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Abstract 

This paper discusses the generation of 
cryptic crossword clues: a task that in-
volves generating texts that have both a 
surface reading, based on a natural lan-
guage interpretation of the words, and a 
hidden meaning in which the strings that 
form the text can be interpreted as a puzzle. 
The process of clue generation realizes a 
representation of the hidden, puzzle mean-
ing of the clue through the aggregation of 
chunks of text. As these chunks are com-
bined, syntactic and semantic selectional 
constraints are explored, and through this 
language understanding task a meaningful 
surface reading is recovered. This hybrid 
language generation/language understand-
ing process transforms a representation of 
the clue as a word puzzle into a representa-
tion of some meaningful assertion in the 
domain of the real world, mediated through 
the generated multi-layered text; a text 
which has two separate readings. 

1 Introduction 

This paper discusses a system called ENIGMA 
which generates cryptic crossword clues: frag-
ments of text that also have a hidden meaning, 
quite different from the surface reading. This 
raises an interesting research question: how to gen-
erate text that has multiple layers of meaning based 
on different syntactic rules and different semantic 
interpretations. The input to the realizer is a pro-
duction of a high-level cryptic clue grammar 
whose terminals are the strings that participate in 
the puzzle presented by the clue. These conceptu-

alizations of possible crossword clues contain no 
implicit syntactic or semantic information, and so a 
mechanism is required to ensure that the resulting 
surface text is syntactically correct and semanti-
cally appropriate while the meaning of the text, 
derived directly from the input, is not disturbed 
during lexicalization. As with computational hu-
mour and poetry generation the process of genera-
tion is unusual in that the content is not specified in 
the input (Ritchie, 2001; Manurung, 2000), and 
this leads to tractability problems when consider-
ing the wide range of lexicalization options (see 
also Ritchie, 2005: 4) requiring a bespoke solution. 

1.1 Cryptic Crossword Clues 

The cryptic crossword clues generated by ENIGMA 
consist of two separate indications of the solution 
word, one of which is a definition, the other a puz-
zle based on its orthography. Consider, for exam-
ple, the following simple clue for noiseless: 

Still wild lionesses (9) 
Here noiseless is represented both by the synonym 
still (the definition) and a wordplay puzzle (an 
anagram of lionesses) indicated by the convention 
keyword wild. All of the clues generated by the 
system conform to Ximenean conventions 
(Macnutt, 1966), a set of guidelines that impose 
restrictions on inflection and word order to ensure 
that clues are ‘fair’ and also encourage the use of 
homographs and convention vocabulary to make 
them cryptic in nature. 
 

It is important to note here that there are two 
separate readings of this clue: a surface reading in 
which the clue is also a fragment of English text, 
and the puzzle reading required to solve the clue. 
In the surface reading the word still is an adverb 
qualifying the adjective wild, while in the puzzle 
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reading it is an adjective that is a synonym for 
noiseless.  

 
There are many different types of crossword 

clue wordplay, including anagrams, homophones, 
writing words backwards, appending words to-
gether, and more besides. ENIGMA generates clues 
using seven of the eight main types listed in 
(Macnutt, 1966) and can also generate complex 
clues with subsidiary puzzles. This coverage com-
bined with the richness of lexical choice in cryptic 
crossword convention vocabulary means that it is 
not uncommon for ENIGMA to generate several 
hundred valid clues for a single input word. 

1.2 Requirements for Generation 

Given a particular solution word, such as noiseless, 
the first step for the system is to determine the dif-
ferent ways in which the letters of the solution 
could be presented as a puzzle. For example, the 
basis of the clue could be that noiseless is an ana-
gram of lionesses, or that it can be formed by run-
ning noise and less together, or that it is composed 
of a river (Oise) followed by the letter l all placed 
inside the word ness. In its present form ENIGMA 
locates 154 such formulations for the input word 
noiseless. Each of these formulations can be repre-
sented as a clue tree under ENIGMA’s domain 
grammar for cryptic crosswords in which the ter-
minal elements are the strings used to compose the 
solution word. The sample clue tree in Figure 1 
represents the fact that noiseless can be formed by 
running noise and less together, a puzzle type 
known as a Charade (Macnutt, 1966; Manley, 
2001).  

 
 
Figure 1. A clue tree that represents appending 
noise and less to form noiseless.  

These clue trees contain no linguistic information - 
the terminals should be thought of as strings not as 
words. To lexicalize this data the system must con-
struct a fragment of natural language that can be 
reinterpreted - through the resolution of homo-
graphs and a knowledge of special conventions - as 
a valid cryptic clue puzzle based on this non-
linguistic structure. Along the way the syntax and 
semantics of the puzzle reading must not be dis-
turbed or the clue will lose its hidden meaning. At 
the same time, the natural language syntactic and 
semantic information that is missing from the input 
data must be imposed on the clue so that a valid 
surface reading is achieved. 

2 Chunk by Chunk Generation 

A complete clue does not need to be a sentence, or 
even a clause, it can be any valid fragment of text, 
and ENIGMA takes advantage of this fact to sim-
plify the generation algorithm. The clue tree shown 
in Figure 1 is realized through a process of compo-
sition. First the symbol labeled A is realized. Next 
B1 and B2 are realized individually and then com-
bined to form B. Now, A and B can themselves be 
combined to form the clue. Each realization is a 
fragment of text, and I refer to each of these frag-
ments as a chunk, although I note that they are 
rather different from chunks based on major heads 
(Abney, 1989), for the reasons set out below. To 
implement this process the system needs to be able 
to do two things: create chunks for each terminal in 
the clue tree, and merge chunks into successively 
larger ones until the root of the tree is reached. 
This recursive process enables ENIGMA to con-
struct complex clues with subsidiary puzzles using 
the same implementation it uses for simple puz-
zles. 

2.1 Word Order 

When chunks are combined together they cannot 
interleave or nest. The reason for this is that each 
chunk represents a part of the hidden meaning of 
the clue, and word order is central to its interpreta-
tion. This is why ENIGMA uses a flat structure 
rather than a tree structure to build up the clue. 

3 Implementation 

Each chunk can attach to another chunk to its left, 
to its right, or via an intermediary word or phrase, 
such as a conjunction, something I call ‘upward 
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attachment’. The grammar that underpins these 
attachments is encoded as a set of three extension 
points1 to each chunk: one specifying the relation-
ships that can occur to the left, another those that 
can occur to the right, and the third specifying up-
ward attachments. For example the chunk wild li-
onesses has, amongst many others, an extension 
point to the left indicating that it can attach as di-
rect object to a verb, one to the right indicating that 
it can attach to a verb as subject and an upward 
attachment through which it can attach via a coor-
dinating conjunction to another noun.  

 
In addition to specifying the relationship and 

target type each extension point also specifies an 
erasure2 for the chunk to which it belongs - this 
erasure indicates a word in the chunk that can 
stand in for the chunk as a whole when determin-
ing attachment. It is important to note that the era-
sure is not equivalent to the syntactic head and that 
different extension points on the same chunk may 
have different erasures. For example, in addition to 
looking for a verb to the left, the chunk wild lion-
esses also has an extension point looking for an 
adverb to the left, since an adverb could qualify the 
adjective wild. Therefore, the extension point look-
ing for a verb erases wild lionesses to lionesses, so 
that a verb chunk looking for a noun to its right as 
direct object will accept it, whereas the extension 
point looking for an adverb erases this same chunk 
to wild, so that an adverb looking to its right for an 
adjective to qualify could also accept it. In this way 
the concept of erasure makes it possible for a wider 
variety of syntactic dependencies to be encoded in 
the same way on a single chunk, enabling poly-
morphic behaviour. 

 
In some respects the extension points and asso-

ciated erasures encoded onto each chunk act like 
the categories on functors in Combinatory Cate-
gorial Grammar (Clark et al, 2002), or edges on the 
agenda used in chart generation (Kay, 1996) as 
they specify the type and directionality of the ar-
guments available and the type of the result. How-

                                                 
1 The term extension point is more commonly used to 
define the interfaces to plug-in components in extensi-
ble computer systems. 
2 In Object-Oriented Programming an erasure is a sim-
plification or genericisation of a type through some in-
terface, see for example (Bracha et al, 2001). 

ever, in addition to this syntactic information the 
grammar also provides the mechanism through 
which semantic selectional constraints are en-
forced. The erasures do not just specify a type 
(such as noun or adjective) but also a member of 
the chunk: wild or lionesses in this case. This en-
ables the erasures to be used to determine which 
semantic checks are required to validate the at-
tachment, adding to ENIGMA’s implementation of 
chunks the semantic constraints that Abney notes 
as missing from his formulation (1989: 15). For 
example, if the chunk wild lionesses attaches to a 
chunk to its left that erases to a verb and is looking 
for a direct object then the extension point govern-
ing this attachment enforces syntactic correctness, 
but this is not enough. Since the clue tree only con-
tains information about crossword conventions a 
separate semantic check is now required to ensure 
that it makes sense for the verb to take the noun 
lionesses as its direct object, and this semantic 
check will be performed using the relation and the 
erasures as arguments. 

 
So, for example, when the chunk still is com-

bined to the left of wild lionesses the system per-
forms a semantic check to ensure that still can 
qualify wild. If the verb calm (an alternative 
homograph of a synonym for noiseless) is attached 
to the left then the system checks that lionesses can 
be the direct object of calm, and so on. 

4 Sample output 

Figure 2 depicts system output from ENIGMA rep-
resenting the sample clue given in the introduction. 
Since so many clues are generated the system also 
generates a list of justifications which it uses to 
determine a score and rank the clues. The output 
shown in Figure 2 only includes information that 
relates to this paper; the full listing also contains 
information about the structure of the clue and the 
difficulty of the clue as a word puzzle. All of the 
explanatory text is generated using templates. 

 
Clue for [noiseless] 
Clue [Still wild lionesses (9)] 
POS [still/AV0 wild/AJ0 lionesses/NN2] 
Homograph pun: to solve the clue 'still' 
must be read as Adjective but has surface 
reading Adverb 
Sense: dependency fit 'wild lionesses' of 
type Adjective Modifier characterized as 
'inferred' 
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Attachment: 'wild lionesses' attached via 
type Attributive Adjective Modifier 
Sense: 'still wild' sense-checked for In-
tensifying Adverb attachment using the 
lexicon 
Attachment: 'still wild' attached via 
type Adverbial Qualifier (of Adjective) 
Thematic Fit: 'wild' and 'lionesses' 
share common thematic content. 

Figure 2. Sample output from ENIGMA. 

5 Discussion 

ENIGMA  constructs clues using their hidden mean-
ing as the starting point. Lexical choice is very un-
restricted, while word order is quite tightly con-
strained. This leads to combinatorial explosion in 
lexical choice, but of the intractably large number 
of possible productions for each clue very few also 
function as viable fragments of natural language. 
ENIGMA ’s approach is to work through the struc-
ture of the hidden clue and determine constraints 
on the surface reading on the fly. The composi-
tional process reins in the combinatorial explosion 
by pushing language constraints down to the most 
local level at which they can operate. 

 
ENIGMA uses various generic language under-

standing resources built specifically for the appli-
cation during the generation process to ensure that 
the syntactic relationships behind the clue’s surface 
reading are semantically supported.  

• A Collocational Semantic Lexicon  mined 
from British National Corpus and augmented 
using WordNet determines if a proposed de-
pendency relation between two words is se-
mantically probable (Hardcastle 2007). This 
lexicon is used to impose selectional con-
straints on syntactic dependency relations, 
such as between a verb and its direct object. 

• A Word Association Measure based on a dis-
tributional analysis of data in the British Na-
tional Corpus is used to evaluate the thematic 
coherence of the clue (Hardcastle 2005). 

• A Phrase Dictionary derived from the Moby 
Compound word list3 is used to identify aggre-
gations that result in the creation of multi-word 
units such as compound nouns or phrasal 
verbs. 

                                                 
3 http://www.dcs.shef.ac.uk/research/ilash/Moby/. 

The resulting clue texts are syntactically and 
semantically valid under the symbolic language 
grammar of the domain, and at the same time are 
plausible fragments of natural language. I plan to 
perform a mix of qualitative and quantitative 
evaluations on a set of generated clues, a reference 
set of clues published in newspapers and a set of 
control clues generated with no syntactic or seman-
tic constraints, grouped into subsets that share the 
same solution word.  
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