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Abstract

This paper discusses an implemented dialogue sys-
tem which generates the meanings of utterances by
taking into account: the surface mood of the user’s
last utterance; the meanings of all the user’s utter-
ances from the current discourse; the system’s ex-
pert knowledge; and the system’s beliefs about the
current situation arising from the discourse (includ-
ing its beliefs about the user and her beliefs, and
its beliefs about what is ‘common knowledge’). The
system formulates the content of its responses by em-
ploying an epistemic theorem prover to do deep rea-
soning. During the reasoning process, it remembers
the proof tree it constructs, and from this derives
the meaning of an explanatory response.

1 Introduction

We are building a system that offers users expert ad-
vice (on health, but the particular domain is unim-
portant) by means of multiple-turn natural language
dialogue. The work presented in this paper con-
cerns largely the generation of the meanings of ut-
terances, meanings which contain all the information
necessary for their realisation in grammatical surface
form. (The surface realiser is as yet unfinished, but
we do not envisage many problems in completing
it, as will be discussed.) In answer to the old chest-
nut, “Generation from what?”, the system generates
the meanings of its utterances by analysing and ma-
nipulating a range of different sorts of information,
including: the surface mood of the user’s last utter-
ance; the meanings of all the user’s utterances from
the current discourse; the system’s expert knowledge
about health; and the system’s beliefs about the cur-
rent situation arising from the discourse (including
its beliefs about the user and her beliefs, and its
beliefs about what is ‘common knowledge’). To de-
scribe what the system is generating and how it does
this therefore requires description of the entire pro-
cess from analysis of the surface structure of a user’s
utterance, right through to the point at which an ut-
terance meaning is finished and ready to be sent to
the surface realiser. We will start with a brief out-
line of this process, which will be expanded upon in

the body of the paper.
The anticipated user is a person wanting health

advice, who engages the system in a turn-by-turn
NL dialogue by typing in utterances in grammati-
cal English, requesting responses from the system,
and responding to them. The system understands
users’ utterances, in the sense that for each utter-
ance it derives a meaning expressed in intensional
logic. As the conversation proceeds, the system also
maintains an understanding of the discourse as a
whole, in that after each utterance it updates a grow-
ing model of the discourse, enabling it to remem-
ber everything that has been said during the dis-
course, who said what, which order the utterances
were made in, which entities have been mentioned
during the discourse (and during which turn), and
how they were referred to.

The system has its own belief state—including its
beliefs about what the user believes—which it con-
tinually updates, as it keeps track of the meanings
of what has been said by whom during the dialogue,
and as it refers to its bank of ‘common’ knowledge.
The system also has a bank of expert knowledge
on health, expressed as rules which describe causal
relations between conditions, foods, activities, etc.,
which enable it to reason about the consequences of
particular choices and actions.

The system’s epistemic theorem prover does deep
reasoning over its understanding of and beliefs about
what the user has said (expressed as logical forms),
its expert knowledge, and its memory of the con-
tents of the whole discourse, in order to formulate
accurate and appropriate response meanings during
dialogue with users. The system also enhances its re-
sponses by making them explanatory, which it does
by using the edited contents of the proof tree that
gets constructed during the first stages of calculating
the system’s response to an utterance.

Having formulated an utterance meaning that it
believes will be accurate and appropriately explana-
tory, the system’s belief state and discourse model
are accordingly updated, and the system fleshes out
the utterance meaning by deriving descriptions for
all the nominal entities in the utterance meaning, so
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that the user will be able to dereference them, and
so that natural-sounding discourse results. Then the
system maps the fleshed-out utterance meaning into
grammatical surface form. The system’s surface re-
aliser is unfinished, however, we are confident that
the nature of the input to the realiser is what is
needed for our system to produce grammatical sur-
face text, and that we have a suitable architecture
for realising it.

2 NL understanding
We can view our system as an utterance generator
whose input is user utterances. On receiving a user’s
utterance, the system derives a logical representa-
tion of its meaning (Ramsay, 2001b; Ramsay, 1997):

(1) U: I am allergic to eggs.

Figure 1: Logical form of (1) after analysis: 30 ms

utt(claim,
exists(B :: {aspect(now,simple,B)},
state(B)
& theta(B,pred,lambda(C,allergic(C)))
& theta(B,topic(ref),ref(lambda(D,speaker(D)))!0)
& lambda(E,to(B,E)) < lambda(F,egg(F))))

Fig. 1 shows the logical form of (1) after analysis.
While the system understands that Fig. 1 is the
meaning of the user’s utterance, it also has the abil-
ity to reason about what follows from this, because
it has its own banks of common sense knowledge
and expert knowledge. The expert knowledge is ex-
pressed in the form of rules which describe causal
relations between conditions, foods, activities, etc.,
which enable the system to reason about and discuss
the consequences of particular choices and actions.
For example, it knows that if a person has an al-
lergy to a substance, the allergy will be to some set
of things that contain that substance, that it is dan-
gerous for that person to eat things that belong to
that set, and that something cannot be both safe
and dangerous (Fig. 2). If the user follows (1) with:

(2) U: Is it safe for me to eat pancakes?

the system is able to use its knowledge about the
consequences of having an allergy, and about the in-
gredients of pancakes, plus one or two other mean-
ing postulates, to work out that it is not safe for
the user to eat pancakes. What is more, the system
uses the knowledge it discovers (while formulating
its response) to construct an explanatory utterance
which answers the user’s question and gives justifi-
cation for the answer (see section 7).

Note that the implication in the final rule of Fig. 2
is between two situation types (denoted by proposi-
tions). Reasoning about situation types seems to be
essential for the correct analysis of terms like ‘safe’
and ‘dangerous’, and so we are forced to use a fine-
grained intensional logic as our basic framework in

Figure 2: Some of the system’s beliefs

bel(system,
forall(A,
forall(O :: {allergy(O, A)},
forall(H :: {have(H) & theta(H, object, O)},
forall(S :: {theta(H, agent, S)},
allergic(S, A)))))

&
forall(S :: {theta(S, pred, lambda(X, allergic(X)))},
forall(T :: {theta(S, topic(ref), T)},
forall(A :: {subset(lambda(X, to(S, X)), A)},
allergic(T, A))))

&
forall(A,
forall(S1 :: {allergic(A, S1)},
dangerous(exists(EAT,
eat(EAT)
& theta(EAT, agent, A)
& exists(X, theta(EAT, object, X)
& exists(Y, contains(X, Y) & (S1:Y)))))))

&
forall(SOA1,
forall(SOA2,
not(safe(SOA1)
& dangerous(SOA2)
& (SOA1 => SOA2)))))

the same way that situation semantics is grounded
in (Aczel, 1988)’s notion of non-well-founded sets.
Our theorem prover (Ramsay, 2001a) allows us to
perform inference over intensional rules of this kind.

3 Mood and extra-linguistic plans

Notice from Fig. 1 that the logical form of the
meaning of (1) is nested inside the expression
utt(claim...). This arises from analysis of the
surface mood of the utterance. We consider that
linguistic actions are generally intended to help with
underlying extra-linguistic plans, so we analyse the
surface mood to determine the answer to the most
basic goal-related question: What does the user
want? Does she want to know whether something is
true? Does she want to know the identity of some-
thing? Does she want the system to do something?
We take it that: for a statement P there is some ac-
tion A which the hearer (‘H’) could do if H knew that
the propositional content P was true; for a query
P there is something the speaker (‘S’) could do if
S knew that P was true; and for an imperative P
there is something that someone (probably S or H,
but not necessarily) could do if H carried out the
action described by P.

4 Discourse model

Having derived the meaning of a user’s utterance,
the system adds the meaning plus a record of who
uttered it to the ‘minutes’ (after (Thomason, 1990;
Lewis, 1979; Stalnaker, 1972)). Individual entities
(including the events) that have been mentioned
during the discourse are represented in a ‘discourse
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model’ as unique skolem constants, while n-place
predicates describe the detail of what has been said
about each entity (Ramsay and Seville, 2000). The
skolems are anchored (Barwise and Perry, 1983) and
note is taken of the order of centres (Grosz et al.,
1995) so that NPs in later user utterances can be
dereferenced successfully, and that in its own utter-
ances, the system will know how to refer to entities
in ways which enable the user to dereference them.

The discourse model enables the system to re-
member everything that has been said during the
discourse, who said what, which order the utterances
were made in, which entities have been mentioned
during the discourse (and on which turn), and how
they were referred to. This enables the system, dur-
ing the formulation of a response to a user, to use
information that she introduced into the conversa-
tion during turns preceding the most recent one, or
to use information that she has introduced over a
number of separate turns, as in this example (‘C’ is
‘computer’):

(3) U: I am allergic to eggs.

C: Please go on.

U: Is it safe for me eat pancakes?

C: No, it is not safe for you to eat pancakes.

U: What about Yorkshire pudding?

C: No, it is not safe for you to eat Yorkshire pud-
ding either.

5 System’s private beliefs

The system has its own set of beliefs. These in-
clude ‘common knowledge’ beliefs (things the system
believes everyone can be expected to know), beliefs
about the system’s current situation arising from the
dialogue (including beliefs about what the user be-
lieves), and expert knowledge about health. Having
understood the meaning of a user’s utterance, and
updated the minutes, the system adjusts its private
beliefs about the current situation in light of what
has just been said. (Note that the minutes do not
contain what the user believes or what the system
believes concerning what has been said, it is purely
a record of what has been said, and by whom.)

In adjusting its private beliefs following a user ut-
terance, the system makes a significant default as-
sumption. We consider that, in a purely neutral
context where neither party has any specific views
on the reliability or cooperativeness of the other, it is
rational for a speaker to produce utterances that she
believes, and for the hearer to believe this is what
the speaker is doing. This default assumption, that
people are committed to what they say, arises as
a consequence of our assumption that linguistic ac-
tions are generally intended to help with underlying
extra-linguistic plans. Since I cannot be expected to
help you unless I know something about your plan,

there is no point in you telling me about things that
will not help me identify your plan.

Under the assumption that people are commit-
ted to what they say, during its update step follow-
ing a user’s utterance, the system assumes that the
user has been honest in the declaration of her extra-
linguistic plan (Section 3), and if the user has made a
statement, it also adds to its beliefs that it believes:
(i) what the user has stated; (ii) the user believes
what she has stated.

The assumption we make that people are com-
mitted to what they say ignores the fact that in nor-
mal human-to-human conversation, people often say
things that they themselves do not believe (lying,
bluffing, or using sarcasm, for example). Enabling
a dialogue system to handle conversations in which
users say things they do not believe is work we have
in mind for the long-term future (after (Field and
Ramsay, 2004)). It is not an ability we consider es-
sential for the proper functioning of a dialogue sys-
tem whose role is to advise users who willingly ap-
proach with a genuinely enquiring attitude, in con-
trast to users who are perhaps obliged to use a ‘coun-
selling system’ (as part of a compliance programme,
perhaps), and as a consequence may attempt to de-
ceive or be uncooperative in other ways.

6 Response strategy
Surface mood gives a strong starting point for how
the system will go about working out a suitable re-
sponse to a user’s utterance. If the utterance is a
polar query, for example:

(4) U: Is walking good for me?

Figure 3: Logical form of (4) after analysis: 20 ms

utt(query,
exists(B
::{aspect(now,simple,B)},
state(B)
& theta(B,pred,lambda(C,good(C)))
& lambda(D,theta(B,topic(ref),D))
< lambda(E,exists(F,walk(F) & theta(F,agent,E)))
& for(B,ref(lambda(G,speaker(G)))!4)))

the system’s analyses its mood as query (Fig. 3) and
then the system’s theorem prover reasons about the
proposition PROP nested inside utt(query,PROP). It
first tries to prove PROP is true. If this fails, it tries
to prove that PROP is false. If both proofs fail, the
system has nothing concrete to report to the user.

If the user’s utterance was a WH query:

(5) U: Which foods contain eggs?

the NL understander analyses its mood as whquery
(Fig. 4), and then the theorem prover tries to find a
proof that there is something that satisfies the given
property, i.e., tries to find a value of B which makes
the embedded proposition true.
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Figure 4: Logical form of (5) after analysis: 10 ms

utt(whquery,
lambda(B,
exists(C :: {aspect(now,simple,C)},
contain(C)
& lambda(D,theta(C,object,D)) < lambda(E,egg(E))
& theta(C,agent,B))

& food(B)))

If the user’s utterance was a statement, the only
implemented strategy the system currently has is to
say something polite and banal to indicate that it is
listening, as in:

(6) U: I am overweight.
C: Please go on.
U: Is walking good for me?

Since the system remembers everything that has
been said during a conversation, if it is presented
with a statement it is not sure what to do with, it
is able to wait and see whether the user adds some-
thing to the discourse that makes her goal clearer.

There is a lot of work to be done to enable the
system to respond more intelligently to statements,
but nothing that cannot be done by approaching
utterances as declarations of complex goals requir-
ing recognition by the system, and by having plenty
of meaning postulates (and an appropriate theorem
prover) which enable the system to understand what
follows from users’ utterances. Immediate plans in-
clude treating discourse markers in user utterances
as clues to the user’s goal. Another is trying to judge
whether the statement might be a comment on an
earlier utterance from the current discourse, to anal-
yse what kind of comment it is (dissatisfaction with,
surprise at, anger at an earlier utterance, etc.), and
to decide what would be an appropriate response.

We have not yet given much thought to how the
system should respond to utterances in the impera-
tive mood, since it is an unlikely occurrence in the
context of a dialogue between a human non-expert
and a disembodied machine expert that has no abil-
ity to do anything but communicate through text,
apart from instances where the user explicitly in-
structs the system to communicate things to her
(Tell me . . . , Explain why. . . , List. . . , etc.), and per-
haps instances where the user is insulting the system
(Get lost!, Go and learn English!, etc.).

7 Generating explanatory responses
Let us assume the system has reached a point at
which it has formulated the meaning of an accurate
and relevant response to the user’s utterance. We
want the system to give a reply to the user which not
only satisfies her communicative goal, but which sat-
isfies it in a way that is as helpful as possible to her.
With respect to WH queries to which there are sev-
eral, or even very many possible answers, the issue

of the relevance or helpfulness of different ways of
responding has been discussed at length (see (Groe-
nendijk and Stokhof, 1997)). If a user asks:

(7) U: Which foods should a person with acne avoid?

there may be hundreds or even thousands of foods
which enable the proof of A person with acne should
avoid eating [what] to be completed. We consider
(following (Ginzburg, 1996)) that a descriptive or
‘explanatory’ answer is more useful or appropriate
to the user than a list of instances, in cases where
there is more than a handful of instances. By ‘ex-
planatory answer’, we mean that, where possible, re-
sponses by the system should inform the user about
causal relations between entities, so that she will be
able to re-use her new information in other situations
by making new inferences of her own. For example,
rather than making the following accurate but min-
imal responses:

(8) U: I have acne.
C: OK.
U: Is eating chocolate good for my skin?
C: No.
U: What about bacon?
C: No.
U: What about . . .No . . .What about . . .

the system should produce an explanatory response
which aims to educate the user:

(9) U: I have acne.
C: OK.
U: Is eating chocolate good for my skin?
C: No, because chocolate is a fatty food, and fatty

foods aggravate acne.

Now the user can infer for herself that bacon,
chips, mayonnaise and cream cakes are bad for acne,
whereas carrots, cod and honey are not (if she knows
which foods are fatty foods and which are not).

A side-effect of the fundamental design of our
system—to use a theorem prover for property theory
to do deep reasoning with logical forms derived from
NL utterances, in conjunction with its own expert
knowledge—is that during the process of formulating
a response to a user, the system discovers a lot of in-
formation which it knows could be of great potential
benefit to the user. If the system is privy to all this
information, why waste it by keeping it secret? Why
not pass it on to the user? This is far from suggest-
ing that the system dump all its expert knowledge
on the user at once, regardless of the user’s desires
and needs. It is viewing the user’s own utterances as
insights into the gaps in the user’s knowledge that
the user is keen to have filled, and then attempting
to fill those particular gaps as precisely as possible,
neither being more informative than necessary, nor
less.
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Technically speaking, the explanatory information
contained in the ‘because. . . ’ clause in (9) is drawn
from the proof tree that was constructed by the the-
orem prover while working out its response to the
user’s question (after (Fiedler, 1998)).1 The struc-
ture of all proof trees is as follows:

(10) g1 +[g11 +[g111 +[]
],

g12 +[g121 +[],
g122 +[g1221 +[]]
]

]

where G +[LIST...] means [LIST...] are the
subproofs of GOAL.

Fig. 5 is the proof tree that the system constructs
while it is formulating its response to utterance (11):

(11) U: I am overweight. Is walking good for me?

One change has been made to make this proof tree
easier to read. In the tree from the implementation,
the skolem function #813(lambda(B, exists(C,
walk(C) & theta(C, agent, B)))) appears many
times, and means roughly There is a set of walking
events C whose agent is some individual B. This ex-
pression has been simplified to skolem #813.

Figure 5: Proof tree for response to (11): 20 ms

answer::[bel - computer]
+ [for(#813,S)::[bel - computer]
+ [lambda(B,exists(C,walk(C) & theta(C,agent,B)))
< lambda(D,exercise(D))::[bel - computer] + [],
overweight(S)::[bel - computer] + []],

lambda(E,theta(#813,topic(ref),E))
< lambda(B,exists(C,walk(C) & theta(C,agent,B)))
::[bel - computer]

+ [lambda(B,exists(C,walk(C) & theta(C,agent,B)))
< lambda(F,exercise(F))::[bel - computer] + [],
overweight(S)::[bel - computer] + []],

theta(#813,pred,lambda(G,good(G)))::[bel - computer]
+ [lambda(B,exists(C,walk(C) & theta(C,agent,B)))
< lambda(H,exercise(H))::[bel - computer] + [],
overweight(S)::[bel - computer] + []],

state(#813)::[bel - computer]
+ [lambda(B,exists(C,walk(C) & theta(C,agent,B)))
< lambda(I,exercise(I))::[bel - computer] + [],
overweight(S)::[bel - computer] + []],

aspect(now,simple,#813)::[bel - computer]
+ [lambda(B,exists(C,walk(C) & theta(C,agent,B)))
< lambda(J,exercise(J))::[bel - computer] + [],
overweight(S)::[bel - computer] + []]]

In the construction P::[bel-computer] (from
Fig. 5), [bel-computer] is the ‘epistemic con-
text’ of P. P::[bel-computer] means The system

1This is achieved by using an abbreviated copy of the
proof stack in a ‘label’ (after (Gabbay, 1996)). The label
carries non-logical, arbitrary information about the progress
of a proof, and is used for a variety of purposes in addition to
keeping a note of the proof trail. Labels are threaded through
the clause, so that information can be passed from one sub-
goal to the next.

believes P (see Section 7.1). You will notice that
the epistemic context of every proposition in Fig.
5 is [bel-computer]. The system has, however,
used beliefs with different epistemic contexts to con-
struct this tree. For example, since the user has
just told the system she is overweight, the fact
that she is overweight is in the common ground
(is assumed to be mutually believed by system
and user) before the system starts to formulate its
response and derive the proof tree. We do not
see common-ground contexts in the proof tree, be-
cause the system’s goal was to prove that it pri-
vately believed something, and when reasoning with
common-ground propositions, the system knew that
P::[bel-commonground([user,computer])] sub-
sumes P::[bel-computer]. Fig. 6 is a paraphrase
of Fig. 5 from which the epistemic context [bel -
computer] has been removed.

Figure 6: Paraphrase of (5)

answer::[bel-c]
+ [(#813 is something which is ’for’ S)
+ [(the set of walking events is a

subset of type ’exercise’)
+ [],
(S is overweight) + []],

(the set of topics of #813 is a
subset of the set of walking events)

+ [(the set of walking events is a
subset of type ’exercise’)

+ [],
(S is overweight) + []],

(The predicate of #813 is type ’good’)
+ [(the set of walking events is a

subset of type ’exercise’)
+ [],
(S is overweight) + []],

(#813 is a state)
+ [(the set of walking events is a

subset of type ’exercise’)
+ [],
(S is overweight) + []],

(The tense and aspect of #813 are
’present’ and ’simple’)

+ [(the set of walking events is a
subset of type ’exercise’)

+ [],
(S is overweight) + []]]

7.1 Explanatory responses: difficulties

In line with (Grice, 1975), we consider that a guid-
ing principle when it comes to formulating natural
responses to users’ utterances is to not be overly in-
formative, which means the user’s knowledge must
be taken into account (Cawsey, 1990; Paris, 1991).
If a user has said the following:

(12) U: I have acne. Is eating chocolate good for my
skin?

we think that most people would consider the fol-
lowing explanatory response to be odd, even though
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all of its parts are necessary in constructing the sys-
tem’s proof of the answer “No”:

(13) C: No, because you have acne, and eating fatty
foods aggravates acne, and chocolate is a fatty
food.

The system knows (from (12)) that the user knows
she has acne, so it is odd-sounding for the system to
say because you have acne to the user, even though
this proposition forms a requisite part of the sys-
tem’s own proof that chocolate is bad for the user’s
skin. In order to prevent the system being more in-
formative than required, we eliminate from the ex-
planatory bit of the response the parts of the proof
tree that the system believes the user already knows.

Technically speaking, this is achievable on account
of a significant design feature of the theorem prover,
namely that it is an epistemic one (see (Field and
Ramsay, 2006)). We take the view that the best
way to reason about what someone else believes is
to see which conclusions you would draw if your view
of the world matched theirs, and to express this, we
use the notion of the ‘epistemic context’ in which
a proposition is available. We write P::C to say
that the proposition P is available in the context C
(after (Wallen, 1987)), and we let belief statements
introduce contexts. Each proposition in the proof
tree from which explanatory answers are derived has
its own epistemic context. This information, along
with the contents of the discourse model, and axioms
defining the properties of knowledge and belief, en-
able the system to establish which parts of the proof
tree it thinks are things that are already known by
the user, and which parts are not already known.

A harder problem than avoiding being too infor-
mative in an explanatory response is the problem of
spotting the occasions when it is not appropriate at
all to give an explanatory response. Consider:

(14) U: I am allergic to eggs. Is it dangerous for me to
eat pancakes?

C: Yes, because if you are allergic to a substance,
it is dangerous to eat foods containing that sub-
stance, and pancakes contain egg.

We would argue that most Western readers would
judge from (14) that the user probably already
knows that the consequences of having an allergy to
a substance are that it is dangerous to eat foods con-
taining that substance. So it seems overly informa-
tive and even patronising for the system to explain
these consequences to the user. We would also ar-
gue that, although she has not declared it explicitly,
the thing the user wants to achieve in making this
utterance is to find out whether pancakes contain
egg, and that an accurate and minimal “Yes” would
be the ideal system response. The system’s problem
is, it is difficult to spot when it is appropriate to

assume that a user understands a relationship that
she has not explicitly declared. Making decisions like
this would require judgements about the inferences a
particular user is likely to be able to make (Horacek,
1997; Zukerman and McConachy, 1993)—just one of
the many refinements in the queue.

8 From meaning to message skeleton

In technical terms, the content of the system’s proof
tree is the bulk of the meaning that becomes the
input to the surface generator. Formulae in proof
trees are an alternative representation of the logical
forms that the system has been reasoning with: the
logical forms have been skolemised and anchored to
make them more suitable as input for NL generation.

Let us return to user query (11), and let us as-
sume that the system wants to use the full proof
tree (Fig. 5) in an explanatory response to the user.
To express Fig. 5 to the user in a natural-sounding
way, the system makes an utterance with the struc-
ture A because B, where A constitutes a response
that would stand alone in being accurate and ap-
propriate, and B constitutes additional explanatory
information. The part of the proof tree that pro-
vides the content for A is the list of the ‘principal
subgoals’, which in (10) are [g11,g12]. The part of
the proof tree that provides the content for part B of
the response A because B is a list of the ‘secondary
subgoals’, items that are nested inside the top-level
subgoals, which in (10) are [g111, g121, g122,
g1221]. Parts A and B are then somewhat crudely
glued together with a because, to make what we are
calling a ‘message skeleton’, which is the skolemised
and anchored meaning (of the system’s utterance)
that will soon become the input to the surface re-
aliser (illustrative figure coming shortly).

9 Fleshed-out message skeletons

Before the message skeleton is sent to the surface re-
aliser, work is done to decide how to refer to nominal
entities in such a way as is natural-sounding, and will
enable the user to dereference them. This involves
determining whether entities have been mentioned in
the discourse thus far, or are in the common ground
for some other reason, and if so, how they are de-
scribed. An entity which is not yet in the common
ground needs slightly different treatment—the sys-
tem examines what it knows about that entity, and
uses that information to look in a ‘reverse dictionary’
(in which entries are meanings, and definitions are
words) for a suitable word or phrase to describe it.
Additionally, after (Dale, 1988; Reiter, 1990), if an
entity has not been mentioned before, it is marked
for the realiser as indefinite. If it has been mentioned
before, and can be realised by a pronoun without be-
ing misleading (e.g., due to gender confusion), it is
marked as pronoun. Otherwise, entities are marked
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as definite and minimal distinguishing descriptions
obtained for them.

Fig. 7 (actual output) shows the fleshed-out
message skeleton for the system’s response to (11).
BECAUSE has been added to the message, as dis-
cussed, to separate the explanatory part from the
remainder in a way that reflects surface order. YES
has been added because the system has constructed
a proof of the proposition the user is querying,
and so some surface affirmative is required. Of
course, YES does not appear in all system utter-
ances, since sometimes the system wants to say
NO, sometimes it is answering a WH query, and
sometimes it is making a statement. Notice the
item PRON(S,lambda(N,user(N))). This instructs
the realiser that S is the user, and to realise S with
a pronominal form. PRON(S,lambda(N,user(N)))
was added to the bare message skeleton during the
fleshing-out process. The realiser knows that the
pronoun to use to refer to the user while talking to
her is you.

It is probably unwise to show what the surface
realiser outputs, given Fig. 9 as input, because it
is unfinished, and its output is odd and incomplete.
However, for the sake of evaluation, here it is, the
time taken to produce it (from being asked the ques-
tion by the user) being 590 ms:

(15) C: [Yes, ????, because, you, be, overweight]

This messy output should and will soon be:

(16) C: Yes, walking is good for you, because you are
overweight, and walking is a type of exercise.

How natural this response is, and whether it should
contain more information or less information, is un-
der on-going scrutiny, as is the exploitation of the
proof trees in general.

10 Conclusion
We consider the surface realiser to be the main weak-
ness in the current implementation, but believe this
should not present too many difficulties, since we
already have one of the most important ingredients
of a surface realiser: comprehensive input that con-
tains all the information necessary for the generation
of natural-sounding discourse turns. Also helping us
is that we have resources available to us in the archi-
tecture of the system, namely, those that are used in
the analysis of surface form during NL understand-
ing. A reverse dictionary is also already in place,
which is being used to flesh out message skeletons
with appropriate referring and indefinite expressions
for skolem constants. We intend to exploit previous
work on bag generation to help finish off the realiser.

Concerning evaluation, we have included timings
in the figure captions, and one timing of 590 ms for
the system’s complete response to (11). Its response

to (2) takes 451 ms. These timings are slightly lower
than they will be when the realiser is finished.

We are at pains to point out that the system is
not a health expert, and the expert rules it uses
are not rules that actual doctors and nutritionists
use—they are rules that we have made up, and they
certainly are not fine-grained or precise enough for
the health domain. It is our priority to get the ba-
sic architecture and functioning complete before the
system would be suitable for developing into an ac-
tual health advisor. Having said that, we are shortly
about to incorporate a nutrition ontology into the
system, to enable it to answer detailed questions
about which foods contain which substances, and
which foods should be avoided or promoted under
various conditions. We are interested to see how dif-
ficult it would be for us to exploit an ontology of
expert knowledge for our dialogue purposes.

The proof trees that the system’s theorem prover
constructs provide us with much food for thought,
and could be used in ways not discussed in the paper.
One use would be to generate dialogue clarification
questions (after (Cawsey, 1991)). Instead of using
the full proof tree, the system could cherry pick from
the proof tree, and query the user on her knowledge
of the different parts of the proof, with the aim of
finding where the user’s reasoning had gone wrong,
and correcting it.

With regard to answering questions to which there
is more than a handful of answers, we acknowledge
that there are many occasions when using the con-
tent of a proof tree as the substance of the system’s
answer, with a few odd words crudely inserted, will
not be satisfactory. For example, if a user said:
(17) U: I have heart disease. What lifestyle advice can

you give me?

the natural response would be a piece of prose in
which several different kinds of lifestyle change were
discussed. To do this, the system would require the
ability to write an appropriate summarised text on
the basis of its expert knowledge. This would re-
quire the additional knowledge of how to construct
an argument, as well as more in-depth knowledge
of discourse structure (unless stock answers to an-
ticipated questions had been prepared manually in
advance for such occasions), work we consider feasi-
ble, given collaboration with argumentation experts,
and considerable further development.

We acknowledge that our work is just one of many
in a tradition of dialogue system implementations,
(TRAINS (Allen et al., 1996), TRINDIKIT (Larsson
and Traum, 2000), and GoDiS (Larsson et al., 2000),
to mention a few).
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Figure 7: Fleshed-out message skeleton in response to (11)

[YES,
aspect(now,simple,#813(lambda(B,exists(C,walk(C) & theta(C,agent,B))),S)),
state(#813(lambda(D,exists(E,walk(E) & theta(E,agent,D))),S)),
theta(#813(lambda(F,exists(G,walk(G) & theta(G,agent,F))),S),pred,lambda(H,good(H))),
lambda(I,theta(#813(lambda(J,exists(K,walk(K) & theta(K,agent,J))),S),topic(ref),I))
< lambda(J,exists(K,walk(K) & theta(K,agent,J))),
for(#813(lambda(L,exists(M,walk(M) & theta(M,agent,L))), S), S),
PRON(S,lambda(N,user(N))),
lambda(H,good(H)),
BECAUSE,
overweight(S),
lambda(O,exists(P,walk(P) & theta(P,agent,O)))
< lambda(Q,exercise(Q))]

FP6/IST No. 507019 (PIPS: Personalised Informa-
tion Platform for Health and Life Services).
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