
niques exist for making ASR robust to noise/stress
(Hansen and Patil, 2007), but knowing when to ap-
ply them will in general require the ability to de-
tect stressed speech. This ability is clearly also
needed when the user’s stress level should affect
how the SDS responds. An SDS should some-
times generate stressed speech itself—for exam-
ple, to impart a sense of urgency on the user.

This paper investigates spectral-based acoustic
indicators of stress in human-human, task-oriented
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dialogues in which stress is induced in the lat-
ter stages by the unexpected introduction of time-
pressure. Unlike previous studies, we detect stress
in whole utterances in the raw audio, which is
more realistic for applications. We also consider
the importance of normalizing the features, and
detection of both the introduction of the stressor,
and stress in new speakers.

2 Related work

Stressors and clip sizes: The stressors in pre-
vious studies include logical problems, images of
human bodies with skin diseases/severe accident
injuries (Tolkmitt and Scherer, 1986), loss of con-
trol of a helicopter (Protopapas and Liberman,
2001), university examinations (Sigmund et al.,
2007), and an increasingly difficult air controller
simulation and verbal quiz (Scherer et al., 2008).
Sigmund et al. (2007) detect stress in approxi-
mately 2000 voiced segments of 5 vowels. Tolk-
mitt and Scherer (1986), Protopapas and Liberman
(2001) and Scherer et al. (2008) detect stress in
whole utterances, but these are respectively, read
from a card, quiz answers, and with verbal content
removed. Studies on the Speech under Simulated
and Actual Stress (SUSAS) corpus (Hansen and
Bou-Ghazale, 1997) detect stress in words. These
include (Hansen, 1996; Zhou, 1999; Hansen and
Womack, 1996; Zhou, 2001; Casale et al., 2007).
The SUSAS corpus contains aircraft communica-
tion words from a common highly confusable vo-
cabulary set of 35, and they are divided into differ-
ent speaking styles.

Acoustic cues: The most widely investigated
acoustic cues relate to fundamental frequency (F0,
also called pitch), formant frequencies and spec-
tral composition e.g. (Tolkmitt and Scherer, 1986;
Hansen, 1996; Zhou, 1999; Protopapas and Liber-
man, 2001; Sigmund et al., 2007; Scherer et
al., 2008). Mel-Frequency Cepstral Coefficients
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Category Examples
F0-related Median, mean, minimum, time of minimum as % thr’ clip, max, time of max as % thr’ clip,

range (max-min), standard deviation, mean absolute slope,
mean slope without octave jumps, number of voiced frames.

Intensity-related Median, mean, minimum, time of minimum as % thr’ clip, max, time of max as % thr’ clip,
range (max-min), standard deviation.

Formant-related Mean, minimum, time of minimum as % through clip, max, time of max as % through clip,
(for F1-F3) range (max-min).

Spectral tilt-related Mean, minimum, maximum, range (max-min).

Table 1: The acoustic features which are extracted from the audio clips using Praat (Boersma and Weenink, 2010).

(MFCCs)1 and Teager Energy Operator (TEO)2

(Kaiser, 1990) based features have also been con-
sidered e.g. (Hansen and Womack, 1996; Zhou,
2001; Casale et al., 2007).

Features of all these types have proved useful
in detecting stressed speech. The classification
methods employed are various, including a tradi-
tional binary hypothesis detection-theory method
(Zhou, 1999) and neural networks (Hansen and
Womack, 1996; Scherer et al., 2008), while Casale
et al. (2007) used genetic algorithms for feature
selection. Of the two more recent studies which
detected stress in whole utterances, Protopapas
and Lieberman found that mean and maximum F0
within an utterance correlate highly with subject
stress ratings, and Scherer et al.’s neural network
outperformed a human baseline. Note that find-
ings/results in these and other previous studies are
not directly comparable with our own, because we
detect stress in whole utterances in raw audio.

3 Data

The original data (Eberhard et al., 2010) are 4
task-oriented dialogues between 2 native English-
speaking participants. Hence there are 8 speakers
in total (7 male, 1 female), and the dialogues con-
tain 263, 172, 228 and 210 utterances respectively.

During a dialogue, the participants (the direc-
tor and member) are on a floor with corridors and
rooms that contain various colored boxes. The di-
rector stays in one room, and gives task instruc-
tions via walkie-talkie to the member, providing
directions with a map which is partially complete
and accurate for box locations. The tasks are lo-
cating boxes which are unmarked on the map, and
transferring blocks between and retrieving speci-
fied boxes. Initial instructions do not mention a

1MFCCs model the human auditory system’s nonlinear
filtering in measuring spectral band energies.

2The TEO is a nonlinear operator which uses mechanical
and physical considerations to extract the signal energy.

time limit, but at the end of the 7th minute, the di-
rector is given a timer and told there are 3 minutes
to complete the current tasks, plus one new task.

We use the Nuance speech recognizer (V. 9.0)
to end-point each dialogue’s audio signal, and the
resulting clips are mostly 1 to 3 seconds. In
preliminary experiments (not reported), denoising
seemed to remove acoustic information which is
indicative of stress. Hence we use raw audio.

Stressed speech: For present purposes, we as-
sume that all speech after the introduction of the
time limit is stressed. Hence 448 of the 663 au-
dio clips in our experimental data are unstressed,
and 215 are stressed. In future we plan to use
the Amazon Mechanical Turk to obtain perceived
stress ratings on a scale with more gradations.

4 Experiments

Acoustic features: We use Praat (Boersma and
Weenink, 2010) to compute F0, intensity, formant
and spectral tilt-related features for each clip (Ta-
ble 1). F0 (pitch) corresponds to the rate of vocal
cord vibration in Hertz (Hz), and Intensity, to the
sound’s loudness in decibels (dB), (derived from
the amplitude or increase in air pressure). A for-
mant is a concentration of acoustic energy around
a particular frequency in the speech wave. There
are several, each corresponding to a resonance in
the vocal tract, and we consider the lowest three
(F1-F3). Spectral tilt measures the difference in
energy between the 1st and 2nd formants, and so
estimates the degree to which energy at the funda-
mental dominates in the glottal source waveform.

Comparing different normalization methods:
We evaluate binary logistic regression models with
10-fold cross-validation, and try the following 4
methods for normalizing each clip’s acoustic fea-
tures according to its speaker.

• Maximum normalization: Due to the possi-
bility of outliers, we divide each feature value

254



Normalization % Accuracy US %correct S %correct MCB
Maximum normalization 74.4 (74.25) 86.67 (85.05) 48.5 (54.3) 67.8 (67.1)

Z-score 73.5 (73.78) 84.89 (84.12) 49.53 (52.7) 67.8 (67.1)
US Average 75.61 (76.24) 86.63 (86.2) 53.5 (55.9) 67.8 (67.1)
S Average 75.31 (75) 84.67 (84.375) 55.6 (55.9) 67.8 (67.1)

No normalization 68.52 (70.45) 84.34 (82.8) 37.4 (45.2) 67.8 (67.1)

Table 2: Binary logistic regression 10-fold cross validation with different feature normalization approaches: Scores within
brackets are when the female speaker data is removed; S = Stressed, US = Unstressed, MCB = Majority Class Baseline.

by the 95th percentile value for that feature,
rather than the maximum.

• Z-score: Using the mean and standard devi-
ation for each feature, the feature vector is
converted to Z-scores3.

• Unstressed (US) average: Each feature is
normalized by its mean value in the un-
stressed region.

• Stressed (S) average: Each feature is normal-
ized by its mean value in the stressed region.

Table 2 shows the results. All those gener-
ated with feature normalization are significantly
better (p < 0.005) than the majority class base-
line (MCB), (i.e. classifying all utterances as un-
stressed). Without normalization, the overall accu-
racy drops about 5—6%, and the stressed speech
class about 11—18%. Different normalization
methods do not produce very different results,
but US average gives the best overall accuracy
(75.61%). When we remove the female speaker,
this increases to 76.24%, and feature normaliza-
tion remains important.

We also tested our assumption that the speech
before and after the introduction of time-pressure
is unstressed and stressed respectively, by check-
ing that they really are different. As before, we
considered 7 minutes unstressed, and 3 stressed,
and used US average normalization. However we
now assigned different minutes to the unstressed
and stressed categories: first we swapped the 6th

and 8th, then also the 5th and 9th, and then also the
7th and 10th. As a result, classification accuracy
dropped, (to 75%, then 68.71%, then 67.66%),
which supports our assumption.

Feature contribution analysis: Table 3 shows
the US average normalized features with informa-
tion gain greater than zero. Intensity and pitch
features are ranked most predictive (i.e. maximum

3A Z-score indicates the number of standard deviations
between an observation and the mean.

and mean intensity, and mean and median pitch),
but Spectral tilt mean and a couple of formant fea-
tures are also predictive. In general, higher values
for the most predictive pitch and intensity features
(e.g. Intensity max and Pitch mean) seem to indi-
cate stress. An interaction term for Intensity max
and Pitch mean caused a significant improvement
in the fit of the model—the χ2 value (or change in
the -2 Log likelihood) was 4.952 (p < 0.05).

Feature Info. Gain
Intensity max .101

Pitch mean .099
Intensity mean .099
Pitch median .088

Pitch max .059
Intensity min .046

Spectral tilt mean .042
Pitch min .041

F1 min .038
Intensity range .034

Intensity std. dev. .033
F3 range .033

Intensity median .031

Table 3: Unstressed average normalized features ranked by
information gain.

Detecting the introduction of the stressor:
Figure 1 shows the percentage of audio clips in
each minute that were classified as stressed. As we
would hope, there is a dramatic increase from the
7th to the 8th minute (around 20% to over 50%).
Such an increase could be used to detect the intro-
duction of the stressor, time-pressure.

Detecting stress in new speakers: To detect
stressed speech in new speakers, we evaluate the
logistic regression with an 8-fold cross-validation,
in each fold training on 7 speakers, and testing on
the other. We apply US average normalization, ini-
tially with the average values for the new speaker’s
unstressed speech, and then with the average val-
ues in unstressed speech across all “seen” speakers
(speakers in the training set). Evaluation scores
(Table 4) are now lower, especially for the lat-
ter approach, but the former remains significantly
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Figure 1: The percentage of clips in each minute of the
dialogues which our classifier marks as stressed, (note that
time-pressure is introduced at the end of minute 7).

better than the MCB. Since the female speaker’s
stress class F-score is 0, we tried normalizing the
7 male speakers based on only seen male data,
and then average accuracy for a male rose from
67.09% to 68.02% (not statistically significant).

Spkr % Accuracy F-unstress F-stress
1 62.5 (62.2) .77 (.74) .07 (0.34)
2 75 (75) .84 (.84) .09 (0.44)
3 57.6 (72.9) .62 (.81) .49 (0.5)
4 71.73 (74) .84 (.83) 0 (0.43)
5 71.62 (73.0) .77 (.77) .62 (0.68)
6 77.6 (80.4) .86 (.88) .51 (0.52)
7 64.36 (65.6) .74 (.77) .4 (0.35)
8 60.97 (71.7) .67 (.8) .49 (0.46)

Av. 67.67 (71.9) .76 (.80) .33 (0.46)

Table 4: Predicting stress in new speakers: New speaker
features are normalized based on unstressed speech for all
speakers in training set (unbracketed) and on their own un-
stressed speech (bracketed). Speaker 4 is the female.

5 Conclusion

For detecting stressed speech, we demonstrated
the importance of normalizing acoustic features by
speaker, and achieved 76.24% classification accu-
racy with a binary logistic regression model. The
most indicative features were maximum and mean
intensity within an utterance, and mean and me-
dian pitch. After the introduction of time-pressure,
the percentage of clips classified as stressed in-
creased dramatically, showing that it is possible
to detect approximately when this event occurs.
We also attempted to detect stressed speech in new
speakers, and as expected, results were poorer.

In future work we plan to expand our data-set
with more dialogues, and test accuracy for detect-
ing the introduction of the stressor. We want to use

MFCCs and TEO features, and also non-acoustic
features such as disfluency features. As mentioned
previously, we also hope to move beyond binary
classification, by acquiring perceived stress ratings
on a scale with more gradations.
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