
Lambek Grammars, Tree Adjoining Grammars
and Hyperedge Replacement Grammars

Richard Moot
LaBRI(CNRS), INRIA Bordeaux SO & Bordeaux University

351, cours de la Libération
33405 Talence, France

Richard.Moot@labri.fr

Abstract

Two recent extension of the non-
associative Lambek calculus, the Lambek-
Grishin calculus and the multimodal
Lambek calculus, are shown to generate
class of languages as tree adjoining gram-
mars, using (tree generating) hyperedge
replacement grammars as an intermediate
step. As a consequence both extensions
are mildly context-sensitive formalisms
and benefit from polynomial parsing
algorithms.

1 Introduction

Joshi et al., (1991) have shown that many indepen-
dently proposed mildly context-sensitive grammar
formalisms — combinatory categorial grammars,
head grammars, linear indexed grammars and tree
adjoining grammars (TAGs) — generate the same
class of string languages.
For the Lambek calculus L (Lambek, 1958),

Pentus (1995) has shown that L grammars gener-
ate only context-free languages. Two recent incar-
nations of Lambek grammars have sought to ex-
tend the generative capacity the Lambek calculus:
the multimodal Lambek calculus NL�R (Moort-
gat, 1997) and the Lambek-Grishin calculus LG
(Moortgat, 2007). Both of these systems use the
non-associative Lambek calculus NL (Lambek,
1961), for which polynomial algorithms exist (de
Groote, 1999; Capelletti, 2007), as their base, but
add interaction principles to augment the descrip-
tive power. While both systems have been shown
to handle linguistic phenomena for which no sat-
isfactory Lambek calculus analysis exists, little is

T ↓
α

T

β

T

β

α
↘

↗

Figure 1: Substitution

known about the exact class of languages gener-
ated by either system or about the complexity cost
of adding these interaction principles.
In the current paper I shown that both NL�R

and LG generate the same class of languages as
TAGs, using hyperedge replacement grammars as
an intermediate step.

2 Tree Adjoining Grammars and
Hyperedge Replacement Grammars

Tree Adjoining Grammars (Joshi and Schabes,
1997) combine trees using the operations of substi-
tution (shown in Figure 1) which replaces a nonter-
minal leaf T ↓ by a tree with root T and adjunction
(shown in Figure 2) which replaces and internal
node A by a tree with root node A and foot node
A∗.
Formally, TAGs are defined as follows.

Definition 1 An TAG is a tuple 〈Σ, NS , NA,I,A〉
such that

• Σ, NS and NA and three disjoint alphabets
of terminals, substitution nonterminals and
adjunction nonterminals respectively, I will
use upper case letters T,U, . . . and of course

Lambek Grammars, Tree Adjoining Grammars and Hyperedge Replacement Grammars 65

Proceedings of The Ninth International Workshop on Tree Adjoining Grammars and Related Formalisms
Tübingen, Germany. June 6-8, 2008.



A∗
α

A

A

β′

β
α

A

A

β′

β

↗

↘

Figure 2: Adjunction

the distinguished start symbol S to stand for
members ofNS whereas I will use upper case
letters A,B, . . . for members of NA.

• I is a finite set of initial trees,
• A is a finite set of auxiliary trees.

The trees in I ∪ A are called the elementary
trees.
Trees are subject to the following conditions:

• the root nodes of all initial trees are members
of NS ,

• the root nodes of all auxiliary trees are mem-
bers of NA,

• every auxiliary tree has exactly one leaf
which is a member of NA. This leaf is called
the foot node,

• all other leaves of elementary trees are mem-
bers of NS ∪Σ.

A TAG satisfying the additional condition that
all elementary trees have exactly one terminal leaf
is called a lexicalized tree adjoining grammar
(LTAG). This leaf is called the lexical anchor,
In addition, a TAG is allowed to specify con-

straints on adjunction. Let A ∈ NA and let t be
the set of auxiliary trees with root node A and foot
node A∗. A node A in a elementary tree α is said
to have selective adjunction in case it specifies a
subset t′ � t of trees which are allowed to adjoin
at this node. The special case where t′ = ∅ is
called null adjunction. Finally, a node can specify
obligatory adjunction where an auxiliary tree has
to be adjoined at the node.

The only difference with the standard definition
of tree adjoining grammars (Joshi and Schabes,
1997) is the use of separate alphabets for auxil-
iary and substitution nonterminals. In addition to
making the substitution marker T↓ and the foot
node marker A∗ technically superfluous, this will
make the different embedding results which follow
slightly easier to prove.

Definition 2 An LTAG’ grammar G is an LTAG
satisfying the following additional conditions.

• all internal nodes of elementary trees have
exactly two daughters,

• every adjunction node either specifies the null
adjunction or the obligatory adjunction con-
straint without any selectional restrictions,

• every adjunction node is on the path from the
lexical anchor to the root of the tree.

The definition of LTAG’ is very close to the def-
inition of normal or spinal form LTAGs used by
Joshi et al. (1991) and by Vijay-Shanker and Weir
(1994) to show correspondence between LTAGs
and combinatory categorial grammars, so it should
be no surprise it will serve as a way to shown in-
clusion of tree adjoining languages in multimodal
and Lambek-Grishin languages. The only differ-
ence is that the adjunction nodes are required to
be on the path from the root to the lexical anchor
instead of the foot node.

Lemma 3 For every LTAG grammar G there is a
weakly equivalent LTAG’ grammar G′.

Proof (sketch) The proof is analogous to the
proof of Vijay-Shanker and Weir (1994). �

A hypergraph is a set of hyperedges, portrayed
as an edge label in a rectangular box, which can
be incident to any number of vertices. These con-
nections are portrayed by lines (called ‘tentacles’)
labelled 0, . . . , n (the selectors) for a hyperedge of
arity n + 1. A hyperedge replacement grammar
(Engelfriet, 1997; Drewes et al., 1997) replaces a
hyperedge with a nonterminal symbol by a hyper-
graph.
The rank of a terminal or nonterminal symbol is

the number of its tentacles. The rank k of a HR
grammar is the maximum number of tentacles of
a nonterminal symbol. We will be particularly in-
terested in HR grammars of rank two (HR2) even

66 Moot

Proceedings of The Ninth International Workshop on Tree Adjoining Grammars and Related Formalisms
Tübingen, Germany. June 6-8, 2008.



α

•(0)

•
(1)

•

•
A
1

0

β′

β
α

β′

β

•

•↗

↘

Figure 3: Hyperedge Replacement

though we do use terminal nodes with multiple
edges.
Figure 3 shows an example of hyperedge re-

placement for a nonterminal A of rank two. It is
attached to two vertices, represented by fat dots,
with selectors 0 and 1 respectively. If A → α is a
rule in the HR grammar, we can replace the hyper-
edge A by first deleting it, then identifying the ex-
ternal node (0) of α with the node which was con-
nected to tentacle 0 and external node (1) of αwith
the node which was connected to tentacle 1. The
similarity with Figure 2 should be striking. Note
however, that since the grammatical objects of hy-
peredge replacement grammars are hypergraphs,
β and β′ need not be disjoint. In fact, even the
two tentacles are allowed to reach the same vertex.
However, when we restrict the right hand sides of
rules to be trees1 then, as we will see in Lemma 5,
hyperedge replacement and adjunction will corre-
spond exactly.
There are several ways to represent trees in HR

grammars, but the following will turn out to be
convenient for our applications. A node with label
A and n daughters2 is represented as a hyperedge
A with n + 1 tentacles, with tentacle 0 pointing
towards the parent node and tentacles 1, . . . , n se-
lecting its daughters from left to right.

Definition 4 A hypergraph H is a (hyper-)tree iff
every node in H is incident to two hyperedges,
once by a selector 0 and once by a selector > 0,

1This is TR(HRtr) from (Engelfriet and Maneth, 2000).
2We assume here that all occurrences of A have the same

number of daughters, which we can accomplish by a simple
renaming, if necessary.

except the root node, which is incident to a single
hyperedge by selector 0.

Lemma 5 HR2 grammars generating trees and
TAG grammars are strongly equivalent.

Proof (sketch) From TAG to HR2, we start with
a TAG G and categorise the different adjunction
nodes, introducing new symbols whenever two
nodes labelled by the same symbol of NA either
select a different set of trees or differ with respect
to obligatory adjunction to obtain a TAGG′ which
is equivalent to G up to a relabelling of the mem-
bers of NA.
Now let t be an initial tree with root node T

in G′, we transform it into a hypertree t′ cor-
responding to Definition 4, with each adjunction
point replaced by a unary branch with the nonter-
minal A corresponding to the adjunctions possible
at the node and each leaf U marked for substitu-
tion replaced by a nonterminal leaf U and add rule
T → t′ to the HR grammar.
Each of the members of A ∈ NA in G′ has a set

of auxiliary trees t assigned to it as well as an indi-
cation of whether or not adjunction is obligatory.
For each α ∈ t we add a rule A → α to the gram-
mar. In addition, if adjunction is not obligatory
we add a rule A → •, eliminating the nonterminal
hyperedge.
Now every adjunction corresponds to a hyper-

edge replacement as shown in Figure 3 and every
substitution to the same figure, but with both the 1
tentacle and the β′ subtree removed.
From HR2 to TAG we use the fact that we gen-

erate a tree and that all nonterminals are of rank
≤ 2.
Suppose A is a nonterminal of rank two and

A → α is a rule in the HR2 grammar G. In case
α is a single node • we mark all adjunctions of a
nonterminal A as optional in the grammar. If not,
we add the auxiliary tree α′ which we obtain from
α by labelling the external node (0) by A and the
external node (1) by A∗ to the TAG.
Suppose T is a nonterminal of rank one and

T → t is a rule in G. By Definition 4, in order for
this rule to be productive the single external node
has to be the root. We label the root by T and add
the resulting tree as initial tree to the TAG. Again,
it is easy to see that every hyperedge replacement
of a nonterminal of rank 1 corresponds to a substi-
tution and every hyperedge replacement of rank 2

Lambek Grammars, Tree Adjoining Grammars and Hyperedge Replacement Grammars 67

Proceedings of The Ninth International Workshop on Tree Adjoining Grammars and Related Formalisms
Tübingen, Germany. June 6-8, 2008.



•

•
g
1

0

•
s+

0
•

np−
0•

Jo
0

•
np+

0
•

ran
0

• •

•
◦

1 2

0
•
s−

0

Figure 4: AB lexicon

corresponds to an adjunction in the generated TAG
grammar. �

3 Lambek Grammars

Before talking about Lambek grammars, seen
from a hypergraph perspective, it is useful to first
show a lexicon for AB grammars. Figure 4 shows
a trivial AB lexicon for the phrase ‘Jo ran’. As
usual in categorial grammars, we distinguish be-
tween positive and negative occurrences of atomic
formulas.3

The tree on the left indicates that the goal for-
mula g of this grammar is a positive s atomic
formula. The lexical entry for ‘ran’ indicates it
is looking for an np to its left to produce an s,
whereas the entry for ‘Jo’ simply provides an np.
Note that because of the extra unary hyperedge at
the root nodes, the two lexical trees are not trees
according to Definition 4. I will refer to them as
typed trees.
The axiom rule (Figure 5) shows how positive

and negative formulas of the same type cancel
each-other out by identifying the nodes selected
by the two unary hyperedges. The resemblance
with the substitution operation in Figure 1 should
be clear, though we do not require α and β to be
disjoint: instead we require that an AB derivation
— a set of applications of the axiom rule — ends
in a (non-typed) tree where all leaves are labelled
by terminal symbols.
With respect to Lambek grammars, we are pri-

marily interested in two recent extensions of it, the
multimodal Lambek calculus with two modes in-

3Negative formulas correspond to resources we have and
positive formulas correspond to resources we need. Think of
A+ as being similar to A↓.

•
A+

0

α

•
A−

0

β

•

β

α

↘

↗

Figure 5: The axiom rule

teracting by means of the mixed associativity and
mixed commutativity structural rules (Moortgat,
1997) and the Lambek-Grishin calculus with the
Grishin class IV interactions (Moortgat, 2007).
Extending the AB hypergraph calculus in this

way involves adding new constructors and graph
contractions which eliminate them. This moves
the hypergraph calculus (or at least the intermedi-
ate structures in the derivations) further away from
trees, but we will continue to require that the result
of connecting and contracting the graph will be a
(non-typed) tree. Contractions will correspond to
the logical rules [R/i], [L•i] and [R\i] in theNL�R
case and to the logical rules [L�], [R�] and [L�]
in the LG case. The contraction for [L•] is shown
in the middle and on the right of Figure 6.
An additional constraint on the trees will be that

in only contains mode 0 in the NL�R case and
that it doesn’t contain the ‘inverse’ Grishin struc-
tural connective ‘;’ in the LG case. This has as
a consequence that in any proof, the Grishin con-
nectives and the connectives for mode 1 can only
occur in pairs.
The calculus sketched here is just a hypergraph

interpretation of the proof nets for the multimodal
Lambek calculus of Moot and Puite (2002) and
their extension to LG of Moot (2007), who show
that it is sound and complete with respect to the
sequent calculus.
As we have seen, it is trivial to model the sub-

stitution operation: in this respect substitution is
modelled in a way which is equivalent up to no-
tational choices to the work on partial proof trees
(Joshi and Kulick, 1997).
Figure 7 shows how to model the adjunction op-

eration, with the solution forNL�R on the left and

68 Moot

Proceedings of The Ninth International Workshop on Tree Adjoining Grammars and Related Formalisms
Tübingen, Germany. June 6-8, 2008.



•
•

•
◦1

1 2

0

•
•

•
L•1

1 2

0

α

β′

β

• •

•
◦1

1 2

0

• •

•
L•1

1 2

0

β′

β

α

β′

β

α→→

Figure 6: A contraction and structural rules for
simulating adjunction

the solution for LG on the right.
Figure 6 shows how this allows us to adjoin a

hypergraph corresponding to an auxiliary tree to
this adjunction point. After two axiom rules, we
will have the structure shown on the left. The
mixed associativity and commutativity structural
rules allow us to move the ◦1 hyperedge down the
tree until we have the structure shown in the mid-
dle. Finally, we apply the contraction, deleting the
◦1 and L•1 edges and identifying the two nodes
marked by selector 0 to obtain the structure on the
right. Remark how these steps together perform an
adjunction operation. For the sake of efficiency we
will usually not apply the structural rules explic-
itly. Instead, we will use a generalised contraction,
which moves directly from the left of the figure to
the structure on the right.

Lemma 6 If G is an LTAG’ grammar, then there
exists a strongly equivalent NL�R grammar G′

and a strongly equivalent LG grammar G′′.

Proof (sketch) For each lexical tree t of G we
construct a lexical tree t′ in G′ and a lexical tree
t′′ in G′′, translating every adjunction point by the
left hand side of Figure 7 for G′ and by its right
hand side for G′′.
Now let d be a LTAG’ derivation using gram-

mar G. We translate this derivation into an NL�R
derivation d′ and an LG derivation d′′ as follows:

•

•

•
◦1

1 2

0

•

•

•
L•1

1 2

0

•
B−

0

•
A+

0

•

•

•
R�

1 0

2

•

•

•
;

1 0

2

•
B−

0

•
A+

0

Figure 7: Lambek hypergraphs for adjunction

• Whenever we substitute a tree with root T for
a leaf T ↓ we perform the corresponding ax-
iom connection in d′ and d′′, as shown in Fig-
ure 5.

• Whenever we adjoin a tree with root A and
foot A∗ we perform the A axiom for the root
node, the B axiom for the foot node followed
by the generalised contraction shown in Fig-
ure 6.

In order to show we generate only the LTAG’
derivations we have to show that no other combi-
nation of axioms will produce a proof net. Given
the separation of non-terminals intoNS andNA as
well as the contraction requirement this is trivial.
�

To complete the proofs, we show that there is an
HR grammarG′ generating the hypergraphs corre-
sponding to the proofs of an LG or NL�R gram-
mar G, that is to say the grammar G′ generates se-
quences of lexical graphs which, using axiom con-
nections and generalised contractions contract to a
tree.

Lemma 7 If G is a Lambek Grammar, then there
exists a strongly equivalent HR2 grammar G′.

Proof (sketch) Let G be a NL�R or an LG
grammar. We generate a hyperedge replacement
grammar H of rank two which generate all proof
nets, that is to say all lexical graphs which by
means of axiom connections and generalised con-
tractions convert to a tree. Conceptually, we can
think of this HR grammar as operating in three
phases:

Lambek Grammars, Tree Adjoining Grammars and Hyperedge Replacement Grammars 69

Proceedings of The Ninth International Workshop on Tree Adjoining Grammars and Related Formalisms
Tübingen, Germany. June 6-8, 2008.



•

•
V
1

0

→
• •

•
L•1

1 2

0

•

•
V
1

0

•

•
T
1

0
• •

•
◦1

1 2

0

(1)

(0)

Figure 8: Lambek grammar as HR grammar —
adjunction

1. Expand T (tree) nonterminals to generate all
binary branching trees with V (vertex) non-
terminals between all branches.

2. Expand V nonterminals to perform gener-
alised expansions, that is to say inverse con-
tractions, as shown in Figure 8.

3. Erase the V nonterminals which correspond
to ‘flow’ formulas and disconnect the V non-
terminals which correspond to axioms and as
shown in Figure 9.

Now, given a sequence of lexical graphs, a to-
tal matching of the positive and negative axiomatic
formulas and a sequence s of generalised contrac-
tions contracting this proof net to a tree we can
generate an HR derivation d by induction on the
length of s. The induction hypothesis is that dur-
ing steps 1 and 2 we always have a hypergraph cor-
responding to the proof net P which has a V edge
for every vertex in P.
In case s is 0, there are no expansions and we

already a binary tree with a V edge for every vertex
in it. Since the T rules allow us to generate any
binary branching tree, G can generate this tree as
well. For every V edge in the tree which is the
result of an axiom rule, we apply its inverse, shown
in Figure 9 on the right, and we erase all other V
edges as shown on the left of the same figure.
In case s > 0, we know by induction hypothe-

sis that the hypergraph representation of the proof
net we are constructing has a V edge for each of
the vertices in the proof net. Because each sub-
tree of the hypergraph has started as a T edge, this

•

•
V01

1

0

→ (0)•
(1)

•

•
V11

1

0

→

•
ax−a

1

(1)

•
ax+a

1

(0)

Figure 9: Lambek grammar as HR grammar —
flow/axiom

is true of the α subtree as well. We rearrange the
HR derivation in such a way that all expansions of
the T edge into α occur at the end, then insert the
expansion shown in Figure 8 just before this se-
quence. The result is a valid HR derivation of a
hypergraph which contracts to the same tree as the
proof net. �

Figure 10 summarises the different inclusions
with their corresponding lemma’s.

TAG

LTAG’

HR2

NL�R
LG

� �

�

�

�

Lemma 5

Lemma 6

Lemma 3 Lemma 7

Figure 10: A summary of the previous lemma’s

The following corollary follows immediately.

Corollary 8 NL�R and LG grammars generate
mildly context-sensitive languages.

4 Polynomial Parsing

The strong correspondence between Lambek
grammars and hyperedge replacement grammars
does not immediately give us polynomial pars-
ing for Lambek grammars: as shown in (Drewes
et al., 1997) for example, even hyperedge re-
placement grammars of rank 2 can generate NP
complete graph languages, such as the Hamilto-
nian path problem. Lautemann (1990) presents a
(very abstract) version of the well-known Cocke,
Kasami and Younger algorithm for context-free
string grammars (Hopcroft and Ullman, 1979)
for hyperedge replacement grammars and presents
two ways of obtaining polynomial complexity, the
first of which will interest us here. It uses the

70 Moot

Proceedings of The Ninth International Workshop on Tree Adjoining Grammars and Related Formalisms
Tübingen, Germany. June 6-8, 2008.



• •

•
L•1

1 2

0

• •

•
•1 2

0

• •

•

Figure 11: s-separability of the bipartite graph cor-
responding to a proof net

notion of s-separability, which corresponds to the
maximum number of connected components in a
graph when s vertices are deleted.

Theorem 9 (Lautemann (1990)) If HR grammar
G is of rank s and s-sepL(G) = O(1) then L(G) ∈
LOGCFL4.

Corollary 10 For any sentence length w, NL�R
and LG grammars are in LOGCFL.

Proof Lautemann discusses HR grammars gen-
erating graph languages and not hypergraph lan-
guages. However, this is not a real restriction given
that we can interpret a hypergraph as a bipartite
graph with the vertices corresponding to the ver-
tices in the hypergraph as one partition and the hy-
peredges as the second partition. Figure 11 shows
this interpretation of the leftmost graph in the mid-
dle of the figure. On the right, we can see how
deleting the central vertex, corresponding to the
hyperedge in the original graph on the left, results
in (at most) three distinct components. The rank
of the hyperedge replacement grammar for proof
nets is two. Finally, for a sentence with w words,
we start with w disjoint lexical graphs. Therefore,
deleting two vertices from w disjoint graphs pro-
duces at most w + 6 disjoint graphs. �

It is slightly unsatisfactory that this complexity
result uses the number of words in the sentence w
as a constant, though it seems possible to elimi-
nate the constant by using a slightly more specific
algorithm.
Pentus (2006) has shown that the associative

Lambek calculus L is NP complete. The reason
deleting a vertex from an NL�R or LG hyper-
graph gives at most three different hypergraphs is

4LOGCFL is the complexity class of of problems which
are log-space reducible to the decision problems for context-
free grammars. Vijay-Shanker et al., (1987) show that linear
context-free rewrite systems and multicomponent TAGs are
also in this complexity class.

because we work with a non-associative system.
Although Moot and Puite (2002) show that asso-
ciativity is easily accommodated in the proof net
calculus, it results in a system without upper bound
on the number of daughters which a node can have.
Therefore, deleting a vertex from an L hypergraph
can result in an unbounded number of connected
components.

5 Discussion and Future Work

When looking at the proof of Lemma 5, it is clear
that HR1 grammars generate substitution only
TAGs, whereas HR2 grammars generate TAGs.
The tree generating power of HR grammars in-
creases with the maximum rank of the grammar.
For example, it is easy to generate the non-TAG
language anbncndnenfn using nonterminals of
rank 3. In general, Engelfriet and Maneth (2000)
show that TR(HRtr), the set of tree languages gen-
erated by hyperedge replacement grammar such
that the right hand side of all rules is a (hyper-)tree
is equal to CFTsp, the context-free tree grammars
which are simple in the parameters, ie. without
copying or deletion of trees, which is a differ-
ent way of stipulating the linear and non-erasing
constraint on linear context-free rewrite systems
(LCFRS) (Vijay-Shanker et al., 1987).
Weir (1992) shows that string generating hy-

peredge replacement grammars generate the same
languages as LCFRS and multi-component tree
adjoining grammars (MCTAGs). All this suggests
a possible extension of the current results relating
tree generating HR grammars of rank > 2 to MC-
TAGs and LCFRS.
With respect to NL�R, it seems possible to ex-

tend the current results, increasing the number of
modes to generate richer classes of languages, pos-
sibly the same classes of languages as those gen-
erated by LCFRS and MCTAGs. For LG, such
extensions seem less evident. Indeed, an appeal-
ing property of LG is that we do not need different
modes, but if we are willing to add different modes
to LG then extensions of the classes of languages
generated seem possible.
An interesting consequence of the translations

proposed here is that they open the way for new
parsing algorithms of Lambek grammars. In addi-
tion, compared to earlier work like that of Moort-
gat and Oehrle (1994), they give radically new
ways of implementing phenomena like Dutch verb

Lambek Grammars, Tree Adjoining Grammars and Hyperedge Replacement Grammars 71

Proceedings of The Ninth International Workshop on Tree Adjoining Grammars and Related Formalisms
Tübingen, Germany. June 6-8, 2008.



clusters in NL�R.

6 Conclusions

NL�R and LG are mildly context-sensitive for-
malisms and therefore benefit from the pleas-
ant properties this entails, such as polynomial
parsability. TAGs and HR grammars, because
of the simplicity of their basic operations, have
played a central role in establishing this correspon-
dence.

References

Capelletti, Matteo. 2007. Parsing with Structure-
Preserving Categorial Grammars. Ph.D. thesis,
Utrecht Institute of Linguistics OTS.

de Groote, Philippe. 1999. The non-associative Lam-
bek calculus with product in polynomial time. In
Murray, N. V., editor, Automated Reasoning With
Analytic Tableaux and Related Methods, volume
1617 of Lecture Notes in Artificial Intelligence,
pages 128–139. Springer.

Drewes, Frank, Annegret Habel, and Hans-Joerg Kre-
owski. 1997. Hyperedge replacement graph gram-
mars. In Rozenberg, Grzegorz, editor, Handbook of
Graph Grammars and Computing by Graph Trans-
formations, volume I, pages 95–162. World Scien-
tific.

Engelfriet, Joost and Sebastian Maneth. 2000. Tree
languages generated by context-free graph gram-
mars. In Theory and Applications of Graph Trans-
formations, volume 1764 of Lecture Notes in Com-
puter Science, pages 15–29. Springer.

Engelfriet, Joost. 1997. Context-free graph grammars.
In Rosenberg, Grzegorz and Arto Salomaa, editors,
Handbook of Formal Languages 3: Beyond Words,
pages 125–213. Springer, New York.

Hopcroft, John E. and Jeffrey D. Ullman. 1979. Intro-
duction to Automata Theory, Languages and Com-
putation. Addison-Wesley, Reading, Massachus-
sets.

Joshi, Aravind and Seth Kulick. 1997. Partial proof
trees as building blocks for a categorial grammar.
Linguistics and Philosophy, 20(6):637–667.

Joshi, Aravind and Yves Schabes. 1997. Tree-
adjoining grammars. In Rosenberg, Grzegorz and
Arto Salomaa, editors, Handbook of Formal Lan-
guages 3: Beyond Words, pages 69–123. Springer,
New York.

Joshi, Aravind, Vijay Shanker, and David Weir. 1991.
The convergence of mildly context-sensitive gram-
mar formalisms. In Sells, Peter, Stuart Shieber, and

ThomasWasow, editors, Foundational Issues in Nat-
ural Language Processing, pages 31–82. MIT Press,
Cambridge, Massachusetts.

Lambek, Joachim. 1958. The mathematics of sen-
tence structure. American Mathematical Monthly,
65:154–170.

Lambek, Joachim. 1961. On the calculus of syntac-
tic types. In Jacobson, R., editor, Structure of Lan-
guage and its Mathematical Aspects, Proceedings of
the Symposia in Applied Mathematics, volume XII,
pages 166–178. American Mathematical Society.

Lautemann, Clemens. 1990. The complexity of
graph languages generated by hyperedge replace-
ment. Acta Informatica, 27(5):399–421.

Moortgat, Michael and Richard T. Oehrle. 1994. Ad-
jacency, dependency and order. In Proceedings 9th
Amsterdam Colloquium, pages 447–466.

Moortgat, Michael. 1997. Categorial type logics. In
van Benthem, Johan and Alice ter Meulen, editors,
Handbook of Logic and Language, chapter 2, pages
93–177. Elsevier/MIT Press.

Moortgat, Michael. 2007. Symmetries in natural lan-
guage syntax and semantics: the Lambek-Grishin
calculus. In Proceedings of WoLLIC 2007, volume
4567 of LNCS, pages 264–284. Springer.

Moot, Richard and Quintijn Puite. 2002. Proof nets
for the multimodal Lambek calculus. Studia Logica,
71(3):415–442.

Moot, Richard. 2007. Proof nets for display logic.
Technical report, CNRS and INRIA Futurs.

Pentus, Mati. 1995. Lambek grammars are context
free. In Proceedings of the Eighth Annual IEEE
Symposium on Logic in Computer Science, pages
429–433, Montreal, Canada.

Pentus, Mati. 2006. Lambek calculus is NP-complete.
Theoretical Computer Science, 357(1):186–201.

Vijay-Shanker, K. and David Weir. 1994. The equiv-
alence of four extensions of context free grammars.
Mathematical Systems Theory, 27(6):511–546.

Vijay-Shanker, K., David Weir, and Aravind Joshi.
1987. Characterizing structural descriptions pro-
duced by various grammatical formalisms. In Pro-
ceedings of the 25th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 104–111,
Stanford, California. Association for Computational
Linguistics.

Weir, David. 1992. Linear context-free rewriting sys-
tems and deterministic tree-walking transducers. In
Proceedings of the 30th Annual Meeting of the As-
sociation for Computational Linguistics, pages 136–
143, Morristown, New Jersey. Association for Com-
putational Linguistics.

72 Moot

Proceedings of The Ninth International Workshop on Tree Adjoining Grammars and Related Formalisms
Tübingen, Germany. June 6-8, 2008.


