
 A C L 2 0 0 7

PRAGUE

The Association for Computational Linguistics

A C L 2 0 0 7

Proceedings of the Workshop on
Computational Approaches to Semitic Languages

Common Issues and Resources

June 28, 2007
Prague, Czech Republic

Production and Manufacturing by
Omnipress
2600 Anderson Street
Madison, WI 53704
USA

c©2007 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ii

Organizers

Chairs:

Violetta Cavalli-Sforza (Carnegie Mellon University, USA)
Imed Zitouni (IBM Research, USA)

Program Committee:

Sherif Mahdy Abdou (Cairo University, Egypt)
Yaser Al-Onaizan (IBM, USA)
Ann Bies (LDC/University of Pennsylvania, USA)
Malek Boualem (France Telecom, France)
Tim Buckwalter (LDC/University of Pennsylvania, USA)
Achraf Chalabi (Sakhr Software Co., Egypt)
Anne DeRoeck (Open University, UK)
Mona Diab (Columbia University, USA)
Joseph Dichy (University of Lyon 2, France)
Abdelhamid ElJihad (Institut d’Etudes et Recherches sur l’Arabisation, Morocco)
Martha W. Evens (Illinois Institute of Technology, USA)
Ali Farghaly (Oracle, USA)
Alexander Fraser (USC/ISI, USA)
Andrew Freeman (Washington University, USA)
Nizar Habash (Columbia University, USA)
Alon Itai (Technion/Israel Institute of Technology, Israel)
Steven Krauwer (Utrecht University, Netherlands)
Alon Lavie (Carnegie Mellon University, USA)
Mohamed F. Noamany (Carnegie Mellon University, USA)
Uzzi Ornan (Technion, Israel)
Slim Ouni (LORIA/University of Nancy 2, France)
Mike Rosner (University of Malta, Malta)
Khalil Sima’an (University of Amsterdam, Netherlands)
Abdelhadi Soudi (Ecole Nationale de l’Industrie Minerale, Morocco)
Shuly Wintner (University of Haifa, Israel)
Mustafa Yaseen (Amman University, Jordan)
Abdellah Yousfi (Institut d’Etudes et Recherches sur l’Arabisation, Morocco)

Invited Speaker:

Jan Hajic (Charles University, Czech Republic)

iii

Table of Contents

ElixirFM – Implementation of Functional Arabic Morphology
Otakar Smrz . 1

Implementation of the Arabic Numerals and their Syntax in GF
Ali Dada . 9

Person Name Entity Recognition for Arabic
Khaled Shaalan and Hafsa Raza . 17

Arabic Cross-Document Person Name Normalization
Walid Magdy, Kareem Darwish, Ossama Emam and Hany Hassan. .25

Syllable-Based Speech Recognition for Amharic
Solomon Teferra Abate and Wolfgang Menzel . 33

Adapting a Medical speech to speech translation system (MedSLT) to Arabic
Pierrette Bouillon, Sonia Halimi, Manny Rayner and Beth Ann Hockey . 41

Finding Variants of Out-of-Vocabulary Words in Arabic
Abdusalam F.A. Nwesri, S.M.M. Tahaghoghi and Falk Scholer . 49

Can You Tag the Modal? You Should.
Yael Netzer, Meni Adler, David Gabay and Michael Elhadad . 57

Arabic Tokenization System
Mohammed Attia .65

Arabic to French Sentence Alignment: Exploration of A Cross-language Information Retrieval Approach
Nasredine Semmar and Christian Fluhr . 73

An Arabic Slot Grammar Parser
Michael McCord and Violetta Cavalli-Sforza . 81

Improved Arabic Base Phrase Chunking with a new enriched POS tag set
Mona Diab . 89

Smoothing a Lexicon-based POS Tagger for Arabic and Hebrew
Saib Manour, Khalil Sima’an and Yoad Winter . 97

An Amharic Stemmer : Reducing Words to their Citation Forms
Atelach Alemu Argaw and Lars Asker .104

v

Conference Program

Thursday, June 28, 2007

09:00–09:05 Welcome and Introduction

09:05–09:55 Invited Talk – From print to meaning: the case of Arabic. Jan Hajic, Charles Uni-
versity, Czech Republic

Session 1:

09:55–10:20 ElixirFM – Implementation of Functional Arabic Morphology
Otakar Smrz

10:20–10:45 Implementation of the Arabic Numerals and their Syntax in GF
Ali Dada

10:45–11:15 Coffee Break

Session 2:

11:15–11:40 Person Name Entity Recognition for Arabic
Khaled Shaalan and Hafsa Raza

11:40–12:05 Arabic Cross-Document Person Name Normalization
Walid Magdy, Kareem Darwish, Ossama Emam and Hany Hassan

12:10–12:35 Syllable-Based Speech Recognition for Amharic
Solomon Teferra Abate and Wolfgang Menzel

12:35–13:00 Adapting a Medical speech to speech translation system (MedSLT) to Arabic
Pierrette Bouillon, Sonia Halimi, Manny Rayner and Beth Ann Hockey

vii

Friday, June 29, 2007

Session 1:

09:00–09:25 Finding Variants of Out-of-Vocabulary Words in Arabic
Abdusalam F.A. Nwesri, S.M.M. Tahaghoghi and Falk Scholer

09:25–09:50 Can You Tag the Modal? You Should.
Yael Netzer, Meni Adler, David Gabay and Michael Elhadad

09:55–10:20 Arabic Tokenization System
Mohammed Attia

10:20–10:45 Arabic to French Sentence Alignment: Exploration of A Cross-language Information Re-
trieval Approach
Nasredine Semmar and Christian Fluhr

10:45–11:15 Coffee Break

Session 2:

11:15–11:40 An Arabic Slot Grammar Parser
Michael McCord and Violetta Cavalli-Sforza

11:40–12:05 Improved Arabic Base Phrase Chunking with a new enriched POS tag set
Mona Diab

12:10–12:35 Smoothing a Lexicon-based POS Tagger for Arabic and Hebrew
Saib Manour, Khalil Sima’an and Yoad Winter

12:35–13:00 An Amharic Stemmer : Reducing Words to their Citation Forms
Atelach Alemu Argaw and Lars Asker

viii

Proceedings of the 5th Workshop on Important Unresolved Matters, pages 1–8,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

ElixirFM — Implementation of Functional Arabic Morphology

Otakar Smrž
Institute of Formal and Applied Linguistics

Faculty of Mathematics and Physics
Charles University in Prague

otakar.smrz@mff.cuni.cz

Abstract

Functional Arabic Morphology is a formula-
tion of the Arabic inflectional system seek-
ing the working interface between morphol-
ogy and syntax. ElixirFM is its high-level
implementation that reuses and extends the
Functional Morphology library for Haskell.
Inflection and derivation are modeled in
terms of paradigms, grammatical categories,
lexemes and word classes. The computation
of analysis or generation is conceptually dis-
tinguished from the general-purpose linguis-
tic model. The lexicon of ElixirFM is de-
signed with respect to abstraction, yet is no
more complicated than printed dictionaries.
It is derived from the open-source Buckwal-
ter lexicon and is enhanced with information
sourcing from the syntactic annotations of
the Prague Arabic Dependency Treebank.

1 Overview

One can observe several different streams both in the
computational and the purely linguistic modeling of
morphology. Some are motivated by the need to ana-
lyze word forms as to their compositional structure,
others consider word inflection as being driven by
the underlying system of the language and the for-
mal requirements of its grammar.

In Section 2, before we focus on the principles of
ElixirFM, we briefly follow the characterization of
morphological theories presented by Stump (2001)
and extend the classification to the most promi-
nent computational models of Arabic morphology
(Beesley, 2001; Buckwalter, 2002; Habash et al.,
2005; El Dada and Ranta, 2006).

In Section 3, we survey some of the categories of
the syntax–morphology interface in Modern Written
Arabic, as described by the Functional Arabic Mor-
phology. In passing, we will introduce the basic con-
cepts of programming in Haskell, a modern purely
functional language that is an excellent choice for
declarative generative modeling of morphologies, as
Forsberg and Ranta (2004) have shown.

Section 4 will be devoted to describing the lexicon
of ElixirFM. We will develop a so-called domain-
specific language embedded in Haskell with which
we will achieve lexical definitions that are simulta-
neously a source code that can be checked for con-
sistency, a data structure ready for rather indepen-
dent processing, and still an easy-to-read-and-edit
document resembling the printed dictionaries.

In Section 5, we will illustrate how rules of in-
flection and derivation interact with the parameters
of the grammar and the lexical information. We will
demonstrate, also with reference to the Functional
Morphology library (Forsberg and Ranta, 2004), the
reusability of the system in many applications, in-
cluding computational analysis and generation in
various modes, exploring and exporting of the lex-
icon, printing of the inflectional paradigms, etc.

2 Morphological Models

According to Stump (2001), morphological theories
can be classified along two scales. The first one
deals with the core or the process of inflection:

lexical theories associate word’s morphosyntactic
properties with affixes

inferential theories consider inflection as a result of
operations on lexemes; morphosyntactic prop-

1

erties are expressed by the rules that relate the
form in a given paradigm to the lexeme

The second opposition concerns the question of
inferability of meaning, and theories divide into:

incremental words acquire morphosyntactic prop-
erties only in connection with acquiring the in-
flectional exponents of those properties

realizational association of a set of properties with
a word licenses the introduction of the expo-
nents into the word’s morphology

Evidence favoring inferential–realizational theo-
ries over the other three approaches is presented by
Stump (2001) as well as Baerman et al. (2006) or
Spencer (2004). In trying to classify the implemen-
tations of Arabic morphological models, let us re-
consider this cross-linguistic observation:

The morphosyntactic properties associ-
ated with an inflected word’s individ-
ual inflectional markings may underdeter-
mine the properties associated with the
word as a whole. (Stump, 2001, p. 7)

How do the current morphological analyzers in-
terpret, for instance, the number and gender of the
Arabic broken masculine plurals ǧudud X

�
Y
�
g. new

ones or qud. āh �
èA
�	
�
��
¯ judges, or the case of mustawan

ø
�
ñ
��
J�

�
Ó a level? Do they identify the values of these

features that the syntax actually operates with, or is
the resolution hindered by some too generic assump-
tions about the relation between meaning and form?

Many of the computational models of Arabic
morphology, including in particular (Beesley, 2001),
(Ramsay and Mansur, 2001) or (Buckwalter, 2002),
are lexical in nature. As they are not designed in
connection with any syntax–morphology interface,
their interpretations are destined to be incremental.

Some signs of a lexical–realizational system can
be found in (Habash, 2004). The author mentions
and fixes the problem of underdetermination of in-
herent number with broken plurals, when develop-
ing a generative counterpart to (Buckwalter, 2002).

The computational models in (Soudi et al., 2001)
and (Habash et al., 2005) attempt the inferential–
realizational direction. Unfortunately, they imple-
ment only sections of the Arabic morphological sys-

tem. The Arabic resource grammar in the Grammat-
ical Framework (El Dada and Ranta, 2006) is per-
haps the most complete inferential–realizational im-
plementation to date. Its style is compatible with
the linguistic description in e.g. (Fischer, 2001) or
(Badawi et al., 2004), but the lexicon is now very
limited and some other extensions for data-oriented
computational applications are still needed.

ElixirFM is inspired by the methodology in (Fors-
berg and Ranta, 2004) and by functional program-
ming, just like the Arabic GF is (El Dada and Ranta,
2006). Nonetheless, ElixirFM reuses the Buckwal-
ter lexicon (2002) and the annotations in the Prague
Arabic Dependency Treebank (Hajič et al., 2004),
and implements yet more refined linguistic model.

3 Morphosyntactic Categories

Functional Arabic Morphology and ElixirFM re-
establish the system of inflectional and inher-
ent morphosyntactic properties (alternatively named
grammatical categories or features) and distinguish
precisely the senses of their use in the grammar.

In Haskell, all these categories can be represented
as distinct data types that consist of uniquely identi-
fied values. We can for instance declare that the cate-
gory of case in Arabic discerns three values, that we
also distinguish three values for number or person,
or two values of the given names for verbal voice:
data Case = Nominative | Genitive |

Accusative
data Number = Singular | Dual | Plural
data Person = First | Second | Third
data Voice = Active | Passive

All these declarations introduce new enumerated
types, and we can use some easily-defined meth-
ods of Haskell to work with them. If we load this
(slightly extended) program into the interpreter,1 we
can e.g. ask what category the value Genitive be-
longs to (seen as the :: type signature), or have it
evaluate the list of the values that Person allows:
? :type Genitive → Genitive :: Case
? enum :: [Person] → [First,Second,Third]

Lists in Haskell are data types that can be
parametrized by the type that they contain. So, the
value [Active, Active, Passive] is a list of three
elements of type Voice, and we can write this if nec-
essary as the signature :: [Voice]. Lists can also

1http://www.haskell.org/

2

be empty or have just one single element. We denote
lists containing some type a as being of type [a].

Haskell provides a number of useful types al-
ready, such as the enumerated boolean type or the
parametric type for working with optional values:
data Bool = True | False
data Maybe a = Just a | Nothing

Similarly, we can define a type that couples other
values together. In the general form, we can write
data Couple a b = a :-: b

which introduces the value :-: as a container for
some value of type a and another of type b.2

Let us return to the grammatical categories. In-
flection of nominals is subject to several formal re-
quirements, which different morphological models
decompose differently into features and values that
are not always complete with respect to the inflec-
tional system, nor mutually orthogonal. We will ex-
plain what we mean by revisiting the notions of state
and definiteness in contemporary written Arabic.

To minimize the confusion of terms, we will de-
part from the formulation presented in (El Dada and
Ranta, 2006). In there, there is only one relevant
category, which we can reimplement as State’:
data State’ = Def | Indef | Const

Variation of the values of State’ would enable gen-
erating the forms al-kitābu �

H. A
��
Jº� Ë @ def., kitābun �

H. A
��
J»�

indef., and kitābu �
H. A

��
J»� const. for the nominative

singular of book. This seems fine until we explore
more inflectional classes. The very variation for the
nominative plural masculine of the adjective high
gets ar-rafı̄↪̄una

�	
àñ

�
ªJ

	
�̄
��QË @ def., rafı̄↪̄una

�	
àñ

�
ªJ

	
�̄
�P in-

def., and rafı̄↪̄u ñ
�
ªJ

	
�̄
�P const. But what value does

the form ar-rafı̄↪̄u ñ
�
ªJ

	
�̄
��QË @, found in improper annex-

ations such as in al-mas↩̄ulūna ’r-rafı̄↪̄u ’l-mustawā
ø

�
ñ
��
J��ÜÏ @ ñ

�
ªJ

	
�̄
��QË @

�	
àñ

�
Ëð

�
ñ��ÜÏ@ the-officials the-highs-

of the-level, receive?
It is interesting to consult for instance (Fischer,

2001), where state has exactly the values of State’,
but where the definite state Def covers even forms
without the prefixed al- Ë @ article, since also some
separate words like lā B

�
no or yā A

�
K
 oh can have the

effects on inflection that the definite article has. To
distinguish all the forms, we might think of keeping

2Infix operators can also be written as prefix functions if en-
closed in (). Functions can be written as operators if enclosed
in ‘‘. We will exploit this when defining the lexicon’s notation.

state in the sense of Fischer, and adding a boolean
feature for the presence of the definite article . . .
However, we would get one unacceptable combina-
tion of the values claiming the presence of the def-
inite article and yet the indefinite state, i.e. possibly
the indefinite article or the diptotic declension.

Functional Arabic Morphology refactors the six
different kinds of forms (if we consider all inflec-
tional situations) depending on two parameters. The
first controls prefixation of the (virtual) definite arti-
cle, the other reduces some suffixes if the word is a
head of an annexation. In ElixirFM, we define these
parameters as type synonyms to what we recall:
type Definite = Maybe Bool
type Annexing = Bool

The Definite values include Just True for
forms with the definite article, Just False for
forms in some compounds or after lā B

�
or yā A

�
K

(absolute negatives or vocatives), and Nothing for
forms that reject the definite article for other reasons.

Functional Arabic Morphology considers state as
a result of coupling the two independent parameters:
type State = Couple Definite Annexing

Thus, the indefinite state Indef describes a word
void of the definite article(s) and not heading an an-
nexation, i.e. Nothing :-: False. Conversely, ar-
rafı̄↪̄u ñ

�
ªJ

	
�̄
��QË @ is in the state Just True :-: True.

The classical construct state is Nothing :-: True.
The definite state is Just _ :-: False, where _ is
True for El Dada and Ranta and False for Fischer.
We may discover that now all the values of State

are meaningful.3

Type declarations are also useful for defining in
what categories a given part of speech inflects. For
verbs, this is a bit more involved, and we leave it for
Figure 2. For nouns, we set this algebraic data type:
data ParaNoun = NounS Number Case State

In the interpreter, we can now generate all 54
combinations of inflectional parameters for nouns:
? [NounS n c s | n <- enum, c <- enum,

s <- values]

The function values is analogous to enum, and both
need to know their type before they can evaluate.

3With Just False :-: True, we can annotate e.g. the
‘incorrectly’ underdetermined rafı̄↪̄u ñ

�
ªJ

	
�̄
�P in hum-u ’l-mas↩̄ulū-

na rafı̄↪̄u ’l-mustawā øñ
�
J�ÖÏ @ ñ

�
ªJ

	
�̄
�P
	
àñËð

ñ�ÖÏ @ Ñë they-are the-

officials highs-of the-level, i.e. they are the high-level officials.

3

The ‘magic’ is that the bound variables n, c, and s

have their type determined by the NounS constructor,
so we need not type anything explicitly. We used the
list comprehension syntax to cycle over the lists that
enum and values produce, cf. (Hudak, 2000).

4 ElixirFM Lexicon

Unstructured text is just a list of characters, or string:
type String = [Char]

Yet words do have structure, particularly in Arabic.
We will work with strings as the superficial word
forms, but the internal representations will be more
abstract (and computationally more efficient, too).

The definition of lexemes can include the deriva-
tional root and pattern information if appropriate,
cf. (Habash et al., 2005), and our model will encour-
age this. The surface word kitāb H. A

��
J»� book can de-

compose to the triconsonantal root k t b I.
�
J» and the

morphophonemic pattern FiCAL of type PatternT:
data PatternT = FaCaL | FAL | FaCY |

FiCAL | FuCCAL | {- ... -}
MustaFCaL | MustaFaCL

deriving (Eq, Enum, Show)

The deriving clause associates PatternT with
methods for testing equality, enumerating all the val-
ues, and turning the names of the values into strings:
? show FiCAL → "FiCAL"

We choose to build on morphophonemic patterns
rather than CV patterns and vocalisms. Words like
istaǧāb H. A

�
j.

��
J�@� to respond and istaǧwab H.

�
ñj.

��
J�@�

to interrogate have the same underlying VstVCCVC
pattern, so information on CV patterns alone would
not be enough to reconstruct the surface forms. Mor-
phophonemic patterns, in this case IstaFAL and
IstaFCaL, can easily be mapped to the hypothetical
CV patterns and vocalisms, or linked with each other
according to their relationship. Morphophonemic
patterns deliver more information in a more com-
pact way. Of course, ElixirFM provides functions
for properly interlocking the patterns with the roots:
? merge "k t b" FiCAL → "kitAb"
? merge "ˆg w b" IstaFAL → "istaˆgAb"
? merge "ˆg w b" IstaFCaL → "istaˆgwab"
? merge "s ’ l" MaFCUL → "mas’Ul"
? merge "z h r" IFtaCaL → "izdahar"

The izdahar Q
�
ë
�
X 	P@� to flourish case exemplifies that

exceptionless assimilations need not be encoded in
the patterns, but can instead be hidden in rules.

The whole generative model adopts the multi-
purpose notation of ArabTEX (Lagally, 2004) as a
meta-encoding of both the orthography and phonol-
ogy. Therefore, instantiation of the "’" hamza car-
riers or other merely orthographic conventions do
not obscure the morphological model. With Encode
Arabic4 interpreting the notation, ElixirFM can at
the surface level process the original Arabic script
(non-)vocalized to any degree or work with some
kind of transliteration or even transcription thereof.

Morphophonemic patterns represent the stems of
words. The various kinds of abstract prefixes and
suffixes can be expressed either as atomic values, or
as literal strings wrapped into extra constructors:
data Prefix = Al | LA | Prefix String

data Suffix = Iy | AT | At | An | Ayn |
Un | In | Suffix String

al = Al; lA = LA -- function synonyms

aT = AT; ayn = Ayn; aN = Suffix "aN"

Affixes and patterns are arranged together via
the Morphs a data type, where a is a triliteral pat-
tern PatternT or a quadriliteral PatternQ or a non-
templatic word stem Identity of type PatternL:
data PatternL = Identity
data PatternQ = KaRDaS | KaRADiS {- ... -}

data Morphs a = Morphs a [Prefix] [Suffix]

The word lā-silkı̄y �ú

¾
�
Ê��B

�
wireless can thus be

decomposed as the root s l k ½Ê� and the value
Morphs FiCL [LA] [Iy]. Shunning such concrete
representations, we define new operators >| and |<

that denote prefixes, resp. suffixes, inside Morphs a:
? lA >| FiCL |< Iy → Morphs FiCL [LA][Iy]

Implementing >| and |< to be applicable in the in-
tuitive way required Haskell’s multi-parameter type
classes with functional dependencies (Jones, 2000):
class Morphing a b | a -> b where

morph :: a -> Morphs b

instance Morphing (Morphs a) a where
morph = id

instance Morphing PatternT PatternT where
morph x = Morphs x [] []

The instance declarations ensure how the morph

method would turn values of type a into Morphs b.
4http://sf.net/projects/encode-arabic/

4

|> "k t b" <| [

FaCaL ‘verb‘ ["write", "be destined"] ‘imperf‘ FCuL,

FiCAL ‘noun‘ ["book"] ‘plural‘ FuCuL,

FiCAL |< aT ‘noun‘ ["writing"],

FiCAL |< aT ‘noun‘ ["essay", "piece of writing"] ‘plural‘ FiCAL |< At,

FACiL ‘noun‘ ["writer", "author", "clerk"] ‘plural‘ FaCaL |< aT
‘plural‘ FuCCAL,

FuCCAL ‘noun‘ ["kuttab", "Quran school"] ‘plural‘ FaCACIL,

MaFCaL ‘noun‘ ["office", "department"] ‘plural‘ MaFACiL,

MaFCaL |< Iy ‘adj‘ ["office"],

MaFCaL |< aT ‘noun‘ ["library", "bookstore"] ‘plural‘ MaFACiL]

Figure 1: Entries of the ElixirFM lexicon nested under the root k t b I.
�
J» using morphophonemic templates.

Supposing that morph is available for the two types,
(|<) is a function on y :: a and x :: Suffix giv-
ing a value of type Morphs b. The intermediate re-
sult of morph y is decomposed, and x is prepended
to the stack s of the already present suffixes.

(|<) :: Morphing a b =>
a -> Suffix -> Morphs b

y |< x = Morphs t p (x : s)
where Morphs t p s = morph y

With the introduction of patterns, their synony-
mous functions and the >| and |< operators, we have
started the development of what can be viewed as a
domain-specific language embedded in the general-
purpose programming language. Encouraged by the
flexibility of many other domain-specific languages
in Haskell, esp. those used in functional parsing
(Ljunglöf, 2002) or pretty-printing (Wadler, 2003),
we may design the lexicon to look like e.g.

module Elixir.Data.Lexicon
import Elixir.Lexicon

lexicon = listing {- lexicon’s header -}

|> {- root one -} <| [{- Entry a -}]

|> {- root two -} <| [{- Entry b -}]

-- other roots or word stems and entries

and yet be a verifiable source code defining a data
structure that is directly interpretable. The meaning

of the combinators |> and <| could be supplied via
an external module Elixir.Lexicon, so is very easy
to customize. The effect of these combinators might
be similar to the : and :-: constructors that we met
previously, but perhaps other data structures might
be built from the code instead of lists and pairs.

Individual entries can be defined with functions in
a convenient notational form using ‘‘. Infix opera-
tors can have different precedence and associativity,
which further increases the options for designing a
lightweight, yet expressive, embedded language.

In Figure 1, each entry reduces to a record of type
Entry PatternT reflecting internally the lexeme’s
inherent properties. Consider one such reduction be-
low. Functions like plural or gender or humanness
could further modify the Noun’s default information:
? FiCAL |< aT ‘noun‘ ["writing"] →

noun (FiCAL |< aT) ["writing"] →

Entry (Noun [] Nothing Nothing)
(morph (FiCAL |< aT))
["writing"] →

Entry (Noun [] Nothing Nothing)
(Morphs FiCAL [] [AT])
["writing"]

The lexicon of ElixirFM is derived from the open-
source Buckwalter lexicon (Buckwalter, 2002).5 We
devised an algorithm in Perl using the morpho-

5Habash (2004) comments on the lexicon’s internal format.

5

data Mood = Indicative | Subjunctive | Jussive | Energetic deriving (Eq, Enum)
data Gender = Masculine | Feminine deriving (Eq, Enum)

data ParaVerb = VerbP Voice Person Gender Number
| VerbI Mood Voice Person Gender Number
| VerbC Gender Number deriving Eq

paraVerbC :: Morphing a b => Gender -> Number -> [Char] -> a -> Morphs b
paraVerbC g n i = case n of

Singular -> case g of Masculine -> prefix i . suffix ""
Feminine -> prefix i . suffix "I"

Plural -> case g of Masculine -> prefix i . suffix "UW"
Feminine -> prefix i . suffix "na"

_ -> prefix i . suffix "A"

Figure 2: Excerpt from the implementation of verbal inflectional features and paradigms in ElixirFM.

phonemic patterns of ElixirFM that finds the roots
and templates of the lexical items, as they are avail-
able only partially in the original, and produces the
lexicon in formats for Perl and for Haskell.

Information in the ElixirFM lexicon can get even
more refined, by lexicographers or by programmers.
Verbs could be declared via indicating their deriva-
tional verbal form (that would, still, reduce to some
Morphs a value), and deverbal nouns and participles
could be defined generically for the extended forms.
The identification of patterns as to their derivational
form is implemented easily with the isForm method:
data Form = I | II | III | IV {- .. -} XV

? isForm VIII IFtaCaL → True
? isForm II TaKaRDuS → True
? filter (‘isForm‘ MuFCI) [I ..] → [IV]

Nominal parts of speech need to be enhanced with
information on the inherent number, gender and hu-
manness, if proper modeling of linguistic agreement
in Arabic is desired.6 Experiments with the Prague
Arabic Dependency Treebank (Hajič et al., 2004)
show that this information can be learned from an-
notations of syntactic relations (Smrž, 2007).

5 Morphological Rules

Inferential–realizational morphology is modeled in
terms of paradigms, grammatical categories, lex-
emes and word classes. ElixirFM implements the
comprehensive rules that draw the information from

6Cf. e.g. (El Dada and Ranta, 2006; Kremers, 2003).

the lexicon and generate the word forms given the
appropriate morphosyntactic parameters. The whole
is invoked through a convenient inflect method.

The lexicon and the parameters determine the
choice of paradigms. The template selection mecha-
nism differs for nominals (providing plurals) and for
verbs (providing all needed stem alternations in the
extent of the entry specifications of e.g. Hans Wehr’s
dictionary), yet it is quite clear-cut (Smrž, 2007).

In Figure 2, the algebraic data type ParaVerb

restricts the space in which verbs are inflected by
defining three Cartesian products of the elementary
categories: a verb can have VerbP perfect forms in-
flected in voice, person, gender, number, VerbI im-
perfect forms inflected also in mood, and VerbC im-
peratives inflected in gender and number only.7

The paradigm for inflecting imperatives, the one
and only such paradigm in ElixirFM, is imple-
mented as paraVerbC. It is a function parametrized
by some particular value of gender g and number n.
It further takes the initial imperative prefix i and the
verbal stem (both inferred from the morphophone-
mic patterns in the lexical entry) to yield the in-
flected imperative form. Note the polymorphic type
of the function, which depends on the following:

prefix, suffix :: Morphing a b =>
[Char] -> a -> Morphs b

prefix x y = Prefix x >| y
suffix x y = y |< Suffix x

7Cf. (Forsberg and Ranta, 2004; El Dada and Ranta, 2006).

6

If one wished to reuse the paradigm and apply it on
strings only, it would be sufficient to equate these
functions with standard list operations, without any
need to reimplement the paradigm itself.

The definition of paraVerbC is simple and concise
due to the chance to compose with . the partially
applied prefix and suffix functions and to virtu-
ally omit the next argument. This advanced formu-
lation may seem not as minimal as when specifying
the literal endings or prefixes, but we present it here
to illustrate the options that there are. An abstract
paradigm can be used on more abstract types than
just strings.8 Inflected forms need not be merged
with roots yet, and can retain the internal structure:
? paraVerbC Feminine Plural "u" FCuL →
Prefix "u" >| FCuL |< Suffix "na"

? merge "k t b" ({- previous value -}) →

"uktubna" uktubna
�	á
�
�.

��
J
�
»
�
@ fem. pl. write!

? [merge "q r ’" (paraVerbC g n "i"
FCaL) | g <- values, n <- values] →

masc.: "iqra’" iqra↩
�
@ �Q
��
¯@� sg. "iqra’A" iqra↩̄a

�
@ �Q
��
¯@� du. "iqra’UA" iqra↩̄u @ð

�
ð �Q

��
¯@� pl.

fem.: "iqra’I" iqra↩̄ı ú

G
�

�Q
��
¯@� sg. "iqra’A" iqra↩̄a

�
@ �Q
��
¯@� du. "iqra’na" iqra↩na

�	
à

�
@ �Q
��
¯@� pl. read!

The highlight of the Arabic morphology is that
the ‘irregular’ inflection actually rests in strictly ob-
serving some additional rules, the nature of which
is phonological. Therefore, surprisingly, ElixirFM
does not even distinguish between verbal and nomi-
nal word formation when enforcing these rules. This
reduces the number of paradigms to the prototypical
3 verbal and 5 nominal! Yet, the model is efficient.

Given that the morphophonemic patterns already
do reflect the phonological restrictions, the only
places of further phonological interaction are the
prefix boundaries and the junction of the last letter of
the pattern with the very adjoining suffix. The rules
are implemented with ->- and -<-, respectively, and
are invoked from within the merge function:
merge :: (Morphing a b, Template b) =>

[Char] -> a -> [Char]

(->-) :: Prefix -> [Char] -> [Char]
(-<-) :: Char -> Suffix -> [Char]

8Cf. some morphology-theoretic views in Spencer (2004).

’I’ -<- x = case x of

AT -> "iyaT" ; Un -> "Una"
Iy -> "Iy" ; In -> "Ina"

Suffix "" -> "i"

Suffix "Una" -> "Una"
Suffix "U" -> "U"
Suffix "UW" -> "UW"

Suffix "Ina" -> "Ina"
Suffix "I" -> "I"

Suffix x | x ‘elem‘ ["i", "u"] -> "I"
| x ‘elem‘ ["iN", "uN"] -> "iN"

| "n" ‘isPrefixOf‘ x ||
"t" ‘isPrefixOf‘ x -> "I" ++ x

_ -> "iy" ++ show x

(-<-) is likewise defined when matching on ’Y’,
’A’, ’U’, and when not matching. (->-) imple-
ments definite article assimilation and occasional
prefix interaction with weak verbs.

Nominal inflection is also driven by the informa-
tion from the lexicon and by phonology. The reader
might be noticing that the morphophonemic patterns
and the Morphs a templates are actually extremely
informative. We can use them as determining the in-
flectional class and the paradigm function, and thus
we can almost avoid other unintuitive or excessive
indicators of the kind of weak morphology, diptotic
inflection, and the like.

6 Applications and Conclusion

The ElixirFM linguistic model and the data of the
lexicon can be integrated into larger applications or
used as standalone libraries and resources.

There is another, language-independent part of
the system that implements the compilation of the
inflected word forms and their associated mor-
phosyntactic categories into morphological analyz-
ers and generators. This part is adapted from (Fors-
berg and Ranta, 2004). The method used for analysis
is deterministic parsing with tries (Ljunglöf, 2002).

ElixirFM also provides functions for exporting
and pretty-printing the linguistic model into XML,
LATEX, Perl, SQL, and other custom formats.

We have presented ElixirFM as a high-level func-
tional implementation of Functional Arabic Mor-
phology. Next to some theoretical points, we pro-

7

posed a model that represents the linguistic data
in an abstract and extensible notation that encodes
both orthography and phonology, and whose inter-
pretation is customizable. We developed a domain-
specific language in which the lexicon is stored and
which allows easy manual editing as well as auto-
matic verification of consistency. We believe that the
modeling of both the written language and the spo-
ken dialects can share the presented methodology.

ElixirFM and its lexicons are open-source soft-
ware licensed under GNU GPL and available on
http://sf.net/projects/elixir-fm/.

This work has been supported by the Ministry of
Education of the Czech Republic (MSM00216208-
38), by the Grant Agency of Charles University in
Prague (UK 373/2005), and by the Grant Agency of
the Czech Academy of Sciences (1ET101120413).

References
Elsaid Badawi, Mike G. Carter, and Adrian Gully. 2004.

Modern Written Arabic: A Comprehensive Grammar.
Routledge.

Matthew Baerman, Dunstan Brown, and Greville G. Cor-
bett. 2006. The Syntax-Morphology Interface. A
Study of Syncretism. Cambridge Studies in Linguis-
tics. Cambridge University Press.

Kenneth R. Beesley. 2001. Finite-State Morphological
Analysis and Generation of Arabic at Xerox Research:
Status and Plans in 2001. In EACL 2001 Workshop
Proceedings on Arabic Language Processing: Status
and Prospects, pages 1–8, Toulouse, France.

Tim Buckwalter. 2002. Buckwalter Arabic Morpho-
logical Analyzer Version 1.0. LDC catalog number
LDC2002L49, ISBN 1-58563-257-0.

Ali El Dada and Aarne Ranta. 2006. Open Source Arabic
Grammars in Grammatical Framework. In Proceed-
ings of the Arabic Language Processing Conference
(JETALA), Rabat, Morocco, June 2006. IERA.

Wolfdietrich Fischer. 2001. A Grammar of Classical
Arabic. Yale Language Series. Yale University Press,
third revised edition. Translated by Jonathan Rodgers.

Markus Forsberg and Aarne Ranta. 2004. Functional
Morphology. In Proceedings of the Ninth ACM SIG-
PLAN International Conference on Functional Pro-
gramming, ICFP 2004, pages 213–223. ACM Press.

Nizar Habash, Owen Rambow, and George Kiraz. 2005.
Morphological Analysis and Generation for Arabic
Dialects. In Proceedings of the ACL Workshop

on Computational Approaches to Semitic Languages,
pages 17–24, Ann Arbor, Michigan. Association for
Computational Linguistics.

Nizar Habash. 2004. Large Scale Lexeme Based Ara-
bic Morphological Generation. In JEP-TALN 2004,
Session Traitement Automatique de l’Arabe, Fes, Mo-
rocco, April 2004.

Jan Hajič, Otakar Smrž, Petr Zemánek, Jan Šnaidauf, and
Emanuel Beška. 2004. Prague Arabic Dependency
Treebank: Development in Data and Tools. In NEM-
LAR International Conference on Arabic Language
Resources and Tools, pages 110–117. ELDA.

Paul Hudak. 2000. The Haskell School of Expression:
Learning Functional Programming through Multime-
dia. Cambridge University Press.

Mark P. Jones. 2000. Type Classes with Functional De-
pendencies. In ESOP ’00: Proceedings of the 9th Eu-
ropean Symposium on Programming Languages and
Systems, pages 230–244, London, UK. Springer.

Joost Kremers. 2003. The Arabic Noun Phrase. A
Minimalist Approach. Ph.D. thesis, University of Ni-
jmegen. LOT Dissertation Series 79.

Klaus Lagally. 2004. ArabTEX: Typesetting Arabic and
Hebrew, User Manual Version 4.00. Technical Report
2004/03, Fakultät Informatik, Universität Stuttgart.

Peter Ljunglöf. 2002. Pure Functional Parsing. An Ad-
vanced Tutorial. Licenciate thesis, Göteborg Univer-
sity & Chalmers University of Technology.

Allan Ramsay and Hanady Mansur. 2001. Arabic mor-
phology: a categorial approach. In EACL 2001 Work-
shop Proceedings on Arabic Language Processing:
Status and Prospects, pages 17–22, Toulouse, France.

Otakar Smrž. 2007. Functional Arabic Morphology. For-
mal System and Implementation. Ph.D. thesis, Charles
University in Prague.

Abdelhadi Soudi, Violetta Cavalli-Sforza, and Abder-
rahim Jamari. 2001. A Computational Lexeme-Based
Treatment of Arabic Morphology. In EACL 2001
Workshop Proceedings on Arabic Language Process-
ing: Status and Prospects, pages 155–162, Toulouse.

Andrew Spencer. 2004. Generalized Paradigm Function
Morphology. http://privatewww.essex.
ac.uk/˜spena/papers/GPFM.pdf, October 6.

Gregory T. Stump. 2001. Inflectional Morphology. A
Theory of Paradigm Structure. Cambridge Studies in
Linguistics. Cambridge University Press.

Philip Wadler. 2003. A Prettier Printer. In Jeremy
Gibbons and Oege de Moor, editors, The Fun of Pro-
gramming, Cornerstones of Computing, pages 223–
243. Palgrave Macmillan, March 2003.

8

Proceedings of the 5th Workshop on Important Unresolved Matters, pages 9–16,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Implementation of the Arabic Numerals and their Syntax in GF

Ali Dada
SAP Research CEC
Blumenbergplatz 9

9000 St. Gallen, Switzerland
ali.dada@sap.com

Abstract

The numeral system of Arabic is rich in its
morphosyntactic variety yet suffers from the
lack of a good computational resource that
describes it in a reusable way. This implies
that applications that require the use of rules
of the Arabic numeral system have to either
reimplement them each time, which implies
wasted resources, or use simplified, impre-
cise rules that result in low quality appli-
cations. A solution has been devised with
Grammatical Framework (GF) to use lan-
guage constructs and grammars as libraries
that can be written once and reused in vari-
ous applications. In this paper, we describe
our implementation of the Arabic numeral
system, as an example of a bigger imple-
mentation of a grammar library for Arabic.
We show that users can reuse our system
by accessing a simple language-independent
API rule.

1 Introduction

1.1 Problem
Language technology and software localization con-
sume a significant share of many companies’ time
and work. Translating an operating system or an ap-
plication to different languages involves, in the tra-
ditional approach, translating out-of-context strings
into different languages. This requires a language
expert for each new language, and will still in-
volve language-related problems because of the dif-
ficulty in translating out-of-context strings and tak-

ing care of morphological and syntactic variations at
the same time. We illustrate this with an example.
A mail reader application wants to display messages
like

You have 1 new message
You have 2 new messages
You have 3 new messages
You have 100 new messages

If these are to be translated into Arabic, special mor-
phological and syntactic considerations should be
made, which include inflecting “message” in num-
ber:

1 message
��é
�
Ë A ��P� risālatun

2 messages 	à� A
��J
�
Ë A ��P� risālatāni

(3-10) messages
�
ÉK� A

�� �P rasā↩ila

(11-99) messages
��é
�
Ë A ��P� risālatan

x100 messages
�é�
�
Ë A ��P� risālatin

So the word “messages” is translated into dif-
ferent words in Arabic, depending on the numeral
counting it. Counted nouns are an extreme example
of how varied case inflection can be: The case of the
singular and the dual is determined by their syntac-
tic function (nominative in the example above). This
is not the case for plurals, which assume the geni-
tive case from three to ten (

�
ÉK� A

�� �P is diptote, thus the
�é �j�J

�	̄ marker), then accusative (singular) from eleven
to nighty-nine, and genitive again for plurals that are
multiples of hundred. This is not to mention noun-
adjective agreement which should be taken care of
when translating “new messages” into Arabic.

The aforementioned details should not be the re-
sponsibility of the application programmer, and hav-

9

ing translators do this work over and over again for
each application can be costly and lead to repeated
work and/or poor results.

1.2 Solution and Contributions

We reviewed in other works (Dada and Ranta, 2007)
an approach that addresses problems in language
technology similar but not limited to the above. We
applied this approach to Arabic, thus developing a
resource grammar for Arabic in which we imple-
ment rules that cover the orthography, morphology,
and syntax. In short, this approach is based on de-
veloping libraries of natural language constructs and
rules, which can be used by an application program-
mer who is not knowledgeable in a specific lan-
guage. The core programming language is Gram-
matical Framework (GF) (Ranta, 2004). The lan-
guage library, called a resource grammar (Khegai
and Ranta, 2004) and comprising the linguistic rules,
can be reused in applications through an Application
Programming Interface (API) by programmers that
are unaware of the details of the specific natural lan-
guage. Such a programmer uses a resource gram-
mar assuming it will take care of morphological and
syntactic rules. So far, we have implemented signif-
icant parts of the Arabic morphology, syntax, ortho-
graphic rules, and provided a sample lexicon of 300
words based on the Swadesh list (Hymes, 1960).

In this paper, we only describe part of the work,
namely the numeral system of Arabic and its syntax.
In the next section we elaborate on the approach, the
programming language that implements it, and on
Resource Grammars.

2 GF and the Resource Library

GF is a special-purpose functional programming
language for defining grammars of (formal or natu-
ral) languages. A common API and resource gram-
mars for various natural languages accompany GF
with a purpose similar to that of libraries in gen-
eral programming languages: implementing pieces
of code that can be reused by the application pro-
grammer.

GF makes a distinction between abstract and con-
crete syntaxes. The common API specifies a set of
syntactic rules that are language independent (ab-
stract syntax), and the resource grammar imple-

ments each rule according to the particular rules of
the language (concrete syntax). This latter involves
word order, agreement, case inflection, etc. This dis-
tinction can abstract over language-dependent fea-
tures and enables an application programmer to
write sentences in a language only by describing
their abstract syntax trees or by translating them
from another language, preferably in a limited do-
main. The abstract representation would then act as
interlingua.

3 The Numerals

We give here an explanation of our treatment of
the Arabic number system, namely the numerals
and their counted nouns. Our implementation is
based on the work done by Hammarström and Ranta
(2004) in defining the cardinal numerals in GF. We
will gradually give the governing grammar rules
along with their our formal description in GF.

The numbers from one to nineteen in Arabic have
two forms, a masculine form and a feminine one,
so in general we will take gender to be one of the
inflecting attributes of numbers. Which of these two
forms to use depends on the counted noun and the
counting number:

• The numerals 1 and 2 show gender agreement
with the counted noun (their grammatical role
is an adjective modifying this noun).

• Numerals 3-10 show gender polarity with the
counted noun, so a masculine noun is counted
with a number in its feminine form and vice
versa, e.g. ÈA �g. P

�é�KC
��K (three [+FEM] men

[+MASC]) but ZA ��	� �HC
��K (three [+MASC]

women [+FEM]).

• Numbers 11 and 12 have two constituents
which show gender agreement with each other
and with the counted noun, e.g. C

�
g. P Qå

��� �« Yg
�
@

(eleven [+MASC] men [+MASC]).

• Numbers 13-19 show gender polarity between
their first constituent and the counted noun.

• Numbers further on, except those ending in 01
and 02, show no gender distinction.

Numerals dictate the number of the counted noun
is a way different to what is the case in other lan-
guages:

• Numeral One: The noun is in the singular form.

10

• Numeral Two: The noun is in the dual form.

• Numerals 3-10: The noun is in the plural form,
e.g. ÈA �g. P

�é�KC
��K (three men [+PLUR]).

• Numerals > 10: The noun is in singular form
again, e.g. C

�
g. P

	àñ
��KC
��K (thirty men [+SING]).

The numbers inflect also in case, so in the gen-
eral case the number can have different forms for
the three cases: nominative, accusative, and geni-
tive. But again, as with gender, this will depend on
the particular range of numerals:

• Numeral 1: full case distinction (it is an adjec-
tive)

• Number 2: usually the noun in dual is used
alone, and if the number 2 is specified then it
is usually only for emphasis. In this case it’s
an adjective in the dual form, thus it has two
cases: nominative and oblique, e.g. 	àA

�	J�K @ 	à@
�
YËð

[+NOM] and 	á�

�	J�K @ 	áK

�
YËð [+OBL].

• Numerals 3-10 : full case distinction for the
numbers; the counted noun is always genitive,
e.g. I.�

�J»
��é�Ô

	g (five [+NOM] books [+GEN]),
I.�

�J»
��é�Ô

	g (five [+ACC] books [+GEN]),
I.�

�J» �é��Ô
	g (five [+GEN] books [+GEN]).

• Numerals 11 and 13-19: only accusative, same
as their counted noun, e.g. A �ÒÊ�̄ �Qå�� �«

��éªK. P
�
@

(fourteen [+ACC] pens [+ACC]).

• 12: same as 2, but the counted noun is always
accusative

• The tens (20, 30, ... 90): nominative and
oblique cases, the counted noun is accusative

• multiples of 100 or 1000: the counted noun is
genitive.

• composites: the case distinction of the number
is the same as each of its constituent parts, and
the case of the counted noun is determined by
the rule of the last part of the compound con-
struction. For example, 23: the three follows
the rule of 3-10, the 20 follows the rule of the
tens, and the counted noun is accusative as in
the rule of the tens, the last part of the construc-
tion twenty three (three and twenty in Arabic).

The rules above only treat the indefinite state of
the numerals, since the numerals in the definite state
will be an adjective modifying the noun. The case

of such a noun will not then follow the rules above
but will assume the case dictated by its syntactic role
in the sentence. We do however give below the type
of the numerals inflection table including all the at-
tributes that a number can inflect in: gender, state,
and case.
lincat Numeral = {
s : Gender => State => Case => Str ;
n : Size

} ;

param Size =
One | Two | ThreeTen | Teen

| NonTeen | Hundreds | None ;

param
Gender = Masc | Fem ;
State = Def | Indef | Const ;
Case = Nom | Acc | Gen ;

The lincat (linearize category) statement
defines the type of a numeral in Arabic. It states that
in GF, an Arabic numeral is a record that comprises
two fields. The first is a string s which is in this
case an inflection table specifying that a numeral is
inflected in gender, state, and case. The => operator
is the table operator in GF, so having three inputs to
the table means that a Numeral is inflected in these
three attributes. The three inflectional attributes are
defined as parameters that take one of predefined
values: gender can be masculine or feminine, case
can be nominative, accusative, or genitive, and state
can be definite with al, definite with a genitive con-
struction (�é

�	̄ A
�	�@�) or indefinite. The second field is n

of type Size, which is also defined as a parameter
with several possible values. These values specify
which range of numbers does the numeral belong to.
This is needed to be able to apply the rules above
properly at all stages, including the formation of the
number and the formation of the noun phrase from
the number and the counted noun.

As mentioned earlier, GF differentiates between
abstract and concrete syntaxes, and this differentia-
tion also applies for the numeral system. So first an
abstract syntax defines how numbers are formed in
a language-independent way. The numbers are de-
fined in a way that draws similarities found across
languages in the formation of compound numbers.
We linearize the rules into Arabic thus making use
of this division but making distinctions because of
the special rules that govern numerals in Arabic. A
typical example of such numbers is the special treat-

11

ment that numbers ending in 2 have in Arabic due to
the notion of the dual.

We give here the rules for the first division of
numbers and show how we implement them for Ara-
bic. The API specifies the following categories and
rules for numbers less than ten:
cat
Digit ; -- 2..9
Sub10 ; -- 1..9

fun
n2, n3, n4, n5, n6, n7, n8, n9 : Digit ;

pot01 : Sub10 ; -- 1
pot0 : Digit -> Sub10 ; -- d * 1

So the number 1 is treated separately from the re-
maining digits. We want to preserve a difference in
our Arabic implementation between n2 and the re-
maining digits because of the different way the digit
2 combines in compound numbers later on. This is
the motivation between the division seen in Size
between Two and ThreeTen.

Following is the type of the categories above in
Arabic (the concrete syntax):
lincat Digit = {
s : DForm => Gender => State => Case => Str;
n : Size
} ;

lincat Sub10 = {
s : DForm => Gender => State => Case => Str;
n : Size
} ;

param DForm = unit | ten ;

The inflection table shows what we discussed earlier,
that Arabic numbers get in the general case inflected
in gender, state, and case. The DForm is used to
calculate both the digit and its multiple of ten.

We write functions that form the inflection tables
of the digits: one function for numeral 2 (num2, not
shown here) and one function for the rest of the dig-
its, including 1 (num1_10, shown below). 1

oper num1_10 : Str -> { s : DForm => Gender
=> State => Case => Str } = \xams ->

let xamsa = xams + "ap" in {
s= table {

unit => table {
Masc => \\s,c => (sing xams) ! s ! c;

1Our grammar files are in unicode, but the example codes
shown here are written using the Buckwalter (2003) translitera-
tion with a few changes that suit our needs. We note our use of
‘c’ to denote the ↪ayn.

Fem => \\s,c => Al ! s + xamsa
+ dec1sg ! s ! c

};
ten => _,s,c => Al ! s + xams +

m_pl ! Indef ! c
}

};

Note the following GF syntax notations: The key-
word oper defines a GF function. An oper judg-
ment includes the name of the defined operation
(e.g. num1_10 in the example above), its type
(e.g. Str -> { s : DForm => Gender
=> State => Case => Str }), and an ex-
pression defining it (everything after the = opera-
tor). As for the syntax of the defining expression,
notice the lambda abstraction form \x -> t of the
function. Inflection tables are either specified by the
table keyword or using the shorthand \\... =>
notation. Finally, + is the character concatenation
operator and ! is the table selection operator.

The num1_10 function takes a string which can
be any of the stems of the numerals from one to
ten excluding two, e.g. h

˘
ams. From this stem, and

using helping functions from the nominal morphol-
ogy modules, we build the inflection table of the nu-
meral. For example, for the case where DForm is
unit and the Gender is feminine (e.g. h

˘
amsah),

the actual numeral string would be the concatena-
tion of a possible definite marker (al), the stem, and
a suffix determined by the state and the case of the
numeral, s and c respectively. The helping function
that determines if the definite marker is needed is the
following:
Al : State => Str =
table {
Def => "Al";
_ => ""

};

The second helping function defines the suffixes
that attach to singular or broken plurals of the first
(strong) declension of Arabic nominal words (Retsö,
1984). It calculates, given the state of the word and
its case, what its suffix will be. Note that N, F, and
K are the nominative, accusative, and genitive nuna-
tion diacritics.
dec1sg : State => Case => Str =
table {
Indef =>
table {
Nom => "N";
Acc => "F";

12

Gen => "K"
};

_ =>
table {
Nom => "u";
Acc => "a";
Gen => "i"

}
};

As expected, only words with indefinite state take
double diacritics (nunation), where as the rest (al-
definite or construct-definite words) take simple di-
acritics. The remaining helping functions will not be
all explained here as they follow similar logic.

The num1_10 and num2 produce only the inflec-
tion tables (the s field of the digit record). We sim-
ply add the correct Size parameter to each digit as
follows:
oper num3_10 : Str -> { s : DForm => Gender
=> State => Case => Str ; n : Size } =
\xams ->
num1_10 xams ** { n = ThreeTen } ;

lin n2 = num2 ** {n = Two };

lin n3 = num3_10 "valAv";
lin n4 = num3_10 ">arbac";
lin n5 = num3_10 "xams";
lin n6 = num3_10 "sit˜";
lin n7 = num3_10 "sabc";
lin n8 = num3_10 "vamAnI";
lin n9 = num3_10 "tisc";

lin pot01 = num1_10 "wAHid" ** { n = One } ;

lin pot0 d = d ;

The last function in the linearization shown
above, pot0, is used to promote a Digit into a
Sub10 in order to use it later on as any numeral
less that ten. This is the way the API specifies dif-
ferent numerals, dividing them into categories based
on the decimal system. We give here the rest of the
API categories and their linearization in Arabic:
cat
Sub100 ; -- 1..99
Sub1000 ; -- 1..999
Sub1000000 ; -- 1..999999

lincat Sub100 = {
s : Gender => State => Case => Str ;
n : Size
} ;

We will now show only a few implementation ex-
amples of the rules that specify the formation of the
Sub100 category. The rest of the rules for this and

other categories don’t show any different logic and
will not be detailed here. The first rule we give is for
the special cases of numeral 11:
fun
pot111 : Sub100 ;

lin pot111 = {
s = \\g,d,_ =>
case g of {
Masc => Al ! d + ">aHada" ++ teen ! Masc;
Fem => Al ! d + "<iHdaY" ++ teen ! Fem
};
n = NonTeen
};

oper teen : Gender => Str =
table {
Masc => "ca$ara";
Fem => "ca$rapa"

};

The implementation shows how the qualitative
rules stated at the beginning are described formally.
The inflection table doesn’t give different forms for
the three cases, and the accusative is used whatever
the context case is. Both parts of the construction
show gender agreement.

The numbers 12-19 have a common rule in the
API but we should differentiate in the Arabic lin-
earization between 12 and 13-19 because of the spe-
cial status of the dual in Arabic and the different
rules that these numbers assume in Arabic (see rules
above).
fun
pot1to19 : Digit -> Sub100 ; -- 10 + d

lin pot1to19 dig = {
s = \\g,d,c =>
case dig.n of {
Two => Al ! d + num2.s ! unit ! g

! Const ! c ++ teen ! g ;
_ => dig.s ! unit ! g ! Const ! Acc

++ teen ! (genPolarity ! g)
};
n =
case dig.n of {
Two => NonTeen;
_ => Teen
}
};

oper
genPolarity : Gender => Gender =
table {
Masc => Fem;
Fem => Masc

};

The pot1to19 function takes a Digit as argu-
ment. In our implementation we take cases for the

13

Size of the digit. When the Size is Two, i.e. the
number will be 12, we apply the rules for number
12 as given in the beginning: gender agreement be-
tween the two constituents, the first constituent is
inflected in case (it is basically number 2 in the
Const state). Otherwise (when the digit size is
ThreeTen), we apply the rules of numbers 13 - 19:
gender polarity between the two constituents and the
first constituent is the digit inflected for the construct
state and accusative case. The second constituent for
all the numbers 11-19 is always accusative as shown
in the teen helping function before.

The rest of the rules for forming numbers will
not be detailed here. Instead we will explain how
all these numbers will combine with nouns to form
noun phrases. The different number ranges as de-
fined by the Size parameter will be now used ex-
tensively in applying the proper rules. Following is
the rule that takes that takes a Determiner (which
can, among others, be a numeral) and a common
noun to give a noun phrase.

fun
DetCN : Det -> CN -> NP ;

The rule above has the same type in all languages
since it’s part of the language-independent API (ab-
stract syntax). The advantage of this is that a user
of our system can access the Arabic numerals at this
high level of abstraction, without being knowledge-
able about the details of our implementation.

When determiners combine with common nouns
in the general case, it will make a difference whether
or not the determiner was a numeral, and if it were
then the range of the numeral will probably deter-
mine the case of the noun in the resulting NP. Thus
the type of the determiner category should include a
Size field which is taken directly from the size of
the number if that determiner is a numeral:

lincat Det = {
s : Species => Gender => Case => Str ;
d : State;
n : Size

} ;

param Species = NoHum | Hum ;

If the determiner is not a numeral, then this will
be denoted by n = None.

The first determiner-noun modification we will
introduce is the determiner’s gender. If we don’t

consider numerals, then a determiner’s gender is di-
rectly deduced from that of the noun. But, as we saw
in the rules for Arabic counted nouns, if the numeral
was in the range 3-10 or 13-19 (Size is ThreeTen
or Teen), then the numeral will show gender po-
larity instead of agreement. The rest of the cases
continue to show agreement. This is described in
detGender:
oper
detGender : Gender -> Size -> Gender =
\g,s ->
case s of {
ThreeTen | Teen => genPolarity ! g;
_ => g

};

The arguments are the gender of the noun and the
size of the determiner. The correct gender of the de-
terminer is calculated after taking cases of the Size.

Again, if we were not to consider numerals, the
number in which we should inflect the common
noun (singular, dual, or plural) would be directly de-
termined by the number of the determiner. Now with
the consideration of numerals and their special rules
that dictate the number of the counted noun, we have
to specify a correcting function:
oper sizeToNumber : Size -> Number = \s ->
case s of {
ThreeTen | None => Pl;
Two => Dl;
_ => Sg

} ;

param Number = Sg | Dl | Pl;

This function converts from the Size of the de-
terminer to a number in which the noun should be
inflected in. As the rules of Arabic numerals spec-
ify, only the 3-10 numeral range dictate a noun in
the plural form. Apart from the dual, the remaining
numeral ranges take a singular noun.

The last way that a numeral will affect the noun it
counts is by specifying its case as we have already
seen in the rules. Without considering numerals,
the case of the noun would always be determined
by its grammatical role in the sentence. Again, this
changes with the introduction of numerals. We write
now a function that takes the case from the sentence,
along with the size and state of the determiner, and
modifies the case if required:
oper
nounCase : Case -> Size -> State -> Case =
\c,size,s ->

14

case <size,s> of {
<Teen,_> => Acc;
<NonTeen,_> => Acc;
<ThreeTen,_> => Gen;
<Hundreds,_> => Gen;
<_,Const> => Gen;
_ => c

};

Numbers from 11 to 99 dictate the accusative case
on the nouns they count, numbers from 3 to 10
and multiples of hundred dictate the genitive case
of the nouns they count, and the remaining numbers
(1 and 2) don’t change the case determined by the
context. The remaining case of State = Const
takes care of the id. āfah genitive constructions.

Thus, after applying all the “correction” functions
above, we get the following implementation of the
noun determination rule:
lin DetCN det cn =
let number = sizeToNumber det.n in {
s = \\c =>
det.s ! cn.h ! (detGender cn.g det.n) ! c
++ cn.s ! number ! (nounState det.d number)

! (nounCase c det.n det.d);
a = agrP3 cn.h cn.g number
};

oper agrP3 : Species -> Gender -> Number
-> PerGenNum=

\h,g,n ->
case <h,n> of {
<NoHum,Pl> => Per3 Fem Sg;
_ => Per3 g n

};

The agrP3 helping function tests for the case
when the species and number are nonhuman and
plural. This case is treated in agreement as the fem-
inine singular.

4 Related Work

A large-scale implementation of the Arabic mor-
phological system is the Xerox Arabic Morphologi-
cal Analyzer and Generator (Beesley and Karttunen,
2000; Beesley, 2001). This system is developed us-
ing only the Xerox Finite State Technology tools
(Beesley and Karttunen, 2003) from which an Ara-
bic Finite State Lexical Transducer is written. A re-
search version is available for online testing, and an
expanded and updated version can be obtained with
a commercial license. Another notable computa-
tional model of the Arabic morphology is Tim Buck-
walter’s Arabic Morphological Analyzer (Buckwal-
ter, 2004b,a). Buckwalter’s analyzer parses Arabic

words and gives all their possible morphological in-
terpretations, each solution having a unique lemma
ID, different word constituents, the part-of-speech,
and English glosses.

Other works that also use functional languages for
the treatment of Arabic include a morphology sys-
tem by Smrž (in prep.). This work is based on Func-
tional Morphology (Forsberg and Ranta, 2004), a
methodology for building morphological systems in
the Haskell programming language. Our treatment
of Arabic shares similarities with that of Functional
Morphology. Both approaches use typed languages,
making use of finite algebraic datatypes to define
linguistic categories. Both languages are functional,
so the approaches use functions to realize linguis-
tic abstractions. A large-scale implementation of
this approach, in which a typed functional program-
ming language is used to build a morphology, is
Huet’s Sanskrit dictionary and morphological sys-
tem (Huet, 2006) upon which the Zen computational
linguistics toolkit is based (Huet, 2005).

Of the available works in Arabic syntax, we men-
tion El-Shishiny (1990) who developed a formal de-
scription of Arabic syntax in Definite Clause Gram-
mar. We also make note of the work in Othman
et al. (2003), where the authors describe a parser
they wrote in Prolog to parse and disambiguate the
Arabic sentence. Shaalan (2005) builds on this work
to develop a syntax-based grammar checker for Ara-
bic called Arabic GramCheck.

5 Discussion

Our implementation of the Arabic numerals covers
all natural numbers in the range 1-999,999. This
was accomplished by implementing only a few func-
tions, thanks to the repetitive way in which numer-
als are composed to form larger numerals. As for
performance, Arabic grammars are slower to com-
pile than comparable GF grammars of other lan-
guages, partly because of the additional complexity
of Arabic and partly because of the general way in
which our lexicon is specified. Our implementation
stresses more on elegance and generality rather than
efficiency, thus more work needs to be done on the
latter.

15

6 Conclusion

We discussed in this paper the details of implement-
ing the Arabic numeral system in GF. We motivated
our work by taking an example that shows the value
of having the necessary language rules implemented
in a reusable fashion. We built up our implementa-
tion towards a single language-independent rule that
a user can call to access our system. We show how
the grammar formalism we use in our implementa-
tion parallels the way linguists think.

Acknowledgments

Most of the work was done at Chalmers Univer-
sity of Technology. Thanks to Prof. Aarne Ranta
for supervising this work and providing constant
help. Also thanks to Björn Bringert, Harald Ham-
marström, and Otakar Smrž for giving valuable
comments.

References

Kenneth Beesley. Finite-State Morphological Anal-
ysis and Generation of Arabic at Xerox Research:
Status and Plans in 2001. In Workshop Proceed-
ings on Arabic Language Processing: Status and
Prospects, pages 1–8, Toulouse, 2001. ACL.

Kenneth Beesley and Lauri Karttunen. Finite-state
non-concatenative morphotactics. In Proceedings
of the Fifth Workshop of the ACL SIG in Compu-
tational Phonology, pages 1–12, 2000.

Kenneth R. Beesley and Lauri Karttunen. Finite
State Morphology. CSLI Studies in Computa-
tional Linguistics. CSLI Publications, Stanford,
California, 2003.

Tim Buckwalter. Arabic transliteration, 2003. http:
//www.qamus.org/transliteration.htm.

Tim Buckwalter. Issues in Arabic Orthography
and Morphology Analysis. In Proceedings of
the COLING 2004 Workshop on Computational
Approaches to Arabic Script-based Languages,
pages 31–34, 2004a.

Tim Buckwalter. Buckwalter Arabic Morphologi-
cal Analyzer Version 2.0. LDC catalog number
LDC2004L02, ISBN 1-58563-324-0, 2004b.

Ali Dada and Aarne Ranta. Implementing an Open
Source Arabic Resource Grammar in GF. In

Mustafa Mughazy, editor, Perspectives on Arabic
Linguistics, volume XX. John Benjamins, 2007.

Hisham El-Shishiny. A formal description of Arabic
syntax in definite clause grammar. In Proceed-
ings of the 13th Conference on Computational
Linguistics, pages 345–347. ACL, 1990.

Markus Forsberg and Aarne Ranta. Functional Mor-
phology. In Proceedings of the Ninth ACM SIG-
PLAN International Conference on Functional
Programming, ICFP 2004, pages 213–223. ACM
Press, 2004.

Harald Hammarström and Aarne Ranta. Cardinal
Numerals Revisited in GF. In Workshop on Nu-
merals in the World’s Languages, Leipzig, Ger-
many, 2004. Dept. of Linguistics Max Planck In-
stitute for Evolutionary Anthropology.

Gérard Huet. A Functional Toolkit for Morphologi-
cal and Phonological Processing, Application to a
Sanskrit Tagger. Journal of Functional Program-
ming, 15:573–614, 2005.

Gérard Huet. Sanskrit Site, 2006. http://

sanskrit.inria.fr/.

D. H. Hymes. Lexicostatistics so far. Current An-
thropology, 1:3–44, 1960.

Janna Khegai and Aarne Ranta. Building and Using
a Russian Resource Grammar in GF. In Intelli-
gent Text Processing and Computational Linguis-
tics (CICLing-2004), pages 38–41, Korea, 2004.

E. Othman, K. Shaalan, and A. Rafea. A Chart
Parser for Analyzing Modern Standard Arabic
Sentence. In Proceedings of the MT Summit
IX Workshop on Machine Translation for Semitic
Languages, pages 37–44, 2003.

Aarne Ranta. Grammatical Framework: A Type-
theoretical Grammar Formalism. Journal of
Functional Programming, 14:145–189, 2004.

Jan Retsö. State, Determination and Definiteness in
Arabic: A Reconsideration. Orientalia Suecana,
33–35:341–346, 1984.

Khaled F. Shaalan. Arabic GramCheck: a grammar
checker for Arabic: Research Articles. Software -
Pracice and Experience, 35(7):643–665, 2005.

Otakar Smrž. Functional Arabic Morphology. For-
mal System and Implementation. PhD thesis,
Charles University in Prague, in prep.

16

Proceedings of the 5th Workshop on Important Unresolved Matters, pages 17–24,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Person Name Entity Recognition for Arabic

Khaled Shaalan

Institute of Informatics

The British University in Dubai

P O Box 502216, Dubai, UAE

Khaled.shaalan@buid.ac.ae

Hafsa Raza

Institute of Informatics

The British University in Dubai

P O Box 502216, Dubai, UAE

hafsa.raza@gmail.com

Abstract

Named entity recognition (NER) is nowa-
days an important task, which is responsi-
ble for the identification of proper names in
text and their classification as different
types of named entity such as people, loca-
tions, and organizations. In this paper, we
present our attempt at the recognition and
extraction of the most important proper
name entity, that is, the person name, for
the Arabic language. We developed the
system, Person Name Entity Recognition
for Arabic (PERA), using a rule-based ap-
proach. The system consists of a lexicon, in
the form of gazetteer name lists, and a
grammar, in the form of regular expres-
sions, which are responsible for recogniz-
ing person name entities. The PERA sys-
tem is evaluated using a corpus that is
tagged in a semi-automated way. The sys-
tem performance results achieved were sat-
isfactory and confirm to the targets set
forth for the precision, recall, and f-
measure.

1 Introduction

The recognition and classification of proper names
in text (e.g. persons, locations, and organizations)
has recently become considered of major impor-
tance in Natural Language Processing (NLP) as it
plays a significant role in various types of NLP
applications, especially in Information Extraction,
Information Retrieval, Machine Translation, Syn-

tactic Parsing/Chunking, Question-Answering,
among others. The valuable information in text is
usually located around proper names, to collect this
information it should be found first (Abuleil, 2004;
Chinchor, 1998). In our presentation, we will con-
centrate on the role of NER in Information Extrac-
tion (IE). IE is the NLP task that retrieves relevant
information from unstructured texts and produces
as a result a structured set of data.

This paper describes work on recognizing and
extracting the most important entities, that is, per-
son names for the Arabic language. We have
adopted the rule-based approach using linguistic
grammar-based techniques to develop PERA. This
approach provides flexibility and adaptability fea-
tures in our system and it can be easily configured
to work with different languages, NLP applications,
and domains. In order to determine the best rules
for recognition of person names, various Arabic
text corpora were analyzed. Phrases containing
person names were retrieved, the underlying pat-
tern was learned and person indicators such as ti-
tles were identified. Apart from this, person names
were extracted from the available corpora and
other resources to build up a lexicon, in the form of
gazetteer name lists, or gazetteer for short. The
various Arabic naming conventions and the person
indicators identified helped in deriving fine rules
that gave high-quality recognition of person names
in Arabic text. The recognition was done in two
cycles using first the gazetteer and then the gram-
mar rules. The PERA system is evaluated using a
reference corpus that is tagged with person names
in a semi-automated way. The achieved system
performance results were satisfactory and confirm

17

to the targets set forth for the precision, recall, and
f-measure.

The paper is structured as follows. Section 2
presents the related work. Section 3 describes the
naming conventions of person names used in Ara-
bic language. Section 4 presents methods of data
collection used. Section 5 explains the system ar-
chitecture and implementation. Section 6 presents
the experiment performed to evaluate the system
and finally Section 7 concludes the paper,
summarizes our achievements, and highlights our
plans for future work..

Larkey et al. (2003) have conducted a study that
showed the importance of the proper names com-
ponent in cross language tasks involving searching,
tracking, retrieving, or extracting information. In
particular, they have concluded that a combination
of static proper name (English-Arabic) translation
plus transliteration provides a successful solution. 2 Related Work

As in other NLP techniques, there are two main
approaches to NER (Toral, 2005). One is based on
linguistic knowledge, in particular grammar rules
and hence called rule-based, while the other is
based on machine learning techniques. The re-
quired resources for the knowledge approach are
usually gazetteers and rules whereas the learning
approach needs an annotated (tagged) corpus. The
linguistic knowledge-based model achieve better
results in specific domains, as the gazetteers can be
adapted very precisely, and it is able to detect
complex entities, as the rules can be tailored to
meet nearly any requirement. However, if we deal
with an unrestricted domain, it is better to choose
the machine learning approach, as it would be inef-
ficient to acquire and/or derive rules and gazetteers
in this case.

Name identification has been worked on quite
intensively for the past few years, and has been
incorporated into several products. Many research-
ers have attacked this problem in a variety of lan-
guages but only a few limited researches have fo-
cused on NER for Arabic text. This is due to the
lack of resources for Arabic NE and the limited
amount of progress made in Arabic NLP in gen-
eral.

Maloney and Niv (1998) developed TAGARAB
an Arabic name recognizer that uses a pattern-
recognition engine integrated with morphological
analysis. The role of the morphological analyzer is
to decide where a name ends and the non-name
context begins. The decision depends on the part-
of-speech of the Arabic word and/or its inflections.

Abuleil (2004) presented a technique to extract
proper names from text to build a database of
names along with their classification that can be

used in question-answering systems. This work
was done in three main stages: 1) marking the
phrases that might include names, 2) building up
graphs to represent the words in these phrases and
the relationships between them, and 3) applying
rules to generate the names, classify each of them,
and saves them in a database.

Pouliquen et al. (2005) developed a tool for mul-
tilingual person name recognition that focuses on
the "Who" part of the analysis of large news text.
As multilingual NER is concerned, the translitera-
tion of the NE has included alternative spelling
variants where the origin language of the name is
usually not known. Several variants could also be
found in the same language.

Samy et al. (2005) has used parallel corpora in
Spanish, and Arabic and an NE tagger in Spanish
to tag the names in the Arabic corpus. For each
sentence pair aligned together, they use a simple
mapping scheme to transliterate all the words in
the Arabic sentence and return those matching with
NEs in the Spanish sentence as the NEs in Arabic.
While they report high precision and recall, it
should be noted that their approach is applicable
only when a parallel corpus is available.

Zitouni et al. (2005) has adopted a statistical ap-
proach for the entity detection and recognition
(EDR). In this work, a mention can be either
named (e.g. John Mayor), nominal (the president)
or pronominal (she, it). An entity is the aggregate
of all the mentions (of any level) which refer to
one conceptual entity. This extended definition of
the entity has proved the suitability of the ap-
proach.

3 Components of an Arabic Full Name

Arabic has well-defined naming practices. The
Arabic name elements may be divided into five
main categories, Ibn Auda (2003):
1. An ism (pronounced IZM, as the final syllable

in the word dogmatism), a personal, proper
name given shortly after birth, i.e. the given
name. Examples of such names are Muham-

18

mad [Mohammed], Musa [Moses], Ibrahim
[Abraham].

2. A kunya (pronounced COON-yah), an honor-
ific name or surname, as the father or mother
of someone; e.g., abu Da'ud [the father of
David], umm Salim [the mother of Salim]. It is
meant as a prefix of respect or reverence. Mar-
ried persons (especially married ladies) are, as
a general rule, simply called by their kunya
(abu or umm + the name of their first-born
child). When using a person's full name, the
kunya precedes the personal (given) name: Abu
Yusuf Hasan [the father of Joseph, Hasan],
Umm Ja’far Aminah [the mother of Ja’far,
Aminah].

3. By a nasab (pronounced NAH-sahb), a pedi-
gree, as the son or daughter of someone; e.g.,
ibn 'Umar [the son of Omar], bint 'Abbas [the
daughter of Abbas]. The nasab follows the ism
in usage: Hasan ibn Faraj [Hasan the son of
Faraj], Sumayya bint Khubbat [Sumayya the
daughter of Khubbat]. Many historical person-
ages are more familiar to us by their nasab
than by their ism: e.g., the historian ibn
Khaldun, the traveler ibn Battuta, and the phi-
losopher ibn Sina [Avicenna].

 Nasabs may be extended for several genera-
tions, as may be noted in the example below
containing two generations nasab:

Abu al-Qasim Mansur ibn al-Zabriqan ibn
Salamah al-Namari

4. A laqab (pronounced LAH-kahb), a combina-
tion of words into a byname or epithet, usually
religious, relating to nature, a descriptive, or of
some admirable quality the person had (or
would like to have); e.g., al-Rashid [the
Rightly-guided], al-Fadl [the Prominent].
Laqabs follow the ism: Harun al-Rashid
[Aaron the Rightly-guided].

5. A nisba (pronounced NISS-bah), a name de-
rived from a person's: trade or profession,
place of residence or birth, religious affiliation,
among others; e.g. al-Hallaj [the dresser of
cotton], Al Msri [The Egyptian], Islami [Is-
lamic]. Nisbas follow the ism or, if the name
contains a nasab (of however many genera-
tions), generally follow the nasab.

4 Data Collection

The development of the system PERA depends on
collecting dictionaries of proper nouns and their
related indicators. Techniques used for acquiring
such data to build the dictionaries include:
1. Automatic collection of person names from

annotated corpus. The person entities in the
ACE1 and Treebank corpus2 were recognized
and extracted using regular expression patterns
coded within Python scripts. Python is a strong
string processing language and widely used in
developing NLP applications and tools.

2. Identification of person indicators. Apart from
extracting the person names, these corpora
were used also to extract noun phrases contain-
ing the person names. The surrounding se-
quence of words around person names was
analyzed to identify indicators of person
names. A dictionary of these indicators was
formed which represented contextual cues of
person names.

3. Name Database provided by government or-
ganization. The person name dictionary was
also build from names collected from some or-
ganizations including Immigration Depart-
ments, Educational bodies, and Brokerage
companies.

4. Internet Resources. Names were retrieved fur-
ther from various websites3 containing lists of
Arabic names. Some of these names are Ro-
manized (written using the Latin alphabet) and
had to be transliterated from English to Arabic.
This was done using the online translation
software ‘Tarjim’ provided by Sakhr Software
Company. Notice that the variations in Roman-
ized Arabic due to the lack of one to one corre-
spondence between Arabic letters and Roman
letters have also been reflected in the translit-
eration, in reverse, from Romanized Arabic to
Arabic Script.
The raw data received had to be further proc-

essed to make it suitable for building gazetteers to

1 ACE reference: http://projects.ldc.upenn.edu/ace/
2 Treebank Corpus reference:
http://www.ircs.upenn.edu/arabic/
Both software are available to BUiD under license agreement.
3 Web sites include:
http://en.wikipedia.org/wiki/List_of_Arabic_names ,
http://www.islam4you.info/contents/names/fa.php, and
http://www.mybabynamessite.com/list.php?letter=a

19

be incorporated within the system. Some of the
automated preprocessing performed on these data
includes:

 Removing extra whitespaces between first
and last names, or beginning and end of
names for the efficient processing of the
main gazetteer (dictionary) of complete
person names.

 Creating separate dictionaries (i.e. first,
last and middle names) without redun-
dancy because the full names had to be
parsed. The extraction of each of these in-
dividual components from full person
names was based on Python code and
common sense.

4.1 Typographic Variants

In order to be able to recognize variant Arabic
name entities, we added extra expressions in rules
and lexicon entries which lead to recognizing
named entities and their typographic variants. Ex-
amples of typographic variants include:

• The drop of hamza initially, medially, and
finally (e.g. احسان vs ٕحسان - [Ehessan]) ا

موسى

خليفة ال آل

• Two dots inserted on aleph maqsura, and
two dots removed from yaa (e.g. موسي vs

-[Mousa])
• Dropping the madda from the aleph (e.g.

 vs خليفة - [Al Khalifa])
• Hamza insertion below vs. above aleph

(e.g. أسراء vs إسراء-[Essraa])
• Two dots inserted on final haa, and two

dots removed from taa marbouta (e.g. ه فاطم
vs فاطمة-[Fatma])

• Diacritics: partial, full, or none. In the cur-
rent version we remove diacritics.

• Typing hamza followed by aleph maqsura
separately vs. together (e.g. انىء انئ vs ه -ه
[Hani]).

4.2 Dictionaries

The following dictionaries (gazetteers) are derived
using the aforementioned data collection tech-
niques. A total of 472617 entries were collected.

• A dictionary of full person names (263598
entries)

• A dictionary of first names (78956 entries)
• A dictionary of middle names (67595 en-

tries)
• A dictionary of last names (33517 entries)

• A dictionary of job titles (19245 entries)
• A dictionary of honorifics used before

names (173 entries)
• A dictionary of country names including

variations in spellings (923 entries)
• A dictionary of nick names and laqabs

(8169 entries)
• A dictionary of person titles (20 entries)
• a dictionary of words and phrases that act

as person indicators such as ‘ شرف الم
-421 en) (The sports supervisor) ’الرياضي
tries)

5 System Architecture and Implementa-
tion

Figure 1 shows the architecture of the PERA sys-
tem. Our system has two major components: the
gazetteers and the Grammar. A filtration mecha-
nism is employed that enables revision capabilities
in the system.

Figure 1: Architecture of the System

5.1 Gazetteers

The main gazetteer (dictionary) of complete person
names plays the role of a fixed static dictionary of
full person names. It recognizes person name enti-

Dictionaries

Acquisition from ACE
& Treebank corpus

Arabic
script

Internet Resources

Names Databases

Annotated
Text

Rule-based System
 Whitelist
 Dictionary

 Blacklist
 Dictionary

Text

(3) Filter

(2) Grammar
Configuration

(1) Gazetteer

Data Collection

20

ties by being applied as a Whitelist mechanism that
accepts matches which are reported as a result of
an intersection between the dictionary and the in-
put text. A Whitelist is a list of strings that must be
recognized independent of the rules. It contains
entries in the following format:
 Abdulrahman Qasim|عبدالرحمن قاسم الشيراوى
Mohammed Alshirawi

Since the system being developed can be incor-

porated in various applications independent of lan-
guage constraints, the English transliterations of
the Arabic names are included in the dictionary as
meta data.

5.2 Grammar

The grammar performs recognition and extraction
of person entities from the input text based on
combinations of regular expression patterns. This
rule definition is particularly challenging for the
Arabic language due to reasons such as:

• Arabic writing systems do not exhibit dif-
ferences in orthographic case, such as ini-
tial capitalized letters to indicate the pres-
ence of a proper name. This lack of spe-
cific internal structure in the Arabic lan-
guage poses great challenge for recogniz-
ing person entities.

• Arabic is a highly inflected language
which entails a requirement of understand-
ing of its morphological nature. The in-
flected Arabic word maybe composed of
prefixes such as prepositions and suffixes
such as pronouns. These affixes need to be
addressed to ensure recognition of person
names alone.

Due to the above complexities in the Arabic
language a deep contextual analysis of various
Arabic scripts was performed using Python scripts
to build grammar rules based on keywords or trig-
ger words forming a window around a person
name.

An Example Rule:
The following rule recognizes a person name com-
posed of a first name followed by optional middle
and last names based on a preceding person indica-
tor pattern.

Description:
• The names should be verified against their

respective dictionaries (i.e. first, middle,
and last names).

• The indicator pattern is composed of an
honorific such as "الملك" [The king] fol-
lowed by an optional Nisba derived from a
location name such as "الأردني" [Jordanian].
These act as trigger words to recognize the
person name and should be verified against
their respective dictionaries of honorific
and locations.

• The rule also matches an optional ordinal
number appearing at the end of some
names such as "الثاني" [II].

• The Arabic suffix letters "ية" and "ي" used
in the above pattern parses the inflections
attached to Nisba derived from locations
that are commonly found in Arabic text.

Implementation:

Writing conventions:

(($honorific$ws*($location
(\x{064A}|\x{0629})*$ws*)?)+
$firsts_v(($ws*$middle_vv)|
($ws*$lasts_v))?$ws*($number)?)

• $: reference to a slave schema.
• Firsts_v: dictionary of first names.
• Middle_vv: dictionary of middle names.
• Lasts_v: dictionary of last names.
• Ws: whitespace.
• Honorific: dictionary of honorifics ap-

pearing before names.
• Location: dictionary of locations.
• Number: Arabic ordinal numbers.

Example:
The following name would be recognized by the
above rule:

 عبد االله الثانيالأردنيالملك
[The Jordanian king Abdullah II]

Apart from contextual cues, the typical Arabic

naming elements were used to formulate rules such
as nasab, kunya, etc. Thereby the rules resulted in a
good control over critical instances by recognizing
complex entities. ((honorfic+ws(location(ي|ية)+ws)?)

+firsts_v((ws+middle_vv)|
(ws+lasts_v))?ws+(number)?)

21

5.3 Filter

A filtration mechanism is used in the form of a
Blacklist (rejecter) within the grammar configura-
tion to filter matches that appear after person titles
but are invalid person names. In the following ex-
ample:

 ‘ الامين العام ارجية العراقيوزير الخ ’ [The Iraqi Foreign
Minister the Secretary-General]

The sequence of words ‘وزير الخارجية العراقي’ [The

Iraqi Foreign Minister] acts as a person indicator
and the word immediately following it is usually a
valid person name. However, in this example, the
words following the person indicator that is, ‘ الامين
 is not a valid person (the Secretary-General) ’العام
name. Hence the role of the blacklist comes into
play by rejecting the incorrect matches recognized
by certain rules.

5.4 The Implementation Platform

The PERA system was implemented through in-
corporation into the FAST ESP framework,
(FAST,_). FAST ESP is an integrated software
application that provides searching and filtering
services. It is a distributed system that enables in-
formation retrieval from any type of information,
combining real-time searching, advanced linguis-
tics, and a variety of content access options into a
modular, scalable product suite.

The document processing stage within FAST
ESP system provides support for Entity Extraction.
PERA is implemented through the customizable
document processing pipelines within FAST ESP,
which consists of multiple document processing
stages. A new search pipeline was created and
stages containing the grammar configuration and
gazetteers were added to this pipeline. Figure 2
indicates the functionality of the PERA system
incorporated in the pipeline within FAST ESP for
recognizing and tagging person entity in text.

6 The Experiment

In evaluating the PERA system we follow the
standard practice in the IE field of comparing sys-
tem output against a reference corpus and measur-
ing the performance of the Arabic person named
entity.

Figure 2: PERA incorporated into FAST ESP pipe-
line to produce Tagged text

6.1 Reference Corpus

The text within the ACE and Treebank corpus was
used for creating the entity tagged reference corpus
for evaluating PERA. The text was chosen ran-
domly from files with ‘sgm’ extension (containing
the Arabic script) within ACE & Treebank corpus.
The tagging was automatically performed with a
Python script and further a post manual check was
performed to correct any invalid tags or identify
the missing ones. The end product was an anno-
tated text corpus in the xml format with the UTF-8
encoding. This was divided into a 46 test sets and
each evaluated individually with hurricane. The
total size of the reference corpus build is around
4MB. The size and content of the corpus is such
that it contains a representative amount of occur-
rences of the person entity.

6.2 Evaluation Method

We have adopted the evaluation measures that are
standard in the IE community (De Sitter et al.,
2004), to evaluate and compare the results (preci-
sion, recall and F-measures):

correct entities recognized
Precision= total entities recognized

PIPELINE

Politics of Ukraine
In July 1994, Leonid Kuchma was elected as Ukraine's second president in
free and fair elections. Kuchma was reelected in November 1999 to
another five-year term, with 56 percent of the vote. International observers
criticized aspects of the election, especially slanted media coverage;
however, the outcome of the vote was not called into question. In March
2002, Ukraine held its most recent parliamentary elections, which were
characterized by the Organization for Security and Cooperation in Europe
(OSCE) as flawed, but an improvement over the 1998 elections. The pro-
presidential For a United Ukraine bloc won the largest number of seats,
followed by the reformist Our Ukraine bloc of former Prime Minister Viktor
Yushchenko, and the Communist Party. There are 450 seats in parliament,
with half chosen from party lists by proportional vote and half from individ-
ual constituencies

Person Person
Person

22

correct entities recognized
Recall= total correct entities

2 x recall x precision
F-measure= recall + precision

Precision indicates how many of the extracted
entities are correct. Recall indicates how many of
the entities that should have been found, are effec-
tively extracted. Usually there is a trade off of re-
call against precision. Therefore, often an average
accuracy is reported in the form of the F-measure,
a harmonic mean which weights recall and preci-
sion equally. It was introduced to provide a single
figure to compare different systems’ performances.
The PERA system implemented within the FAST
ESP pipeline was evaluated using an Information
Extraction testing tool called ‘hurricane’ that ap-
plies these standard measures.

6.3 Results

Figure 3 is a snapshot of the evaluation performed
by hurricane in terms of the above mentioned
measure.

Figure 3: An Extraction from Hurricane Evaluation

The extraction quality of the pipeline created for
the person name extractor confirms to the initial
target set. The required degree of precision (80%)
and recall (70%), for the Person name extractor,
has been achieved with the hurricane evaluation.
Some of the entries within the gazetteers were ex-
tracted from the same corpus used also for creating
the reference corpus for evaluation. However, the
results achieved are accurate since they indicated
recognition of person entities not included in the

gazetteers but being recognized by the grammar
rules.

Table1 indicates the performance figures pro-
duced by 6 out of the 46 sets used for Hurricane
evaluation.

The average Precision and Recall for the total 46
sets in recognizing person names is 85.5% and
89%, respectively. And the average f-measure is
87.5%.

Test Set Precision Recall F-measure
Treebank set 1 91.2 90.3 90.7
Treebank set 2 94 96.3 95.1
Treebank set 3 84.2 84.7 84.4
ACE set 1 89.6 96.8 93.1
ACE set 2 88.4 94.2 91.2
ACE set 3 86.7 89 87.8
Table 1: Evaluation result for 6 test sets.

The missing accuracy can be overcome in the
following ways:

• Expanding the dictionary of person
names further.

• More Arabic text/corpus can be analyzed
to identify strings that act as person indi-
cators.

• Reducing negative effects on evaluation
results (true positive being treated as
false positives) caused due to incomplete
annotation of the test corpus. The refer-
ence corpus can be further fine tuned to
tag all person entities completely.

• Enhancing quality of transliterated
names used.

• Using Arabic text with error free spell-
ing.

• Including all possible spelling variations
used for names in Arabic written text.

7 Conclusion and Future Work

The work done in this project is an attempt to
broaden the coverage for entity extraction by in-
corporating the Arabic language, thereby paving
the path towards enabling search solutions to the
Arabian market.

Various data collection techniques were used for
acquiring gazetteer name lists. The rule-based ap-
proach employed with great linguistic expertise
provided a successful implementation of the PERA
system. Rules are capable of recognizing inflected

23

forms by breaking them down into stems and af-
fixes. A filtration mechanism is employed in the
form of a rejecter within the grammar configura-
tion that helps in deciding where a name ends and
the non-name context begins. We have evaluated
our system performance using a reference corpus
that is tagged in a semi-automated way. The aver-
age Precision and Recall achieved for recognizing
person names was 85.5% and 89%, respectively.
Suggestions for improving the system performance
were provided.

This work is part of a new system for Arabic
NER. It has several ongoing activities, all con-
cerned with extending our research to recognize
and categorize other entity Arabic named entities
such as locations, organization.

Acknowledgement
This work is funded by the "Named Entity Rec-

ognition for Arabic" joint project between The
British Univ. in Duabi, Dubai, UAE and FAST
search & Transfer Inc., Oslo, Norway. We thank
the FAST team. In particular, we would like to
thank Dr. Petra Maier and Dr. Jürgen Oesterle for
their technical support.

Any opinions, findings and conclusions or rec-
ommendations expressed in this material are the
authors, and do not necessarily reflect those of the
sponsor.

References
Saleem Abuleil 2004. Extracting Names from Arabic

Text for Question-Answering Systems, In Proceed-
ings of Coupling approaches, coupling media and
coupling languages for information retrieval (RIAO
2004), Avignon, France. pp. 638- 647.

Da'ud Ibn Auda. 2003. Period Arabic Names and Nam-
ing Practices, In Proceedings of the Known World
Heraldic Symposium (SCA: KWHS Proceedings,
2003), pp. 42-56, St. Louis, USA.

FAST ESP
http://www.fastsearch.com/thesolution.aspx?m=376

Nancy Chinchor 1998. Overview of MUC-7. In Pro-
ceedings of the Seventh Message Understanding
Conference (MUC-7). Available at:
http://www.itl.nist.gov/iaui/894.02/related_projects/
muc/

Leah S. Larkey, Nasreen Abdul Jaleel, Margaret Con-
nell. 2003. What's in a Name?: Proper Names in
Arabic Cross Language Information Retrieval CIIR

Technical Report IR-278. Available at
http://ciir.cs.umass.edu/pubfiles/ir-278.pdf

John Maloney and Michael Niv. 1998. TAGARAB: A
Fast, Accurate Arabic Name Recogniser Using High
Precision Morphological Analysis. In Proceedings of
the Workshop on Computational Approaches to Se-
mitic Languages. Montreal, Canada. August, pp. 8-
15.

Bruno Pouliquen, Ralf Steinberger, Camelia Ignat, Irina
Temnikova, Anna Widiger, Wajdi Zaghouani, and
Jan Zizka. 2005. Multilingual person name recogni-
tion and transliteration. Journal CORELA-Cognition,
Représentation, Langage, Vol. 2, ISSN 1638-5748.
Available at http://edel.univ-poitiers.fr/corela/

Doaa Samy, Antonio Moreno and Jose M. Guirao. 2005.
A Proposal for an Arabic Named Entity Tagger Lev-
eraging a Parallel Corpus, International Conference
RANLP, Borovets, Bulgaria, pp. 459-465.

An De Sitter, Toon Calders, and Walter Daelemans.
2004. A Formal Framework for Evaluation of Infor-
mation Extraction, University of Antwerp, Dept. of
Mathematics and Computer Science, Technical Re-
port, TR 2004-0. Available at
http://www.cnts.ua.ac.be/Publications/2004/DCD04

Antonio Toral. 2005. DRAMNERI: a free knowledge
based tool to Named Entity Recognition. In Proceed-
ings of the 1st Free Software Technologies Confer-
ence. A Coruña, Spain. pp. 27-32.

Imed Zitouni, Jeffrey Sorensen, Xiaoqiang Luo and
Radu Florian, 2005 The Impact of Morphological
Stemming on Arabic Mention Detection and
Coreference Resolution, In the Proceedings of the
ACL workshop on Computational Approaches to Se-
mitic Languages, 43rd Annual Meeting of the Asso-
ciation of Computational Linguistics (ACL05). June,
Ann Arbor, Michigan, USA, pp. 63-70.

24

Proceedings of the 5th Workshop on Important Unresolved Matters, pages 25–32,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Arabic Cross-Document Person Name Normalization

Walid Magdy, Kareem Darwish, Ossama Emam, and Hany Hassan

Human Language Technologies Group
IBM Cairo Technology Development Center

P.O. Box 166 El-Ahram, Giza, Egypt
{wmagdy, darwishk, emam, hanyh}@eg.ibm.com

Abstract

This paper presents a machine learning
approach based on an SVM classifier
coupled with preprocessing rules for cross-
document named entity normalization. The
classifier uses lexical, orthographic,
phonetic, and morphological features. The
process involves disambiguating different
entities with shared name mentions and
normalizing identical entities with different
name mentions. In evaluating the quality of
the clusters, the reported approach achieves
a cluster F-measure of 0.93. The approach
is significantly better than the two baseline
approaches in which none of the entities are
normalized or entities with exact name
mentions are normalized. The two baseline
approaches achieve cluster F-measures of
0.62 and 0.74 respectively. The classifier
properly normalizes the vast majority of
entities that are misnormalized by the
baseline system.

1. Introduction:

Much recent attention has focused on the
extraction of salient information from unstructured
text. One of the enabling technologies for
information extraction is Named Entity
Recognition (NER), which is concerned with
identifying the names of persons, organizations,
locations, expressions of times, quantities, ... etc.
(Chinchor, 1999; Maynard et al., 2001; Sekine,
2004; Joachims, 2002). The NER task is
challenging due to the ambiguity of natural
language and to the lack of uniformity in writing

styles and vocabulary used across documents
(Solorio, 2004).

Beyond NER, considerable work has focused
on the tracking and normalization of entities that
could be mentioned using different names (e.g.
George Bush, Bush) or nominals (e.g. the
president, Mr., the son) (Florian et al., 2004).
Most of the named entity tracking work has
focused on intra-document normalization with
very limited work on cross-documents
normalization.

Recognizing and tracking entities of type
“Person Name” are particularly important for
information extraction. Yet they pose interesting
challenges that require special attention. The
problems can result from:
1. A Person’s name having many variant spellings

(especially when it is transliterated into a
foreign language). These variations are
typically limited in the same document, but are
very common across different documents from
different sources (e.g. Mahmoud Abbas =
Mahmod Abas, Mohamed El-Baradei =

Muhammad AlBaradey … etc).
2. A person having more than one name (e.g.
Mahmoud Abbas = Abu Mazen).

3. Some names having very similar or identical
names but refer to completely different persons
(George H. W. Bush ≠ George W. Bush).

4. Single token names (e.g. Bill Clinton = Clinton
≠ Hillary Clinton).

This paper will focus on Arabic cross-document
normalization of named entities of type “person
name,” which would involve resolving the
aforementioned problems. As illustrated in Figure
1, the task involves normalizing a set of person
entities into a set of classes each of which is

25

formed of at least one entity. For N input entities,
the output of normalization process will be M
classes, where M ≤ N. Each class would refer to
only one person and each class would contain all
entities referring to that person.

For this work, intra-document normalization is
assumed and an entity refers to a normalized set of
name mentions and nominals referring to a single
person in a single document. Florian et al. (2004)
were kind enough to provide the authors access to
an updated version of their state-of-the-art Named
Entity Recognition and Tracking (NERT) system,
which achieves an F-measure of 0.77 for NER,
and an F-measure of 0.88 for intra-document
normalization assuming perfect NER. Although
the NERT systems is efficient for relatively short
documents, it is computational impractical for
large documents, which precludes using the NERT
system for cross-document normalization through
combining the documents into one large
document. The main challenges of this work stem
from large variations in the spelling of
transliterated foreign names and the presence of
many common Arabic names (such as
Muhammad, Abdullah, Ahmed …etc.), which
increases the ambiguity in identifying the person
referred to by the mentioned name. Further, the
NERT system output system contains many NER
errors and intra-document normalization errors.

In this paper, cross-document normalization
system employs a two-step approach. In the first
step, preprocessing rules are used to remove errant
named entities. In the second step, a support
vector machine (SVM) classifier is used to
determine if two entities from two different
documents need to be normalized. The classifier
is trained on lexical, orthographic, phonetic, and
morphological features.

The paper is organized as follows: Section 2
provides a background on cross-document NE

normalization; Section 3 describes the
preprocessing steps and data used for training and
testing; Section 4 describes the normalization
methodology; Section 5 describes the
experimental setup; Section 6 reports and
discusses experimental results; and Section 7
concludes the paper and provides possible future
directions.

2. Background

While considerable work has focused on named
entity normalization within a single document,
little work has focused on the challenges
associated with resolving person name references
across multiple documents. Most of the work
done in cross-document normalization focused on
the problem of determining if two instances with
the same name from different documents referring
to the same person (Fleischman and Hovy, 2004).
Fleischman and Hovy (2004) focused on
distinguishing between individuals having
identical names, but they did not extend
normalization to different names referring to the
same individual. Their task is a subtask of what is
examined in this paper. They used a large number
of features to accomplish their work, depending
mostly on language specific dictionaries and
wordnet. Some these resources are not available
for Arabic and many other languages. Mann and
Yarowsky (Mann and Yarowsky, 2003) examined
the same problem but they treated it as a clustering
task. They focused on information extraction to
build biographical profiles (date of birth, place of
birth, etc.), and they wanted to disambiguate
biographies belonging to different authors with
identical names.

Dozier and Zielund (Dozier and Zielund, 2004)
reported on cross-document person name
normalization in the legal domain. They used a

Figure 1 Normalization Model

E1

E3

E7
E5

E2

E4 E6

E8

Normalization

E1

E4 E8

E2

E3 E7

E5
E6

26

finite state machine that identifies paragraphs in a
document containing the names of attorneys,
judges, or experts and a semantic parser that
extracts from the paragraphs template information
about each named individual. They relied on
reliable biographies for each individual. A
biography would typically contain a person’s first
name, middle name, last name, firm, city, state,
court, and other information. They used a
Bayesian network to match the name mentions to
the biographical records.

Bhattacharya and Getoor (Bhattacharya and
Getoor, 2006) introduced a collective decision
algorithm for author name entity resolution, where
decisions are not considered on an independent
pairwise basis. They focused on using relational
links among the references and co-author
relationships to infer collaboration groups, which
would disambiguate entity names. Such explicit
links between co-authors can be extracted directly.
However, implicit links can be useful when
looking at completely unstructured text. Other
work has extended beyond entities of type “person
name” to include the normalization of location
names (Li et al., 2002) and organizations (Ji and
Grishman. 2004).

3. Preprocessing and the Data Set

For this work, a set of 7,184 person name entities
was constructed. Building new training and test
sets is warranted, because the task at hand is
sufficiently different from previously reported
tasks in the literature. The entities were
recognized from 2,931 topically related documents
(relating to the situation in the Gaza and Lebanon
during July of 2006) from different Arabic news

sources (obtained from searching the Arabic
version of news.google.com). The entities were
recognized and normalized (within document)
using the NERT system of Florian et al (2004).
As shown in Figure 2, each entity is composed of
a set of name mentions (one or more) and a set of
nominal mentions (zero or more).

The NERT system achieves an F-score of 0.77
with precision of 0.82 and recall of 0.73 for person
name mention and nominal recognition and an F-
score of 0.88 for tracking (assuming 100%
recognition accuracy). The produced entities may
suffer from the following:
1. Errant name mentions: Two name mentions

referring to two different entities are
concatenated into an errant name mention (e.g.
“Bush Blair”, “Ahmadinejad Bush”). These
types of errors stem from phrases such as “The
meeting of Bush Blair” and generally due to
lack of sufficient punctuation marks.

2. NE misrecognitions: Regular words are
recognized as person name mentions and are
embedded into person entities (e.g. Bush =
George Bush = said).

3. Errant entity tracking: name mentions of
different entities are recognized as different
mentions of the same entity (e.g. Bush =
Clinton = Ahmadinejad).

4. Lack of nominal mentions: Many entities do
not contain any nominal mentions, which
increases the entity ambiguity (especially
when there is only one name mention
composed of a single token).
To overcome these problems, entities were

preprocessed as follows:
1. Errant name mentions such as “Bush Blair”

were automatically removed. In this step, a
dictionary of person name mentions was built
from the 2,931 documents collection from
which the entities were recognized and
normalized along with the frequency of
appearance in the collection. For each entity,
all its name mentions are checked in the
dictionary and their frequencies are compared
to each other. Any name mention with a
frequency less than 1/30 of the frequency of
the name mention with the highest frequency
is automatically removed (1/30 was picked
based on manual examination of the training
set).

Figure 2 Entity Description

27

2. Name mentions formed of a single token
consisting of less than 3 characters are
removed. Such names are almost always
misrecognized name entities.

3. Name entities with 10 or more different name
mentions are automatically removed. The
NERT system often produces entities that
include many different name mentions
referring to different persons as one. Such
entities are errant because they over normalize
name mentions. Persons are referred to using
a limited number of name mentions.

4. Nominal mentions are stemmed using a
context sensitive Arabic stemmer (Lee et al.
2003) to overcome the morphological
complexity of Arabic. For example, “JKLر” =
“president”, “ OاJKLQ ” = “the president”,
“ OواJKLQ ” = “and the president”, “ SKLرTU ” = “its
presidents” … etc are stemmed to “JKLر” =
“president”.

Cross-document entities are compared in a

pairwise manner and binary decision is taken on
whether they are the same. Therefore, the
available 7,184 entities lead to nearly 26 million
pairwise comparisons (For N entities, the number

of pair wise comparisons =
2

)1(−NN
).

Entity pairs were chosen to be included in the
training set if they match any of the following
criteria:
1. Both entities have one shared name mention.
2. Both entities have shared nominal mentions.
3. A name mention in one of the entities is a

substring of a name mention in the other
entity.

4. Both entities have nearly identical name
mentions (small edit distance between both
mentions).
The resulting set was composed of 19,825

pairs, which were manually judged to determine if
they should be normalized or not. These criteria
skew the selection of pairs towards more
ambiguous cases, which would be better
candidates to train the intended SVM classifier,
where the items near the boundary dividing the
hyperplane are the most important. For the
training set, 18,503 pairs were normalized, and
1,322 pairs were judged as different.
Unfortunately, the training set selection criteria

skewed the distribution of training examples
heavily in favor of positive examples. It would
interesting to examine other training sets where
the distribution of positives and negatives is
balanced or skewed in favor of negatives.

The test set was composed of 470 entities that
were manually normalized into 253 classes, of
which 304 entities were normalized to 87 classes
and 166 entities remained unnormalized (forming
single-entity classes). Using 470 entities leads to
110,215 pairwise comparisons. The test set, which
was distinct from the training set, was chosen
using the same criteria as the training set. Further,
all duplicate (identical) entities were removed
from the test set. The selection criteria insure that
the test set is skewed more towards ambiguous
cases. Randomly choosing entities would have
made the normalization too easy.

4. Normalization Methodology

SVMLight, an SVM classifier (Joachims, 2002),
was used for classification with a linear kernel and
default parameters. The following training
features were employed:
1. The percentage of shared name mentions

between two entities calculated as:
Name Commonality =

∑ ∑∑><

namescommon j

i

j

i

f

f

f

f

2

2

1

1 ,min

 where f1i is the frequency of the shared name
mention in first entity, and f2i is the frequency
of the shared name mention in the second
entity. ∑ f1i is the number of name mentions
appearing in the entity.

2. The maximum number of tokens in the shared
name mentions, i.e. if there exists more than
one shared name mention then this feature is
the number of tokens in the longest shared
name mention.

3. The percentage of shared nominal mentions
between two entities, and it is calculated as the
name commonality but for nominal mentions.

4. The smallest minimum edit distance
(Levenshtein distance with uniform weights)
between any two name mentions in both
entities (Cohen et al., 2003) and this feature is
only enabled when name commonality
between both entities equals to zero.

28

5. Phonetic edit distance, which is similar to edit
distance except that phonetically similar
characters, namely {(ت – t, ط – T), (ك – k, ق –
q),(د – d, ض – D),(ث – v, س – s, ص – S), (ذ – *,
 ,> – إ),(h – ـp, k – ـi),(g – غ ,j – ج),(Z – ظ ,z – ز
n – |, ا ,< – أ – A)1}, are normalized, vowels are
removed, and spaces between tokens are
removed.

6. The number of tokens in the pair of name
mentions that lead to the minimum edit
distance.
Some of the features might seem duplicative.

However, the edit distance and phonetic edit
distance are often necessary when names are
transliterated into Arabic and hence may have
different spellings and consequently no shared
name mentions. Conversely, given a shared name
mention between a pair of entities will lead to zero
edit distance, but the name commonality may also
be very low indicating two different persons may
have a shared name mention. For example
“Abdullah the second” and “Abdullah bin
Hussein” have the shared name mention
“Abdullah” that leads to zero edit distance, but
they are in fact two different persons. In this case,
the name commonality feature can be indicative of
the difference. Further, nominals are important in
differentiating between identical name mentions
that in fact refer to different persons (Fleischman
and Hovy, 2004). The number of tokens feature
indicates the importance of the presence of
similarity between two name mentions, as the
similarity between name mentions formed of one
token cannot be indicative for similarity when the
number of tokens is more than one.

Further, it is assumed that entities are transitive
and are not available all at once, but rather the
system has to normalize entities incrementally as
they appear. Therefore, for a given set of entity
pairs, if the classifier deems that Entityi = Entityj
and Entityj = Entityk, then Entityi is set to equal
Entityk even if the classifier indicates that Entityi ≠
Entityk, and all entities (i, j, and k) are merged into
one class.

1 Buckwalter transliteration scheme is used throughout
the paper

5. Experimental Setup

Two baselines were established for the
normalization process. In the first, no entities are
normalized, which produces single entity classes
(“no normalization” condition). In the second, any
two entities having two identical name mentions in
common are normalized (“surface normalization”
condition). For the rest of the experiments, focus
was given to two main issues:
1. Determining the effect of the different features

used for classification.
2. Determining the effect of varying the number

of training examples.
To determine the effect of different features,

multiple classifiers were trained using different
features, namely:
• All features: all the features mentioned above

are used,
• Edit distance removed: edit distance features

(features 4, 5, and 6) are removed,
• Number of tokens per name mention removed:

the number of shared tokens and the number
of tokens leading to the least edit distance
(features 2 and 6) are removed.
To determine the effect of training examples,

the classifier was trained using all features but
with a varying number of training example pairs,
namely all 19,825 pairs, a set of randomly picked
5,000 pairs, and a set of randomly picked 2,000
pairs.

For evaluation, 470 entities in test set were
normalized into set of classes with different
thresholds for the SVM classifier. The quality of
the clusters was evaluated using purity, entropy,
and Cluster F-measure (CF-measure) in the
manner suggested by Rosell et al. (2004). For the
cluster quality measures, given cluster i (formed
using automatic normalization) and each cluster j
(reference normalization formed manually), cluster
precision (p) and recall (r) are computed as
follows:

i

ij

ij
n

n
p = , and

j

ij

ij
n

n
r = , where ni number of

entities in cluster i, nj number of entities in cluster
j, and nij number of shared entities between cluster
i and j.

The CF-measure for an automatic cluster i
against a manually formed reference cluster j is:

29

ijij

ijij

ij
pr

pr
CF

+

⋅⋅
=
2

, and the CF-measure for a

reference cluster j is:
}{max ijij CFCF = .

The final CF-measure is computed over all the

reference clusters as follows: ∑= j j

ij
CF

n

n
CF .

Purity of (ρi) of an automatically produced
cluster i is the maximum cluster precision obtained
when comparing it with all the reference clusters
as follows: }{max ijji p=ρ , and the weighted

average purity over all clusters is:

∑= i i

i

ij

n

n
ρρ , where n is the total number of

entities in the set to be normalized (470 in this
case).

As for entropy of a cluster, it is calculated as:

∑−= j ijiji ppE log , and the average entropy

as:

∑= i i

i

i E
n

n
E .

The CF-measure captures both precision and
recall while purity and entropy are precision
oriented measures (Rosell et al., 2004).

6. Results and Discussion

Figure 3 shows the purity and CF-measure for the
two baseline conditions (no normalization, and
surface normalization) and for the normalization
system with different SVM thresholds. Since
purity is a precision measure, purity is 100% when
no normalization is done. The CF-measure is 62%
and 74% for baseline runs with no normalization
and surface normalization respectively. As can be
seen from the results, the baseline run based on
exact matching of name mentions in entities
achieves low CF-measure and low purity. Low
CF-measure values stem from the inability to
match identical entities with different name
mentions, and the low purity value stems from not
disambiguating different entities with shared name
mentions. Some notable examples where the
surface normalization baseline failed include:
1. The normalization of the different entities

referring to the Israeli soldier who is

imprisoned in Gaza with different Arabic
spellings for his name, namely “tKuv دTwux”
(jlEAd $lyT), “tKOTv دTwux” (jlEAd $AlyT),
“zKuv ي|}~Oا” (the soldier $lyt), and so forth.

2. The separation between “��T�Oا� ا |�� �u�Oا”
(King Abdullah the Second) and “ �� ا� |�� �u�Oا
���wOا |��” (King Abdullah ibn Abdul-Aziz)
that have a shared name mention “ا�|�� �u�Oا”
(King Abdullah).

3. The normalization of the different entities
representing the president of Palestinian
Authority with different name mentions,
namely “زنT� أ��” (Abu Mazen) and “ د����
 .T��” (Mahmoud Abbas)س

The proposed normalization technique

properly normalized the aforementioned examples.
Given different SVM thresholds, Figure 3 shows
that the purity of resultant classes increases as the
SVM threshold increases since the number of
normalized entities decreases as the threshold
increases. The best CF-measure of 93.1% is
obtained at a threshold of 1.4 and as show in Table
1 the corresponding purity and entropy are 97.2%
and 0.056 respectively. The results confirm the
success of the approach.

Table 1 highlights the effect of removing
different training feature and the highest CF-
measures (at different SVM thresholds) as a result.
The table shows that using all 6 features produced
the best results and the removal of the shared
names and tokens (features 2 and 6) had the most
adverse effect on normalization effectiveness. The
adverse effect is reasonable especially given that
some single token names such as “Muhammad”
and “Abdullah” are very common and matching
one of these names across entities is an insufficient
indicator that they are the same. Meanwhile, the
exclusion of edit distance features (features 4, 5,
and 6) had a lesser but significant adverse impact
on normalization effectiveness. Table 1 reports
the best results obtained using different thresholds.
Perhaps, a separate development set should be
used for ascertaining the best threshold.

Table 2 shows that decreasing the number of
training examples (all six features are used) has a
noticeable but less pronounced effect on
normalization effectiveness compared to removing
training features.

30

Table 1 Quality of clusters as measured by purity (higher values are better), entropy (lower values are
better), and CF-measure (higher values are better) for different feature sets. Values are shown for max
CF-measure. Thresholds were tuned for max CF-measure for each feature configuration separately

Training Data Purity
Maximum

CF-Measure
Entropy Threshold

No Normalization 100.0% 62.6% 0.000 -

Baseline 83.4% 74.7% 0.151 -

All Features 97.2% 93.1% 0.056 1.4

Edit Distance removed 99.4% 85.5% 0.010 1.0

of tokens/name removed 96.6% 77.8% 0.071 1.5

Normalization Evaluation

60%

65%

70%

75%

80%

85%

90%

95%

100%

N
o

N
o
rm

a
liz
a
ti
o
n

B
a
s
e
lin
e

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9

2
.0

SVM Threshold

Purity

CF-Measure

Figure 3 Purity and cluster F-measure versus SVM Threshold

Table 2 Effect of number of training examples on normalization effectiveness

Training Data Purity
Maximum

CF-Measure
Entropy Threshold

20k training pairs 97.2% 93.1% 0.056 1.4

5k training pairs 97.4% 90.5% 0.053 1.5

2k training pairs 98.5% 90.3% 0.031 1.6

7. Conclusion:

This paper presented a two-step approach to cross-
document named entity normalization. In the first
step, preprocessing rules are used to remove errant
named entities. In the second step, a machine
learning approach based on an SVM classifier to
disambiguate different entities with matching
name mentions and to normalize identical entities

with different name mentions. The classifier was
trained on features that capture name mentions and
nominals overlap between entities, edit distance,
and phonetic similarity. In evaluating the quality
of the clusters, the reported approach achieved a
cluster F-measure of 0.93. The approach
outperformed that two baseline approaches in
which no normalization was done or normalization
was done when two entities had matching name

31

mentions. The two approaches achieved cluster F-
measures of 0.62 and 0.74 respectively.

For future work, implicit links between entities
in the text can serve as the relational links that
would enable the use of entity attributes in
conjunction with relationships between entities.
An important problem that has not been
sufficiently explored is cross-lingual cross-
document normalization. This problem would
pose unique and interesting challenges. The
described approach could be generalized to
perform normalization of entities of different types
across multilingual documents. Also, the
normalization problem was treated as a
classification problem. Examining the problem as
a clustering (or alternatively an incremental
clustering) problem might prove useful. Lastly,
the effect of cross-document normalization should
be examined on applications such as information
extraction, information retrieval, and relationship
and social network visualization.

References:

Bhattacharya I. and Getoor L. “A Latent Dirichlet
Allocation Model for Entity Resolution.” 6th SIAM
Conference on Data Mining (SDM), Bethesda, USA,
April 2006.

Chinchor N., Brown E., Ferro L., and Robinson P.
“Named Entity Recognition Task Definition.”
MITRE, 1999.

Cohen W., Ravikumar P., and Fienberg S. E. “A
Comparison of String Distance Metrics for Name-
Matching Tasks.” In Proceedings of the
International Joint Conference on Artificial
Intelligence, 2003.

Dozier C. and Zielund T. “Cross-document Co-
Reference Resolution Applications for People in the
Legal Domain.” In 42nd Annual Meeting of the
Association for Computational Linguistics,
Reference Resolution Workshop, Barcelona, Spain.
July 2004.

Fleischman M. B. and Hovy E. “Multi-Document
Person Name Resolution.” In 42nd Annual Meeting
of the Association for Computational Linguistics,
Reference Resolution Workshop, Barcelona, Spain.
July 2004.

Ji H. and Grishman R. “Applying Coreference to
Improve Name Recognition”. In 42nd Annual
Meeting of the Association for Computational

Linguistics, Reference Resolution Workshop,
Barcelona, Spain. July (2004).

Ji H. and Grishman R. "Improving Name Tagging by
Reference Resolution and Relation Detection." ACL
2005

Joachims T. “Learning to Classify Text Using Support
Vector Machines.” Ph.D. Dissertation, Kluwer,
(2002).

Joachims T. “Optimizing Search Engines Using Click-
through Data.” Proceedings of the ACM Conference
on Knowledge Discovery and Data Mining (KDD),
(2002).

Lee Y. S., Papineni K., Roukos S., Emam O., Hassan
H. “Language Model Based Arabic Word
Segmentation.” In ACL 2003, pp. 399-406, (2003).

Li H., Srihari R. K., Niu C., and Li W. “Location
Normalization for Information Extraction.”
Proceedings of the 19th international conference on
Computational linguistics, pp. 1-7, 2002

Li H., Srihari R. K., Niu C., and Li W. “Location
Normalization for Information Extraction.”
Proceedings of the sixth conference on applied
natural language processing, 2000. pp. 247 – 254.

Mann G. S. and Yarowsky D. “Unsupervised Personal
Name Disambiguation.” Proceedings of the seventh
conference on Natural language learning at HLT-
NAACL 2003. pp. 33-40.

Maynard D., Tablan V., Ursu C., Cunningham H., and
Wilks Y. “Named Entity Recognition from Diverse
Text Types.” Recent Advances in Natural Language
Processing Conference, (2001).

Palmer D. D. and Day D. S. “A statistical Profile of the
Named Entity Task”. Proceedings of the fifth
conference on Applied natural language processing,
pp. 190-193, (1997).

R. Florian R., Hassan H., Ittycheriah A., Jing H.,
Kambhatla N., Luo X., Nicolov N., and Roukos S.
“A Statistical Model for Multilingual Entity
Detection and Tracking.” In HLT-NAACL, 2004.

Rosell M., Kann V., and Litton J. E. “Comparing
Comparisons: Document Clustering Evaluation
Using Two Manual Classifications.” In ICON 2004

Sekine S. “Named Entity: History and Future”. Project
notes, New York University, (2004).

Solorio T. “Improvement of Named Entity Tagging by
Machine Learning.” Ph.D. thesis, National Institute
of Astrophysics, Optics and Electronics, Puebla,
Mexico, September 2005.

32

Proceedings of the 5th Workshop on Important Unresolved Matters, pages 33–40,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Syllable-Based Speech Recognition for Amharic

Solomon Teferra Abate
solomon_teferra_7@yahoo.com

Wolfgang Menzel
menzel@informatik.uni-hamburg.de

Uniformity of Hamburg, Department of Informatik Natural Language Systems Groups
Vogt-Kölln-Strasse. 30, D-22527 Hamburg, Germany

Abstract

Amharic is the Semitic language that has the
second large number of speakers after Arabic
(Hayward and Richard 1999). Its writing system is
syllabic with Consonant-Vowel (CV) syllable
structure. Amharic orthography has more or less a
one to one correspondence with syllabic sounds.
We have used this feature of Amharic to develop a
CV syllable-based speech recognizer, using Hid-
den Markov Modeling (HMM), and achieved
90.43% word recognition accuracy.

1 Introduction

Most of the Semitic languages are technologically
unfavored. Amharic is one of these languages that
are looking for technological considerations of re-
searchers and developers in the area of natural lan-
guage processing (NLP). Automatic Speech Re-
cognition (ASR) is one of the major areas of NLP
that is understudied in Amharic. Only few attempts
(Solomon, 2001; Kinfe, 2002; Zegaye, 2003;
Martha, 2003; Hussien and Gambäck, 2005;
Solomon et al., 2005; Solomon, 2006) have been
made.

We have developed an ASR for the language
using CV syllables as recognition units. In this
paper we present the development and the
recognition performance of the recognizer
following a brief description of the Amharic
language and speech recognition technology.

2 The Amharic Language

Amharic, which belongs to the Semitic language
family, is the official language of Ethiopia. In this
family, Amharic stands second in its number of
speakers after Arabic (Hayward and Richard
1999). Amharic has five dialectical variations (Ad-
dis Ababa, Gojjam, Gonder, Wollo, and Menz)
spoken in different regions of the country (Cowley,

et.al. 1976). The speech of Addis Ababa has
emerged as the standard dialect and has wide cur-
rency across all Amharic-speaking communities
(Hayward and Richard 1999).

As with all of the other languages, Amharic has
its own characterizing phonetic, phonological and
morphological properties. For example, it has a set
of speech sounds that is not found in other lan-
guages. For example the following sounds are not
found in English: [p`], [tЅ`], [s`], [t`], and [q].

Amharic also has its own inventory of speech
sounds. It has thirty one consonants and seven
vowels. The consonants are generally classified as
stops, fricatives, nasals, liquids, and semi-vowels
(Leslau 2000). Tables 1 and 2 show the classifica-
tion of Amharic consonants and vowels1.

Man
of
Art

Voic
ing

Place of Articulation
Lab Den Pal Vel Glot

Stops Vs [p] [t] [tЅ] [k] [?]
Vd [b] [d] [dЗ] [g]
Glott [p`] [t`] [tЅ`] [q]
Rd [kw]

[gw]
[qw]

Fric Vs [f] [s] [Ѕ] [h]
Vd [z] [З]
Glott [s`]
Rd [hw]

Nas-
als

Vd [m] [n] [η]

Liq Vd [l]
[r]

Sv Vd [w] [j]

Table 1: Amharic Consonants
Key: Lab = Labials; Den = Dentals; Pal = Palat-

als; Vel = Velars; Glot = Glottal; Vs = Voiceless;
1International Phonetic Association's (IPA) standard has

been used for representation.

33

Vd = Voiced; Rd = Rounded; Fric = Fricatives; Liq
= Liquids; Sv = Semi-Vowels.

Positions front center back

high [i] [u]

mid [e] [ə] [o]

low [a]

Table 2: Amharic Vowels
Amharic is one of the languages that have their

own writing system, which is used across all Am-
haric dialects. Getachew (1967) stated that the Am-
haric writing system is phonetic. It allows any one
to write Amharic texts if s/he can speak Amharic
and has knowledge of the Amharic alphabet. Un-
like most known languages, no one needs to learn
how to spell Amharic words. In support of the
above point, Leslaw (1995) noted that no real
problems exist in Amharic orthography, as there is
more or less, a one-to-one correspondence between
the sounds and the graphic symbols, except for the
gemination of consonants and some redundant
symbols.

Many (Bender 1976; Cowley 1976; Baye 1986)
have claimed the Amharic orthography as a syllab-
ary for a relatively long period of time. Recently,
however, Taddesse (1994) and Baye (1997), who
apparently modified his view, have argued it is not.
Both of these arguments are based on the special
feature of the orthography; the possibility of rep-
resenting speech using either isolated phoneme
symbols or concatenated symbols.

In the concatenated feature, commonly known to
most of the population, each orthographic symbol
represents a consonant and a vowel, except for the
sixth order2, which is sometimes realized as a con-
sonant without a vowel and at other times a con-
sonant with a vowel. This representation of concat-
enated speech sounds by a single symbol has been
the basis for the claim made of the writing system,
as syllabary.

Amharic orthography does not indicate
gemination, but since there are relatively few

2An order in Amharic writing system is a combination of a
consonant with a vowel represented by a symbol. A consonant
has therefore, 7 orders or different symbols that represent its
combination with 7 Amharic vowels.

minimal pairs of geminations, Amharic readers do
not find this to be a problem. This property of the
writing system is analogous to the vowels of
Arabic and Hebrew, which are not normally
indicated in writing.

The Amharic orthography, as represented in the
Amharic Character set - also called [fidəlI] con-
sists of 276 distinct symbols. In addition, there are
twenty numerals and eight punctuation marks. A
sample of the orthographic symbols is given in
Table 3.

ə u i a e o

h ሀ ሁ ሂ ሃ ሄ ህ ሆ

l ለ ሉ ሊ ላ ሌ ል ሎ

m መ ሙ ሚ ማ ሜ ም ሞ

r ረ ሩ ሪ ራ ሬ ር ሮ

Table 3: Some Orthographic Symbols of Amharic
However, research in speech recognition should

only consider distinct sounds instead of all the or-
thographic symbols, unless there is a need to de-
velop a dictation machine that includes all of the
orthographic symbols. Therefore, redundant ortho-
graphic symbols that represent the same syllabic
sounds can be eliminated. Thus, by eliminating re-
dundant graphemes, we are left with a total of 233
distinct CV syllable characters. In our work, an
HMM model has been developed for each of these
CV syllables.

3 HMM-Based Speech Recognition

The most well known and well performing ap-
proach for speech recognition are Hidden Markov
Models (HMM). An HMM can be classified on the
basis of the type of its observation distributions,
the structure in its transition matrix and the number
of states.

The observation distributions of HMMs can be
either discrete, or continuous. In discrete HMMs,
distributions are defined on finite spaces while in
continuous HMMs, distributions are defined as
probability densities on continuous observation
spaces, usually as a mixture of several Gaussian
distributions.

The model topology that is generally adopted for
speech recognition is a left-to-right or Bakis model

34

because the speech signal varies in time from left
to right (Deller, Proakis and Hansen 1993).

An HMM is flexible in its size, type, or architec-
ture to model words as well as any sub-word unit.

3.1 Sub-word Units of Speech Recognition

Large Vocabulary Automatic Speech Recognition
Systems (LVASRSs) require modeling of speech
in smaller units than words because the acoustic
samples of most words will never be seen during
training, and therefore, can not be trained.
Moreover, in LVASRSs there are thousands of
words and most of them occur very rarely, con-
sequently training of models for whole words is
generally impractical. That is why LVASRSs re-
quire a segmentation of each word in the vocabu-
lary into sub-word units that occur more frequently
and can be trained more robustly than words. Us-
ing sub-word based models enables us to deal with
words which have not been seen during training
since they can just be decomposed into the sub-
word units. As a word can be decomposed in sub-
word units of different granularities, there is a need
to choose the most suitable sub-word unit that fits
the purpose of the system.

Lee et al. (1992) pointed out that there are two
alternatives for choosing the fundamental sub-
word units, namely acoustically-based and linguist-
ically-based units . The acoustic units are the labels
assigned to acoustic segment models, which are
defined on the basis of procuring a set of segment
models that spans the acoustic space determined by
the given, unlabeled training data. The linguistic-
ally-based units include the linguistic units, e.g.
phones, demi-syllables, syllables and morphemes.

It should be clear that there is no ideal (perfect)
set of sub-word units. Although phones are very
small in number and relatively easy to train, they
are much more sensitive to contextual influences
than larger units. The use of triphones, which mod-
el both the right and left context of a phone, has
become the dominant solution to the problem of
the context sensitivity of phones.

Triphones are also relatively inefficient sub-
word units due to their large number. Moreover,
since a triphone unit spans a short time-interval, it
is not suitable for the integration of spectral and
temporal dependencies.

An other alternative is the syllable. Syllables are
longer and less context sensitive than phones and
capable of exploiting both the spectral and tempor-

al characteristics of continuous speech
(Ganapathiraju et al. 1997). Moreover, the syllable
has a close connection to articulation, integrates
some co-articulation phenomena, and has the po-
tential for a relatively compact representation of
conversational speech.

Therefore, different attempts have been made to
use syllables as a unit of recognition for the devel-
opment of ASR. To mention a few: Ganapathiraju
et al. (1997) have explored techniques to accentu-
ate the strengths of syllable-based modeling with a
primary interest of integrating finite-duration mod-
eling and monosyllabic word modeling. Wu et al.
(1998) tried to extract the features of speech over
the syllabic duration (250ms), considering syllable-
length interval to be 100-250ms. Hu et al. (1996)
used a pronunciation dictionary of syllable-like
units that are created from sequences of phones for
which the boundary is difficult to detect. Kanok-
phara (2003) used syllable-structure-based tri-
phones as speech recognition units for Thai.

However, syllables are too many in a number of
languages, such as English, to be trained properly.
Thus ASR researchers in languages like English
are led to choose phones where as for Amharic it
seems promising to consider syllables as an altern-
ative, because Amharic has only 233 distinct CV
syllables.

4 Syllable-Based Speech Recognition for
Amharic

In the development of syllable-based LVASRSs
for Amharic we need to deal with a language mod-
el, pronunciation dictionary, initialization and
training of the HMM models, and identification of
the proper HMM topologies that can be properly
trained with the available data. This section
presents the development and the performance of
syllable based speech recognizers.

4.1 The Language Model

One of the required elements in the development of
LVASRSs is the language model. As there is no
usable language model for Amharic, we have
trained bigram language models using the HTK
statistical language model development modules.
Due to the inflectional and derivativational mor-
phological feature of Amharic our language mod-
els have relatively high perplexities.

35

4.2 The Pronunciation Dictionary

The development of a large vocabulary speaker in-
dependent recognition system requires the availab-
ility of an appropriate pronunciation dictionary. It
specifies the finite set of words that may be output
by the speech recognizer and gives, at least, one
pronunciation for each. A pronunciation dictionary
can be classified as a canonical or alternative on
the basis of the pronunciations it includes.

A canonical pronunciation dictionary includes
only the standard phone (or other sub-word) se-
quence assumed to be pronounced in read speech.
It does not consider pronunciation variations such
as speaker variability, dialect, or co-articulation in
conversational speech. On the other hand, an al-
ternative pronunciation dictionary uses the actual
phone (or other sub-word) sequences pronounced
in speech. In an alternative pronunciation diction-
ary, various pronunciation variations can be in-
cluded (Fukada et al. 1999).

We have used the pronunciation dictionary that
has been developed by Solomon et al. (2005). They
have developed a canonical and an alternative pro-
nunciation dictionaries. Their canonical dictionary
transcribes 50,000 words and the alternative one
transcribes 25,000 words in terms of CV syllables.

Both these pronunciation dictionaries do not
handle the difference between geminated and non-
geminated consonants; the variation of the pronun-
ciation of the sixth order grapheme, with or
without vowel; and the absence or presence of the
glottal stop consonant. Gemination of Amharic
consonants range from a slight lengthening to
much more than doubling. In the dictionary,
however, they are represented with the same tran-
scription symbols.

The sixth order grapheme may be realized with
or without vowel but the pronunciation dictionaries
do not indicate this difference. For example, the
dictionaries used the same symbol for the syllable
[rI] in the word [dЗəmərInI] 'we started', whose
vowel part may not be realized, and in the word
[bərIzo] 'he diluted with water' that is always real-
ized with its vowel sound. That forces a syllable
model to capture two different sounds: a sound of a
consonant followed by a vowel, and a sound of the
consonant only. A similar problem occurs with the
glottal stop consonant [?] which may be uttered or
not.

A sample of pronunciations in the canonical and
alternative pronunciation dictionaries is given in
Table 43. The alternative pronunciation dictionary
contains up to 25 pronunciation variants per word
form. Table 5 illustrates some cases of the vari-
ation.

Words

 Canonical Pro-
nunciation

 Alternative Pronun-
ciation

CAmA

 CA mA sp

 CA mA sp
 Ca mA sp

Hitey-
oPeyA

Hi te yo Pe yA
sp

 Hi te yo Pe yA sp
 Hi te yo Pi yA sp
 Hi to Pe yA sp
 te yo Pe yA sp
 to Pe yA sp

Table 4: Canonical and Alternative Pronunciation

Words Number of pronun-
ciation variants

HiteyoPeyAweyAne 25
HiheHadEge 16
yaHiteyoPeyAne 7
miniseteru 7
yaganezabe 6
HegeziHabehEre 6
yehenene 5

Table 5: Number of Pronunciation variants
Although it does not handle gemination and pro-

nunciation variabilities, the canonical pronunci-
ation dictionary contains all 233 distinct CV syl-
lables of Amharic, which is 100% syllable cover-
age.

Pronunciation dictionaries of development and
evaluation test sets have been extracted from the
canonical pronunciation dictionary. These test dic-
tionaries have 5,000 and 20,000 words each.

4.3 The Acoustic Model

For training and evaluation of our recognizers, we
have used the Amharic read speech corpus that has
been developed by Solomon et al. (2005).

The speech corpus consists of a training set, a
speaker adaptation set, development test sets (for
5,000 and 20,000 vocabularies), and evaluation test
sets (for 5,000 and 20,000 vocabularies). It is a
medium size speech corpus of 20 hours of training
speech that has been read by 100 training speakers
who read a total of 10850 different sentences.
Eighty of the training speakers are from the Addis

3In tables 4 and 5, we used our own transcription

36

Ababa dialect while the other twenty are from the
other four dialects.

Test and speaker adaptation sets were read by
twenty other speakers of the Addis Ababa dialect
and four speakers of the other four dialects. Each
speaker read 18 different sentences for the 5,000
vocabulary (development and evaluation sets each)
and 20 different sentences for the 20,000 vocabu-
lary (development and evaluation sets each) test
sets. For the adaptation set all of these readers read
53 adaptation sentences that consist of all Amharic
CV syllables.

Initialization: Training HMM models starts
with initialization. Initialization of the model for a
set of sub-word HMMs prior to re-estimation can
be achieved in two different ways: bootstrapping
and flat start. The latter implies that during the first
cycle of embedded re-estimation, each training ut-
terance will be uniformly segmented. The hope of
using such a procedure is that in the second and
subsequent iterations, the models align as intended.

We have initialized HMMs with both methods
and trained them in the same way. The HMMs that
have been initialized with the flat start method per-
formed better (40% word recognition accuracy) on
development test set of 5,000 words.

The problem with the bootstrapping approach is
that any error of the labeler strongly affects the
performance of the resulting model because con-
secutive training steps are influenced by the initial
value of the model. As a result, we did not benefit
from the use of the segmented speech, which has
been transcribed with a speech recognizer that has
low word recognition accuracy, and edited by non-
linguist listeners. We have, therefore, continued
our subsequent experiments with the flat start ini-
tialization method.

Training: We have used the Baum-Welch re-es-
timation procedure for the training. In training sub-
word HMMs that are initialized using the flat-start
procedure, this re-estimation procedure uses the
parameters of continuously spoken utterances as an
input source. A transcription, in terms of sub-word
units, is also needed for each input utterance. Us-
ing the speech parameters and their transcription,
the complete set of sub-word HMMs are re-estim-
ated simultaneously. Then all of the sub-word
HMMs corresponding to the sub-word list are
joined together to make a single composite HMM.
It is important to emphasize that in this process the
transcriptions are only needed to identify the se-

quence of sub-word units in each utterance. No
boundary information is required (Young et al.
2002).

The major problem with HMM training is that it
requires a great amount of speech data. To over-
come the problem of training with insufficient
speech data, a variety of sharing mechanisms can
be implemented. For example, HMM parameters
are tied together so that the training data is pooled
and more robust estimates result. It is also possible
to restrict the model to a variance vector for the de-
scription of output probabilities, instead of a full
covariance matrix. Rabiner and Juang(1993) poin-
ted out that for the continuous HMM models, it is
preferable to use diagonal covariance matrices with
several mixtures, rather than fewer mixtures with
full covariance matrices to perform reliable re-es-
timation of the components of the model from lim-
ited training data. The diagonal covariance
matrices have been used in our work.

HMM Topologies: To our knowledge, there is
no topology of HMM model that can be taken as a
rule of thumb for modeling syllable HMMs, espe-
cially, for Amharic CV syllables. To have a good
HMM model for Amharic CV syllables, one needs
to conduct experiments to select the optimal model
topology. Designing an HMM topology has to be
done with proper consideration of the size of the
unit of recognition and the amount of the training
speech data. This is because as the size of the re-
cognition unit increases and the size of the model
(in terms of the number of parameters to be re-es-
timated) grows, the model requires more training
data.

We, therefore, carried out a series of experi-
ments using a left-to-right HMM with and without
jumps and skips, with a different number of emit-
ting states (3, 5, 6, 7, 8, 9, 10 and 11) and different
number of Gaussian mixtures (from 2 to 98). By
jump we mean skips from the first non-emitting
state to the middle state and/or from the middle
state to the last non-emitting state. Figure 1 shows
a left-to-right HMM of 5 emitting states with
jumps and skips.

Figure 1: An example of HMM topologies

37

We have assumed that the problem of gemina-
tion may be compensated by the looping state
transitions of the HMM. Accordingly, CV syllables
containing geminated consonants should have a
higher loop probability than those with the non-
geminated consonants.

To develop a solution for the problem of the ir-
regularities in the realization of the sixth order
vowel [I] and the glottal stop consonant [?], HMM
topologies with jumps have been used.

We conducted an experiment using HMMs with
a jump from the middle state to the last (non-emit-
ting) state for all of the CV syllables with the sixth
order vowel, and a jump from the first emitting
state to the middle state for all of the CV syllables
with the glottal stop consonant. The CV syllable
with the glottal stop consonant and the 6th order
vowel have both jumps. These topologies have
been chosen so that the models recognize the ab-
sence of the vowel and the glottal stop consonant
of CV syllables. This assumption was confirmed
by the observation that the trained models favor
such a jump. A model, which has 5 emitting states,
of the glottal stop consonant with the sixth order
vowel tends to start emitting with the 3rd emitting
state with a probability of 0.72. The model also has
accumulated a considerable probability (0.38) to
jump from the 3rd emitting state to the last (non-
emitting) state.

A similar model of this consonant with the other
vowels (our example is the 5th order vowel) tend to
start emitting with the 3rd emitting state with a
probability of 0.68. This is two times the probabil-
ity (0.32) of its transition from the starting (non-
emitting state) to the 1st emitting state.

The models of the other consonants with the
sixth order vowel, which are exemplified by the
model of the syllable [jI], tend to jump from the 3rd

emitting state to the last (non-emitting) state with a
probability of 0.39, which is considerably greater
than that of continuing with the next state (0.09).

Since the amount of available training speech is
not enough to train transition probabilities for skip-
ping two or more states, the number of states to be
skipped have been limited to one.

To determine the optimal number of Gaussian
mixtures for the syllable models, we have conduc-
ted a series of experiments by adding two Gaussian
mixtures for all the models until the performance
of the model starts to degrade. Considering the dif-
ference in the frequency of the CV syllables, a hy-

brid number of Gaussian mixtures has been tried.
By hybrid, we mean that Gaussian mixtures are as-
signed to different syllables based on their fre-
quency. For example: the frequent syllables, like
[nI], are assigned up to fifty-eight while rare syl-
lables, like [p`i], are assigned not more than two
Gaussian mixtures.

4.4 Performance of the Recognizers

We present recognition results of only those recog-
nizers which have competitive performance to the
best performing models. For example: the perform-
ance of the model with 11 emitting states with
skips and hybrid Gaussian mixtures is more com-
petitive than those with 7, 8, 9, and 10 emitting
states. We have also systematically left out test res-
ults which are worse than those presented in Table
6. Table 64 shows evaluation results made on the
5k development test set.

States Transition
Topolo-
gies

Mix. Models
AM AM +

LM
AM +
LM +

SA
3 No skip

and jump
18 62.85 88.82
Hy 60.87 87.63 88.50

skip 12 69.20
jump 12 43.74 79.94

5 No skip
and jump

12 69.29 88.99 89.80
Hy 60.04

skip 12 85.77
jump 12 54.53 84.60

11 skip 12 55.04
Hy 71.83 89.21 89.04

Table 6: Recognition Performance on 5k Develop-
ment test set

From Table 6, we can see that the models with
five emitting states, with twelve Gaussian mix-
tures, without skips and jumps has the best
(89.80%) word recognition accuracy. It has
87.69% word recognition accuracy on the 20k de-
velopment test set.

Since the most commonly used number of
HMM states for phone-based speech recognizers is
three emitting states, one may expect a model of
six emitting states to be the best for an HMM of

4In tables 6 and 7, States refers to the number of emitting
states; Mix refers to the number of Gaussian mixtures per
state; Hy refers to hybrid; AM refers to acoustic model; LM
refers to language model; and SA refers to speaker adaptation.

38

concatenated consonant and vowel. But the result
of our experiment shows that a CV syllable-based
recognizer with only five emitting states performed
better than all the other recognizers.

As we can see from Table 6, models with three
emitting states do have a competitive performance
with 18 and hybrid Gaussian mixtures. They have
the least number of states of all our models. Never-
theless, they require more storage space (33MB
with 18 Gaussian mixtures and 34MB with hybrid
Gaussian mixtures) than the best performing mod-
els (32MB). Models with three emitting states also
have larger number of total Gaussian mixtures5

(30,401 with 18 Gaussian mixtures and 31,384
with hybrid Gaussian mixtures) than the best per-
forming models (13,626 Gaussian mixtures).

The other model topology that is competitive in
word recognition performance is the model with
eleven emitting states, with skip and hybrid Gaus-
sian mixtures, which has a word recognition accur-
acy of 89.21%. It requires the biggest memory
space (40MB) and uses the largest number of total
Gaussian mixtures (36,619) of all the models we
have developed.

We have evaluated the top two models with re-
gard to their word recognition accuracy on the
evaluation test sets. Their performance is presented
in Table 7. As it can be seen from the table, the
models with the better performance on the devel-
opment test sets also showed better results with the
evaluation test sets. We can, therefore, say that the
model with five emitting states without skips and
twelve Gaussian mixtures is preferable not only
with regard to its word recognition accuracy, but
also with regard to its memory requirements.

Sta
tes

Mix. Models
AM + LM AM + LM + SA
5k 20k 5k 20k

5 12 90.43 87.26
11 Hy 89.36 87.13

Table 7: Recognition Performance on 5k and 20k
Evaluation test sets

For a comparison purpose, we have developed a
baseline word-internal triphone-based recognizer
using the same corpus. The models of 3 emitting
states, 12 Gaussian mixtures, with skips have the

5We counted the Gaussian mixtures that are physically
saved, instead of what should actually be.

best word recognition accuracy (91.31%) of all the
other triphone-based recognizers that we have de-
veloped. This recognizer also has better word re-
cognition accuracy than that of our syllable-based
recognizer (90.43%). But tying is applied only for
the triphone-based recognizers.

However the triphone-based recognizer requires
much more storage space (38MB) than the syl-
lable-based recognizer that requires only 15MB
space. With regard to their speed of processing, the
syllable-based model was 37% faster than tri-
phone-based one.

These are encouraging results as compared to
the performance reported by Afify et al. (2005) for
Arabic speech recognition (14.2% word error rate).
They have used a trigram language model with a
lexicon of 60k vocabulary.

4.5 Conclusions and Research Areas in the
Future

We conclude that the use of CV syllables is a
promising alternative in the development of
ASRSs for Amharic. Although there are still pos-
sibilities of performance improvement, we have
got an encouraging word recognition accuracy
(90.43%). Some of the possibilities of performance
improvement are:
• The pronunciation dictionary that we have used

does not handle the problem of gemination of
consonants and the irregular realization of the
sixth order vowel and the glottal stop consonant,
which has a direct effect on the quality of the
sub-word transcriptions. Proper editing (use of
phonetic transcription) of the pronunciation dic-
tionaries which, however, requires a consider-
able amount of work, certainly will result in a
higher quality of sub-word transcription and
consequently in the improvement of the recog-
nizers' performance. By switching from the
grapheme-based recognizer to phonetic-based
recognizer in Arabic, Afif et al. (2005) gained
relative word error rate reduction of 10% to
14%.

• Since tying is one way of minimizing the prob-
lem of shortage of training speech, tying the syl-
lable-based models would possibly result in a
gain of some degree of performance improve-
ment.

39

5 References

Afif, Mohamed, Long Nguyen, Bing Xiang, Sherif Ab-
dou, and John Makhoul. 2005. Recent progress in Ar-
abic broadcast news transcription at BBN. In INTER
SPEECH2005, 1637-1640

Baye Yimam and TEAM 503 students. 1997. "ፊደል
እንደገና" Ethiopian Journal of Languages and Literat-
ure 7(1997): 1-32.

Baye Yimam. 1986. "የአማርኛ ሰዋሰው". Addis Ababa.
ት.መ.ማ.ማ.ድ.

Bender, L.M. and Ferguson C. 1976. The Ethiopian
Writing System. In Language in Ethiopia. Edited by
M.L. Bender, J.D. Bowen, R.L. Cooper, and C.A.
Ferguson. London: Oxford University press.

Cowley, Roger, Marvin L. Bender and Charles A. Fer-
gusone. 1976. The Amharic Language-Description.
In Language in Ethiopia. Edited by M.L. Bender,
J.D. Bowen, R.L. Cooper, and C.A. Ferguson. Lon-
don: Oxford University press.

Deller, J.R. Jr., Hansen, J.H.L. and Proakis, J.G., Dis-
crete-time Processing of Speech Signals. Macmillan
Publishing Company, New York, 2000.

Fukada, Toshiaki, Takayoshi Yoshimura and Yoshinori
Sagisa. 1999. Automatic generation of multiple pro-
nunciations based on neural networks. Speech Com-
munication 27:63—73
http://citeseer.ist.psu.edu/fukada99automatic.html.

Ganapathiraju, Aravind; Jonathan Hamaker; Mark Or-
dowski; and George R. Doddington. 1997. Joseph Pi-
cone. Syllable-based Large Vocabulary Continuous
Speech Recognition.

Getachew Haile. 1967. The Problems of the Amharic
Writing System. A paper presented in advance for the
interdisciplinary seminar of the Faculty of Arts and
Education. HSIU.

Hayward, Katrina and Richard J. Hayward. 1999. Am-
haric. In Handbook of the International Phonetic As-
sociation: A guide to the use of the International
Phonetic Alphabet. Cambridge: the University Press.

Hu, Zhihong; Johan Schalkwyk; Etienne Barnard; and
Ronald Cole. 1996. Speech recognition using syllable
like units. Proc. Int'l Conf. on Spoken Language Pro-
cessing (ICSLP), 2:426-429.

Kanokphara, Supphanat; Virongrong Tesprasit and
Rachod Thongprasirt. 2003. Pronunciation Variation
Speech Recognition Without Dictionary Modifica-
tion on Sparse Database, IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing
(ICASSP 2003, Hong Kong).

Kinfe Tadesse. 2002. Sub-word Based Amharic Word
Recognition: An Experiment Using Hidden Markov
Model (HMM), M.Sc Thesis. Addis Ababa Uni-
versity Faculty of Informatics. Addis Ababa.

Lee, C-H., Gauvain, J-L., Pieraccini, R. and Rabiner, L.
R.. 1992. Large vocabulary speech recognition using
subword units. Proc. ICSST-92, Brisbane, Australia,
pp. 342-353.

Leslau, W. 2000. Introductory Grammar of Amharic,
Wiesbaden: Harrassowitz.

Martha Yifiru. 2003. Application of Amharic speech re-
cognition system to command and control computer:
An experiment with Microsoft Word, M.Sc Thesis.
Addis Ababa University Faculty of Informatics. Ad-
dis Ababa.

Rabiner, L. and Juang, B. 1993. Fundamentals of speech
recognition. Englewood Cliffs, NJ.

Hussien Seid and Björn. Gambäck 2005. A Speaker In-
dependent Continuous Speech Recognizer for Am-
haric. In: INTERSPEECH 2005, 9th European Con-
ference on Speech Communication and Technology.
Lisbon, September 4-9.

Solomon Birihanu. 2001. Isolated Amharic Consonant-
Vowel (CV) Syllable Recognition, M.Sc Thesis. Ad-
dis Ababa University Faculty of Informatics. Addis
Ababa.

Solomon Teferra Abate. 2006. Automatic Speech Re-
cognition for Amharic. Ph.D. Thesis. University of
Hamburg. Hamburg.

Solomon Teferra Abate, Wolfgang Menzel and Bairu
Tafla. 2005. An Amharic Speech Corpus for Large
Vocabulary Continuous Speech Recognition. In: IN-
TERSPEECH 2005, 9th European Conference on
Speech Communication and Technology. Lisbon,
September 4-9.

Tadesse Beyene. 1994. The Ethiopian Writing System.
Paper presented at the 12th International Conference
of Ethiopian Studies, Michigan State University.

Wu, Su-Lin. 1998. Incorporating Information from Syl-
lable-length Time Scales into Automatic Speech Re-
cognition. PhD thesis, University of California,
Berkeley, CA.

Young, Steve; Dan Kershaw; Julian Odell and Dave Ol-
lason. 2002. The HTK Book.

Zegaye Seyifu. 2003. Large vocabulary, speaker inde-
pendent, continuous Amharic speech recognition,

M.Sc Thesis. Addis Ababa University Faculty of In-
formatics. Addis Ababa.

40

Proceedings of the 5th Workshop on Important Unresolved Matters, pages 41–48,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Adapting a Medical Speech to Speech Translation System (MedSLT) to
Arabic

Pierrette Bouillon
University of Geneva, TIM/ISSCO, ETI

40, Bd. Du Pont d'Arve
CH-1211 Geneva 4, Switzerland

Pierrette.Bouillon@issco.unige.ch

Manny Rayner
Powerset Inc

475 Brannan Str.
San Francisco

CA 94107, USA
manny@powerset.com

Sonia Halimi
University of Geneva, TIM/ISSCO, ETI

40, Bd. Du Pont d'Arve
CH-1211 Geneva 4, Switzerland

Sonia.Halimi@eti.unige.ch

Beth Ann Hockey
Mail Stop 19-26, UCSC UARC, NASA
Ames Research Center, Moffett Field,

CA 94035-1000
bahockey@ucsc.edu

Abstract

We describe the adaptation for Arabic of
the grammar-based MedSLT medical
speech system. The system supports simple
medical diagnosis questions about head-
aches using vocabulary of 322 words. We
show that the MedSLT architecture based
on motivated general grammars produces
very good results, with a limited effort.
Based on the grammars for other languages
covered by the system, it is in fact very
easy to develop an Arabic grammar and to
specialize it efficiently for the different
system tasks. In this paper, we focus on
generation.

1 Introduction

MedSLT is a medical speech translation system. It
allows a doctor to ask diagnosis questions in medi-
cal subdomains, such as headaches, abdominal
pain, etc, covering a wide range of questions that
doctors generally ask their patients. The grammar-
based architecture, built using specialization from
reusable general grammars, is designed to allow a
rapid development of different domains and lan-
guages. Presently, it supports English, French,
Japanese, Spanish and Catalan. This article focuses
on the system development for Arabic.

In general, translation in this context raises two
specific questions: 1) how to achieve recognition
quality that is good enough for translation, and 2)
how to get translations to be as idiomatic as possi-
ble so they can be understood by the patient. For
close languages and domains where accuracy is not
very important (e.g. information requests), it may
be possible to combine a statistical recognizer with
a commercial translation system as it is often done
in commercial tools such as SpokenTranslation
(Seligman and Dillinger, 2006). However, for this
specific application in a multilingual context, this
solution is not applicable at all: even if perfect rec-
ognition were possible (which is far from being the
case), current commercial tools for translating to
Arabic do not guarantee good quality. The domain
dealt with here contains, in fact, many structures
specific to this type of oral dialogue that can not be
handled by these systems. For example, all the
doctor’s interactions with the MedSLT system
consist of questions whose structures differ from
one language to another, with each language hav-
ing its own constraints. Consequently, two types of
errors occur in Arabic translation systems. Either
they do not recognize the interrogative structure as
in example (1), or they produce ungrammatical
sentences by copying the original structure as in
example (2):

41

(1) was the pain severe?
 (Google) آ
ن ا��� ا�����

(kana al alam chadid)
 ‘have-past-3 the pain severe’

is the pain aggravated by exertion?
��� ��
 (Systran) ا��� ��
(al alam yufaqim bi juhd)
‘the pain escalate-3 with effort’

(2) is the headache aggravated by bright light?
�ء ���� �
�� ��ا��� ��� �� � (Cimos)

(la yudhi’ bi chakl sathi’ suda’ayn sabab)
‘not light in manner bright-3 headache-
plur cause’

is the headache aggravated by bright light?

) �$� �
�#! "���! ��� ��ا�
ت Systran(
(yatim sathia khafifa sabab suda’at)
‘finish-3 bright-fem not-heavy-fem cause
headache-plur’

are your headaches accompanied by nau-
sea?

 إن *-ا,+ ��ا�
*(�)ا�'! &%�
ن
(1-800-translate)
(in turafiq suda’atik bi wasithat rhatha-
yan)
‘if you-accompany your headache-plur us-
ing nausea’

Ellipsis is another problem for MT systems.

Many elliptical structures cannot be translated
without context. In example 3, the context is
needed to guarantee adjective agreement.

(3) Doctor: is the pain severe?
 Trad: ه� ا��� ���0؟ (MedSLT)

(hal al alam chadid)
‘Q the pain severe’

Doctor: moderate?

 Trad: 45$�3؟ 45$63؟ 45$23!؟
(muhtamala, muhtamalan, muhta-
mal)
‘moderate_fem_attributive_adj,
moderate_vocalized-predicative_adj,
moderate_attributive_adj’.

It is also essential for rules of translation to be

applied consistently. For instance, in MedSLT,

onset is translated by the verb -�7 (dhahara). In
this context, the adjective sudden has to be trans-
lated by an adverb 9ة, (fajatan) (example 4). This
implies that the translation of the ellipsis in the
second utterance needs to change syntactic cate-
gory too. We can wonder to what extent the word-
for-word translation of the elliptical sentence in (4)
can be understood by the patient.

4) Doctor: was the onset of headaches sud-

den?
 Trad: 9ةا�;�اع7�- ه�؟ , (MedSLT)

(hal dhahara al sudaa fajatan?)
 (Q appear-past-3 the headache suddenly?)

Doctor: acute?
Trad: <=
؟�5

(mufaji?)
 (acute)

In addition to that ellipsis can not always be

translated by the same type of ellipsis. Arabic
grammar (Amin, 1982) allows the use of elliptical
structures in cases where there is a semantic link
(-�!>�) referring to the omitted part of the sentence
otherwise the elliptical construction is ambiguous.
In example (3), the use of an adjective alone pre-
sents an ambiguity introducing, therefore, a diffi-
culty in comprehension which can be problematic.
Thus, it is necessary to resort to a more sophisti-
cated approach. We will describe, in the following
part, the architecture on which MedSLT is based.
Then, we will show how it has been adapted to
Arabic.

2 The Architecture

MedSLT is a grammar-based medical speech trans-
lation system which uses the commercial Nuance
speech recognition platform. It has two main fea-
tures (Bouillon et al., 2005). First, all the language
models (for recognition, analysis, generation) are
produced from linguistically motivated, general
unification grammars using the Regulus platform
(Rayner, et al., 2006). First, domain specific unifi-
cation grammars are created from the general
grammar for the different domains of medical di-
agnosis through a trainable corpus-based automatic
grammar specialization process. They are, next,
compiled into Context Free Grammars (CFGs) in a
format suitable for use with the Nuance speech

42

recognition platform, and into a form needed for a
variant of Semantic Head-driven generation (Shie-
ber et al., 1990). Therefore, the different grammars
needed by the system under this approach are easy
to build and maintain.

This leads us to the second feature. Because
grammar-based speech recognition only produces
competitive results for the sentences covered by
the grammar, the user will need to learn the cover-
age of the system. In order to assist in this, a help
system is included in the system (Starlander et al.,
2005 and Chatzichrisafis et al., 2006). The help
system suggests, after each user utterance, similar
utterances covered by the grammar which can be
taken as a model. In order to derive the help sen-
tences, the system performs, in parallel, a statistical
recognition of the input speech. It then compares
the recognition result using an N-gram based met-
ric, against a set of known correct in-coverage
questions to extract the most similar ones. It is in
that way that we introduce some of the robustness
of the statistical systems in the controlled applica-
tion.

Once the sentence recognized, the translation is
interlingua-based. Regulus allows different types
of source representations (Rayner, et al., 2006), but
we have chosen to use the simplest one in order to
facilitate the translation process. It is a flat seman-
tic structure built up by concatenation of word
meanings. For instance, ه� ��$� ا�;�اع �<� ا�?2+؟ (hal
yachtaddou al soudaa inda al qalaq? ‘Q aggra-
vate-3 the headache in the stress’) would be repre-
sented as follows:

[[cause,qalaq],[event,yachtaddou],
[prep_cause,inda],[symptom,soudaa],
[tense,present],[utterance_type,ynq],
[voice,active]]

The same formalism is used for the interlingua
which is a standardized version of the most explicit
source English representation. For example, the
interlingua representation of the previous sentence
corresponds to the following structure that can be
paraphrased as follows: « does the pain become
worse when you experience anxiety?»:

[[sc,when],[clause,

[[pronoun,you],
[secondary_symptom,anxiety],
[state,experience],
[tense,present],

[utterance_type,dcl],
[voice,active]]],

[event,become_worse],[symtom,headache],
[tense,present],[utterance_type,ynq],
[voice,active]].

Under this approach the translation process only

involves mapping simple structures. This facilitates
the process of translation and the resolution of di-
vergences. This process goes through five stages:
1) source language analysis in order to extract
source representation; 2) ellipsis resolution if nec-
essary; 3) mapping the source structure into the
interlingua; 4) mapping the interlingua into the
target structure and 5) generation of the target lan-
guage in accordance with its own grammar.

We will show next the adequacy of this architec-
ture for translation in Arabic. On the basis of the
grammars already implemented for some lan-
guages covered by the system (French, English,
Spanish, Catalan), it is, in fact, easy to develop a
general Arabic grammar that meets the constraints
of the MedSLT project and to specialize it for the
purposes of speech recognition and generation.
This method produces very good results when
compared to commercial systems.

3 General MedSLT grammar for Arabic

Writing unification grammars for speech presents
two requirements. Since it has to be transformed
into context–free grammar (CFG) for recognition,
features must have a finite number of values, as
limited as possible. In practice, this means that at-
tributes can not take complex values and the lexi-
calist approach used in LFG or HPSG cannot be
applied here. For example, subcategorization is not
represented with general rule schemata as in
HPSG. Therefore, syntagmatic rules must be mul-
tiplied for each type of verb (transitive, intransi-
tive, etc.). Even if this first constraint results in a
less elegant and more repetitive grammar, it is not
a limitation to the development of grammars with
the complexity required for such applications.

The grammar is used to constrain the recogni-
tion process, so it needs to include all information
that could improve recognition. For instance,
evaluation has shown that the quality of recogni-
tion decreases considerably when selection restric-
tions are omitted (Rayner, et al., 2006). Thus, in
practice, this means that all Regulus general
grammars include many features for managing this

43

type of constraint. For example, nouns are seman-
tically typed; verbal entries contain features to de-
termine the type of complements according to their
subcategorization, etc. These types are difficult to
define coherently for the general vocabulary but
are not problematic when the domain is very con-
trolled and the vocabulary very limited. In addi-
tion, they do not have any effect on the whole
structure of the general grammar since they come
from specialized lexica of various domains.

As with all Regulus grammars, the Arabic
grammar and lexicon are bound by these two re-
strictions. At the present time, they cover only
questions in relation to headaches. The vocabulary
contains 322 different forms. Nouns are semanti-
cally typed and verbs specify the type of comple-
ments. For instance, the entry @�-=أ (ajrayta,
‘carry out’) indicates that the verb selects a subject
which is an agent (subj_np_type=agent) and an
object of thera type (therapeutic)
(obj_np_type=thera):

v:[sem=[[state,tajri],[tense,passé]],
 subcat=trans, agr=2/\sing/\masc,
 vform=finite, subj_np_type=agent,
 obj_np_type=thera] -->
 @a(' .(ajrayta ,'أ����

It is interesting to note that features and values

are the same in Arabic as in other languages except
for some differences such as the agr(eement) fea-
ture which can take a “dual” value, inter alia. To
avoid the multiplication of entries, particles such as
 ـ,(al) ال � (bi), ك (ka), were separated from words to
which they are normally attached. For recognition,
this does not seem to pose a problem. For genera-
tion, they are joined to their heads according to
specific orthography rules after the generation of
sentences. Since the word is synthesized, it appears
only in its non-vocalic form.

The grammar contains 38 rules that describe
yes-no questions introduced by ه� (hal), for
example : ا��$���؟ Eه� �3$� ا��� إ� (hal yamtad al alam
ila al katifayn, ‘Q irradiate-3 the pain to the
shoulders’) and some wh-questions, for example :
-F� E$5 (mata yadhar al alam, ‘when appear�- ا���؟
3 the pain’). The grammar structure is, in the end,
quite close to romance languages. As it can happen
in Spanish or Catalan, the subject of yes-no
questions in Arabic comes conventionally after the
verb (hal yamtad [al alam]_sujet [ا���]) if not
elided when it is agentive (hal [tahus] bi al alam
[4*G], ‘Q you-feel with the pain’). Thus, we can

the pain’). Thus, we can use similar rules applied
to Prodrop and inversion in these languages. In-
version is not dealt with as a type of movement
otherwise it would have obliged us to multiply the
number of features in the grammar. Instead, we use
the constituent vbar, which is also convenient for
Arabic. We consider a yes-no question
(yn_question) to be made up of a particle, which is
 and a sentence (s) where the subject is ,(hal) ه�
either elided (inv=prodrop), or comes after the
verb (inv=inverted), namely:

yn_question:[sem=...] -->

@a(' ,(hal ,'ه�
optional_adverb:[...],
s:[... inv=inverted\/prodrop].

The s is rewritten in a vp which is itself consti-

tuted of a vbar and its complements according to
the type of the verb (transitive, intransitive, etc.) as
is a standard grammar structure:

s :[sem=] -->

vp:[inv=INV, …].

vp:[sem=…, inv=INV, …] -->

vbar:[subcat=trans, inv=INV, ….],
optional_adverb:[….],
np:[….],
optional_adverb:[…],
optional_pp:[….],
optional_adverb:[….].

The vbar is itself composed of a single verb (if the
subject is elided; in this case it has an
inv=prodrop feature), or a verb followed by a sub-
ject (in such instance, it has a inv=inverted fea-
ture) as in rules shown above. We note that the
elision will only be possible here if the verb takes a
subject of agent type:

vbar:[sem=…, inv=prodrop] -->

optional_v:[agr=2/\masc/\sing,
subj_np_type=agent].

vbar:[sem=.., inv=inverted] -->

optional_v:[],
np:[].

The treatment of wh-questions is more conven-

tional in all languages because it is not possible to
handle them without simulating movement. We
consider that the interrogative pronoun moved

44

from its initial place (PP, etc.), which becomes
empty, to an initial position (ayna_i tahus bi al
alam [i] , ���
 where you-feel with the‘ ,أ�� *G4 �ـ
pain’). To deal with the movement, we use the
standard mechanism of gap threading, introduced
by Pereira (1981). The link between the empty
constituent [i] and the constituent which has been
moved (ayna_i in our example) is possible using
two attributes which are gapsin and gapsout, in-
cluded in all categories related to the movement.
For example, in the following rule, such attributes
indicate that the interrogative element (wh_pp) is
only possible if the sentence (s) contains an empty
pp (indicated by the attribute gapsin=pp_gap):

wh_question:[sem=...] -->

wh_pp:[sem=..],
s:[…, gapsin=pp_gap, gapsout=B].

In comparison with the rest of languages previ-

ously processed by the system, the Arabic gram-
mar does not have a lot of special cases. One rule
specifies that some verb such as “to be” (ن
 آ
(kana), ن(�� (yakun), with the feature sub-
cat=pred(icatif)) can be optional – they can be re-
written in an empty constituent indicated as []:

optional_v:

[sem=[[state,be],[tense,present]],
subcat=pred] --> [].

Rules for numbers are also very complex in or-

der to represent the dual form in addition to the
position of numbers which can change depending
on whether the number is singular: one, for exam-
ple : more than one day �5 -%أآ�Hم وا(� (akthar min
yawm wahid, ‘more than day one’) and, the third
day K�
 al yawm al thalith, ‘the day the) ا��)م ا�%
third’), or plural, for example : more than 3 days,
 akthar min thalathat ayam, ‘more) أآ%- L6L �5! أ�
م
than three days’).

4 Grammar specialization

One of the most important advantages of the ap-
proach adopted here is that the general grammar
can be specialized for use in different tasks and
domains, to obtain a useful grammar in each case.
In the case of Arabic, it is possible to perform gen-
eration and recognition directly using the general
grammar described above, since it is not yet very
elaborate. The general grammar is however already

large enough to cause serious efficiency problems,
When compiled for generation, the general gram-
mar overgenerates, as the target structures are flat
and underspecified (they do not include, for exam-
ple, information on numbers or determiners, cf.
examples above). It would be possible to insert
preference rules to force the intended structure, but
this solution is extremely unattractive from a soft-
ware engineering point of view. When compiling
the grammar for recognition, the situation is even
worse. All our experiments on other languages
show that recognizers compiled from general
grammars either perform very poorly (Bouillon et
al 2007), or fail to recognize at all (Rayner et al
2006, section 11.7). As in previous work, we have
attacked these problems by creating specialized
versions of the general Arabic grammar.

In our approach to grammar specialization, do-

main-specific unification grammars are derived
from general ones using the Explanation Based
Learning (EBL) technique (Rayner, et al., 2006).
This corpus-based specialization process is param-
eterized by a training corpus and a set of opera-
tionality criteria. The training corpus, which can be
relatively small, consists of examples of utterances
that should be covered by the domain grammar.
(For Arabic, the current training corpus is about
450 sentences). The sentences of the corpus are
parsed using the general grammar, then those
parses are partitioned into phrases based on the
operationality criteria. Each phrase defined by the
operationality criteria is flattened, producing rules
of a phrasal grammar for the application domain.
The resulting domain-specific grammar has a sub-
set of the coverage of the general grammar and
reduced structural ambiguity. In a generation
grammar, over-generation is virtually eliminated;
specialized recognition grammars typically have
greatly superior recognition due to the reduction in
search space that they provide. In the case of the
Arabic grammar described here, the training cor-
pus is a set of Arabic sentences based on the Eng-
lish reference corpus for the headaches domain.
The operationality criteria are a slightly modified
version of those used for the Romance grammars
discussed in Bouillon et al., 2007.

In previous work, we have described at length
the structural relationships between general gram-
mars, and specialized grammars for recognition
and generation; here, we will briefly summarize

45

the main points and show a simple example of how
they apply to our Arabic grammar. Figures (1) to
(3) present parse trees for the sentence ؟�Mه� ا��� دا
(hal al alam daym ‘Q the pain permanent’):

.MAIN
 utterance
 yn_question
 / lex(hal)
 | optional_adverb null
 | s
 | vp
 | / vbar
 | | / optional_v null
 | | | np
 | | | / spec lex(al)
 | | | | nbar
 | | \ \ noun lex(alam)
 | | adj lex(daym)
 | | optional_adverb null
 | | optional_pp null
 \ \ optional_adverb null

Figure (1): Parse tree for 'hal al alam daym' with

the general grammar

.MAIN
 utterance
 / lex(hal)
 | vp
 | / vbar
 | | np
 | | / spec lex(al)
 | | \ noun lex(alam)
 | | adj lex(daym)
 \ \ optional_pp null

Figure (2): Parse tree for 'hal al alam daym' with

the specialized recognition grammar

.MAIN
 utterance
 / lex(hal)
 | vp
 | / vbar
 | | np lex(al) lex(alam)
 | | adj lex(daym)
 \ \ optional_pp null

Figure (3): Parse tree for 'hal al alam daym' with

the specialized generation grammar

It is immediately apparent that (1), the parse tree

for the general grammar, is structurally much more
complex than (2) and (3), the trees for the special-
ized grammars. In particular, (1) has several nodes
filled by optional modifiers of various kinds, all of
which are here null; if this grammar is compiled

into a recognizer, all these nodes result in extra
paths in the search space, with a corresponding
loss of efficiency. Both the specialized grammars
flatten out the modifier structure, for example us-
ing learning a set of vp rules which instantiate
only those combinations of modifiers that have
actually been seen in the training corpus.

The difference between the specialized recogni-
tion grammar (2) and the specialized generation
grammar (3) is more subtle. The first thing to con-
sider is that the recognition version needs to con-
tain all the rules required for recognition and
analysis of multiple syntactic variants of the diag-
nosis questions, while the generation one only has
to contain sufficient rules to generate one variant
(ideally, the most correct and idiomatic one) for
each question. An important consequence of this
general principle relates to the treatment of NPs.
The general grammar includes a rule that forms an
NP in a conventional manner from a specifier (id-
dat, koul and al, which has been separated from the
noun), potentially optional, and a noun. This rule
permits a compositional analysis of all the gram-
matical combinations of nouns and articles, which
is also appropriate for the recognition grammar.
For generation, however, the system learns gener-
ally complete (lexicalized) NPs, in order to attach
the appropriate article for each noun on the basis of
the corpus (there is an exception for NPs contain-
ing a number because it is obviously undesirable to
include in the corpus one example of every num-
ber/noun combination). Contrasting (2) and (3), we
see that in (2), the phrase ا�� (al alam, ‘the pain’)
is treated compositionally; in (3), it is a lexicalized
phrase produced by the rule

np --> (al alam) ا��

Our previous experience with French, English and
Spanish has shown that this method is a good solu-
tion for specialized and limited domains like the
one under study. Articles are difficult to recognize
(they are usually short unstressed words) and to
translate, but the right combinations can easily be
learnt according to the context and subdomain. In
the next section, we show that the specialization
method yields good results in practice when ap-
plied to Arabic.

46

5 Evaluation

Our initial evaluation only tests the specialized
Arabic generation grammar. We used an English
corpus of 522 diagnostic questions gathered with
MedSLT, which has previously been used to com-
pare linguistic and statistical recognition (Rayner
et al., 2004). Translation were judged by four Ara-
bic translators from the Geneva Translation School
on the following three-point scale:

• Good : translation respects completely the
meaning and the grammatical form;

• OK : translation is not completely idio-
matic but understandable;

• Bad : translation does not keep the mean-
ing, is non understandable or it is agram-
matical.

The results are as follows:

Evaluation T1 T2 T3 T4
Good 365

(69.9%)
318

(60%)
323

(61%)
281

(53%)
Ok 16

(3.1%)
63

(12%)
56

(10%)
86

(16%)
Bad 3

(0.6%)
3

(0.6%)
5

(0.9%)
17

(3%)
Not analyzed sen-
tences

114 (21.8%)

Not translated
sentences

21 (4%)

Not generated
sentences

3 (0.6%)

Total 522 (100.0%)

We clearly can see that translations are good
(Good or Ok) if the sentences are well recog-
nized/analyzed in English, which is very important
for our application (381/408 for T1 (93%),
381/408 for T2 (93%), 379/408 for T3 (92%),
367/408 for T4, (89.9%)). Not analyzed sentences
(21.8%) are those which are not covered by the
English grammar but had to be reformulated in an
existent structure with the help system (see above;
Chatzichrisafis, et al., 2006).

Three sentences only (0.6%) failed at the level
of generation (Not generated sentences), which
shows that the specialized generation grammar is
robust enough for the domain. These sentences
have now to be added in the corpus to be generated
correctly. In other languages, we have indeed no-
ticed that this kind of error disappears after one or
two cycles of evaluation on new data. Not trans-

lated sentences (4%) are mostly caused by spe-
cialized medical terms describing pain (pounding,
throbbing, etc.) that we did not introduce yet be-
cause they need to be validated by Arabic medical
specialists. Here are some examples of Good trans-
lations:

 does chocolate cause your headaches

؟ ه� �F�- ا�;�اع �<�5
 *9آ� ا��)آ)�
(hal yadhharou al soudaa indama takoul
al chocolat)
(Q appear-3 the headache when you-eat
the chocolate)

 do headaches usually occur in the morning

�;�اع ,� ا�;�
ح� G4*
؟ه� آ%�-ا 5
(hal kathiran ma tahus bi al soudaa fi al
sabah)
(Q often ma-you-feel-bi the headache in
the morning)

is the headache in the front of your head
!��
�;�اع ,� ا�� G4* ؟ه�

(hal tahus bi al soudaa fi al jabha)
 (Q you-feel-bi the headache in the front)

 does stress cause your headaches

F� قه�
؟�- ا�;�اع �<� اRره
(hal yadhharou al soudaa inda al irhaq)

 (Q appear-3 the headache in the stress)

 is it a stabbing pain

؟ه� ا��� �%5 �#<! ����
(hal al alam mithl taanat sikin)

 (Q the pain like stabbing knive)

In order to compare our results with commercial
MT systems output, we submitted the first 124
well analyzed sentences to Systran. Among these
translations, 98 were judged as Bad, 6 as Good
and 20 as Ok. What the translator has considered
as bad are the translations that are not in the inter-
rogative form and neither grammatical nor idio-
matic. Consequently they are not understandable.
Here are the first ten translations we have obtained:

Original sen-
tence (English)

Translation (Arabic) Evaluation

is the pain re-
lieved by stress
removal?

د إزا�! ؟�=T� @��ّ" ن ا���(��
(yakun al alam khafafat bi
ijhad izalat)
‘be-3 the pain relieve-

Bad

47

past-fem with stress re-
moval’

does the pain
extend to your
neck?

 ا��� �3ّ�د إ�E �<?(؟
(al alam yumadid ila ou-
noukika)
‘the pain make-longer-3 to
neck-yours’

Ok

is the pain severe? ؟ !��
 ��)ن ا��� �
(yakun al alam qassiya)
be-3 the pain harsh-fem’

Ok

is caused by
bright light?

�)ء �
�#! ؟� @��ّ�
(sababat bi dhaw sathia)
‘cause-she with light
bright-she’

Bad

is the pain made
better by coffee?

#� =ّ��ة �?�)ة ؟��)ن ا� ���
(yakun al alam yajaal
jayida bi qahwa)
‘be-3 the pain make good-
fem-3 with coffee’

Bad

does it sometimes
last more than
two hours?

ن >Lوم أآ%- �5 ا��
V
�Hه) أ

ت ؟�
�
(howa ahyan yadum ak-
than min ithnan saat)
‘he sometimes do-last-3
more than two hours’

Bad

do you have
headaches in the
morning?

 أE?ّ2$* @V ��ا�
ت ,� ا�;�
ح ؟
(anta tatalaqa sudaaat fi
al sabah)
‘you do-receive headache-
plur in the morning’

Bad

how long do your
headaches last?

WV(� (��وم ؟] ه)و*
�$ّ� ��ا�]
([how long] yatim su-
daatik yadum)
‘how long finish-3 head-
ache-plur- yours long’

Bad

thirteen minutes
to a few hours?

 Eإ� +M
] ا ,)[L6L! ��- د�

ت ؟�
�
(thalatat achar daqaiq ila
[fu] saat)
‘thirteen minutes to saat’

Bad

how long does the
headache last?

ا�;�اع ��وم ؟] WVه)و �)]
([how long] al sudaa
yadum)
‘[how long] the headache
last-3’

Bad

6 Conclusion

At the present time, it would have been difficult to
use a commercial machine translation system for
Arabic in the context of our application where ac-
curacy is very important. One possibility is thus to
use a more linguistic approach that takes advantage
of the subdomain constraints. This approach is usu-
ally very costly. However we have shown in this
paper that the MedSLT architecture based on mo-
tivated general grammars produces very good re-
sults, with a limited effort. The general grammar

can be developed very easily on the basis of other
languages. The experiments described here show
good results for the Arabic generation grammar.
Our initial anecdotal results with the Arabic recog-
nizer are promising, and we hope to begin evalua-
tion of this component in the near future.

References

P. Bouillon, F. Ehsani, R. Frederking and M. Rayner
(Eds.) 2006. Medical Speech Translation. Proceed-
ings of the Workshop. HLT/NAACL-06, New York,
NY, USA.

P. Bouillon, M. Rayner, B. Novellas, M. Starlander, M.
Santaholma, Y. Nakao and N. Chatzichrisafis. 2007.
Une grammaire partagée multi-tâche pour le traite-
ment de la parole : application aux langues romanes.
TAL.

P. Bouillon, M. Rayner, N. Chatzichrisafis, B.A. Hoc-
key, B.A., M. Santaholma, M. Starlander, H. Isahara,
K. Kanzaki, and Y. Nakao. 2005. A generic Multi-
Lingual Open Source Platform for Limited-Domain
Medical Speech Translation. Proc. 10th EAMT. Bu-
dapest, Hungary.

N. Chatzichrisafis, P. Bouillon, M. Rayner, M. Santa-
holma, M. Starlander, B. A. Hockey. 2006. Evaluat-
ing Task Performance for a Unidirectional Controlled
Language Medical Speech Translation System. In
(Bouillon et al, 2006)

M. Rayner, B. A. Hockey and P. Bouillon. 2006.
Putting Linguistics into Speech Recognition: The
Regulus Grammar Compiler. Stanford University
Center for the Study of language and information,
Stanford, California.

S. Shieber and G. van Noord and F.C.N. Pereira and
R.C. Moore. 1990. Semantic-Head-Driven Genera-
tion. Computational Linguistics, 16(1).

M. Seligman and M. Dillinger. 2006. Usability Issues in
an Interactive Speech-to-Speech Translation System
for Healthcare. In (Bouillon et al, 2006).

M. Starlander, P. Bouillon, N. Chatzichrisafis, M. San-
taholma, M. Rayner, B.A. Hockey, H. Isahara, K.
Kanzaki, Y. Nakao. 2005. Practising Controlled Lan-
guage through a Help System integrated into the
Medical Speech Translation System (MedSLT). Pro-
ceedings of the MT Summit X, Phuket, Thailand.

B. Amin. 1982. Al-Balagha Al-Arabia. ‘ilm Al-Ma’ani.
Dar Al-‘ilm Li-Almalayeen. Beirut, Lebanon.

48

Proceedings of the 5th Workshop on Important Unresolved Matters, pages 49–56,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Finding Variants of Out-of-Vocabulary Words in Arabic

Abdusalam F.A. Nwesri S.M.M. Tahaghoghi Falk Scholer
School of Computer Science and Information Technology

RMIT University, GPO Box 2476V, Melbourne 3001, Australia
{nwesri,saied,fscholer}@cs.rmit.edu.au

Abstract

Transliteration of a word into another lan-
guage often leads to multiple spellings. Un-
less an information retrieval system recog-
nises different forms of transliterated words,
a significant number of documents will be
missed when users specify only one spelling
variant. Using two different datasets, we
evaluate several approaches to finding vari-
ants of foreign words in Arabic, and show
that the longest common subsequence (LCS)
technique is the best overall.

1 Introduction

The pronunciation of a word in one language is
converted into the phonemes of another language
through transliteration. This is particularly com-
mon with proper nouns. However, phonetics dif-
fer across languages, and transliteration usually re-
sults in many spellings for the same word. This
is an issue even across languages that use substan-
tially the same character set; simple examples would
be “colour” and “color” across British and Ameri-
can usage, and “ambience” and “ambiance” across
French and English.

A change in character sets compounds the prob-
lem: for instance, there are at least 32 English
forms for the Arabic name of the Libyan leader
“Kaddafi”,1 and Nwesri et al. (2006) have identi-
fied 28 different spellings for the name of the for-
mer Serbian president Milosevic in the eleventh Text
REtrieval Conference (TREC) Arabic newswire col-
lection. Users typically submit only one spelling
variant in their query, and current Arabic text re-
trieval systems return only documents that contain
that variant (Abdelali et al., 2004). We apply tech-

1http://www.geocities.com/Athens/8744/
spelling.htm

niques used to identify similar strings in other lan-
guages such as English, and present a novel ap-
proach to identify and retrieve different variants of
foreign words in Arabic.

2 The Arabic Language

Arabic is a Semitic language written from right to
left, with most words derived from three-character
root words. The Arabic alphabet has 28 characters,
each with a distinct sound. Short vowels do not have
any associated characters, but are instead indicated
by diacritics attached to other characters. For ex-
ample, the letter

	¬ /f/ with the diacritic Fatha
�	¬

is pronounced /fa/,2 with the diacritic Kasra
	¬� is

pronounced /fI/, and with the diacritic Damma
�	¬ is

pronounced /fU/.
In general written Arabic, diacritics are not in-

dicated; readers must rely on context to determine
implicit diacritics, and so how the word should be
pronounced. For example, some of the variants of
the word I. �J» are �I.

��J
�
» /kataba/ 〈he wrote〉, I.

��J
�
» /kU-

tUb/ 〈books〉, or �I. �J�
�
» /kUtIba/ 〈is written〉.

There are also three long vowels — represented
by the letters { @ ø
 ð} — that are more pronounced

than short vowels. For instance, the letter
	¬ can

be followed by the long vowel @ /a:/ to form A 	̄ /fa:/,
byð /u:/ to form ñ 	̄ /fu:/, and by ø
 /i:/ to form ú

	̄ /fi:/.

2.1 Foreign Words
From an information retrieval (IR) perspective, for-
eign words in Arabic can be classified into two gen-
eral categories: translated and transliterated (Nwesri
et al., 2006). Translated words, sometimes referred
to as Arabised words, are foreign words that are
modified or remodelled to conform to Arabic word

2We use the International Phonetic Alphabet.

49

paradigms, and are well assimilated into the lan-
guage. The assimilation process includes changes
in the structure of the borrowed word, including
segmental and vowel changes, addition or dele-
tion of syllables, and modification of stress pat-
terns (Al-Qinal, 2002). Foreign words of this cate-
gory usually have a single consistent spelling vari-
ant, for example �ðQ�

	̄
〈virus〉, 	J
 ��P@ 〈archive〉,

and ñK
X@P 〈radio〉.
Where equivalent native terms are not available

early enough for widespread adoption, foreign terms
are used directly with their original pronunciation
represented using Arabic letters. As these do not
appear in standard Arabic lexicons — that may in-
clude adopted words — they are considered to be
Out-Of-Vocabulary (OOV) words.

With transliterated words, the phonemes of a for-
eign word are replaced with their nearest Arabic
equivalents. Since Arabic phonemes cannot repre-
sent all phonemes found in other languages, the orig-
inal phonemes are usually not represented uniformly
by different transliterators, resulting in multiple
spelling variants for the same foreign word (Stalls
and Knight, 1998).

Faced with the need to use new foreign terms, na-
tive speakers often cannot wait for formal equiva-
lents to be defined. This is particularly true for news
agencies, which encounter new foreign nouns and
technical terms daily. This urgency leads to more
transliteration than translation, with the associated
problem of multiple spellings.

2.2 Spelling Variants
In Arabic, short vowels must be indicated using dia-
critics, but these are rarely used in general text, and
there are no standard rules on when and where di-
acritics must be indicated. Context does not help
in predicting diacritics for foreign words such as
proper nouns or technical terms, and so long vowels
are often used to make the pronunciation explicit in
the spelling of the word without relying on diacrit-
ics. This, too, is subject to variation; some translit-
erators add a long vowel after each consonant in the
word, while others add just enough long vowels to
clarify word segments with ambiguous pronuncia-
tion.

The absence of certain sounds in Arabic, and

varying pronunciations across dialects, also con-
tributes to the multiplicity of spellings. For instance,
the sound /g/ has no standard equivalent in Ara-
bic, since transliterators represent it according to
how they pronounce it. For instance, the English
letter G /g/ is at times mapped to the Arabic let-
ters � 	« /G/, ��̄ /q/, or �k. /Z/ (Abduljaleel and Larkey,
2003); we have also observed it mapped to the let-
ter �» /k/:

	¬ñ ����AK. Pñ
	«,

	¬ñ ����AK. Pñ
�̄, 	¬ñ ����AK. Pñk. ,

and
	¬ñ ����AK. Pñ» are transliterations of 〈Gorbachev〉

we have found on the Web.
Similarly, the interpretation of character combi-

nations varies between transliterators. Moreover,
Typographical and phonetic errors during translit-
eration may add even more variants (Borgman and
Siegfried, 1992).

2.3 Retrieval of Variants
When different variants of a word exist, only a sub-
set of related documents can be found when the
search uses only one variant. Typical search en-
gine users are unlikely to recognise the problem and
hence do not add other variants to their query. Cur-
rently, major search engines such as Google, Yahoo,
and MSN search use exact match for Arabic search,
and no publicly available Arabic Information Re-
trieval (AIR) system has been reported to retrieve
different spelling variants (Abdelali et al., 2004).

In this paper we explore how the different vari-
ants of a foreign word may be captured. We test
existing similarity techniques, and introduce three
techniques to search for variants of foreign words
in Arabic. In the first technique, we convert differ-
ent variants to a single normalised form by remov-
ing vowels and conflating homophones. In the sec-
ond technique, we extend the well-known Soundex
technique — commonly used to identify variants of
names in English — to the OOV problem in Arabic,
and in the third technique, we modify the English
Editex algorithm to identify similar foreign words
in Arabic.

3 Related Work

Approaches to identify similar-sounding but differ-
ently spelt words have been heavily investigated in
English; among these are techniques that make use
of string or phonetic similarity.

50

String similarity approaches include the Edit Dis-
tance (Hall and Dowling, 1980), used to measure
the similarity of two strings by counting the minimal
number of character insertions, deletions, or replace-
ments needed to transform one string into another.
To transpose a string s of length n into a string t
of length m, edit(m,n) computes the minimal steps
required as follows:

edit(0, 0) = 0
edit(i, 0) = i
edit(0, j) = j
edit(i, j) = min[edit(i − 1, j) + 1,

edit(i, j − 1) + 1,
edit(i − 1, j − 1) + d(si, ti)]

where d(si, ti) = 1 if si = ti, 0 otherwise.
This measure can be used to rank words in the

collection with respect to a query word. Zobel and
Dart (1995) showed that Edit Distance performed
the best among the techniques they evaluated for
matching English names. It is not known how this
technique will perform with Arabic words.

Another candidate approach that can be used
to identify similar foreign words in Arabic is
n-grams (Hall and Dowling, 1980). This approach
is language independent; the strings are divided into
grams (substrings) of length n, and the similarity of
the strings is computed on the basis of the similarity
of their n-grams. Pfeifer et al. (1996) compute the
similarity as the number of shared grams divided by
the total number of distinct grams in the two strings.

gramCount =
| Gs ∩ Gt |

| Gs ∪ Gt |

where Gs is the set of grams in string s. For ex-
ample, with n=2, the similarity of “ahmed” and
“ahmmed” using this measure is 0.8 because both
strings contain the four 2-grams ah, hm, me, and
ed, while there are five distinct 2-grams across the
two strings.

Gram distance (Ukkonen, 1992) is another string
similarity technique. When grams are not repeated
– which is the case in names — the similarity is
computed as (Zobel and Dart, 1996):
gramDist(s, t) =| Gs | + | Gt | −2 | Gs ∩ Gt |

According to this measure, the similarity between
“ahmed” and “ahmmed” is 1.

With the Dice (1945) measure, the similarity of
strings s and t is computed as twice the number of

common n-grams between s and t, divided by the
total number of n-grams in the two strings:

Dice(s, t) =
2× | Gs ∩ Gt |

| Gs | + | Gt |

where Gs denotes the set of n-grams in s, and Gt

denotes the set of n-grams in t.
The longest common subsequence (LCS) algo-

rithm measures the similarity between two strings
based on the common characters in the two
strings (Wagner and Fischer, 1974; Stephen, 1992).
Similarity is normalised by dividing the length of
the common subsequence by the length of the longer
string (Melamed, 1995). The similarity between be-
tween “ahmed” and “ahmmed” is (5/6=0.833).

Phonetic approaches to determine similarity be-
tween two words include the well-known Soundex
algorithm developed by Odell and Russell, patented
in 1918 and 1922 (Hall and Dowling, 1980). This
has predefined codes for the sounds in a language,
with similar-sounding letters grouped under one
code. During comparisons, all letters in a word bar
the first one are encoded, and the resulting represen-
tation is truncated to be at most four characters long.
A variant of Soundex is the Phonix algorithm (Gadd,
1990), which transforms letter groups to letters and
then to codes; the actual mappings are different from
Soundex. Both Soundex and Phonix have been re-
ported to have poorer precision in identifying vari-
ants of English names than both Edit Distance and
n-grams (Zobel and Dart, 1995).

Aqeel et al. (2006) propose an Arabic version of
English Soundex (Asoundex-final). They include di-
acritics in a list of Arabic names, and created queries
by altering some of these names by adding, deleting,
or inserting characters.

Most Arabic names are meaningful words — for
example, YÒm× 〈the praised one〉 — and rarely do
have spelling variants. This leads to morphological
ambiguity as names may match verbs, pronouns and
other categories of the language. We have found that
using Asoundex-final with the misspelt query 	á�
�î�E
on an Arabic collection with 35 949 unique
words returns Õæ
j. m�

�' 〈exaggeration〉, 	à 	Qm��' 〈she

becomes sad〉, Õæ�m��' 〈she resolves〉, 	á�m��' 〈she

helps〉, 	á�
�m��' 〈improvement〉, 	á�
�m��' 〈immun-
isation〉, Õºm��' 〈she governs〉, Ð 	Qî�E 〈she defeats〉.
Moreover, it is not clear when and how diacritics

51

are removed, nor where the long vowel ø
 belongs
in their implementation.

Editex, developed by Zobel and Dart (1996),
enhances the Edit Distance technique by incorpo-
rating the letter-grouping strategy used by Soundex
and Phonix, and has been shown to have better
performance than these two algorithms, as well as
Edit Distance, on a collection of 30 000 distinct
English names. The similarity between two strings
s and t is computed as:
edit(0, 0) = 0
edit(i, 0) = edit(i − 1, 0) + d(si − 1, s1)
edit(0.j) = edit(0, j − 1) + d(tj − 1, tj)
edit(i.j) = min[edit(i − 1, j) + d(si − 1, si),

edit(i, j − 1) + d(tj − 1, tj),
edit(i − 1, j − 1) + r(si, tj)]

where: r(si, tj) is 0 if si=tj , 1 if
group(si)=group(tj), and 2 otherwise; and
d(si, tj) is 1 if si 6= tj and si is “h” or “w”, and
r(si, tj) otherwise.

4 Data

We used two different data sets. The first set is gen-
erated from text crawled from the Web, and the sec-
ond is prepared by manual transliteration of foreign
words from English to Arabic.

4.1 Crawled Data
This set is derived from a one-gigabyte crawl of Ara-
bic web pages from twelve different online news
sites. From this data we extracted 18 873 073 Ara-
bic words, 383 649 of them unique. We used the
Microsoft Office 2003 Arabic spellchecker to build
a reference list of OOV words. To avoid dupli-
cates in the 40 514 OOV words returned by the
spellchecker, we removed the first character if it is
an Arabic preposition, and if the string remaining
after that character exists in the collectionWe also
removed the definite article “Al” to obtain a list
of 32 583 words. Through manual inspection, we
identified 2 039 foreign words.

To evaluate alternative techniques, we use a ref-
erence list of foreign words and their variants. To
identify variants, we generated all possible spelling
variants of each word according to the patterns we
describe in Section 4.1.1, and kept only the patterns
that exist in our collection; 556 clusters of foreign

Table 1: Variants of the word “Beckham” generated
by adding vowels

ÕºK. Õ» AK. Õ»ñK. ÕºJ
K.
ÐñºK. Ðñ» AK. Ðñ»ñK. ÐñºJ
K.
ÐA¾K. ÐA¿ AK. ÐA¿ñK. ÐA¾J
K.
Õæ
ºK. Õæ
» AK. Õæ
»ñK. Õæ
ºJ
K.

words remain.

4.1.1 Generation of Variants
To generate foreing words variants, we first re-

move any vowels and then reinsert vowel combi-
nations of the three long vowels {ð ø
 @} between
the consonants that remain. For a word of length n,
this process generates 4(n−1) variants. Consider the
word ÐA¾J
K. 〈Beckham〉. We remove vowels to ob-
tain ÕºK. , and then add all possible vowels to obtain
the variants shown in Table 1.

As discussed in Section 2.2, inconsistent repre-
sentation of sounds between transliterators adds to
the variations in spelling. Thus, the number of
possible transliterations for a foreign word is given
by 4(n−1) multiplied by the number of possible
transliterations for each of its consonants. In our ex-
ample, the letter � �®� /q/ may also be used in place
of �º� /k/, and so we generate another set; since the
representation tends to be consistent within a given
word, we need to create only as many sets as there
are Arabic representations for the sound.

We validate the generated variants against our
collection and keep only those that appear in the
crawled text. For our example word “Beckham”,
we found only two correct variants: ÐA¾J
K. and ÕºJ
K. .
Some of the generated variants could be correct Ara-
bic words that would be valid when checked against
the collection. Many of the generated clusters were
found to be noisy – that is, they included many na-
tive Arabic words. We manually corrected these
clusters by removing unrelated Arabic words. The
average cluster length is 2.8 words; the smallest
cluster has two variants, and the largest has nine,
with a total of 1 718 words.

4.2 Transliterated Data
Our second collection reflects one pattern in which
OOV words are introduced by ordinary users

52

transliterating English words into Arabic. We ex-
tracted a list of 1 134 foreign words from the
TREC 2002 Arabic collection, and passed these to
the Google translation engine to obtain their En-
glish equivalents. We manually inspected these and
corrected any incorrect translations. We also re-
moved the 57 words mapped by Google to multi-
ple English words. These are usually a word and
a possible conjunction or preposition. For example
the word h. Q�.Ò�»ñË 〈Luxembourg〉 is transliterated

to 〈For June〉. We passed the English list to seven
Arabic native speakers and asked them to translit-
erate each word in the list back into Arabic, even
if the word has an Arabic equivalent. Four of the
translators are PhD candidates in the sciences or en-
gineering, and have finished an advanced-level En-
glish course; the other three are currently enrolled
in an intermediate-level English course. Participants
were asked to type in their transliteration next to
each English word. We noticed that some translit-
erators had only basic computing skills, and made
many spelling mistakes. For example, instead of
typing the character @, we found that transliterators
sometimes mistakenly type �Ë.

We clustered transliterations by the original En-
glish words, removed duplicates from each cluster,
and also removed 103 clusters where all transliter-
ators agreed on the same version of transliteration.
This left 3 582 words in 207 clusters of size 2, 252
clusters of size 3, 192 clusters of size 4, 149 clus-
ters of size 5, 93 clusters of size 6, and 47 clusters
of size 7. Finally, we incorporated these transliter-
ations into a list with 35 949 unique Arabic native
words prepared by Nwesri et al. (2006).

5 Algorithms

We propose three algorithms to identify foreign
words in Arabic text. The first is normalisation,
which aims to handle different types of typograph-
ical errors described in Section 2.1. The second
and third techniques are extensions to the English
Soundex and Editex techniques.

5.1 Normalisation
To deal with different typographical styles in writ-
ing foreign words, we first remove vowels from ev-
ery foreign term. We keep vowels unchanged if they

Table 2: Normalisation of equivalent consonants to
a single form

Original Normalised
� �� 	P � �
�H
h.

	̈ ¼ �� 	̈
�H �H

are the first or the last characters of the word, since
they are generally pronounced in Arabic. The long
vowel letters are sometimes used as consonants, and
these may be followed immediately by another long
vowel. For example, the vowel letter ø
 /i/ may be

followed by the long vowel ð /u:/ to form ñK
 /ju:/.
For such cases, we keep the first vowel and remove
the second. Two vowels can also be used together
as diphthongs, as in ð@ /aw/ and ø
 @ /aj/. We re-
tain vowels that are followed by another vowel or
preceded by a vowel that forms a diphthong. We
also conflate similar consonants based on statisti-
cal analysis of letter mappings between English and
Arabic (Abduljaleel and Larkey, 2003; Stalls and
Knight, 1998), and confirming through a web search
that these consonants are used interchangeably in
web documents.3 Table 2 shows all consonants we
consider to be equivalent.

Our process may lead to ambiguity where a simi-
lar native word exists; for instance, the spelling vari-
ants ÐA¾J
K. and ÕºJ
K. for 〈Beckham〉 are normalised

to ÕºK. , which is identical to the Arabic word mean-
ing either 〈how much〉 or 〈in you〉. Adding a cus-
tom prefix to the normalised form is one way to ad-
dress this issue; we add the letter “ �è” to the begin-
ning of each normalised word. For example, variants
for Beckham are thus normalised to ÕºK.

�è. Since the

letter �è never occurs at the beginning of any Arabic
word, no ambiguity remains.

5.2 Phonetic Approach
Our phonetic algorithm aims to replace similar
sounds with a single code. As noted earlier, we do
not envisage that this algorithm has use for native
Arabic words, as these are usually distinct, and pro-

3All phonetic groups are created based on transliteration
mapping between English and Arabic letters

53

Table 3: Mappings for our phonetic approach
Characters Code
@ ð ø
 0
�è �H �H 	 	� 1
� �� 	P � 2
X 	X 3
h.

	̈ ¼ �� 4

¨ è h 5
	à 6
Ð 7	¬ 8
È 9
H. A
P B
p C

nunciation is rarely ambiguous. Table 3 shows Ara-
bic letters and their corresponding codes. To nor-
malise foreign words, we replace each letter but the
first by its phonetic code, and drop any vowels. We
have found — as have (Aqeel et al., 2006) and (Zo-
bel and Dart, 1996) — that it is better to encode all
letters, rather than only the first four characters; for
brevity, we show only the results for coding all char-
acters, under the label “Soutex”.

5.3 Arabic Editex
Based on groups identified in Table 4, we have mod-
ified the Editex algorithm of Zobel and Dart (1996).
It works as in English except that we drop the func-
tionality used to consider the two silent characters
in the English version as silent characters in Arabic
are rare and usually occur at the beginning or at the
end of the word. Specifically, we replace d(si, tj)
by r(si, tj). We call the Arabic version of this algo-
rithm “AEditex”.

6 Evaluation

To evaluate the effectiveness of our approaches, we
consider each word in the list to be a query, and
pose this to the entire collection. The query result
should be other words in the same cluster. We con-
sider every word to be a query to avoid any bias to-
wards string similarity techniques as phonetic based

Table 4: AEditex letter groups
Characters Group
@ ð ø
 0
�H �H 1
�H 2
	 	� 3
� �� 4
� � 5
	P � 6
X 	X 7
h.

	̈ ¼ �� 8

techniques fail to capture misspelled words whereas
string similarity techniques do.

The results returned by the different algorithms
described in the previous section are not directly
comparable, as some algorithms return ranked
results and others return unranked results. Ranked
results could also form a weak ordering in which
multiple results belong to the same rank (Ragha-
van et al., 1989). Standard information retrieval
measures are not appropriate for evaluating such
techniques. Zobel and Dart (1996) address this by
using standard precision and recall, but randomly
permute results of equal ranks and calculate the
average of recall and precision over ten different
permutations. Raghavan et al (1989) propose
a different measure called Probability of Rele-
vance (PRR). This measure assumes that the user
randomly selects a document from the topmost
ranks. At any point the precision is defined as the
probability that the random examined document is
relevant. Recall is the number of relevant documents
that the user has seen so far. If we require NR
relevant documents — in our case, words — from a
ranked result, we start by looking at the top answer
and continue until we get to the NRth relevant
word at rank k. The PRR measure is calculated
as (Raghavan et al., 1989):

PRR =
NR

NR + j + (i.s)/(r + 1)

Where j is the number of non-relevant words found
in ranks before k, s is the number of remaining rel-
evant words still to be retrieved in rank k, i is the
number of non-relevant words in rank k, and r is the

54

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

on

Recall

NORM
Soutex

LCS
AEditex

Edit Distance
gramCount

Dice
Asoundex-Final

gramDist
Exact match

Figure 1: Results on the crawled data

number of relevant words in rank k. Interpolation
is used to smooth results and calculate an average
across all queries.

6.1 Results and Discussion
Results from running algorithms using queries in
both datasets against their respective collection are
shown in Figure 1 and Figure 2. The average preci-
sion (average PRR in our case) for each algorithm is
shown in Table 5. The algorithms produce signifi-
cantly better results than exact match (p<0.0001).

On the first data set, NORM performs the best.
LCS is the second best algorithm, followed by AEdi-
tex and Edit Distance. Soutex shows better perfor-
mance than all other algorithms except NORM af-
ter 50% recall, but performs poorly at lower recall
levels. Both the gramCount and Dice algorithms
have similar performance with average precision at
around 46%. Asoundex-final and gramDist show
poorer performance than other algorithms, with av-
erage precision at 38%.

Asoundex-final performs poorly; As mentioned
earlier, the absence of diacritics in typical Arabic
text makes it hard to generalise this technique to re-
trieve names.

Results from the transliterated dataset generally
favour the string similarity algorithms. LCS outper-
forms all other techniques with an average precision
of 78%, followed by Edit Distance at 70%, and then
AEditex at 62%. Soutex performs better than both

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

on

Recall

LCS
Edit Distance

AEditex
Soutex

gramCount
Dice

NORM
Asoundex-Final

gramDist
Exact match

Figure 2: Results on the transliterated data

Table 5: Average precision results
Data set

Algorithm First Second
NORM 0.660 0.536
LCS 0.619 0.782
Edit Distance 0.572 0.700
AEditex 0.576 0.624
Soutex 0.530 0.590
gramCount 0.451 0.595
Dice 0.457 0.568
Asoundex-final 0.368 0.446
gramDist 0.376 0.401
Exact Match 0.300 0.261

the gramCount and Dice algorithms. It performs
better than AEditex at 50% and higher recall lev-
els. NORM performs better than the Asoundex-final
and gramDist algorithms. The gramDist algorithm
is again the worst. All algorithms showed signifi-
cant improvements above the baseline (p<0.0001).

Although NORM and Soutex algorithms do not
produce the best performance, they have the advan-
tage of being run at index time to encode foreign
words which can be later used in retrieval. The al-
ternative algorithms such as Edit Distance are more
computationally expensive and can only be used at
query time.

55

7 Conclusion

Foreign words transliterated into Arabic can appear
with multiple spellings, hindering effective recall in
a text-retrieval system. In this work, we have eval-
uated nine techniques to find such variants. Edit
Distance, Gram Count, Dice, Asoundex-final, Gram
Distance, and Longest Common Subsequence are
language independent techniques used to find vari-
ant names in other languages; Soutex and AEdi-
tex are extended techniques to accommodate Ara-
bic Words; and NORM is a novel technique to find
OOV variants in Arabic. We show that these tech-
niques are effective for finding foreign word vari-
ants. The phonetic approaches generally perform
better on a collection of newswire text than on a
manually transliterated word list, although our Sou-
tex algorithm performs well on both datasets. LCS
was the best of the string-similarity techniques, es-
pecially with the manually transliterated dataset, and
is the most robust choice overall.

The way the transliterated dataset was created af-
fected the results of phonetic approaches; the dataset
has many spelling mistakes, with words interpreted
differently and often wrongly by users not fluent in
English. Often users only hear these words in the
news, and are not even familiar with the spelling of
the word in the original language. To construct a
more realistic data set, we could ask Arabic writers
to transliterate words from a recording; this would
allow pronunciation to be accurately captured by
users not fluent in English.

Information retrieval systems must cater for com-
mon spelling variants; our results help understand
how to identify these in Arabic text.

References
Ahmed Abdelali, Jim Cowie, and Hamdy S. Soliman. 2004.

Arabic information retrieval perspectives. In Proceedings
of the 11th Conference on Natural Language Processing,
Journes d’Etude sur la Parole - Traitement Automatique des
Langues Naturelles (JEP-TALN), Fez, Morocco.

Nasreen Abduljaleel and Leah S. Larkey. 2003. Statistical
transliteration for English-Arabic cross-language informa-
tion retrieval. In Proceedings of the International Confer-
ence on Information and Knowledge Management, pages
139–146, New Orleans, LA, USA. ACM Press.

Jamal B. S. Al-Qinal. 2002. Morphophonemics of loanwords
in translation. Journal of King Saud University, 13:1–132.

Syed Uzair Aqeel, Steve Beitzel, Eric Jensen, David Grossman,
and Ophir Frieder. 2006. On the development of name
search techniques for Arabic. Journal of the American Soci-
ety for Information Science and Technology, 57(6):728–739.

Christine L. Borgman and Susan L. Siegfried. 1992. Getty’s
synoname and its cousins: A survey of applications of per-
sonal name-matching algorithms. Journal of the American
Society for Information Science, 43(7):459–476.

Lee R. Dice. 1945. Measures of the amount of ecologic associ-
ation between species. Ecology, 26(3):297–302, July.

T. Gadd. 1990. Phonix: the algorithm. Program, 24(4):363–
369.

Patrick A. V. Hall and Geoff R. Dowling. 1980. Approximate
string matching. ACM Computing Surveys, 12(4):381–402.

Dan Melamed. 1995. Automatic evaluation and uniform filter
cascades for inducing N-best translation lexicons. In David
Yarovsky and Kenneth Church, editors, Proceedings of the
Third Workshop on Very Large Corpora, pages 184–198,
Somerset, New Jersey. Association for Computational Lin-
guistics.

Abdusalam F Ahmad Nwesri, S. M. M. Tahaghoghi, and Falk
Scholer. 2006. Capturing out-of-vocabulary words in Ara-
bic text. In Proceedings of the 2006 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP
2006), pages 258–266, Sydney, Australia, 22–23 July. Asso-
ciation for Computational Linguistics.

Ulrich Pfeifer, Thomas Poersch, and Norbert Fuhr. 1996. Re-
trieval effectiveness of proper name search methods. Inf.
Process. Manage., 32(6):667–679.

Vijay Raghavan, Peter Bollmann, and Gwang S. Jung. 1989.
A critical investigation of recall and precision as measures
of retrieval system performance. ACM Trans. Inf. Syst.,
7(3):205–229.

Bonnie Glover Stalls and Kevin Knight. 1998. Translating
names and technical terms in Arabic text. In COLING/ACL
Workshop on Computational Approaches to Semitic Lan-
guages, pages 34–41, Montreal, Quebc, Canada.

Graham A Stephen. 1992. String search. Technical report,
School of Electronic Engineering Science, University Col-
lege of North Wales.

Esko Ukkonen. 1992. Approximate string-matching with
q-grams and maximal matches. Theor. Comput. Sci.,
92(1):191–211.

Robert A. Wagner and Michael J. Fischer. 1974. The string-to-
string correction problem. J. ACM, 21(1):168–173.

Justin Zobel and Philip Dart. 1995. Finding approximate
matches in large lexicons. Software - Practice and Expe-
rience, 25(3):331–345.

Justin Zobel and Philip Dart. 1996. Phonetic string matching:
lessons from information retrieval. In The 19th annual in-
ternational ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 166–172, New York,
NY, USA. ACM Press.

56

Proceedings of the 5th Workshop on Important Unresolved Matters, pages 57–64,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Can You Tag the Modal? You Should.

Yael Netzer and Meni Adler and David Gabay and Michael Elhadad
Ben Gurion University of the Negev

Department of Computer Science
POB 653 Be’er Sheva, 84105, Israel

{yaeln,adlerm,gabayd,elhadad}@cs.bgu.ac.il

Abstract

Computational linguistics methods are typ-
ically first developed and tested in English.
When applied to other languages, assump-
tions from English data are often applied
to the target language. One of the most
common such assumptions is that a “stan-
dard” part-of-speech (POS) tagset can be
used across languages with only slight vari-
ations. We discuss in this paper a specific is-
sue related to the definition of a POS tagset
for Modern Hebrew, as an example to clar-
ify the method through which such varia-
tions can be defined. It is widely assumed
that Hebrew has no syntactic category of
modals. There is, however, an identified
class of words which are modal-like in their
semantics, and can be characterized through
distinct syntactic and morphologic criteria.
We have found wide disagreement among
traditional dictionaries on the POS tag at-
tributed to such words. We describe three
main approaches when deciding how to tag
such words in Hebrew. We illustrate the im-
pact of selecting each of these approaches
on agreement among human taggers, and on
the accuracy of automatic POS taggers in-
duced for each method. We finally recom-
mend the use of a “modal” tag in Hebrew
and provide detailed guidelines for this tag.
Our overall conclusion is that tagset defini-
tion is a complex task which deserves appro-
priate methodology.

1 Introduction

In this paper we address one linguistic issue that was
raised while tagging a Hebrew corpus for part of
speech (POS) and morphological information. Our
corpus is comprised of short news stories. It in-
cludes roughly 1,000,000 tokens, in articles of typ-
ical length between 200 to 1000 tokens. The arti-
cles are written in a relatively simple style, with a
high token/word ratio. Of the full corpus, a sam-
ple of articles comprising altogether 100,000 tokens
was assembled at random and manually tagged for
part of speech. We employed four students as tag-
gers. An initial set of guidelines was first composed,
relying on the categories found in several dictionar-
ies and on the Penn treebank POS guidelines (San-
torini, 1995). Tagging was done using an automatic
tool1. We relied on existing computational lexicons
(Segal, 2000; Yona, 2004) to generate candidate tags
for each word. As many words from the corpus were
either missing or tagged in a non uniform manner in
the lexicons, we recommended looking up missing
words in traditional dictionaries. Disagreement was
also found among copyrighted dictionaries, both for
open and closed set categories. Given the lack of
a reliable lexicon, the taggers were not given a list
of options to choose from, but were free to tag with
whatever tag they found suitable. The process, al-
though slower and bound to produce unintentional
mistakes, was used for building a lexicon, and to
refine the guidelines and on occasion modify the
POS tagset. When constructing and then amending
the guidelines we sought the best trade-off between

1http://wordfreak.sourceforge.net

57

accuracy and meaningfulness of the categorization,
and simplicity of the guidelines, which is important
for consistent tagging.

Initially, each text was tagged by four different
people, and the guidelines were revised according
to questions or disagreements that were raised. As
the guidelines became more stable, the disagreement
rate decreased, each text was tagged by three peo-
ple only and eventually two taggers and a referee
that reviewed disagreements between the two. The
disagreement rate between any two taggers was ini-
tially as high as 20%, and dropped to 3% after a few
rounds of tagging and revising the guidelines.

Major sources of disagreements that were identi-
fied, include:
Prepositional phrases vs. prepositions In Hebrew,
formative letters – ��� ��� ��� � b,c,l,m2 – can be attached
to a noun to create a short prepositional phrase. In
some cases, such phrases function as a preposition
and the original meaning of the noun is not clearly
felt. Some taggers would tag the word as a prepo-
sitional prefix + noun, while others tagged it as a
preposition, e.g., �
	 ���
�� b’iqbot (following), that
can be tagged as ��	 ���
���� b-iqbot (in the footsteps
of).
Adverbial phrases vs. Adverbs the problem is simi-
lar to the one above, e.g., � 	���� � bdiyuq (exactly), can
be tagged as b-diyuq (with accuracy).
Participles vs. Adjectives as both categories can
modify nouns, it is hard to distinguish between
them, e.g, ������� ������� mabat. m’ayem (a threatening
stare) - the category of ������� � m’ayem is unclear.
Another problem, on which the remainder of the ar-
ticle focuses, was a set of words that express modal-
ity, and commonly appear before verbs in the infini-
tive. Such words were tagged as adjectives or ad-
verbs, and the taggers were systematically uncertain
about them.

Beside the disagreement among taggers, there
was also significant disagreement among Modern
Hebrew dictionaries we examined, as well as com-
putational analyzers and annotated corpora. Ta-
ble 1 lists the various selected POS tags for these
words, as determined by: (1) Rav Milim (Choueka
et al., 1997), (2) Sapir (Avneyon et al., 2002), (3)
Even-Shoshan (Even-Shoshan, 2003), (4) Knaani

2Transcription according to (Ornan, 2002)

(Knaani, 1960), (5) HMA (Carmel and Maarek,
1999), (6) Segal (Segal, 2000), (7) Yona (Yona,
2004), (8) Hebrew Treebank (Sima’an et al., 2001).

As can be seen, eight different POS tags were
suggested by these dictionaries: adJective (29.6%),
adveRb (25.9%), Verb (22.2%), Auxilary verb
(8.2%), Noun (4.4%), parTicle (3.7%), Preposition
(1.5%), and Unknown (4.5%). The average number
of options per word is about 3.3, which is about 60%
agreement. For none of the words there was a com-
prehensive agreement, and the PoS of only seven
words (43.75%) can be determinded by voting (i.e.,
there is one major option).

In the remainder of the paper, we investigate the
existence of a modal category in Modern Hebrew,
by analyzing the characteristic of these words, from
a morphological, syntactic, semantic and practical
point of view. The decision whether to introduce
a modal tag in a Hebrew tagset has practical con-
sequences: we counted that over 3% of the tokens
in our 1M token corpus can potentially be tagged
as modals. Beyond this practical impact, the deci-
sion process illustrates the relevant method through
which a tagset can be derived and fine tuned.

2 Modality in Hebrew

Semantically, Modus is considered to be the attitude
on the part of the speaking subject with regard to
its content (Ducrot and Todorov, 1972), as opposed
to the Dictum which is the linguistic realization of
a predicate. While a predicate is most commonly
represented with a verb, modality can be uttered in
various manners: adjectives and adverbs (definitely,
probable), using thought/belief verbs, mood, into-
nation, or with modal verbs. The latter are recog-
nized as a grammatical category in many languages
(modals), e.g., can, should and must in English.

From the semantic perspective, modality is
coarsely divided into epistemic modality (the
amount of confidence the speaker holds with ref-
erence to the truth of the proposition) and deontic
modality (the degree of force exerted on the sub-
ject of the sentence to perform the action) views (de
Haan, 2005).

Modal expressions do not constitute a syntactic
class in Modern Hebrew (Kopelovich, 1982). In
her work, Kopelovich reviews classic descriptive

58

Word Example 1 2 3 4 5 6 7 8
� �
yeš

should

� 	�� ��� � ��� ��� � � � �
yeš laśim leb lanisuh.

Attention should be paid to the wording
R N N R N A R V

� ���
’ein

shouldn’t

� 	�� ��� � ��� ��� � ��� � �
’ein laśim leb lanisuh.

Attention should not be paid to the wording
R U

N
R

U P P R V

� ��� �
h. ayab
must

� ����� 	� ��� � � �
� � � ��� ��� 	 � �� �
hacibur h. ayab lhabin ’et ha‘inyan

The public should be made aware of this issue
J J J J J J J V

� ��	 �
mutar

allowed

� 	 � ��� ���� ��� ��� �
	 �
mutar lah lacet lt.iyul

She is allowed to go on a trip
R N J R J A V J

� 	�� �
’asur

forbidden

� 	 � � � ��	 � � � 	 � ��� ���� ��� ��� 	�� �
’asur lah lacet lt.iyul byom rišon

She is not allowed to go on a trip on Sunday
R R R R J A J

J
V

� ��� �
’epšr
may

����� ��� � 	 ��� ��� ��� �
’epšr lirmoz rmazim

Giving hints is allowed
U R R R T A R V

� 	 � �
’amur

supposed

�
	 � �� � 	 ��� � ��	 � 	 � � � � � �
našim ’amurot lilboš r‘alot

Women are supposed to wear veils
J A J J J A J V

� � �
carik

should

� � � � ��	 � ���� � � ��� 	 � �
bmw”m carik la‘amod ‘al šelka

In negotiation you should keep strong
J J R J J A J V

� �����
nitan
can

	�� � � ��� ����� � ���� 	 � � ��� �
���
nitan liptor b‘ayah mak’ibah zo

This troublesome problem can be solved
U V V V V V V V

� 	 �
‘alul
may

� 	 � � � � 	 � ��� ���
hakeleb ‘alul linšok
The dog may bite

J J J
J
N

J A J V

����� �
kda’y

worthwhile

��� � ��� � 	 � � � � � �
� � � 	�� � � � ��� �
kda’y liš’ol ha’im hadelet ‘aśuyah heit.eb

It is worth asking whether the door is well built
R R R R J A R J

��� 	 �
mutab
better

��	�� � � 	 ��� � � �
	 � � � ��� 	 �
mutab lihyot bešeqet. wulhnot
Better to keep quiet and enjoy

R R R R T T V V

��� 	�� �
msugal

able

����� � �
� ��� 	 ��	�� � � �!� 	�� �"� � � ��	 �
hu’ hayah msugal lir’oto babait halaban

He could envision him sitting in the White House
J R J J

J
V

A J V

� 	 � �
yakol
can

�
	 � 	 � � �
	 � � � ��� � 	 � � ��� � � �
’anašim ykolim litrom trumot

People can make contributions
V V V J V A V V

� � � �
’ikpat

care/mind

� ��� ��� � � � � �
’ikpat lka laleket?

Do you mind going
U

V
R

V
R

U T T R V

��	�� �
ra’uy

should

� ����	 � � � � � � � ��	�� �
ra’uy lšalem ‘al šerut zeh

This service deserves to be paid for
R R R R J

V
J

R J

Table 1: Parts of speech of selected words
59

publications on the syntax of Hebrew and claims
that these works (Ornan, Rubinstein, Azar, Rosen,
Aronson-Berman and Maschler)3 do not provide a
satisfying description or explanation of the mat-
ter. In this section we review three major ap-
proaches to modality in Hebrew - the first is seman-
tic (Kopelovich), the second is semantic-syntactic
(Zadka) and the third is purely morphologico-
syntactic (Rosen).

Kopelovich provides three binary dimensions that
describe the modal system in Hebrew: Personal -
Impersonal, Modality - Modulation and Objective -
Subjective plane. The Personal-Impersonal system
is connected to the absence or presence of a surface
subject in the clause. A personal modal has a gram-
matical subject:

(1) 	 � � ��� ��� � ��� � � ��	��
dawid carik lhasi‘ ’et ’imo
David should to-drive ACC mother-POSS
David should drive his mother

An impersonal modal has no grammatical subject,
and modality predicates the entire clause.

(2) � ��	 ���� 	 � � ��� ��� � ��� � �
carik lhasi‘ ’et ’imo la‘abodah
should to-drive ACC mother-POSS to-the-work
His mother should be driven to work

Kopelovich makes no distinction between the vari-
ous syntactic categories that the words may belong
to, and interchangeably uses examples of words like
� ��� � � � � � � ��	 � mutar, yeš, ’epšar [adverb, existential,
participle respectively].

The Modality-Modulation plane, according to
the functional school of Halliday (Halliday, 1985),
refers to the interpersonal and ideational functions
of language: Modality expresses the speaker’s own
mind (epistemic modality - possibility, probability
and certainty) � ��� � � � ��� � � � 	 � ‘alul laredet gešem
mah. ar (it may rain tomorrow). Modulation par-
ticipates in the content clause expressing external
conditions in the world (deontic modality - permis-
sion, obligation, ability and inclination): � 	 � � � ���
	�� � �� � � � � � � ’ata yakol lhath. il ‘akšaw (you can start
now). Modality does not carry tense and cannot be
negated, while modulation can be modified by tense
and can be negative.

3For reference see (Kopelovich, 1982), see below for
Rosen’s analysis

The Objective-Subjective plane is what
Kopelovich calls the perception of the world.
Objectivity is achieved using different tenses of
to-be in conjunction with the modal (including tense
of modal if it is a verb), and their order subjective
vs. objective:

(3) � � � � � � � 	�� � ��� � � � � � ��	��
dawid haya carik lisw‘ ltel ’abib
David was have to-drive to-Tel Aviv
David had to drive to Tel Aviv

(4) ����� � 	 	� � � ��� � � ����� � �"� � � � � � � � � � ��� � � ��	� � ��� �
kdei lha‘abir ’et hahah. lata,

carik haya lkanes ’et kol ha‘obdim
In-order to-pass ACC the-decision,

should to-assemble ACC all the-employees
In order to obtain a favorable vote on this decision,

all of the employees had to be assembled.

Zadka (1995) defines the class of single-argument
bridge verbs4, i.e., any verb or pro-verb that can
have an infinitive as a subject or object, and that does
not accept a subordinate clause as subject or object:

(5) � � ���� 	�� � [subject]
’sur l‘ašen
Forbidden to-smoke
It is forbidden to smoke

(6) � � � � � � � � � � � � � 	 � [object]
hua racah/hth. il lšah. eq
He wanted/started to-play
He wanted/started to play

(7) 	 ��	 � � � � � 	 � � ��� ��	 � ��� �!� 	�� � � � � � � � � � ��� � 	 �
Yosep hith. il/’amad/msugal liqro’

’et hado”h. bimlo’o.
Yosef began/is-about/is-capable to-read

ACC the report entirely.
Yosef began/is-about/(is-capable) to read (of reading)

the report entirely.

(8) * 	���	 � � � � � 	�� � ��� � � � � � �!� 	�� � � � � � � � � � ��� � 	 �
*Yosep hith. il/’amad/msugal šiqra’

’et hado”h. bimlo’o.
*Yosef started/was-about/is-capable that-he-read

ACC the report entirely.

Zadka classifies these verbs into seven semantic cat-
egories: (1) Will (2) Manner (3) Aspect (4) Ability
(5) Possibility/Certainty (6) Necessity/Obligation

4“Ride Verb” in Zadka’s terminology, � � � 	 ��� � � ��� 	 � � 	 �

60

and (7) Negation. Categories 1, 4, 5, 6 and 7 are
considered by Zadka to include pure modal verbs,
e.g., alethic and deontic verbs.

In his paper, Zadka defines classification criteria
that refer to syntactic-semantic properties such as:
can the infinitive verb be realized as a relative clause,
are the subject of the verb and its complement the
same, can the infinitive be converted to a gerund,
animacy of subject; deep semantic properties – argu-
ment structure and selectional restrictions, the abil-
ity to drop a common subject of the verb and its
complement, factuality level (factual, non-factual,
counter-factual); and morphological properties.

Will, Manner and Aspectual verbs as Zadka de-
fines are not considered modals by Kopelovich since
they can be inflected by tense (with the excep-
tions of � 	 � � ’amur (supposed), ��� � ‘atid (should).
Ability verbs are � 	 � � yakol (can), ��� 	�� � msugal
(can,capable) [participle]. They have both an ani-
mate actor as a subject and an infinitive as a comple-
ment, with the same deep subject. These verbs are
counter-factual.

Certainty verbs include � ��� 	 � mukrak (must), � � �
carik (should), � � ��� ne’elac (be forced to), � 	 � � yakol
(can), � � ���
� hekreh. i (necessary), � 	 � ‘aśuy (may),� 	 � ‘alul (might), � 	 � capuy (expected). They rep-
resent the alethic and epistemic necessity or pos-
sibility of the process realized in the clause. All
of them cannot be inflected morphologically. The
modal predicates the whole situation in the proposi-
tion, and may be subjective (epistemic) or objective
(alethic). The subject of these verbs coreferences
with the subject of the modal:

(9) ������	 ��� ��	�� �
��� ��� 	 � ��� �
’ani mukrak liqnot mkonit
I must to-buy car
I must buy a car

Necessity/Obligation includes adjectives – e.g., � ��� �
h. ayab (must), ��� � � raša’y (allowed), gerunds –
� ��� 	 � mukrah. (must), � 	�� � ’asur (forbidden), � �
	 �
mutar (allowed) and the verb � 	 � � yakwl (can) 5. Ne-
cessity verbs/proverbs present deontic modality, and
all clauses share, in Zadka’s view - a causing partic-
ipant that is not always realized in the surface.

5as well as nouns and prepositions - among them
� � and

� ���
yeš and ’ein - according to Zadka

From the morphological point of view, one may
characterize impersonals by a non-inflectional be-
havior, e.g., � � yeš, � ��� ’ein, � ��	 � mutar, � 	�� � ’asur,
� ��� � ’epšar, � � � � ’ikpat. All of these words do
not inflect in number and gender with their argu-
ment. But this criterion leaves out all of the gender-
quantity inflected words, e.g., � 	 � � ra’uy, �!� 	�� � msu-
gal, � 	 � ‘alul, � 	 � � ’amur, � � � carik, � 	 � � yakol,
which are all classified as modals by Zadka. On
the other hand, including all the gender-quantity in-
flected words with infinite or relative clause com-
plements as modals, will include certain adjectives,
e.g., � � � 	 � musmak (certified), nouns, e.g., ��	 � � zkut
(credit), and participles, e.g., � � � nimna‘ (avoid), as
well. It appears that Zadka’s classification relies pri-
marily on semantic criteria.

Rosen (1977, pp. 113-115) defines a syntactic cat-
egory he calls impersonals. Words in this category
occur only as the predicative constituent of a sen-
tence with an infinitive or a subordinate clause argu-
ment. Past and future tense is marked with the aux-
ilary verb � � � hayah (to-be). In addition, imperson-
als cannot function as predicative adjectives: � ��� �
kda’i (worthwhile), ��� 	 � mutab (better), � � � � ’ikpat
(care/mind).

Personal reference can be added to the clause
(governed by the infinitive) with the � l dative prepo-
sition:

(10) ��	 � � � � � � ��� �
kda’y li lištot
worthwhile to-me to-drink
It is worthwhile for me to drink

2.1 Criteria to Identify Modal-like Words in
Hebrew

We have reviewed three major approaches to catego-
rizing modals in Hebrew:
Semantic - represented mostly in Kopelovich’s
work, modality is categorized by three dimensions
of semantic attributes. Since her claim is that there
is no syntactic category of modality at all, this ap-
proach ‘over-generates’ modals and includes words
that from any other syntactic or morphologic view
fall into other parts of speech.
Syntactic-semantic - Zadka classifies seven sets of
verbs and pro-verbs following syntactic and seman-
tic criteria. His claim is that modality actually is
marked by syntactic characteristics, which can be

61

identified by structural criteria. However, his eval-
uation mixes semantics with syntactic attributes.
Morphological-syntactic - Rosen’s definition of Im-
personals is strictly syntactic/morpholgical and does
not try to characterize words with modality. Conse-
quently, words that are usually considered modals,
are not included in his definition � 	�� � ’asur (forbid-
den), � ��	 � mutar (allowed), � 	 � � yakol (can).

3 Proposed Modal Guidelines to Identify

The variety of criteria proposed by linguists reflects
the disagreements we identified in lexicographic
work about modal-like words in Hebrew. For a com-
putational application, all words in a corpus must
be tagged. Given the complex nature of modality
in Hebrew, should we introduce a modal tag in our
tagset, or instead, rely on other existing tags? We
have decided to introduce a modal tag in our He-
brew tagset. Although there is no distinct syntac-
tic category for modals in Hebrew, we propose the
following criteria: (i) They have an infinitive com-
plement or a clausal complement introduced by the
binder � š. (ii) They are NOT adjectives. (iii) They
have irregular inflections in the past tense, i.e., ������ �
� � � raciti lada‘at (I wanted to know) is not a modal
usage.

The tests to distinguish modal from non-modal
usages are:

•
� � and � ��� which can be also existential, are
used as modals if they can be replaced with
� � � .

• Adjectives are gradable and can be modified by
��	 � � m’od (very) or � �
	 � yoter (more).

• Adjectives can become describers of the nomi-
nalized verb: � 	 � � � � � ⇒ ��	 � � � � � � � � � � � qal
laharos ⇒ haharisah qala m’od (easy to de-
stroy ⇒ the destruction is easy).

• In all other cases where a verb is serving in to
convey modality, it is still tagged as a verb, e.g.,
� � ��� � 	 � ��� 	�� � � � 	 � muban šyosi hu’ hamnaceh.
(it is clear that Yossi is the winner).

We first review how these guidelines help us ad-
dress some of the most difficult tagging decisions we
had to face while building the corpus, we then indi-
cate quantitatively the impact of the modal tag on
the practical problem of tagging.

3.1 ”What do I care” �
�������	��
�

One of the words tagged as a modal in our corpus
- the word � � � � ’ikpat – is not considered thus far
to be a modal. However, at least in some of its in-
stances it fits our definition of modal, and it can also
be interpreted as modality according to its sense.
The only definition that is consistent with our ob-
servation is Rosen’s impersonals.

Looking back at its origins, we checked the His-
torical Lexicon of the Hebrew Language6, the word
� � � � was used in the medieval period in the Talmud
and the Mishna, where it only appears in the follow-
ing construction:

(11) � � � � � � � �
mah ’ikpat lk
what care to-you
what do you care

Similarly, in the Ben Yehuda Project – an Israeli
version of the Guttenberg project7 which includes
texts from the Middle Ages up to the beginning of
the 20th century – we have found 28 instances of the
word, with the very same usage as in older times.
While trying to figure its part of speech, we do not
identify � � � � as a NOUN - as it cannot have a defi-
nite marker � 8, and is not an adjective9 .

Traditional Hebrew Dictionaries consider � � � � to
be an intransitive verb (Kohut, 1926; Even-Shoshan,
2003; Avneyon et al., 2002) or an adverb. Some
dictionaries from the middle of the 20th century
(Gur, 1946; Knaani, 1960), as well as recent ones
(Choueka et al., 1997) did not give it a part of speech
at all.

In our corpus we found 130 occurences of the
word � � � � of which 55 have an infinitive/relative
clause complement, 35 have null complement, and
40 have � m PP complement � ����� ��� � 	 � � � � � ’ikpat
lo mehamdina (he cares for the country). The latter
has no modal interpretation. We claim that in this
case it should be tagged as a participle (��� 	�� � �). The
test to tell apart modal and participle is:

6http://hebrew-treasures.huji.ac.il/ an enterprise conducted
by the Israeli Academy of the Hebrew Language.

7http://www.benyehuda.org, http://www.gutenberg.org
8Although we found in the internet clauses as � � 	 � � � �

� � � � � ��	�� � 	 ��� � nistmu li naqbubiyot ha’ikpat (My caring
pores got blocked).

9Only its derivatives ��	�� � � � � � � � � � � ’ikpati, ikpatiyut
(caring, care) allows adjectival usage.

62

(12) � � � � � 	 � � � 	 � � � � � ⇒
��� � � � � � � � � � � � � � � � � � 	 � *

ikpat lo lištop kelim ⇒
*hu’ ’ikpati klapei št.ipat kelim

mind him to-wash dishes ⇒
*he concerned for washing dishes

He minds washing dishes ⇒
*He is concerned about washing dishes

(13) � � ��� 	� � 	 � � � � � ⇒
������� 	� � � � � � � � � � � 	 �

’ikpat lo meha‘aniyim ⇒
hu’ ikpati klapei ha‘aniyim

care him of-the-poor-people ⇒
he caring for the-poor-people

He cares for the poor people ⇒
He is caring for the poor people

All other tests for modality hold in this case: (1)
Infinitive/relative clause complement, (2) Not an ad-
jective, (3) Irregular inflection (no inflection at all).
To conclude this section, our proposed definition of
modals allows us to tag this word in a systematic
and complete manner and to avoid the confusion that
characterizes this word.

3.2 ”It’s really hard” �
��
����

Some of the words tagged as modals are commonly
referred to as adjectives, such as � ��	 � � � 	���� ’asur,
mutar (allowed, forbidden), though everyone agrees
- and tags these words as adverbs or participals (see
table 1). However, questions are raised of how to
tell apart modals as such from adjectives that show
very similar properties: � ��� � � � � � � qaše li laleket
(it is hard for me to walk). Ambar (1995) analyzes
the usage of adjectives in modal contexts, especially
of ability and possibility. In sentences such as � � �
� 	� � �!� � � � � 	�� � qaše lanu lhistagel lara‘aš (it is hard
for us to get used to the noise) the adjective is used in
a modal and not an adverbial meaning, in the sense
that meaning of the adverbial � � 	 ��� bqwši (with diffi-
culty) and the modal � 	 � � yakwl (can) are unified into
a single word � � � . Similarly, the possibility sense of
� � � is unified with the modal � ��� � ’epšar. In any
usage of the adjective as the modal, it is not possible
to rephrase a clause in a way that the adjective mod-
ifies the noun, i.e., the range is the action itself and
not its subject.

(14) � � � � � ��� ����� � �
qaše lbace‘ ’et haheskem
hard to-perform PREP the-agreement

It is hard to perform the agreement

(15)* � � � � � � � �
haheskem kaše
the-agreement hard
The agreement is hard

However, following Ambar, there are cases where
the usage of � � � � qaše le is not modal, but an emo-
tional adjective:

(16) 	 �
��� � � 	 � � ��� � � � � �
qaše/na‘im lšoh. eh. ’ito
hard/pleasant to-chat with-him
It is hard/pleasant to chat with him

Berman (1980) classifies subjectless construc-
tions in Modern Hebrew, and distinguishes what she
calls dative-marked experientials where (mostly)
adjective serves as a predicate followed by a dative-
marked nominal

(17) � � � � � � ��� � ��� � �
qaše le-rinah bah. ayim
hard for-Rina in-the-life

It is hard for Rina in life

Adjectives that allow this construction are cir-
cumstantial and do not describe an inner state: � ��� �
� � 	� rina ‘acuba (Rina is sad) vs. � ��� � � � 	� ‘acub
lrina (it is sad for Rina). Another recognized con-
struction is the modal expressions that include sen-
tences with dative marking on the individuals to
whom the modality is imputed � ��� � � � � 	�� � � 	�� �
’asur lanu ldaber kakah (we are not allowed to talk
like this); Berman suggests that the similarity is due
to the perception of the experiencer as recipient in
both cases; This suggestion implies that Berman
does not categorize the modals (’asur, mutar) as ad-
jectives. Another possible criterion to allow these
words to be tagged as modals (following Zadka) is
the fact that for Necessary/Obligation modals there
exists an ’outside force’ which is the agent of the
modal situation. Therefore, if � ����� � � � 	�� � � 	�� � ’asur
lanu ldaber kakah (we are not allowed to talk like
this), this is because someone forbids us from talk-
ing, while if ����� ��� � ��� � ��� � � qaše lrinah bah. ayim
(It is hard for Rina in life) then no ”outside force” is
obliged to be the agent which makes her life hard. To

63

conclude - we suggest tagging both ’asur and mutar
as modals, and we recommend allowing modal tag-
ging for other possible adjectives in this syntactic
structure.

4 Conclusion

We recommend the introduction of a modal POS tag
in Hebrew, despite the fact that the set of criteria to
identify modal usage is a complex combination of
syntactic and morphological constraints. This class
covers as many as 3% of the tokens observed in our
corpus.

Our main motivation in introducing this tag in our
tagset is that the alternative (no modal tag) creates
confusion and disagreement: we have shown that
both traditional dictionaries and previous computa-
tional resources had a high level of disagreement
over the class of words we tag as modals. We have
confirmed that our guidelines can be applied consis-
tently by human taggers, with agreement level simi-
lar to the rest of the tokens (over 99% pairwise). We
have checked that our guidelines stand the test of the
most difficult disagreement types identified by tag-
gers, such as “care to” and “difficult for”.

Finally, the immediate context of modals includes
a high proportion of infinitive words. Infinitive
words in Hebrew are particularly ambiguous mor-
phologically, because they begin with the letter �
l which is a formative letter, and often include the
analysis le+ participle, e.g. � 	 � � � can be interpreted,
depending on context, as lišmwr (to guard), le-
šamur (to a guarded), or la-šamur (to the guarded).
Other ambiguities might occur too, e.g., � � � � can be
interpreted as lašir (to sing), le-šir (to a song), or as
la-šir (to the song). We have measured that on aver-
age, infinitive verbs in our expanded corpus can be
analyzed in 4.9 distinct manners, whereas the overall
average for all word tokens is 2.65. The identifica-
tion of modals can serve as an anchor which helps
disambiguate neighboring infinitive words.

References
Ora Ambar. 1995. From modality to an emotional situation.

Te‘udah, 9:235–245. (in Hebrew).

Eitan Avneyon, Raphael Nir, and Idit Yosef. 2002. Milon sapir:
The Encyclopedic Sapphire Dictionary. Hed Artsi, Tel Aviv.
(in Hebrew).

Ruth Berman. 1980. The case of (s)vo language: Subjectless
constructions in Modern Hebrew. Language, 56:759–776.

David Carmel and Yoelle S. Maarek. 1999. Morphological
disambiguation for Hebrew search systems. In Proceeding
of NGITS-99, pages 312–326.

Yaacov Choueka, Uzi Freidkin, Hayim A. Hakohen, , and Yael
Zachi-Yannay. 1997. Rav Milim: A Comprehensive Dictio-
nary of Modern Hebrew. Stimatski, Tel Aviv. (in Hebrew).

Ferdinand de Haan. 2005. Typological approaches to modal-
ity in approaches to modality. In William Frawley, editor,
Approaches to Modality, pages 27–69. Mouton de Gruyter,
Berlin.

Oswald Ducrot and Tzvetan Todorov. 1972. Dictionnaire en-
cyclopédique des sciences du langage. Éditions de Seuil,
Paris.

Avraham Even-Shoshan. 2003. Even Shoshan’s Dictionary -
Renewed and Updated for the 2000s. Am Oved, Kineret,
Zmora-Bitan, Dvir and Yediot Aharonot. (in Hebrew).

Yehuda Gur. 1946. The Hebrew Language Dictionary. Dvir,
Tel Aviv. (in Hebrew).

M. A. K. Halliday. 1985. An introduction to functional gram-
mar. Edward Arnold, USA, second edition.

Yaakov Knaani. 1960. The Hebrew Language Lexicon.
Masada, Jerusalem. (in Hebrew).

Alexander Kohut. 1926. Aruch Completum auctore Nathane
filio Jechielis. Hebraischer Verlag - Menorah, Wien-Berlin.
(in Hebrew).

Ziona Kopelovich. 1982. Modality in Modern Hebrew. Ph.D.
thesis, University of Michigan.

Uzi Ornan. 2002. Hebrew in Latin script. Lĕšonénu,
LXIV:137–151. (in Hebrew).

Haiim B. Rosen. 1977. Contemporary Hebrew. Mouton, The
Hague, Paris.

Beatrice Santorini. 1995. Part-of-speech tagging guidelines for
the Penn Treebank Project. 3rd revision;. Technical report,
Department of Computer and Information Science, Univer-
sity of Pennsylvania.

Erel Segal. 2000. Hebrew morphological analyzer for Hebrew
undotted texts. Master’s thesis, Technion, Haifa, Israel. (in
Hebrew).

Khalil Sima’an, Alon Itai, Alon Altman Yoad Winter, and Noa
Nativ. 2001. Building a tree-bank of modern Hebrew text.
Journal Traitement Automatique des Langues (t.a.l.). Spe-
cial Issue on NLP and Corpus Linguistics.

Shlomo Yona. 2004. A finite-state based morphological ana-
lyzer for Hebrew. Master’s thesis, Haifa University.

Yitzhak Zadka. 1995. The single object ”rider” verb in cur-
rent Hebrew: Classification of modal, adverbial and aspec-
tual verbs. Te‘udah, 9:247–271. (in Hebrew).

64

Proceedings of the 5th Workshop on Important Unresolved Matters, pages 65–72,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Arabic Tokenization System

Mohammed A. Attia
School of Informatics / The University of Manchester, PO Box

88, Sackville Street, Manchester M60 1QD, UK
mohammed.attia@postgrad.manchester.ac.uk

Abstract

Tokenization is a necessary and non-trivial
step in natural language processing. In the
case of Arabic, where a single word can
comprise up to four independent tokens,
morphological knowledge needs to be in-
corporated into the tokenizer. In this paper
we describe a rule-based tokenizer that
handles tokenization as a full-rounded
process with a preprocessing stage (white
space normalizer), and a post-processing
stage (token filter). We also show how it
handles multiword expressions, and how
ambiguity is resolved.

1 Introduction

Tokenization is a non-trivial problem as it is
“closely related to the morphological analysis”
(Chanod and Tapanainen 1994). This is even more
the case with languages with rich and complex
morphology such as Arabic. The function of a to-
kenizer is to split a running text into tokens, so that
they can be fed into a morphological transducer or
POS tagger for further processing. The tokenizer is
responsible for defining word boundaries, demar-
cating clitics, multiword expressions, abbreviations
and numbers.
 Clitics are syntactic units that do not have free
forms but are instead attached to other words. De-
ciding whether a morpheme is an affix or a clitic
can be confusing. However, we can generally say
that affixes carry morpho-syntactic features (such
as tense, person, gender or number), while clitics
serve syntactic functions (such as negation, defini-
tion, conjunction or preposition) that would other-
wise be served by an independent lexical item.

Therefore tokenization is a crucial step for a syn-
tactic parser that needs to build a tree from syntac-
tic units. An example of clitics in English is the
genitive suffix “’s” in the student’s book.
 Arabic clitics, however, are not as easily recog-
nizable. Clitics use the same alphabet as that of
words with no demarcating mark as the English
apostrophe, and they can be concatenated one after
the other. Without sufficient morphological knowl-
edge, it is impossible to detect and mark clitics. In
this paper we will show different levels of imple-
mentation of the Arabic tokenizer, according to the
levels of linguistic depth involved.
 Arabic Tokenization has been described in vari-
ous researches and implemented in many solutions
as it is a required preliminary stage for further
processing. These solutions include morphological
analysis (Beesley 2001; Buckwalter 2002), diacri-
tization (Nelken and Shieber 2005), Information
Retrieval (Larkey and Connell 2002), and POS
Tagging (Diab et al 2004; Habash and Rambow
2005). None of these projects, however, show how
multiword expressions are treated, or how ambigu-
ity is filtered out.
 In our research, tokenization is handled in a
rule-based system as an independent process. We
show how the tokenizer interacts with other trans-
ducers, and how multiword expressions are identi-
fied and delimited. We also show how incorrect
tokenizations are filtered out, and how undesired
tokenizations are marked. All tools in this research
are developed in Finite State Technology (Beesley
and Karttunen 2003). These tools have been devel-
oped to serve an Arabic Lexical Functional Gram-
mar parser using XLE (Xerox Linguistics Envi-
ronment) platform as part of the ParGram Project
(Butt et al 2002).

65

2 Arabic Tokens

 A token is the minimal syntactic unit; it can be a
word, a part of a word (or a clitic), a multiword
expression, or a punctuation mark. A tokenizer
needs to know a list of all word boundaries, such
as white spaces and punctuation marks, and also
information about the token boundaries inside
words when a word is composed of a stem and cli-
tics. Throughout this research full form words, i.e.
stems with or without clitics, as well as numbers
will be termed main tokens. All main tokens are
delimited either by a white space or a punctuation
mark. Full form words can then be divided into
sub-tokens, where clitics and stems are separated.

2.1 Main Tokens

 A tokenizer relies mainly on white spaces and
punctuation marks as delimiters of word bounda-
ries (or main tokens). Additional punctuation
marks are used in Arabic such as the comma ‘،’,
question mark ‘؟’ and semicolon ‘؛’. Numbers are
also considered as main tokens. A few Arab coun-
tries use the Arabic numerals as in English, while
most Arab countries use the Hindi numerals such
as ‘2’ (2) and ‘3’ (3). Therefore a list of all
punctuation marks and number characters must be
fed to the system to allow it to demarcate main
tokens in the text.

2.2 Sub-Tokens

 Arabic morphotactics allow words to be pre-
fixed or suffixed with clitics (Attia 2006b). Clitics
themselves can be concatenated one after the other.
Furthermore, clitics undergo assimilation with
word stems and with each other, which makes
them even harder to handle in any superficial way.
A verb can comprise up four sub-tokens (a con-
junction, a complementizer, a verb stem and an
object pronoun) as illustrated by Figure 1.

Figure 1: Possible sub-tokens in Arabic verbs

 Similarly a noun can comprise up to four sub-
tokens. Although Figure 2 shows five sub-tokens
but we must note that the definite article and the
genitive pronoun are mutually exclusive.

Figure 2: Possible sub-tokens in Arabic nouns

 Moreover there are various rules that govern the
combination of words with affixes and clitics.
These rules are called grammar-lexis specifications
(Abbès et al 2004; Dichy 2001; Dichy and Fargaly
2003). An example of these specifications is a rule
that states that adjectives and proper nouns do not
combine with possessive pronouns.

3 Development in Finite State Technology

 Finite state technology has successfully been
used in developing morphologies and text process-
ing tools for many natural languages, including
Semitic languages. We will explain briefly how
finite state technology works, then we will proceed
into showing how different tokenization models
are implemented.

(1) LEXICON Proclitic
al@U.Def.On@ Root;

Root;
LEXICON Root
kitab Enclitic;
LEXICON Suffix
an Enclitic;

Enclitic;
LEXICON Enclitic
hi@U.Def.Off@ #;

 In a standard finite state system, lexical entries
along with all possible affixes and clitics are en-
coded in the lexc language which is a right recur-
sive phrase structure grammar (Beesley and Kart-
tunen 2003). A lexc file contains a number of lexi-
cons connected through what is known as “con-
tinuation classes” which determine the path of
concatenation. In example (1) above the lexicon
Proclitic has a lexical form al, which is linked to a

66

continuation class named Root. This means that the
forms in Root will be appended to the right of al.
The lexicon Proclitic also has an empty string,
which means that Proclitic itself is optional and
that the path can proceed without it. The bulk of all
lexical entries are presumably listed under Root in
the example.
 Sometimes an affix or a clitic requires or for-
bids the existence of another affix or clitic. This is
what is termed “long distance dependencies”
(Beesley and Karttunen 2003). So Flag Diacritics
are introduced to serve as filters on possible con-
catenations to a stem. As we want to prevent Pro-
clitic and Enclitic from co-occurring, for the defi-
nite article and the possessive pronoun are mutu-
ally excusive, we add a Flag Diacritic to each of
them with the same feature name “U.Def”, but
with different value “On/Off”, as shown in (1)
above. At the end we have a transducer with a bi-
nary relation between two sets of strings: the lower
language that contains the surface forms, and the
upper language that contains the analysis, as shown
in (2) for the noun كتابان kitaban (two books).

(2) Lower Language: كتابان
Upper Language: كتاب+noun+dual+sg

4 Tokenization Solutions

 There are different levels at which an Arabic
tokenizer can be developed, depending on the
depth of the linguistic analysis involved. During
our work with the Arabic grammar we developed
three different solutions, or three models, for Ara-
bic tokenization. These models vary greatly in their
robustness, compliance with the concept of modu-
larity, and the ability to avoid unnecessary ambi-
guities.
 The tokenizer relies on white spaces and punc-
tuation marks to demarcate main tokens. In demar-
cating sub-tokens, however, the tokenizer needs
more morphological information. This information
is provided either deterministically by a morpho-
logical transducer, or indeterministically by a to-
ken guesser. Eventually both main tokens and sub-
tokens are marked by the same token boundary,
which is the sign ‘@’ throughout this paper. The
classification into main and sub-tokens is a con-
ceptual idea that helps in assigning the task of
identification to different components.

 Identifying main tokens is considered a straight-
forward process that looks for white spaces and
punctuation marks and divides the text accord-
ingly. No further details of main tokens are given
beyond this point. The three models described be-
low are different ways to identify and divide sub-
tokens, or clitics and stems within a full form
word.

4.1 Model 1: Tokenization Combined with
Morphological Analysis

 In this implementation the tokenizer and the
morphological analyzer are one and the same. A
single transducer provides both morphological
analysis and tokenization. Examples of the token-
izer/analyser output are shown in (3). The ‘+’ sign
precedes morphological features, while the ‘@’
sign indicates token boundaries.

(3) (waliyashkur: and to thank) ولیشكر
@شكرcomp@+verb+pres+sg+ل@conj+و

 This sort of implementation is the most linguis-
tically motivated. This is also the most common
form of implementation for Arabic tokenization
(Habash and Rambow 2005). However, it violates
the design concept of modularity which requires
systems to have separate modules for undertaking
separate tasks. For a syntactic parser that requires
the existence of a tokenizer besides a morphologi-
cal analyzer, this implementation is not workable,
and either Model 2 or Model 3 is used instead.

4.2 Model 2: Tokenization Guesser

 In this model tokenization is separated from
morphological analysis. The tokenizer only detects
and demarcates clitic boundaries. Yet information
on what may constitute a clitic is still needed. This
is why two additional components are required: a
clitics guesser to be integrated with the tokenizer,
and a clitics transducer to be integrated with the
morphological transducer.
 Clitics Guesser. We developed a guesser for
Arabic words with all possible clitics and all possi-
ble assimilations. Please refer to (Beesley and
Karttunen 2003) on how to create a basic guesser.
The core idea of a guesser is to assume that a stem
is composed of any arbitrary sequence of Arabic
alphabets, and this stem can be prefixed or/and
suffixed with a limited set of tokens. This guesser
is then used by the tokenizer to mark clitic bounda-

67

ries. Due to the nondeterministic nature of a
guesser, there will be increased tokenization ambi-
guities.

(4) (and to the man) وللرجل
@رجل@ال@ل@و

@الرجل@ل@و
@للرجل@و

@وللرجل

 Clitics Transducer. We must note that Arabic
clitics do not occur individually in natural texts.
They are always attached to words. Therefore a
specialized small-scale morphological transducer is
needed to handle these newly separated forms. We
developed a lexc transducer for clitics only, treat-
ing them as separate words. The purpose of this
transducer is to provide analysis for morphemes
that do not occur independently.

(5) conj+و
prep+ل
art+def+ال

 This small-scale specialized transducer is then
unioned (or integrated) with the main morphologi-
cal transducer. Before making the union it is nec-
essary to remove all paths that contain any clitics
in the main morphological transducer to eliminate
redundancies.
 In our opinion this is the best model, the advan-
tages are robustness as it is able to deal with any
words whether they are known to the morphologi-
cal transducer or not, and abiding by the concept of
modularity as it separates the process of tokeniza-
tion from morphological analysis.
 There are disadvantages, however, for this
model, and among them is that the morphological
analyzer and the syntactic parser have to deal with
increased tokenization ambiguities. The tokenizer
is highly non-deterministic as it depends on a
guesser which, by definition, is non-deterministic.
For a simple sentence of three words, we are faced
with eight different tokenization solutions. None-
theless, this can be handled as explained in subsec-
tion 5.1 on discarding spurious ambiguities.

4.3 Model 3: Tokenization Dependent on the
Morphological Analyser

 In the above solution, the tokenizer defines the
possible Arabic stem as any arbitrary sequence of

Arabic letters. In this solution, however, the word
stem is not guessed, but taken as a list of actual
words. A possible word in the tokenizer in this
model is any word found in the morphological
transducer. The morphological transducer here is
the same as the one described in subsection 4.1 but
with one difference, that is the output does not in-
clude any morphological features, but only token
boundaries between clitics and stems.
 This is a relatively deterministic tokenizer that
handles clitics properly. The main downfall is that
only words found in the morphological transducer
are tokenized. It is not robust, yet it may be more
convenient during grammar debugging, as it pro-
vides much fewer analyses than model 2. Here
spurious ambiguities are successfully avoided.

(6) (and to the man) وللرجل
@رجل@ال@ل@و

 One advantage of this implementation is that
the tool becomes more deterministic and more
manageable in debugging. Its lack of robustness,
however, makes it mostly inapplicable as no single
morphological transducer can claim to comprise all
the words in a language. In our XLE grammar, this
model is only 0.05% faster than Model 2. This is
not statistically significant advantage compared to
its limitations.

4.4 Tokenizing Multiword Expressions

 Multiword Expressions (MWEs) are two or
more words that behave like a single word syntac-
tically and semantically. They are defined, more
formally, as “idiosyncratic interpretations that
cross word boundaries” (Sag et al 2001). MWEs
cover expressions that are traditionally classified as
idioms (e.g. down the drain), prepositional verbs
(e.g. rely on), verbs with particles (e.g. give up),
compound nouns (e.g. traffic lights) and colloca-
tions (e.g. do a favour).
 With regard to syntactic and morphological
flexibility, MWEs are classified into three types:
fixed, semi-fixed and syntactically flexible expres-
sions (Baldwin 2004; Oflazer et al 2004; Sag et al
2001).
 a. Fixed Expressions. These expressions are
lexically, syntactically and morphologically rigid.
An expression of this type is considered as a word
with spaces (a single word that happens to contain

68

spaces), such as سطالشرق الأو al-sharq al-awsat (the
Middle East) and بیت لحم bait lahem (Bethlehem).
 b. Semi-Fixed Expressions. These expressions
can undergo variations, but still the components of
the expression are adjacent. The variations are of
two types, morphological variations where lexical
items can express person, number, tense, gender,
etc., such as the examples in (7), and lexical varia-
tions, where one word can be replaced by another
as in (8).

(7.a) فترة انتقالیة
fatratah intiqaliyyah
translational.sg.fem period.sg.fem

(7.b) فترتان انتقالیتان
fatratan intiqaliyyatan
translational.dual.fem period.dual.fem

(8) سیطةالب/وجھ الأرض/على ظھر
ala zahr/wajh al-ard/al-basitah
on the face/surface of the land/earth
(on the face of the earth)

 c. Syntactically Flexible Expressions. These
are the expressions that can either undergo reorder-
ing, such as passivization (e.g. the cat was let out
of the bag), or allow external elements to intervene
between the components such as (9.b), where the
adjacency of the MWE is disrupted.

(9.a) دراجة ناریة
 darrajah nariyyah
 bike fiery (motorbike)
(9.b) دراجة الولد الناریة
 darrajat al-walad al-nariyyah
 the-bike the-boy the-fiery (the boy’s motorbike)

 Fixed and semi-fixed expressions are identified
and marked by the tokenizer, while syntactically
flexible expressions can only be handled by a syn-
tactic parser (Attia 2006a).
 The tokenizer is responsible for treating MWEs
in a special way. They should be marked as single
tokens with the inner space(s) preserved. For this
purpose, as well as for the purpose of morphologi-
cal analysis, a specialized transducer is developed
for MWEs that lists all variations of MWEs and
provides analyses for them (Attia 2006a).
 One way to allow the tokenizer to handle
MWEs is to embed the MWEs in the Tokenizer
(Beesley and Karttunen 2003). Yet a better ap-
proach, described by (Karttunen et al 1996), is to

develop one or several multiword transducers or
“staplers” that are composed on the tokenizer. We
will explain here how this is implemented in our
solution, where the list of MWEs is extracted from
the MWE transducer and composed on the token-
izer. Let’s look at the composition regular expres-
sion:

(10) 1 singleTokens.i
 2 .o. ?* 0:"[[[" (MweTokens.l) 0:"]]]" ?*
 3 .o. "@" -> " " || "[[[" [Alphabet* | "@"*] _
 4 .o. "[[[" -> [] .o. "]]]" -> []].i;

Single words separated by the ‘@’ sign are defined
in the variable singleTokens and the MWE trans-
ducer is defined in MweTokens. In the MWE
transducer all spaces in the lower language are re-
placed by “@” so that the lower language can be
matched against singleTokens. In line 1 the single-
Tokens is inverted (the upper language is shifted
down) by the operator “.i” so that composition
goes on the side that contains the relevant strings.
From the MWE transducer we take only the lower
language (or the surface form) by the operator “.l”
in line 2. Single words are searched and if they
contain any MWEs, the expressions will (option-
ally) be enclosed by three brackets on either side.
Line 3 replaces all “@” signs with spaces in side
MWEs only. The two compositions in line 4 re-
move the intermediary brackets.
 Let’s now show this with a working example.
For the phrase in (11), the tokenizer first gives the
output in (12). Then after the MWEs are composed
with the tokenizer, we obtain the result in (13) with
the MWE identified as a single token.

ولوزیر خارجیتھا (11)
 wa-liwazir kharijiyatiha
 and-to-foreign minister-its
 (and to its foreign minister)
(12) @ھا@خارجیة@وزیر@ل@و
 (approx. and@to@foreign@minister@its@)
ھا@وزیر خارجیة@ل@و (13)
 (approx. and@to@foreign minister@its@)

4.5 Normalizing White Spaces

 White space normalization is a preliminary
stage to tokenization where redundant and mis-
placed white spaces are corrected, to enable the
tokenizer to work on a clean and predictable text.

69

In real-life data spaces may not be as regularly and
consistently used as expected. There may be two or
more spaces, or even tabs, instead of a single
space. Spaces might even be added before or after
punctuation marks in the wrong manner. There-
fore, there is a need for a tool that eliminates in-
consistency in using white spaces, so that when the
text is fed into a tokenizer or morphological ana-
lyzer, words and expressions can be correctly iden-
tified and analyzed. Table 1 shows where spaces
are not expected before or after some punctuation
marks.

No Space Before No Space After
) (
} {
] [
” “

Table 1. Space distribution with some punctuation
marks

 We have developed a white space normalizer
whose function is to go through real-life texts and
correct mistakes related to the placement of white
spaces. When it is fed an input such as the one in
(14.a) in which additional spaces are inserted and
some spaces are misplaced, it corrects the errors
and gives the output in (14.b):

(14.a) .السلام سیقود إلى)الدیمقراطیة (نشر
(14.b) . سیقود إلى السلام)الدیمقراطیة(نشر

5 Resolving Ambiguity

 There are different types of ambiguity. There
are spurious ambiguities created by the guesser.
There are also ambiguities which do not exist in
the text before tokenization but are only created
during the tokenization process. Finally there are
real ambiguities, where a form can be read as a
single word or two sub-tokens, or where an MWE
has a compositional reading. These three types are
treated by the following three subsections respec-
tively.

5.1 Discarding Spurious Ambiguities

Tokenization Model 2 discussed above in subsec-
tion 4.2 is chosen as the optimal implementation
due to its efficiency and robustness, yet it is highly
nondeterministic and produces a large number of

spurious ambiguities. Therefore, a morphological
transducer is needed to filter out the tokenization
paths that contain incorrect sub-tokens. Recall ex-
ample (4) which contained the output of the nonde-
terministic tokenizer. In (15) below, after the out-
put is fed into a morphological transducer, only
one solution is accepted and the rest are discarded,
as underlined words do not constitute valid stems.

(15) (and to the man) وللرجل
@رجل@ال@ل@و - Passed.

و@ل@الرجل@ - Discarded.
و@للرجل@ - Discarded.
وللرجل@ - Discarded.

5.2 Handling Tokenization Ambiguities

 Among the function of a tokenizer is separate
clitics from stems. Some clitics, however, when
separated, become ambiguous with other clitics
and also with other free forms. For example the
word كتابھم kitabahum has only one morphological
reading (meaning their book), but after tokeniza-
tion ھم@كتاب there are three different readings, as
the second token ھم can either be a clitic genitive
pronoun (the intended reading) or a free pronoun
they (a book, they) or a noun meaning worry
(forming the compound book of worry).
 This problem is solved by inserting a mark that
precedes enclitics and follows proclitics to distin-
guish them from each other as well as from free
forms (Ron M. Kaplan and Martin Forst, personal
communications, Oxford, UK, 20 September
2006). The mark we choose is the Arabic elonga-
tion short line called cashida which is originally
used for graphical decorative purposes and looks
natural with most clitics. To illustrate the usage, a
two-word string (16.a) will be rendered without
cashidas as in (16.b), and a single-word string that
contains clitics (17.a) will be rendered with a dis-
tinctive cashida before the enclitic pronoun as in
(17.b). This indicates that the pronoun is attached
to the preceding word and not standing alone.

(16.a) كتاب ھم
 kitab hum/hamm (book of worry/a book, they)
(16.b) ھم@ كتاب
(17.a) kitabuhum (their book) كتابھم
(17.b) ـھم@كتاب

70

 This implementation will also resolve a similar
ambiguity, that is ambiguity arising between pro-
clitics and enclitics. The proclitic preposition ك ka
(as) always occurs initially. There is a homo-
graphic enclitic object pronoun ك ka (you) that
always occurs in the final position. This can create
ambiguity in instances such as the made-up sen-
tence in (18.a). The sentence has the initial tokeni-
zation of (18.b) without a cashida, and therefore
the central token becomes ambiguous as it can now
be attached either to the preceding or following
word leading either to the readings in (18.a) or
(18.c). The cashida placement, however, resolves
this ambiguity as in (18.d). The cashida is added
after the token, indicating that it is attached to the
following word and now only the reading in (18.a)
is possible.

(18.a) أعطیت كالأمیر
a’taitu ka-lamir (I gave like a prince)

(18.b) الأمیر@ك@أعطیت
(18.c) أعطیتك الأمیر

a’taitu-ka alamir (I gave you the prince)
(18.d) الأمیر@كـ@أعطیت

5.3 Handling Real Ambiguities

 Some tokenization readings are legal, yet highly
infrequent and undesired in real-life data. These
undesired readings create onerous ambiguities, as
they are confused with more common and more
acceptable forms. For example the Arabic preposi-
tion بعد ba’d (after) has the possible remote reading
of being split into two tokens عد@بـ , which is made
of two elements: بـ bi (with) and عد ‘add (counting).
Similarly بین baina (between) has the possible re-
mote reading ین@بـ , which is made of two tokens
as well: بـ bi (with) and ین yin (Yen).
 The same problem occurs with MWEs. The op-
timal handling of MWEs is to treat them as single
tokens and leave internal spaces intact. Yet a non-
deterministic tokenizer allows MWEs to be ana-
lysed compositionally as individual words. So the
MWE حظر التجول hazr al-tajawwul (curfew) has
two analyses, as in (19), although the composi-
tional reading in (19.b) is undesired.

(19.a) حظر التجول@ hazr al-tajawwul (curfew)
(19.b) التجول@حظر

hazr (forbidding) al-tajawwul (walking)

 The solution to this problem is to mark the un-
desired readings. This is implemented by develop-
ing a filter, or a finite state transducer that contains
all possible undesired tokenization possibilities and
attaches the “+undesired” tag to each one of them.
 Undesired tokens, such as ین@بـ and عد@بـ ,
explained above, can be included in a custom list
in the token filter. As for MWEs, the token filter
imports a list from the MWE transducer and re-
places the spaces with the token delimiter ‘@’ to
denote the undesired tokenization solutions. The
token filter then matches the lists against the output
of the tokenizer. If the output contains a matching
string a mark is added, giving the output in (20).
Notice how (20.b) is marked with the “+undesired”
tag.

(20.a) [hazr al-tajawwul (curfew)] @حظر التجول
(20.b) التجول@حظر +undesired

 This transducer or filter is composed on top of
the core tokenizer. The overall design of the token-
izer and its interaction with other finite state com-
ponents is shown in Figure 3. WE must note that
the tokenizer, in its interaction with the morpho-
logical transducer and the MWE transducer, does
not seek morpho-syntactic information, but it que-
ries for lists and possible combinations.

Figure 3: Design of the Arabic Tokenizer

6 Conclusion

Tokenization is a process that is closely connected
to and dependent on morphological analysis. In our
research we show how different models of tokeni-
zation are implemented at different levels of lin-
guistic depth. We also explain how the tokenizer

71

interacts with other components1, and how it re-
solves complexity and filters ambiguity. By apply-
ing token filters we gain control over the tokeniza-
tion output.

References

Abbès R, Dichy J, Hassoun M (2004): The Architecture
of a Standard Arabic lexical database: some figures,
ratios and categories from the DIINAR.1 source pro-
gram, The Workshop on Computational Approaches
to Arabic Script-based Languages, COLING 2004.
Geneva, Switzerland.

Attia M (2006a): Accommodating Multiword Expres-
sions in an Arabic LFG Grammar. In Salakoski T,
Ginter F, Pyysalo S, Pahikkala T (eds), Advances in
Natural Language Processing, 5th International Con-
ference on NLP, FinTAL 2006, Turku, Finland, Vol
4139. Turku, Finland: Springer-Verlag Berlin Hei-
delberg, pp 87-98.

Attia M (2006b): An Ambiguity-Controlled Morpho-
logical Analyzer for Modern Standard Arabic Model-
ling Finite State Networks, The Challenge of Arabic
for NLP/MT Conference. The British Computer So-
ciety, London, UK.

Baldwin T (2004): Multiword Expressions, an Ad-
vanced Course, The Australasian Language Technol-
ogy Summer School (ALTSS 2004). Sydney, Austra-
lia.

Beesley KR (2001): Finite-State Morphological Analy-
sis and Generation of Arabic at Xerox Research:
Status and Plans in 2001, Proceedings of the Arabic
Language Processing: Status and Prospect--39th An-
nual Meeting of the Association for Computational
Linguistics. Toulouse, France.

Beesley KR, Karttunen L (2003): Finite State Morphol-
ogy. Stanford, Calif.: CSLI.

Buckwalter T (2002): Buckwalter Arabic Morphologi-
cal Analyzer Version 1.0., Linguistic Data Consor-
tium. Catalog number LDC2002L49, and ISBN 1-
58563-257-0.

Butt M, Dyvik H, King TH, Masuichi H, Rohrer C
(2002): The Parallel Grammar Project, COLING-
2002 Workshop on Grammar Engineering and
Evaluation. Taipei, Taiwan.

1 The tokenizer along with a number of other Arabic
finite state tools are made available for evaluation on
the website: www.attiapace.com

Chanod J-P, Tapanainen P (1994): A Non-Deterministic
Tokenizer for Finite-State Parsing, ECAI'96. Buda-
pest, Hungary.

Diab M, Hacioglu K, Jurafsky D (2004): Automatic
Tagging of Arabic Text: From Raw Text to Base
Phrase Chunks, Proceedings of NAACL-HLT 2004.
Boston.

Dichy J (2001): On lemmatization in Arabic. A formal
definition of the Arabic entries of multilingual lexical
databases, ACL 39th Annual Meeting. Workshop on
Arabic Language Processing; Status and Prospect.
Toulouse, pp 23-30.

Dichy J, Fargaly A (2003): Roots & Patterns vs. Stems
plus Grammar-Lexis Specifications: on what basis
should a multilingual lexical database centred on
Arabic be built?, Proceedings of the MT-Summit IX
workshop on Machine Translation for Semitic Lan-
guages. New-Orleans.

Habash N, Rambow O (2005): Arabic Tokenization,
Part-of-Speech Tagging and Morphological Disam-
biguation in One Fell Swoop, Proceedings of ACL
2005. Michigan.

Karttunen L, Chanod J-P, Grefenstette G, Schiller A
(1996): Regular expressions for language engineer-
ing. Natural Language Engineering 2:305-328.

Larkey LS, Connell ME (2002): Arabic Information
Retrieval at UMass. In Voorhees EM, Harman DK
(eds), The Tenth Text Retrieval Conference, TREC
2001. Maryland: NIST Special Publication, pp 562-
570.

Nelken R, Shieber SM (2005): Arabic Diacritization
Using Weighted Finite-State Transducers, Proceed-
ings of the 2005 ACL Workshop on Computational
Approaches to Semitic Languages. Michigan.

Oflazer K, Uglu ÖÇ, Say B (2004): Integrating Mor-
phology with Multi-word Expression Processing in
Turkish, Second ACL Workshop on Multiword Ex-
pressions: Integrating Processing. Spain, pp 64-71.

Sag IA, Baldwin T, Bond F, Copestake A, Flickinger D
(2001): Multi-word Expressions: A Pain in the Neck
for NLP, LinGO Working Papers. Stanford Univer-
sity, CA.

72

Proceedings of the 5th Workshop on Important Unresolved Matters, pages 73–80,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Arabic to French Sentence Alignment: Exploration of A Cross-

language Information Retrieval Approach

Nasredine Semmar

CEA, LIST

Laboratoire d’ingénierie de la connais-

sance multimédia multilingue

18 route du Panorama

BP6, FONTENAY AUX ROSES, F-

92265 France

nasredine.semmar@cea.fr

Christian Fluhr

CEA, LIST

Service Réalite virtuelle, Cognitique et

Interfaces

18 route du Panorama

BP6, FONTENAY AUX ROSES, F-

92265 France

christian.fluhr@cea.fr

Abstract

Sentence alignment consists in estimating

which sentence or sentences in the source

language correspond with which sentence

or sentences in a target language. We pre-

sent in this paper a new approach to align-

ing sentences from a parallel corpus based

on a cross-language information retrieval

system. This approach consists in building

a database of sentences of the target text

and considering each sentence of the

source text as a "query" to that database.

The cross-language information retrieval

system is a weighted Boolean search en-

gine based on a deep linguistic analysis of

the query and the documents to be indexed.

This system is composed of a multilingual

linguistic analyzer, a statistical analyzer, a

reformulator, a comparator and a search

engine. The multilingual linguistic analyzer

includes a morphological analyzer, a part-

of-speech tagger and a syntactic analyzer.

The linguistic analyzer processes both

documents to be indexed and queries to

produce a set of normalized lemmas, a set

of named entities and a set of nominal

compounds with their morpho-syntactic

tags. The statistical analyzer computes for

documents to be indexed concept weights

based on concept database frequencies. The

comparator computes intersections between

queries and documents and provides a rele-

vance weight for each intersection. Before

this comparison, the reformulator expands

queries during the search. The expansion is

used to infer from the original query words

other words expressing the same concepts.

The search engine retrieves the ranked,

relevant documents from the indexes ac-

cording to the corresponding reformulated

query and then merges the results obtained

for each language, taking into account the

original words of the query and their

weights in order to score the documents.

The sentence aligner has been evaluated on

the MD corpus of the ARCADE II project

which is composed of news articles from

the French newspaper "Le Monde Diplo-

matique". The part of the corpus used in

evaluation consists of the same subset of

sentences in Arabic and French. Arabic

sentences are aligned to their French coun-

terparts. Results showed that alignment has

correct precision and recall even when the

corpus is not completely parallel (changes

in sentence order or missing sentences).

1 Introduction

Sentence alignment consists in mapping sentences

of the source language with their translations in the

target language. Automatic sentence alignment

approaches face two kinds of difficulties: robust-

ness and accuracy. A number of automatic sen-

tence alignment techniques have been proposed

(Kay and Röscheisen, 1993; Gale and Church,

1991; Brown et al., 1991; Debili and Samouda,

1992; Papageorgiou et al., 1994; Gaussier, 1995;

Melamed, 1996; Fluhr et al., 2000).

73

The method proposed in (Kay and Röscheisen,

1993) is based on the assumption that in order for

the sentences in a translation to correspond, the

words in them must correspond. In other words, all

necessary information (and in particular, lexical

mapping) is derived from the to-be-aligned texts

themselves.

In (Gale and Church, 1991) and (Brown et al.,

1991), the authors start from the fact that the length

of a source text sentence is highly correlated with

the length of its target text translation: short sen-

tences tend to have short translations, and long

sentences tend to have long translations.

The method proposed in (Debili and Sammouda,

1992) is based on the preliminary alignment of

words using a conventional bilingual lexicon and

the method described in (Papageorgiou et al., 1994)

added grammatical labeling based on the assump-

tion that the same parts of speech tend to be em-

ployed in the translation.

In this paper, we present a sentence aligner

which is based on a cross-language information

retrieval approach and combines different informa-

tion sources (bilingual lexicon, sentence length and

sentence position). This sentence aligner was first

developed for aligning French-English parallel text.

It is now ported to Arabic-French and Arabic-

English language pairs.

We present in section 2 the main components of

the cross-language search engine, in particular, we

will focus on the linguistic processing. In section 3,

the prototype of our sentence aligner is described.

We discuss in section 4 results obtained after align-

ing sentences of the MD (Monde Diplomatique)

corpus of the ARCADE II project. Section 5 con-

cludes our study and presents our future work.

2 The Cross-language Search Engine

Information retrieval consists to find all relevant

documents for a user query in a collection of

documents. These documents are ordered by the

probability of being relevant to the user's query.

The highest ranked document is considered to be

the most likely relevant document. Cross-language

information retrieval consists in providing a query

in one language and searching documents in

different languages (Grefenstette, 1998). The

cross-lingual search engine is a weighted Boolean

search engine based on a deep linguistic analysis of

the query and the documents to be indexed

(Besançon et al., 2003). It is composed of a

linguistic analyzer, a statistical analyzer, a

reformulator and a comparator (Figure 1):

Figure 1. The cross-language search engine

2.1 Linguistic Analysis

The linguistic analyzer produces a set of normal-

ized lemmas, a set of named entities and a set of

nominal compounds. It is composed of several lin-

guistic resources and processing modules.

Each language has its proper linguistic resources

which are generally composed of:

• A full form dictionary, containing for each

word form its possible part-of-speech tags

Linguistic analysis

Comparator

Statistic

analysis

Reformulation

General

lexicons

Reformulation

lexicons

Search engine database (Indexed

documents)

Documents to be

indexed

Queries

Documents

grouped in rele-

vant classes

74

and linguistic features (gender, number, etc).

For languages such as Arabic which pre-

sents agglutination of articles, prepositions

and conjunctions at the beginning of the

word as well as pronouns at the ending of

the word, we added two other dictionaries

for proclitics and enclitics in order to split

the input words into proclitics, simple forms

and enclitics.

• A monolingual reformulation dictionary

used in query expansion for expanding

original query words to other words express-

ing the same concepts (synonyms, hypo-

nyms, etc.).

• Bilingual dictionaries used in cross-

language querying.

• A set of rules for tokenizing words.

• A set of part-of-speech n-grams (bigrams

and trigrams from hand-tagged corpora) that

are used for part-of-speech tagging.

• A set of rules for shallow parsing of sen-

tences, extracting compounds from the input

text.

• A set of rules for the identification of

named entities: gazetteers and contextual

rules that use special triggers to identify

named entities and their type.

The processing modules are common for all the

languages with some variations for some specific

languages:

• A Tokenizer which separates the input

stream into a graph of words. This separa-

tion is achieved by an automaton devel-

oped for each language and a set of seg-

mentation rules.

• A Morphological analyzer which searches

each word in a general dictionary (Debili

and Zouari, 1985). If this word is found, it

will be associated with its lemma and all

its morpho-syntactic tags. If the word is

not found in the general dictionary, it is

given a default set of morpho-syntactic

tags based on its typography. For Arabic,

we added to the morphological analyzer a

new processing step: a Clitic stemmer

(Larkey et al., 2002) which splits aggluti-

nated words into proclitics, simple forms

and enclitics. If the simple form computed

by the clitic stemmer does not exist in the

general dictionary, re-write rules are ap-

plied (Darwish, 2002). For example, con-

sider the token “������” (with their ballon)

and the included clitics “ب” (with) and “ه�”

(their), the computed simple form “آ�ت”

does not exist in the general dictionary but

after applying one of the dozen re-write

rules, the modified simple form “آ�ة”

(ballon) is found in the general dictionary

and the input token is segmented as:

 .ه� + آ���ة + ب = ���������������
• An Idiomatic Expressions recognizer

which detects idiomatic expressions and

considers them as single words for the rest

of the processing. Idiomatic expressions

are phrases or compound nouns that are

listed in a specific dictionary. The detec-

tion of idiomatic expressions is performed

by applying a set of rules that are triggered

on specific words and tested on left and

right contexts of the trigger. These rules

can recognize contiguous expressions as

the "white house" in English, la "maison

blanche" in French or " ��َ�ْ�َا�َ�ْ�� ا" in Ara-

bic. Non-contiguous expressions such as

phrasal verbs in English: "switch…on" or

"tomber vaguement dans les pommes" in

French are recognized too.

• A Part-Of-Speech (POS) tagger which

searches valid paths through all the possi-

ble tags paths using attested trigrams and

bigrams sequences. The trigram and bi-

gram matrices are generated from a manu-

ally annotated training corpus (Grefen-

stette et al., 2005). They are extracted from

a hand-tagged corpora of 13 200 words for

Arabic and 25 000 words for French. If no

continuous trigram full path is found, the

POS tagger tries to use bigrams at the

points where the trigrams were not found

in the matrix. The accuracy of the part-of-

speech tagger is around 91% for Arabic

and 94% for French.

• A Syntactic analyzer which is used to split

word graph into nominal and verbal chain

and recognize dependency relations (espe-

cially those within compounds) by using a

set of syntactic rules. We developed a set

of dependency relations to link nouns to

75

other nouns, a noun with a proper noun, a

proper noun with the post nominal adjec-

tive and a noun with a post nominal adjec-

tive. These relations are restricted to the

same nominal chain and are used to com-

pute compound words. For example, in the

nominal chain “ زی� ا�������” (water supply),

the syntactic analyzer considers this nomi-

nal chain as a compound word (م��� _��زی�)

composed of the words “ زی���” (supply)

and “م���” (water).

• A Named Entity recognizer which uses

name triggers (e.g., President, lake, corpo-

ration, etc.) to identify named entities

(Abuleil and Evens, 2004). For example,

the expression “اَ�و&ل مِ$ َ#ْ�ِ� مَ�رس” (The first

of March) is recognized as a date and the

expression “ ()َْا�+&ْ�ق اَ�و” (The Middle East)

is recognized as a location.

• Eliminating Empty Words consists in iden-

tifying words that should not be used as

search criteria and eliminating them. These

empty words are identified using only their

parts of speech (such as prepositions, arti-

cles, punctuations and some adverbs).

• Finally, words are normalized by their

lemma. In the case the word has a set of

synonymous lemmas, only one of these

lemmas is taken as a normalization. Each

normalized word is associated with its

morpho-syntactic tag.

2.2 Statistical Analysis

The role of the statistical analysis is to attribute

a weight to each word or a compound word ac-

cording to the information the word or the com-

pound word provides in choosing the document

relevant to a query. This weight is computed by an

idf formula (Salton and McGill, 1983). The weight

is maximum for words appearing in one single

document and minimum for words appearing in all

the documents. This weight is used by the com-

parator to compute the semantic intersection be-

tween query and documents containing different

words. A similarity value is associated with each

semantic intersection. This value corresponds to

the sum of the weights of words present in the

documents. The search engine groups documents

into classes (semantic intersections) characterized

by the same set of words. These classes constitute

a discrete partition of the indexed documents. For

example, the search engine returns 12 classes for

the query “ ارد ا������-water resources man) ”إدارة م

agement) (Table 1).

Class Query terms

	_��ارد_إدارة 1��

��ارد_إدارة,��
	 _��ارد 2

3 	
وارد_إدارة,��

	_��ارد,إدارة 4��

��ارد_إدارة 5

	_��ارد 6��

	,��ارد ,إدارة 7��

	,إدارة 8��

��ارد,إدارة 9

	,رد ��ا 10��

11 	
��
 ��ارد 12

Table 1. Relevant classes returned by the search

engine for the query “ارد ا������ ”إدارة م

The query term “ م��� _م�ارد _إدارة ” is a compound

word composed of three words: “ إدارة” (manage-

ment), “ارد� (water). This ”م��� “ (resources) and ”م

compound word is computed by the syntactic ana-

lyzer.

2.3 Query Reformulation

The role of query reformulation is to infer new

words from the original query words according to a

lexical semantic knowledge. The reformulation can

be used to increase the quality of the retrieval in a

monolingual interrogation. It can also be used to

infer words in other languages. The query terms

are translated using bilingual dictionaries. Each

term of the query is translated into several terms in

target language. The translated words form the

search terms of the reformulated query. The links

between the search terms and the query concepts

can also be weighted by a confidence value indi-

cating the relevance of the translation. Reformula-

tion rules can be applied to all instances of a word

or to a word only when it is playing a specific part-

of-speech. Semantic relations can also be selected:

translations, synonyms, word derived from the

same root, etc. The cross-language search engine

has a monolingual reformulation for French and

two bilingual reformulations for Arabic-French

and French-Arabic language pairs.

76

2.4 Query and Documents Comparison

The search engine indexer builds the inverted files

of the documents on the basis of their linguistic

analysis: one index is built for each language of the

document collection. This indexer builds separate

indexes for each language. The search engine uses

a comparison tool to evaluate all possible intersec-

tions between query words and documents, and

computes a relevance weight for each intersection.

This relevance weight corresponds to the sum of

the weights of words present in the documents.

3 The Sentence Aligner

Parallel text alignment based on cross-language

information retrieval consists in building a data-

base of sentences of the target text and considering

each sentence of the source text as a "query" to that

database (Figure 2).

Figure 2. Sentence alignment steps

To evaluate whether the two sentences are trans-

lations of each other, we use three criteria:

• Number of common words between the

source sentence and the target sentence

(semantic intersection) must be higher than

50% of number of words of the target sen-

tence.

• Position of the sentence to align must be in

an interval of 10 compared to the position

of the last aligned sentence.

• Ratio of lengths of the target sentence and

the source sentence (in characters) must be

higher or equal than 1.1 (A French charac-

ter needs 1.1 Arabic characters): Longer

sentences in Arabic tend to be translated

into longer sentences in French, and

shorter sentences tend to be translated into

shorter sentences.

The alignment process has four steps:

1. Exact match 1-1 alignment: The goal of

this step is to obtain an alignment with a

maximum precision by using the three cri-

teria: Number of common words between

the source sentence and the target sen-

tence; Position of the sentence to align;

Ratio of lengths of the target sentence and

the source sentence.

2. 1-2 alignment: This alignment consists in

merging an unaligned sentence with one

preceding or following already aligned

sentence. We use to validate this alignment

only the first two criteria.

3. 2-1 alignment: The goal of this alignment

is to find for the two sentences following

an aligned sentence a sentence in the target

language taking into account the position

of the last aligned sentence. This align-

ment is validated by using only the first

two criteria.

4. Fuzzy match 1-1 alignment: This align-

ment proposes for the sentence to align

the first sentence of the first class returned

by the cross-language search engine. This

type of alignment is added to take into ac-

count alignments which are partially cor-

rect (The source sentence is not completely

aligned but some of its words are trans-

lated).

Cross-lingual Interrogation in

French database

List of French

sentences

Cross-lingual Interrogation in

Arabic database

List of Arabic

sentences

Arabic sentences to

align

Check of alignment criteria

French aligned

sentences

77

We describe below the algorithm of the Exact

Match 1-1 alignment which is the base of the other

aligners. This algorithm uses the functions of the

cross-language search engine API.

• PerformCrosslinguageSearch(Query, Cor-

pus, Source language, Target language):

returns the set of relevant classes

corresponding to the question “Query”

in the database "Corpus". Each class is

composed of a set of sentences in the

target language.

• GetNumberOfCommonWords(Class): returns

the number of common words between the

source sentence and the target sentence

(semantic intersection).

• GetNumberOfWords(Sentence): returns the

number of words of a sentence.

• GetNumberOfCharacters(Sentence): re-

turns the number of characters of a

sentence.

function GetExactMatchOneToOneAlign-

ments(CorpusAr, CorpusFr)

for each Arabic sentence PjAr ∈ CorpusAr do

CFr←PerformCrosslinguageSearch(PjAr, Cor-

pusFr, Ar, Fr)

R←0; Initialize the position of the last

aligned sentence.

for each class ClFr ∈ CFr do

for each French sentence PmFr ∈ ClFr do

CAr←PerformCrosslinguageSearch(PmFr,

CorpusAr, Fr, Ar)

for each class CqAr ∈ CAr do

for each Arabic sentence PqAr ∈ CqAr

do

if PqAr=PjAr then

NMFr=GetNumberOfCommonWords(ClFr);

NMAr=GetNumberOfWords(PjAr);

NCAr=GetNumberOfCharacters(PjAr);

NCFr=GetNumberOfCharacters(PmFr)

if (NMFr ≥ NMAr/2) and (R–5 ≤ m ≤

R+5) and (NCFr=(1.1)*NCAr) then

The sentence PmFr is the align-

ment of the sentence PjAr;

R←m

end if

end if

end for

end for

end for

end for

end for

end function

For example, to align the Arabic sentence [4/30]

(sentence of position 4 in the Arabic corpus con-

taining 30 sentences) “ 89 ای����7 ادت 45��6 ا3#��ء ا�1 ا0/�ع
 4����D ا�/���E$ 89 �6ی=��D 4 م�B� 4�Cن زم$ ا3@?اب ا�<=;�>ی4 0> �;:
 F>ن��ی � ” (In Italy, the order of things persuaded in

an invisible way a majority of electors that time of

traditional parties was finished), the exact match 1-

1 aligner proceeds as follows:

• The Arabic sentence is considered to be a

query to the French sentence database us-

ing the cross-language search engine. Re-

trieved sentences for the two first classes

are illustrated in Table 2.

Class Number of

retrieved

sentences

Retrieved sentences

1 1 [4/36] En Italie, l'ordre des

choses a persuadé de

manière invisible une ma-

jorité d'électeurs que le

temps des partis traditionnels

était terminé

2 3 [32/36] Au point que, dès

avant ces élections, un heb-

domadaire britannique, rap-

pelant les accusations

portées par la justice itali-

enne contre M. Berlusconi,

estimait qu'un tel dirigeant

n'était pas digne de gou-

verner l'Italie, car il consti-

tuait un danger pour la dé-

mocratie et une menace pour

l'Etat de droit

[34/36] Après le pitoyable

effondrement des partis tra-

ditionnels, la société itali-

enne, si cultivée, assiste

assez impassible (seul le

monde du cinéma est entré

en résistance) à l'actuelle

dégradation d'un système

politique de plus en plus

confus, extravagant, ridicule

et dangereux

[36/36] Toute la question est

de savoir dans quelle mesure

ce modèle italien si préoccu-

pant risque de s'étendre de-

main à d'autres pays d'Eu-

rope

Table 2. Retrieved sentences corresponding to the

Arabic sentence [4/30]

• Results of cross-language querying show

that the sentence [4/36] is a good candidate

to alignment. To confirm this alignment,

we use the French sentence as a query to

the Arabic database. Relevant sentences

corresponding to the French query "En

Italie, l'ordre des choses a persuadé de

78

manière invisible une majorité d'électeurs

que le temps des partis traditionnels était

terminé" are grouped into two classes in

Table 3.

Class Number of

retrieved

sentences

Retrieved sentences

1 1 [4/30]

�ع 89 ای����7 ادت 45��6 ا3#��ء ا�1 ا0/
 4�Cم� ��D 4=89 �6ی $��E�/4 ا�����D
 �Bن زم$ ا3@?اب ا�<=;�>ی4 0> �;:
F>ن��ی �

2 3 [26/30]

 ی+�M ه3Lء ا���Kل اآ4�IJI �H م��Hة
 �;�OPی4 وا�<=?ز 89 اورو��، ا�1
 4�Q� در4K ان ا@>ى ا��JRت ا3(�
 ا���ی�7ن�4 اQ<��ت 89 م�5ض
 4�K� ا(<�5د��� ����Jم�ت ا�=4�C�U ا��
 �Vه M�0 8ن��)���� <�Pا�1 ا�
 ا3ن<���Oت ان مLPو3 م$ هVا ا�/�ع
 MHی� Fای����7 وان ��W� ی�ا<K X��
 �7Eا Q;1 ا�>ی���0ا4�6 وQ;1 دو�4
� ا�=�ن�ن
[28/30]

و4WY �/��� <0 ه�V ا�<��50ت
 4=Z+;� ��H4، 5�9> ا3ن���ر ا���C�+>ا��
 ��>Rاب ا�<=;�>ی4، #�> ا��?@J�
وف �F>9�=H وم$ دون ان ا3ی8��7 ا���5
 ی�>ي @�اآ� ��(<H/�ء �70ع ا��P/�� ا�Vي
 �BR ا�1 ا��=�وم4 ا�<>ه�ر ا��اه$ �/^�م
 (��(8 ی�5ن8 ا��?ی> م$ ا�_��ض
7�رة Oوا� `OPوا�+7) وا� �
[30/30]

 وآM ا��4�BP ���$ 89 م49�5 ا�1 اي
 ��Hذج ا3ی8��7 ا��� م>ى ی��$ هVا ا�/�
ان اورو��d;=;� 4 ان ی/<+� D>اً 89 �;>
� ا�Eى

Table 3. The two classes corresponding to the

French sentence [4/36]

The first proposed sentence is the original one

and more of 50% of the words are common to the

two sentences. Furthermore, the length ratio be-

tween the French sentence and the Arabic sentence

is superior than 1.1 and positions of these two sen-

tences in the databases are the same. Therefore, the

exact match 1-1 aligner considers the French sen-

tence [4/36] as a translation of the Arabic sentence

[4/30].

4 Experimental Results

The sentence aligner has been tested on the MD

corpus of the ARCADE II project which is com-

posed of news articles from the French newspaper

"Le Monde Diplomatique" (Chiao et al., 2006).

This corpus contains 5 Arabic texts (244 sentences)

aligned at the sentence level to 5 French texts (283

sentences). The test consisted to build two data-

bases of sentences (Arabic and French) and to con-

sider each Arabic sentence as a "query" to the

French database.

To evaluate the sentence aligner, we used the

following measures:

Precision =
A

AA r∩

 and Recall =
r

r

A

AA ∩

A corresponds to the set of alignments provided

by the sentence aligner and Ar corresponds to the

set of the correct alignments.

The results we obtained at sentence level (Table

4) show an average precision around 97% and an

average recall around 93%. These results do not

take into account alignments which are partially

correct (Fuzzy match 1-1 alignment).

Parallel Text Precision Recall
1 0.969 0,941
2 0,962 0,928
3 0,985 0,957
4 0,983 0,952
5 0,966 0,878

Table 4. Results of alignment at sentence level

Analysis of these results shows that our sentence

aligner is not sensitive to missing sentences. This

is because the first criterion used by our aligner is

not related to surface information (sentence posi-

tion or sentence length) but on the semantic inter-

section of these sentences.

Moreover, we have noted that precision depends

on the discriminate terms which can occur in the

source and target sentences.

79

5 Conclusion and Perspectives

We have proposed a new approach to sentence

alignment based on a cross-language information

retrieval model combining different information

sources (bilingual lexicon, sentence length and

sentence position). The results we obtained show

correct precision and recall even when the parallel

corpus includes changes in sentence order and

missing sentences. This is due to the non-

sequential strategy used by the sentence aligner. In

future work, we plan to improve the alignment

with syntactic structures of source and target sen-

tences and to use the aligned bilingual parallel cor-

pus as a translation memory in a computer-aided

translation tool.

References

Abuleil S., and Evens M. 2004. Named Entity Recogni-

tion and Classification for Text in Arabic. In Pro-

ceedings of IASSE-2004.

Besançon R., de Chalendar G., Ferret O., Fluhr C.,

Mesnard O., and Naets H. 2003. Concept-Based

Searching and Merging for Multilingual Information

Retrieval: In Proceedings of CLEF-2003.

Brown P., Lai L., and Mercier L. 1991. Aligning Sen-

tences in Parallel Corpora. In Proceedings of ACL-

1991.

Chiao Y. C., Kraif O., Laurent D., Nguyen T., Semmar

N., Stuck F., Véronis J., and Zaghouani W. 2006.

Evaluation of multilingual text alignment systems:

the ARCADE II project. In Proceedings of LREC-

2006.

Darwish K. 2002. Building a Shallow Arabic Morpho-

logical Analyzer in One Day. In Proceedings of ACL-

2002.

Debili F. and Zouari L. 1985. Analyse morphologique

de l’arabe écrit voyellé ou non fondée sur la con-

struction automatique d’un dictionnaire arabe, Cogni-

tiva, Paris.

Debili F. and Sammouda E. 1992. Appariement des

Phrases des Textes Bilingues. In Proceedings of the

14th International Conference on Computational

Linguistics.

Fluhr C., Bisson F., and Elkateb F. 2000. Parallel text

alignment using cross-lingual information retrieval

techniques. Boston: Kluwer Academic Publishers.

Gale W.A. and Church K. W. 1991. A program for

aligning sentences in bilingual corpora. In Proceed-

ings of the 29th Annual Meeting of Association for

Computational Linguistics.

Gaussier E. 1995. Modèles statistiques et patrons mor-

phosyntaxiques pour l'extraction de lexiques bilin-

gues. Ph.D. Thesis, Paris VII University.

Grefenstette G. 1997. Cross-language information re-

trieval. Boston: Kluwer Academic Publishers.

Grefenstette G., Semmar N., and Elkateb-Gara F. 2005.

Modifying a Natural Language Processing System

for European Languages to Treat Arabic in Informa-

tion Processing and Information Retrieval Applica-

tions. In Proceedings of ACL-2005 Workshop.

Kay M. and Röscheisen M. 1993. Text-translation

alignment. Computational Linguistics, Special issue

on using large corpora, Volume 19, Issue 1.

Larkey L. S., Ballesteros L., and Connel M. E. 2002.

Improving Stemming for Arabic Information Re-

trieval: Light Stemming and Co-occurrence Analysis.

In Proceedings of the 25th annual international ACM

SIGIR conference on Research and development in

information retrieval.

Melamed I. D. 1996. A Geometric Approach to Map-

ping Bitext Correspondence. In Proceedings of the

Conference on Empirical Methods in Natural Lan-

guage Processing.

Papageorgious H., Cranias, L., and Piperidis, S. 1994.

Automatic Alignment in Parallel Corpora. In Pro-

ceedings of the 32
nd

 Annual Meeting of the Associa-

tion for Computational Linguistics.

Salton G. and McGill M. 1983. Introduction to Modern

Information retrieval. New York: McGraw Hill.

80

Proceedings of the 5th Workshop on Important Unresolved Matters, pages 81–88,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

An Arabic Slot Grammar Parser

Michael C. McCord

IBM T. J. Watson Research Center
P.O.B. 704

Hawthorne, NY 10532
mcmccord@us.ibm.com

Violetta Cavalli-Sforza
Language Technologies Institute

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

violetta@cs.cmu.edu

Abstract

We describe a Slot Grammar (SG) parser
for Arabic, ASG, and new features of SG
designed to accommodate Arabic as well as
the European languages for which SGs
have been built. We focus on the integra-
tion of BAMA with ASG, and on a new,
expressive SG grammar formalism, SGF,
and illustrate how SGF is used to advan-
tage in ASG.

1 Introduction

In this paper we describe an initial version of a Slot
Grammar parser, ASG, for Arabic. Slot Grammar
(SG) (McCord, 1980. 1993) is dependency-
oriented, and has the feature that deep structure
(via logical predicate arguments) and surface struc-
ture are both shown in parse trees.
 A new formalism SGF (Slot Grammar Formal-
ism) for SG syntax rules has been developed
(McCord, 2006), and the ASG syntax rules are
written in SGF. SGF is largely declarative, and
can be called “object-oriented” in a sense we will
explain. The rules in SGF all have to do with slot
filling.

ASG uses BAMA (Buckwalter, 2002), in a ver-
sion from Qamus, as its morphological analyzer.
All the internal processing of ASG is done with the
Buckwalter Arabic transliteration – though of
course ASG can take real Arabic script (in UTF-8
form) as input. We use BAMA features in the
processing (and parse trees), but augmented with
other features more unique to ASG. The Penn
Arabic Treebank (ATB), which also uses BAMA
features, has served as a development guide in the

work. But SG is a rule-based system, and there is
no automatic training from the ATB.

Prior to this work, SGs had been written for
English (McCord), German (Claudia Gdaniec), and
for the Romance languages (Esméralda Manandise)
Spanish, French, Italian and Portuguese. For han-
dling Arabic, there have been two main new adap-
tations of SG.

One adaptation is in the treatment of features in
the form that BAMA delivers. This treatment in-
cludes a feature lexicon in ASG, which can specify
two kinds of relations among features, which we
will describe below. We also take steps to handle
the large number of analyses returned by BAMA.
Special treatment of features appears as well in the
SGF syntax rules. The other main adaptation is in
the treatment of clitics, where special things hap-
pen in Arabic for proclitics.

Although the basic ideas of SG have not
changed in treating Arabic, ASG has been serving
as a test bed for the new syntax rule formalism
SGF.

Overall, the design of the SG system has be-
come neater by including Arabic as well as the
European languages. For instance, the new treat-
ment of features generalizes the existing treatment
in the German SG. And the new treatment of cli-
tics will make the treatment of clitics for the Ro-
mance languages neater.

In Section 2, we discuss the ASG feature system.
Section 3 briefly describes the ASG slot frame
lexicon. Sections 4 and 5 deal with syntactic
analysis. In Section 6, we discuss current perform-
ance of ASG (coverage and speed), and in Section
7, related work.

81

2 The Feature System

Features for an SG parser for language X are speci-
fied externally as character strings, listed by the
grammar writer in the feature lexicon Xfeas.lx (Ar-
feas.lx for Arabic). Internally, features are repre-
sented in two ways, for efficient processing: (1)
The features themselves are “atoms”, represented
by integers. (2) The set of features for a parse
node is represented by a bit string, where each fea-
ture atom is assigned a bit position. For ASG,
these bit strings are currently of length 512. But
these internal representations are invisible to the
grammar writer.

In the set of features for a node, some subsets
can be viewed disjunctively. For instance if a noun
is ambiguously singular or plural, it might have
both features sg and pl. This situation occurs
very much for Arabic text input because of the
ambiguity due to unvocalized script. In order not
to choke the parse space, the SG-BAMA interface
combines some BAMA analyses, basically ones
that have the same stem and POS, so that nodes
have disjunctive BAMA features. But agreement
rules or slot filler constraints often reduce the
ambiguity. Such rules, specified in a perspicuous
way in SGF, as we will see below, are
implemented internally by intersecting the bit
string representations of relevant feature sets.

For ASG, there are two categories of features.
One category consists of BAMA compound
features like

NOUN+NSUFF_FEM_PL+CASE_DEF_ACC

(indicating a feminine plural definite accusative
noun). Although such features are compound in
intent, they are treated as atomic symbols by ASG
(as are all features specified in Xfeas.lx).

Features of the other category are more special
to ASG. Some of them have to do with syntactic
structure (like presence of an overt subject), and
others are morphological. Typical morphological
features are standard, simple ones that appear in
sets of values for attributes like case, number,
gender, and definiteness – for example:

nom, acc, gen
sg, dual, pl
m, f,
def, indef

Besides declaring features, Xfeas.lx can specify
relations between features. One way is to specify
simple hierarchical relations. An entry of the form

x < y … z …

specifies that feature x implies features y … z. This
means for instance that if the feature x is marked
on a node, then a test in the grammar for feature y
will succeed. Hierarchical information like this is
stored internally in bit string arrays and allows ef-
ficient processing.

If an entry is of the form

x < … > u … v

then we say that x extends the feature set {u ... v},
and x is an extending feature. The basic idea is that
x is a kind of abbreviation for the disjunction of the
set {u ... v}, but x may appear on a node independ-
ently of that set. We will explain the exact mean-
ing in the section below on the syntax rules. A
typical example of an extending feature rule in Ar-
feas.lx is as follows:

gen < >
 NOUN+NSUFF_FEM_DU_GEN
 NOUN+NSUFF_FEM_PL+CASE_DEF_GEN
 NOUN+NSUFF_FEM_PL+CASE_INDEF_GEN

 ...

where we list all BAMA compound features that
include a genitive subfeature. Rules in the syntax
component can test simply for extending features
like gen, as we will see below. The syntax com-
ponent does not even mention BAMA features.
But this representational scheme allows us to keep
BAMA compound features as units -- and this is
important, because the morphological analysis
(with ambiguities shown) requires such groupings.
The internal representation of an extending feature
relationship of x to {u ... v} associates with the
atom for x the disjunction of the bit strings for u ...
v, and the processing is quite efficient.

Although the features in Xfeas.lx are generally
morphosyntactic, and have internal atom and bit
string position representations in limited storage
areas, SG also allows open-ended features, which
may be used in the SG lexicon and tested for in the
syntax component. These are typically semantic
features.

82

3 The SG Lexicon

Although BAMA contains lexicons for doing
Arabic morphological analysis, an SG needs its SG
lexicon to drive syntactic analysis and help pro-
duce parse trees that show (deep) predicate argu-
ment structure. The main ingredients associated
with index words in an SG lexicon are sense
frames. A sense frame can specify a part of speech
(POS), features (typically semantic features), a slot
frame, and other ingredients. The most important
ingredient is the slot frame, which consists of an
ordered list of (complement) slots. Slots can be
thought of as grammatical relations, but also as
names for logical arguments for word sense predi-
cates. An example from the ASG lexicon, called
Ar.lx, is:

Eoniy < v (obj n fin)

This says that Eoniy (�����) is a verb (stem) with a
direct object slot (obj) which can be filled by ei-
ther an NP (indicated by the n) or a finite VP (in-
dicated by the fin). A slot can be either an atomic
symbol or a list of the form

(SlotName Option1 … Optionn)

where the options are terms that specify conditions
on the fillers of the slot. If no options are specified,
then defaults are used. The Eoniy (�����) example
shows no subject slot, but the default is that every
verb has a subject slot (even though it may not be
overtly filled). One can specify a subject slot
(subj) if it needs non-default options.

For the index words for ASG, we are currently
using vocalized stems – stems as in the ATB, or as
produced by BAMA. To produce a starter for
Ar.lx, we extracted stems from the ATB, listed by
frequency, and associated default sense frames
based on the BAMA features in the ATB. Using
vocalized stems entails some repetition of sense
frames, since there can be more than one vocalized
stem for a given word sense.

Index words in the SG lexicon can also be mul-
tiwords. Some multiword entries occur in Ar.lx.

Morpholexical analysis for ASG combines
BAMA analysis with look-up in Ar.lx. BAMA
provides morphological features (BAMA com-
pound features) associated with vocalized stems.
Also, an algorithm in ASG separates clitics out of

the BAMA analyses and represents them in a form
convenient for the parser. The vocalized stems are
looked up in Ar.lx, and the sense frames found
there (if look-up is successful) are merged with
compatible analyses from BAMA. If look-up in
Ar.lx fails, then the BAMA analyses can still be
used, with default slot frames assigned. In the
other direction, look-up in BAMA may fail, and
special entries in Ar.lx can cover such words
(specifying morphological features as well as slot
frames).

4 The Parsing Algorithm

The SG parser is a bottom-up chart parser. Ini-
tial chart elements are one-word (or one-multiword)
phrases that arise from morpholexical analysis. All
further chart elements arise from binary combina-
tions of a modifier phrase M with a higher phrase
H, where M fills a slot S in H. The slot S could be
a complement slot which is stored with H, having
arisen from the lexical slot frame of the word sense
head of H. Or S could be an adjunct slot associated
with the POS of M in the syntax rule component
X.gram. In both cases, the conditions for filling S
are specified in X.gram. The parser attaches post-
modifiers first, then premodifiers.
 Normally, M and H will be existing adjacent
phrases in the chart. But there is an interesting
treatment of clitics that is especially relevant for
Arabic. The SG data structure for a phrase P in-
cludes two fields for clitics associated with the
head word of P – a list of proclitics, and a list of
enclitics. Each clitic is itself a (one-word) phrase
data structure, ready to be used for slot filling. So
the parsing algorithm can combine not only adja-
cent phrases in the chart in the normal way, but can
also combine a phrase with one of its clitics. For
Arabic, all enclitics (typically pronouns) for a
phrase P are attached to P (by postmodification)
before P enters into any other slot filling. On the
other side, proclitics (typically conjunctions and
prepositions) of P are used only as higher phrases
where P is the modifier. But a proclitic can get
“passed upwards” before it is treated as a higher
phrase. A non-deterministic option in the parser is
that a phrase M becomes a premodifier of an adja-
cent phrase H in the chart, and the proclitic list of
M is passed up to become the proclitic list of H.
For instance a conjunction like “w”/“wa” [�� , “and”]
might be attached as a proclitic to the first word in

83

a (premodifying) subject of a clause C, and the
conjunction proclitic gets passed upwards until it
finally takes C as a postconjunct modifier.
 Although SG is a rule-based system, it does use
a numerical scoring system for phrases during
parsing. Real numbers are attached to phrases,
indicating, roughly, how likely it is that the phrase
is a good analysis of what it spans. Partial analy-
ses (phrases) can be pruned out of the chart if their
scores are too bad. Also, final parses get ranked by
their scores. Scores can arise from rules in the
syntax component, in the lexicon, or in the shell.
A general rule in the shell is that complement slots
are preferred over adjunct slots. The specific val-
ues of scores are normally determined by the
grammar writer, with regression testing.

5 The ASG Syntax Rule Component

In an SG syntax rule component X.gram
(Ar.gram for Arabic), the rules are written in the
formalism SGF (McCord, 2006). Each rule deals
with slot filling, and is either a complement slot
rule or an adjunct slot rule. Each rule is of the
form

S < Body

where S is the index, which is a complement slot
for a complement slot rule, or a POS for an adjunct
slot rule. The Body is basically a logical expres-
sion (in a form we will describe) which is true iff
the corresponding slot filling can succeed. The
rules can be viewed largely declaratively, even
though there are some operators that look like
commands.
 The rule system is applied by the parsing algo-
rithm when it is looking at specific phrases M and
H that are adjacent or have a clitic relationship, and
asking whether M can fill a slot in H. For a yet
unfilled complement slot S of H, with a chosen slot
option, the parser looks for the complement slot
rule in X.gram indexed by S, and applies its body,
requiring that to be true before doing the slot fill-
ing. And the parser also looks at the POS of M,
finds the corresponding adjunct slot rule indexed
by that POS, and applies its body. In this case, the
body determines what the adjunct slot and option
are; and it can do so non-deterministically: The
body may be a disjunction, with operator ||, of sev-
eral sub-bodies, which are all tried for insertion of

the filled version of H into the chart. Complement
slot rules can also use the infix operator || for dis-
junctions of the body on the top level, but in this
case the || behaves deterministically – as in an if-
then-else.
 A simple example of a complement slot rule is
the following, for the object of a preposition:

objprep <
 ri
 (opt n)
 (mpos noun)
 (extmf gen)
 (removemf nom acc)
 satisfied

The body is a sequence of tests which are viewed
conjunctively. The first test, ri, means that the
filler M is on the “ right” of H (a postmodifier).
The opt test checks that the slot option is n, re-
quiring an NP. The next test requires that the filler
M has POS noun. In SGF rules, the letter m in
operators indicates the filler M as an implicit oper-
and, and h indicates the higher phrase H.
 The term (extmf gen) is an extending feature
test on M for the feature gen (genitive). This will
succeed iff either gen is marked explicitly on M or
M has at least one of the BAMA features associ-
ated with gen in the extending feature rule for gen
in Arfeas.lx (see Section 2). The test (removemf
nom acc) always succeeds, and it will remove
explicit occurrences of nom or acc on M, as well
as any BAMA features associated with those fea-
tures by extending feature rules.
 Finally, the test satisfied succeeds iff M has
no unfilled obligatory complement slots.
 The syntax of the SGF formalism is Cambridge
Polish (Lisplike), except for the uses of the binary
operators < and ||. There are quite a number of
“ built-in” operators in SGF, and many of them can
take any number of arguments.
 Tests in SGF can be nested; some operators, in-
cluding all the logical operators, can contain other
tests as arguments. We mentioned that SGF is
“ object-oriented” in a certain sense. In any given
test, however much embedded, there is always a
phrase in focus, which is an implicit argument of
the test. The phrase in focus can be considered
like this in object-oriented languages. The de-
fault phrase in focus on top-level tests is M (the
modifier). But some operators can shift the focus

84

to another phrase, and this can happen an unlimited
number of times in nested tests. For example, a
test of the form

 (rmod Test1 ... Testn)

searches the postmodifiers of the current phrase in
focus and succeeds iff, for one of them as a new
phrase in focus, all of the test arguments are satis-
fied. This scheme allows for quite compact ex-
pressions for searching and testing parse trees.
 Now let us look at (a modified form of) an ad-
junct slot rule in Ar.gram, for adjectives that post-
modify nouns:

adj <
 ri
 (hf noun)
 (agreef nom acc gen)
 (agreef def indef)
 (if (& (exthf pl) (nhf h))
 /* then */
 (extmf sg f)
 /* else */
 (& (agreef sg pl dual)
 (agreef m f)))
 satisfied
 (setslot nadj)
 (setopt aj)

 So the filler M should be an adjective phrase.
The first two tests check that M postmodifies H,
and H is a noun phrase. The main operator here is
agreef, which works with a list of extending fea-
tures. The list of features should consist of the
possible values of an attribute like case, number,
gender, etc. The agreef test will succeed iff M
and H agree along this dimension. For at least one
of the argument features, both M and H should
have this feature (as an extending feature). Fur-
thermore, agreef takes care of reducing feature
ambiguity in M and H (if it succeeds): If x is an
argument feature such that one of M and H has x
(as an extending feature) but the other does not,
then x is removed from the other (as an extending
feature).
 For the adj rule at hand, the if statement can
be interpreted as follows: If H (the noun) is plural
and not human, then M (the adjective) must be sin-
gular and feminine; otherwise M and H must agree
in number and gender. The actual current rule in
Ar.gram skips the agreement test for plural non-

human nouns, because we do not currently have
enough marking of the human (h) features.
 For subject-verb agreement, we have the situa-
tion that verbs do not use the same extending fea-
ture names as nouns do. (This has to do with cor-
responding BAMA features.) To handle this,
agreef can take as arguments pairs of features,
like (sg vsg), where the first element is checked
for M (the subj noun), and the second is checked
for H (the verb). Here is a shortened form of the
subject slot rule of ASG, which contains the cur-
rent subject-verb agreement rule for ASG:

subj <
 (opt n)
 (mpos noun)
 (if (mf pron)
 /* then */
 (& (agreef (m vm) (f vf))
 (agreef (sg vsg)
 (pl vpl)
 (dual vdual))
 (agreef (pers1 vpers1)
 (pers2 vpers2)
 (pers3 vpers3)))
 /* else */
 (& (exthf vpers3)
 (if (| (^ (extmf pl)) (mf h))
 (&
 (agreef (m vm) (f vf))
 (if le
 /* subj before verb */
 (agreef (sg vsg)
 (pl vpl)
 (dual vdual))
 /*subj after verb: */
 (exthf vsg)))))

)

The agreement part is the outer if test, and can be
interpreted as follows:

1. If M is a pronoun, then M agrees with H
in gender, number and person;

2. else H must be 3rd-person and if M is
non-plural or human, then:

a. M agrees with H in gender and
b. if M premodifies H then it

agrees with H in number,
c. else H is singular.

This formulation shows the way we are currently
ignoring agreement for plural non-human nouns,
until we get human markings on nouns.

85

 Now let us illustrate how an adjunct slot rule can
overcome a seeming problem for dependency
grammars when there is a “ missing head word” for

a phrase. Consider n the sentence shown in Figure
1, along with its ASG parse tree.

�����������	
����
���������������
����������������
��� � .
wh*h ZAhrp $A}Ep jdAF qd ysbbhA Alxwf Aw AlADTrAbAt AlmEwyp.

 [This is a very common phenomenon, which may be caused by fear or intestinal disorder.]
--
o----------- top wa(111,u,1) noun pron
`----------- rconj h`*ihi(1) noun pron
 `--------- npred ZAhir(2) noun sg cn def indef nom f
 `------- nadj $A}iE(3) adj sg def indef nom acc gen f
 | `----- adjpost jid~(4) noun cn indef acc qualnoun
 | .----- vadv qad(5) adv
 `-+----- nrel sab~ib(6,8,113) verb pronobj
 `----- obj(n) hA(113) noun pron acc encliticf
 | .--- lconj xawof(7) noun cn def nom acc gen
 `-+--- subj(n) Oaw(8,7,9) noun pl cn def nom acc f
 `--- rconj {iDoTirAb(9) noun pl cn def nom acc gen f
 `- nadj miEawiy~(10) adj sg def nom acc gen f
--

 Figure 1. Handling a “ missing head word”

Here Arabic does without a form of “ be” . In the
ATB, the parse tree shows an S node with three
daughters:

(S
 (CONJ wa)
 (NP-SBJ
 (DEM_PRON_F h`*ihi))
 (NP-PRD
 (NP (NOUN… ZAhir+ap+N))

 ...)
)

Since the ATB does not use a dependency tree
scheme, there is no need for a word acting as a
verb head of this S.

 In ASG we solve the problem of the “ missing
head word” by letting the “ clause” be a nominal
phrase with head h`*ihi [�	�
�� “ this”] (this is the
subj in the ATB tree), where the predicate NP fills
an adjunct slot npred of the head NP. Logically,
this is not unreasonable, because adjuncts often
predicate logically on the phrase they modify. And
a predicate NP for a “ be” verb can do just that.
 The npred rule in Ar.gram is as follows (in ab-
breviated form):

noun <
 ri
 (hf noun)
 (exthf nom)
 (extmf nom)
 (^ (mf propn) (hf propn))
 (nhf ri1 num)
 satisfied
 (^ (lmod lconj (rmod nrel)))
 (removehf acc gen)
 (removemf acc gen)
 (setslot npred)
 (setopt n)

The rule is indexed under the POS noun, since the
npred filler M is an NP. (Actually the noun rule
has several other disjunctive components, sepa-
rated by the operator ||, for other ways NPs can
modify other phrases as adjuncts.) So this rule
requires that M postmodifies H, H is an NP, both
M and H have extending features nom, neither M
nor H is a proper noun, H has no postmodfiers, and
is not a number, and H is satisfied. The test

 (^ (lmod lconj (rmod nrel)))

illustrates two focus-shifting operations (see
above). This says that it is not the case that M has
a preconjunct which has a postmodifying relative
clause. Finally, the rule removes the extending

86

features acc and gen from both H and M, sets the
adjunct slot to npred, and sets its option to n.
 The parse in Figure 1 illustrates several other
interesting features of Arabic syntax, for instance
the resumptive pronoun in the relative clause (ad-
junct slot nrel). And this pronoun is an enclitic,
treated by the ASG methods described in Section 4.
(The conjunction “ wa” in the tree is marked as a
noun, because (coordinating) conjunctions in SG
inherit features from their conjuncts. In SG, a
phrase’s features are carried on its head word.)

6 Performance of ASG

 Since SG has its own linguistic choices (includ-
ing being a dependency grammar), it is difficult to
measure ASG automatically against the ATB with-
out considerable conversion efforts. We plan to
look into comparisons with the Prague Treebank
(!"#$%�&'�"()*�+,,-., but have not had time yet. The
best approach, however, may be to create a tree-
bank that simply uses the ASG design. The SG
system has some tools for doing that – using SG
parsing as a starter, and hand-correcting the trees.

For the immediate purposes of getting some idea
of where ASG currently stands, we did a short
measurement (hand-scored) on 20 untrained-on
segments from the ATB chosen at random, scoring
only the first (highest-ranked) parse for each seg-
ment. The scoring consisted of marking each parse
tree node N for correctness of N in the sense that N
has the correct mother node and the correct POS.
(The parser does make an assignment of POS and
mother for every word/node, even when there is no
complete (segment-spanning) parse for the seg-
ment.) Note that correctness of all mother nodes
implies correct tree shape. With this measurement,
the percentage of correct nodes in the test set was
64%.

On 1,000 sentences from ATB3 of length 13 to
20 words, the percentage of complete parses
(phrase analyses that span the whole segment) was
72% (with no guarantee of correctness of these
parses).

Speed of ASG analysis seems good. On the
1,000 sentences mentioned above, parsing was at
the rate of 2,500 words per second (on a laptop).
This is with SGF being used in interpreted mode.
There is a compiler for SGF (compiling X.gram to
a C program) that provides about a twofold speed-
up for syntactic analysis, although the compiler is

not currently up-to-date with the latest set of opera-
tors for SGF.

 For the morpholexical processing part of
analysis, the rate was 10,000 words per second.
This includes look-up and morphology in BAMA,
and look-up in Ar.lx – the complete morpholexical
process.

7 Related Work

Surprisingly little information is available regard-
ing existing Arabic parsers and their performance,
though some commercial parsers must exist. Until
very recently, the focus of published research for
Arabic NLP has been on low-level forms of proc-
essing, including morphological analysis, part-of-
speech tagging, automatic diacriticization, and
named entity transliteration; and frequently the
term “ parsing” in the context of Semitic languages
refers to morphological and not syntactic parsing.

One symbolic approach to parsing Arabic (Oth-
man et al., 2003, 2004) uses a unification-based
grammar formalism and a chart parser imple-
mented in Prolog. Information in the lexicon on
“ subject rationality” and “ object rationality” is
combined with “ rationality” features on head
nouns and noun phrases to eliminate some of the
choices proposed by the morphological analyzer.
No information is provided regarding the coverage
of the grammar or the performance of the parser.

More performance data is available for two re-
lated statistical parsers trained on Arabic treebank
data. Bikel's (2004) implementation of the Collins
(2003) parser, trained on the Arabic TreeBank 1
(ATB1), reached recall/precision = 75.4/76.0 on
sentences of 40 words or less and 72.5/73.4 on all
sentences. Kulick et al. (2006) used the Bikel
parser on a revised version of the ATB1 with re-
sults comparable to Bikel, and then on ATB3,
where initial performance dropped slightly. A
number of successive improvements allowed the
parser to achieve recall/precision = 78.14/80.26 on
sentences of 40 words or less and 73.61/75.64 on
all sentences. The two most substantial improve-
ments were obtained by changing the handling of
punctuation and choosing a tagset that preserves a
bit more information than the severely reduced one
distributed with the ATB segments.

Other statistical parsers that have been used with
Arabic include one trained on a segment of the
Prague Arabic Dependency TreeBank (!"#$% et al.,

87

2004) and then used to assist in the annotation of
the remainder, but little seems to be published
about its performance. The Stanford Parser has
been used with Arabic (http://nlp.stanford.
edu/downloads/ lex-parser.shtml), but no specific
performance information could be found. It is
based on the ideas that there are advantages in fac-
toring out the phrase structure tree and the lexical
dependency tree models and estimating them sepa-
rately, and that significant improvements can be
achieved without including any lexical dependency
information by adding a few linguistically moti-
vated annotations to phrase structure tree models
(Klein and Manning, 2002, 2003).

Finally Chiang et al. (2006) used both Bikel's
(2002) and Chiang's (2000) parsers to develop dif-
ferent approaches to parsing text in Levantine Ara-
bic based on the Arabic Treebank data.

Even less information was found for parsing of
other Semitic Languages (with the exception of
http://www.cs.technion.ac.il/~winter/Corpus-
Project/project-description.html) and Wintner's
(1998) discussion of Hebrew syntax form a com-
putational perspective. However, while the authors
are not very familiar with this language, known
similarities with Arabic give us reason to believe
that some of our work on ASG could be readily
reusable for Hebrew SG.

References
Daniel M. Bikel. 2002. Design of a multi-lingual, paral-

lel processing statistical parsing engine. In Proceed-
ings of International Conference on Human Lan-
guage Technology Research (HLT).

Daniel M. Bikel. 2004. On the Parameter Space of
Lexicalized Statistical Parsing Models. PhD thesis,
Department of Computer and Information Sciences,
University of Pennsylvania.

Tim Buckwalter. 2002. Arabic Morphological Analyzer
Version 1.0. Linguistic Data Consortium catalog
number LDC2002L49, ISBN 1-58563-257-0.

David Chiang. 2000. Statistical parsing with an auto-
matically-extracted tree adjoining grammar. In Pro-
ceedings of the 38th Meeting of the Association for
Computational Linguistics (ACL’00), Hong Kong,
China, 456–463.

David Chiang, Mona Diab, Nizar Habash, Owen Ram-
bow, and Safiullah Sharif. 2006. Parsing Arabic Dia-
lects. In Proceedings of the 11th Conference of the

European Chapter of the Association for Computa-
tional Linguistics, Trento, Italy, 369–376.

Michael Collins. 2003. Head-driven statistical models
for natural language parsing. Computational Lin-
guistics, 29:589–637.

/"0�!"#$%*�1'"2"3�4536*�7&'3�8&590&2*�/"0�:0"idauf,
and Emanuel Beška. 2004. Prague Arabic Depend-
ency Treebank: Development in Data and Tools. In
Proceedings of NEMLAR 2004.

/"0�!"#$%�&'�"()�+,,-)� Prague Dependency Treebank
Version 2.0. Linguistic Data Consortium catalog
number LDC2006T01, ISBN 1-58563-370-4.

Seth Kulick, Ryan Gabbard, and Mitchell Marcus. 2006.
Parsing the Arabic Treebank: Analysis and Im-
;3<=&5&0'>)� �?0�!"#$%�/)�"0@�A$=3&*�/)�B&@>).C� Pro-
ceedings of the TLT 2006, pp. 31-42. Institute of
Formal and Applied Linguistics, Prague, Czech Re-
public.

Dan Klein and Christopher D. Manning. 2002. Fast Ex-
act Inference with a Factored Model for Natural Lan-
guage Parsing. In Advances in Neural Information
Processing Systems 15 (NIPS 2002).

Dan Klein and Christopher D. Manning. 2003. Accurate
Unlexicalized Parsing. In Proceedings of the 41st
Meeting of the Association for Computational Lin-
guistics.

Michael C. McCord. 1980. Slot Grammars. Computa-
tional Linguistics, 6:31-43.

Michael C. McCord. 1993. Heuristics for Broad-
Coverage Natural Language Parsing. In Proceedings
of the ARPA Human Language Technology Work-
shop. Morgan-Kaufmann, 127-132.

Michael C. McCord. 2006. A Formal System for Slot
Grammar. Technical Report RC 23976, IBM T.J.
Watson Research Center.

E Othman, K Shaalan, A Rafea. 2003. A Chart Parser
for Analyzing Modern Standard Arabic Sentence. In
Proceedings of the MT Summit IX Workshop on Ma-
chine Translation.

E Othman, K Shaalan, and A Rafea. 2004. Towards
Resolving Ambiguity in Understanding Arabic Sen-
tences. In Proceedings of NEMLAR 2004.

Shuly Wintner. 1998. Towards a linguistically moti-
vated computational grammar for Hebrew. In Pro-
ceedings of the ACL-98 Workshop on Computational
Approaches to Semitic Languages, 82-88.

88

Proceedings of the 5th Workshop on Important Unresolved Matters, pages 89–96,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Improved Arabic Base Phrase Chunking with a new enriched POS tag set

Mona T. Diab
Center for Computational Learning Systems

Columbia University
mdiab@cs.columbia.edu

Abstract

Base Phrase Chunking (BPC) or shallow
syntactic parsing is proving to be a task of
interest to many natural language processing
applications. In this paper, A BPC system
is introduced that improves over state of the
art performance in BPC using a new part of
speech tag (POS) set. The new POS tag set,
ERTS, reflects some of the morphological
features specific to Modern Standard Ara-
bic. ERTS explicitly encodes definiteness,
number and gender information increasing
the number of tags from 25 in the standard
LDC reduced tag set to 75 tags. For the BPC
task, we introduce a more language specific
set of definitions for the base phrase anno-
tations. We employ a support vector ma-
chine approach for both the POS tagging and
the BPC processes. The POS tagging per-
formance using this enriched tag set, ERTS,
is at 96.13% accuracy. In the BPC exper-
iments, we vary the feature set along two
factors: the POS tag set and a set of explic-
itly encoded morphological features. Us-
ing the ERTS POS tagset, BPC achieves the
highest overall Fβ=1 of 96.33% on 10 dif-
ferent chunk types outperforming the use of
the standard POS tag set even when explicit
morphological features are present.

1 Introduction

Base Phrase Chunking (BPC), also known as shal-
low syntactic parsing, is the process by which ad-
jacent words are grouped together to form non-
recursive chunks in a sentence. The base chunks

form phrases such as verb phrases, noun phrases
and adjective phrases, etc. An English example of
base phrases is [I]NP [would eat]V P [red luscious
apples]NP [on Sundays]PP . The BPC task is prov-
ing to be an enabling step that is useful to many nat-
ural language processing (NLP) applications such
as information extraction and semantic role label-
ing (Hacioglu & Ward, 2003). In English, these ap-
plications have shown robust relative performance
when exploiting BPC when compared to using full
syntactic parses. In general, BPC is appealing as
an enabling technology since state of the art perfor-
mance for BPC is higher (Fβ=1 95.48%) than that
for full syntactic parsing (Fβ=1 90.02%) in English
(Collins, 2000; Kudo & Matsumato, 2000). More-
over, since BPC had been cast as a classification
problem by Ramshaw and Marcus (1995), the task
is performed with greater efficiency and is easily
portable to new languages in a supervised manner
(Diab et al., 2004; Diab et al., 2007). For Arabic,
BPC is especially interesting as it constitutes a vi-
able alternative to full syntactic parsing due to the
low performance in Arabic full syntactic parsing (la-
beled Fβ=1 = ∼80% compared to Fβ=1=91.44% for
BPC) (Bikel, 2004; Diab et al., 2007; Kulick et al.,
2006).

In this paper, we present a support vector machine
(SVM) based supervised method for Arabic BPC.
The new BPC system achieves an Fβ=1 of 96.33%
across 10 base phrase chunk types. We vary the
feature sets along two different factors: the usage
of explicit morphological features, and the use of
different part of speech (POS) tag sets. We intro-
duce a new enriched POS set for Arabic which com-
prises 75 POS tags. The new POS tag set enriches
the standard reduced POS tag set (RTS), distributed

89

with the LDC Arabic Treebank (ATB) (Maamouri
et al., 2004), by adding definiteness, gender and
number information to the basic RTS. We devise
an automatic POS tagger based on the enriched tag
set, ERTS. We use the same unified discriminative
model approach to both POS tagging and BPC. The
POS tagging results using ERTS are comparable to
state of the art POS tagging using RTS with an ac-
curacy of 96.13% for ERTS and 96.15% for RTS.
However, using the ERTS as a feature in the BPC
task, we note an overall significant increase of 1%
absolute Fβ=1 improvement over the usage of RTS
alone. Moreover, we experiment with different ex-
plicit morphological features together with the dif-
ferent POS tag sets with no significant improvement.

The paper is laid out as follows: Section 2 dis-
cusses state of the art related work in the field of
BPC in both English and Arabic; Section 3 illus-
trates our approach for both POS and BPC in de-
tail; Section 4 presents the experimental setup, re-
sults and discussions.

2 Related Work

English BPC has made a lot of head way in recent
years. It was first cast as a classification problem
by Ramshaw and Marcus (1995), as a problem of
NP chunking. Then it was extended to include other
types of base phrases by Sang and Buchholz (2000)
in the CoNLL 2000 shared task. Most successful ap-
proaches are based on machine learning techniques
and sequence modeling of the different labels as-
sociated with the chunks. Both generative algo-
rithms such as HMMs and multilevel Markov mod-
els, as well as, discriminative methods such as Sup-
port Vector Machines (SVM) and conditional ran-
dom fields have been used for the BPC task. The
closest relevant approach to the current investigation
is the work of Kudo and Matsumato (2000) (KM00)
on using SVMs and a sequence model for chunking.
A la Ramshaw and Marcus (1995), they represent
the words as a sequence of labeled words with IOB
annotations, where the B marks a word at the begin-
ning of a chunk, I marks a word inside a chunk, and
O marks those words (and punctuation) that are out-
side chunks. The IOB annotation scheme for the En-
glish example described earlier is illustrated in Table
1.

word IOB label

I B-NP
would B-VP

eat I-VP
red B-NP

luscious I-NP
apples I-NP

on B-PP
Sundays I-PP

. O

Table 1: IOB annotation example

KM00 develop a sequence model, YAMCHA, over
the labeled sequences of words.1 YAMCHA is based
on the TinySVM algorithm (Joachims, 1998). They
use a degree 2 polynomial kernel. In their work on
the task of English BPC, YAMCHA achieves an over-
all Fβ=1 of 93.48% on five chunk types. They report
improved results of 93.91% using a combined voting
scheme (Kudo & Matsumato, 2000).

As far as Arabic BPC, Diab et al. (2004 & 2007)
adopt the KM00 model for Arabic using YAMCHA.
They cast the Arabic data from the ATB in the IOB
annotation scheme. They use the reduced standard
LDC tag set, RTS, as their only feature. Their sys-
tem achieves an overall Fβ=1 of 91.44% on 9 chunk
types.

3 Current Approach

This paper is a significant extension to the Diab et
al. (2007) work. Similar to other researchers in the
area of BPC, we adopt a discriminative approach.
A la Ramshaw and Marcus (1995), and Kudo and
Matsumato (2000), we use the IOB tagging style for
modeling and classification.

Various machine learning approaches have been
applied to POS and BPC tagging, by casting them as
classification tasks. Given a set of features extracted
from the linguistic context, a classifier predicts the
POS or BPC class of a token. SVMs (Vapnik, 1995)
are one such supervised machine learning algorithm,
with the advantages of: discriminative training, ro-
bustness and a capability to handle a large number of
(overlapping) features with good generalization per-

1http://www.chasen.org/ taku/software/yamcha/

90

formance. Consequently, SVMs have been applied
in many NLP tasks with great success (Joachims,
1998; Hacioglu & Ward, 2003).

We adopt a unified tagging perspective for both
the POS tagging and the BPC tasks. We address
them using the same SVM experimental setup which
comprises a standard SVM as a multi-class classifier
(Allwein et al., 2000).

A la KM00, we use the YAMCHA sequence model
on the SVMs to take advantage of the context of the
items being compared in a vertical manner in addi-
tion to the encoded features in the horizontal input
of the vectors. Accordingly, in our different tasks,
we define the notion of context to be a window of
fixed size around the segment in focus for learning
and tagging.

3.1 POS Tagging

Modern Standard Arabic is a rich morphological
language, where words are explicitly marked for
case, gender, number, definiteness, mood, person,
voice, tense and other features. These morpholog-
ical features are explicitly encoded in the full tag
set provided in the ATB. These full morphological
tags amount to over 2000 tag types (FULL). As ex-
pected, such morphological tags are not very use-
ful for automatic statistical syntactic parsing since
they are extremely sparse.2 Hence, the LDC intro-
duced the reduced tag set (RTS) of 25 tags. RTS
masks case, mood, gender, person, definiteness for
all categories. It maintains voice and tense for verbs,
and some number information for nouns, namely,
marking plural vs. singular for nouns and proper
nouns. Therefore, in the process it masks duality for
nouns and number for all adjectives. It should be
noted, however, that it is extremely useful to have
these morphological tags in order to induce features.
There exists a system that produces the full morpho-
logical POS tag set, MADA, with very high accu-
racy, 96% (Habash & Rambow, 2005).

In this work, we introduce a new tag set that ex-
plicitly marks gender, number, and definiteness for
nominals (namely, nouns, proper nouns, adjectives
and pronouns). Verbs, particles, as well as, the per-
son feature on pronouns, are not affected by this en-
richment process, since neither person nor mood are

2Dan Bikel, personal communication.

explicitly encoded. Morphological case is also not
explicitly encoded in ERTS. The new tag set, ERTS,
is derived from the FULL tag set where there is an
explicit specification in the tag itself for the different
features to be encoded. We restricted ERTS to this
set of features as they tend to be explicitly marked
in the surface form of unvowelized Arabic text. In
ERTS, definiteness is encoded with a present (D)
or an absent one. Gender is encoded with an F or
an M, corresponding to Fem and Masc, respectively.
Number is encoded with (Du) for dual or an (S) for
plurals or the absence of any marking for singular.
For example, Table 2 illustrates some words with
the FULL morphological tag and their correspond-
ing RTS and ERTS definitions.3

Our approach: ERTS comprises 75 tags. For the
current system, only 57 tags are instantiated. We
develop a POS tagger based on this new set. We
adopt the YAMCHA sequence model based on the
TinySVM classifier. The tagger trained for ERTS
tag set uses lexical features of +/-4 character n-
grams from the beginning and end of a word in
focus. The context for YAMCHA is defined as +/-
2 words around the focus word. The words be-
fore the focus word are considered with their ERTS
tags. The kernel is a polynomial degree 2 kernel.
We adopt the one-vs-all approach for classification,
where the tagged examples for one class are con-
sidered positive training examples and instances for
other classes are considered negative examples. We
present results and a brief discussion of the POS tag-
ging performance in Section 4.

3.2 Base Phrase Chunking

In this task, we use a setup similar to that of Kudo
& Matsumato (2000) and Diab et al. (2004 & 2007),
with the IOB annotation representation: Inside I a
phrase, Outside O a phrase, and Beginning B of a
phrase. However, we designate 10 types of chunked
phrases. The chunk phrases identified for Arabic
are ADJP, ADVP, CONJP, INTJP, NP, PP, PREDP,
PRTP, SBARP, VP. Thus the task is a one of 21 clas-
sification task (since there are I and B tags for each
chunk phrase type, and a single O tag). The 21
IOB tags are listed: {O, I-ADJP, B-ADJP, I-ADVP,

3All the romanized Arabic is presented in the Buckwalter
transliteration scheme (Buckwalter, 2002).

91

Gloss FULL RTS ERTS������ ���
	 HSylp ‘outcome’ NOUN+NSUFF FEM SG+CASE IND NOM NN NNF���� ����� ���� nhA}yp ‘final’ ADJ+NSUFF FEM SG+CASE IND NOM JJ JJF������ � HAdv ‘accident’ NOUN+CASE DEF ACC NN NNM
� �������� AlnAr ‘the-fire’ DET+NOUN+CASE DEF GEN NN DNNM
� �! � "$# % & � AljmAEy ‘group’ DET+ADJ+CASE DEF GEN JJ DJJM

�')(� � �# * � + $xSyn ‘two persons’ NOUN+NSUFF MASC DU GEN NN NNMDu

Table 2: Examples of POS tag sets RTS, ERTS and FULL

B-ADVP, I-CONJP, B-CONJP, I-INTJP, B-INTJP, I-
NP, B-NP, I-PP, B-PP, I-PREDP, B-PREDP, I-PRTP,
B-PRTP, I-SBARP, B-SBARP, I-VP, B-VP}.

The training data is derived from the ATB using
the ChunkLink software.4 ChunkLink flattens
the tree to a sequence of base (non-recursive) phrase
chunks with their IOB labels. For example, a to-
ken occurring at the beginning of a noun phrase is
labeled as B-NP. The following Table 3 Arabic ex-
ample illustrates the IOB annotation scheme:

Tags B-VP B-NP I-NP O
Arabic , �-/. 0 � 132 ���4 "$# % & � .

Translit wqE msA’ AljmEp .
Gloss happened night the-Friday .

Table 3: An Arabic IOB annotation example

Chunklink, however, is tailored for English
syntactic structures. Hence, in order to train on rea-
sonable Arabic chunks, we modify Chunklink’s
output using linguistic knowledge of Arabic syntac-
tic structures. Some of the rules used are described
below (we illustrate using ERTS for ease of exposi-
tion).
• IDAFA: This syntactic structure marks posses-

sion in Arabic. It is syntactically the case where
an indefinite noun is followed by a definite one.
The Chunklink output is modified to ensure that
they form a single NP. Example:

���4 "$# % & �50 � 132 msA’
AljmEp ‘night of Friday’ is IOB annotated as [msA‘
DNN B-NP, AljmEp DNNM I-NP].
•NOUN-ADJ: Nouns followed by adjectives and

they agree in their morphological features of gender,
number and definiteness form a single NP chunk.

4http://ilk.uvt.nl/ sabine/chunklink

Example:
��6� �!7 8 + � ���� � �$� � �� ������ ���
	 HSylp nhA}yp rsmyp

‘final official outcome’ is IOB annotated as [HSylp
NNF B-NP, nhA}yp JJF I-NP, rsmyp JJF I-NP]
• Pronouns: This is an artifact of the ATB style

of clitic tokenization. All pronouns, except in nom-
inative position in the sentence such as hw and hy,
are chunk internal.
• Interjections: If an interjection is followed by

a noun, the noun is marked as internal to the inter-
jective phrase.
• Prepositional Phrases: Nouns following

prepositions are considered internal to the preposi-
tional phrase and are IOB annotated, I-PP.

Phrase Types: The different phrase types are de-
scribed as follows.
• ADJP: This is an adjectival phrase. The ad-

jectival phrase could comprise a single adjective if
mentioned in isolation such as �:9;� �!	 % jydA ‘well’, or

multiple words such as �:9 �<%=� � % �?> �- qrybA jdA ‘very
soon’. The latter is IOB annotated [qrybA B-ADJP]
and [jdA I-ADJP], respectively.
•ADVP: This is an adverbial phrase. It may com-

prise a single adverb following a verb, such as � 4 �:>�@ +
sryEA ‘quickly’, or multiple words such as � A �'CB �
lkn hA ‘but she’.5 The latter is IOB annotated [lkn
B-ADVP] and [hA I-ADVP], respectively.
• CONJP: This chunk marks conjunctive

phrases. We see single word CONJP when the con-
junction appears before a verb phrase or a preposi-
tional phrase such the conjunction . w ‘and’. But
we also have multiword conjunctive phrases when
the conjunction is followed by a noun. For instance,�DFE � � �G/� �:H 1 � �I ���F. w AlflsTynywn ‘and the Palestinians’

5This is a result of the ATB clitic tokenization style.

92

is IOB annotated [w B-CONJP] and [AlflsTynywn I-
CONJP].

• INTJP: This is an interjective phrase. The in-
terjective phrase could comprise a single interjection
if mentioned in isolation such as � 4 � nEm ‘yes’. Or

with multiple words such as �� �	 � � � yA Axt ‘Oh sis-
ter’, where it is IOB annotated [yA B-INTJP] and
[Axt I-INTJP].

• NP: This is a noun phrase. It may comprise a
single noun or multiple nouns or a noun and one or
more adjectives. In this phrase type, we see typi-
cal noun adjective constructions as in � � � "$# % & � �� � �- �> ���
AlzfAf AljmAEy ‘the group wedding’, where the ini-
tial noun is marked as [AlzfAf B-NP], and the folow-
ing adjective is IOB annotated [AljmAEy I-NP]. We
also encounter idafa constructions. For example,�D � ��� ��� � 2 mlk AlArdn ‘king of Jordan’, where mlk
‘king’ is an indefinite noun, and AlArdn ‘Jordan’ is
a definite one. This phrase is IOB annotated [mlk
B-NP] and [AlArdn I-NP].

• PP: This is a prepositional phrase. The phrase
starts with a preposition followed by a pronoun,
noun or proper noun. If the noun or proper noun is it-
self the beginning of an NP, the whole NP is internal
to the PP. For example, � �! � "$# % & � �� � �- �> ����� �I 	
	�� ��
xlAl Hfl AlzfAf AljmAEy ‘during the group wedding
party’, xlAl is the preposition and is IOB annotated
[xlAl B-PP], [Hfl I-PP] (if Hfl were not preceded by
a preposition it would have been annotated [Hfl B-
NP]), then for the noun [AlzfAf I-PP], and finally the
adjective [AljmAEy I-PP].

• PREDP: This is a predicative phrase. It
typically begins with a particle �D �� An ‘[is]’,
followed by a noun phrase. For example,
�' � � 9� % 7 � � �� "�� 2 � � �� � 9;��������� � � �D �� An AlASlAH Al-

dyny mhmp Almjddyn ‘religious improvement is the
reformers’ task’. In our data, since we do not mark
recursive structures in this BPC level, only the pred-
icative particle is IOB annotated with B-PREDP. If it
were followed by a possessive pronoun, the pronoun
is annotated I-PREDP.

• PRTP: This phrase type marks particles such as
negative particles that precede both nouns and verbs.
A particle could be single word or a complex particle
phrase. An example of a simple word particle is � � lm

‘not’, and a complex one is � "��� ��� � lA sy∼mA ‘not

as long’. In the latter case, it is IOB annotated [lA
B-PRTP] and [sy∼mA I-PRTP].

• SBARP: This phrase structure marks the sub-
junctive constructions. SBARP phrases typically be-

gin with a particle meaning ‘that’ such as �D � � An or
� "$2 mmA or � � �9 ��� Al*y followed by a verb phrase.

• VP: This is a verb phrase. VP phrases are typ-
ically headed by a verb. All object pronouns pro-
ceeding a verb are IOB annotated I-VP. Moreover,
we observe cases where a VP is headed by nominals
(nouns and adjectives, in particular). The majority
of these nominals are the active participle. The ac-
tive participle in the ATB is tagged as an adjective.
Active participles in Arabic are equivalent to pred-
icative nominals in English (gerunds). Hence, some
VPs are headed by JJs. An example active partici-
ple heading a verb phrase in our data is � "$� �� 2 mthmA
‘accusing’.

Our Approach: We vary two factors in our fea-
ture sets: the POS tag set, and the presence or ab-
sence of explicit morphological features. We have
three possible tag sets: RTS, ERTS and the full mor-
phological tag set (FULL). We define a set of 6
morphological features (and their possible values):
CASE (ACC, GEN, NOM, NULL), MOOD (Indica-
tive, Jussive, Subjunctive, NULL), DEF (DEF, IN-
DEF, NULL), NUM (Sing, Dual, Plural, NULL),
GEN (Fem, Masc, NULL), PER (1, 2, 3, NULL).

From the intersection of the two factors, we devise
10 different experimental conditions. The condi-
tions always have one of the POS tag sets and either
no explicit features (noFeat), all explicit features
(allFeat), or some selective features of: case mood
and person (CASE MOOD PER), or definiteness
gender and number (DEF GEN NUM). Therefore,
the experimental conditions are as follows: RTS-
noFeat, RTS-allFeat, RTS-CASE MOOD PER,
RTS-DEF GEN NUM, ERTS-noFeat, ERTS-
allFeat, ERTS-CASE MOOD PER, ERTS-
DEF GEN NUM, FULL-noFeat, FULL-allFeat.

The BPC context is defined as a window of +/−2
tokens centered around the focus word where all the
features for the specific condition are used and the
tags for the previous two tokens before the focus to-
ken are also considered.

93

4 Experiments and Results

4.1 Data

The dev, test and training data are obtained from
ATB1v3, ATB2v2 and ATB3v2 (Maamouri et
al., 2004). We adopt the same data splits intro-
duced by Chiang et. al (2006). The corpora are all
news genre. The total development data comprises
2304 sentences and 70188 tokens, the total training
data comprises 18970 sentences and 594683 tokens,
and the total test data comprises 2337 sentences and
69665 tokens.

We use the unvocalized Buckwalter transliterated
version of the ATB. For both POS tagging and BPC,
we use the gold annotations of the training and test
data for preprocessing. Hence, for POS tagging, the
training and test data are both gold tokenized in the
ATB clitic tokenization style. And for BPC, the POS
tags, the morphological features, and, the tokeniza-
tion is all gold. We derive the gold ERTS determin-
istically from the FULL set for the BPC results re-
ported here.

The IOB annotations on the training and gold
evaluation data are derived using Chunklink fol-
lowed by our linguistic fixes described in Section 3.

4.2 SVM Setup

We use the default values for YAMCHA with the C
parameter set to 0.5. It has a degree 2 polynomial
kernel. YAMCHA adopts a one-vs-all binarization
method.

4.3 Evaluation Metric

Standard metrics of Accuracy (Acc.), Precision, Re-
call, and F-measure Fβ=1, on the test data are uti-
lized. For both POS tagging and BPC, we use the
CoNLL shared task evaluation tools.6

4.4 Results

4.4.1 ERTS POS Tagging Results

Table 4 shows the results obtained with the YAM-
CHA based POS tagger, POS-TAG, and the results
obtained with a simple baseline, BASELINE. BASE-
LINE is a supervised baseline, where the most fre-
quent POS tag associated with a token from the
training data is assigned to it in the test set, regard-
less of context. If the token does not occur in the

6http://cnts.uia.ac.be/conll2003/ner/bin/conlleval

training data, the token is assigned the NN tag as a
default tag.

POS tagset Acc.%

RTS 96.15
ERTS 96.13
BASELINE 86.5

Table 4: Results of POS-TAG on two different tag
sets RTS and ERTS

POS-TAG clearly outperforms the most frequent
baseline. Looking closely at the data, the worst ob-
tained results are for the NO FUNC category, as it
is randomly confusable with almost all POS tags.
Then, the imperative verbs are mostly confused with
passive verbs 50% of the time, however the test data
only comprises 8 imperative verbs. VBN, passive
verbs, yields an accuracy of 68% only. It is worth
noting that the most frequent baseline for VBN is
21%. VBN is a most difficult category to discern
in the absence of the passivization diacritic which is
naturally absent in unvowelized text (our experimen-
tal setup). The overall performance on the nouns and
adjectives is relatively high. However, confusing
these two categories is almost always present due
to the inherent ambiguity. In fact, almost all Arabic
adjectives could be used as nouns in Arabic.7

4.4.2 Base Phrase Chunking (BPC)

Table 5 illustrates the overall obtained results by
our BPC system over the different experimental con-
ditions.

The overall results for all the conditions signif-
icantly outperform state of the art published results
on Arabic BPC of Fβ=1=91.44% in Diab et al. (2004
& 2007). This is mainly attributed to the better
quality annotations associated with tailoring of the
Chunklink IOB annotations to the Arabic lan-
guage characteristics.

All the Fβ=1 results yielded by ERTS POS tag
set outperform their counterparts using the RTS POS
tagset. In fact, ERTS-noFeat condition outperforms
all other conditions in our experiments.

We note that adding morphological features to
the RTS POS tag set helps the performance slightly

7This inherent ambiguity leads to inconsistency in the ATB
gold annotations.

94

Condition Fβ=1 Condition Fβ=1

RTS-noFeat 95.41 ERTS-noFeat 96.33
RTS-CASE MOOD PER 95.73 ERTS-CASE MOOD PER 96.32
RTS-DEF GEN NUM 95.8 ERTS-DEF GEN NUM 96.33
RTS-allFeat 95.97 ERTS-allFeat 96.25
FULL-noFeat 96.29 FULL-allFeat 96.22

Table 5: Overall Fβ=1 % results yielded for the different BPC experimental conditions

as we see a sequence of small jumps in perfor-
mance from RTS-noFeat (95.41%) to RTS-allFeat
(95.97%). However adding these features to the
ERTS and FULL conditions does not help. In fact, in
both the allFeat conditionsfor both ERTS and FULL,
we note a slight decrease. The ERTS condition per-
formance goes down from 96.33% (ERTS-noFeat)
to 96.25% (ERTS-allFeat), and the FULL condi-
tion performance goes down from 96.29% (FULL-
noFeat) to 96.22% (FULL-allFeat). This suggests
that the features are not adding much information
over and above what is already encoded in the POS
tag set, and, in fact adding the explicit morphologi-
cal features might be adding noise.

There is no significant difference between using
ERTS and FULL in the overall results. However, we
note that ERTS conditions slightly outperform the
FULL conditions. This may be attributed the consis-
tency introduced by ERTS over FULL, i.e., if FULL
is not consistent in assigning CASE or MOOD or
PER, for instance, ERTS, being insensitive to these
features masks these inconsistencies present in the
FULL tag set.

RTS-DEF GEN NUM may be viewed as an ex-
plicit encoding of the features in ERTS-noFeat, how-
ever, ERTS-noFeat outperforms it. Explicitly encod-
ing the CASE MOOD and PER features does not
help ERTS, in fact we see a slight drop in overall
performance. However, upon closer inspection of
the results per phrase type, we note slight relative
improvement on PRTP and VP chunk types perfor-
mance when the CASE, MOOD and PER are ex-
plicitly encoded. In ERTS-CASE MOOD PER, VP
yields an Fβ=1 of 99.3% and PRTP yields 97.2%,
corresponding to ERTS-noFeat where VP yields an
Fβ=1 of 99.2% and PRTP an Fβ=1 of 96.8%.

To better assess the quality of the performance
and impact of the new POS tag set, we examine

closely in Table 6 the phrase types directly affected
by the added information whether encoded in the
POS tag set or explicitly used as independent fea-
tures. These phrase types are the ADJP, INTJP, NP
and PP. The PP scored highly across the board with
Fβ=1 over 99% for all conditions, hence, it is not
included in Table 6.

Condition ADJP INTJP NP

RTS-noFeat 68.42 55.17 92.98
RTS-CASE MOOD PER 69.47 59.26 93.72
RTS-DEF GEN NUM 71.57 64.29 93.71
RTS-allFeat 72.22 57.14 94.15
ERTS-noFeat 72.35 57.14 94.92
ERTS-CASE MOOD PER 73.16 61.54 94.86
ERTS-DEF GEN NUM 72.6 64.29 94.92
ERTS-allFeat 72.91 59.26 94.78
FULL-noFeat 71.84 51.85 94.81
FULL-allFeat 72.52 57.14 94.67

Table 6: Fβ=1 Results for ADJP, INTJP, and NP,
across the different experimental conditions

As illustrated in Table 6, ERTS outperforms RTS
and FULL in all corresponding conditions where
they have similar corresponding morphological fea-
ture settings. ERTS-noFeat yields better results than
RTS-noFeat and FULL-noFeat for the three differ-
ent phrase types. The INTJP phrase is the worst
performing of the three phrase types, however it
marks the most significant change in performance
depending on the experimental condition. We note
that adding explicit morphological features to the
base condition RTS yields consistently better re-
sults for the three phrase types. The highest per-
formance for NP is yielded by ERTS-noFeat and
ERTS-DEF GEN NUM with an Fβ=1 of 94.92%.

95

The highest scores yielded for ADJP (73.16) and IN-
TJP (64.29) are in an ERTS experimental condition.
We also observe a slight drop in performance in NP
for the ERTS conditions when the CASE MOOD
and PER features are added. This might be due to
the inconsistent or confusable assignment of these
different features in the ATB.

5 Conclusions and Future Work

In this paper, we address the problem of Arabic base
phrase chunking, BPC. In the process, we introduce
a new enriched POS tag set, ERTS, that adds def-
initeness, gender and number information to nomi-
nals. We present an SVM approach to both the POS
tagging with ERTS and the BPC tasks. The POS
tagger yields 96.13% accuracy which is comparable
to the results obtained on the standard reduced tag
set RTS. On the BPC front, the results obtained for
all conditions are significantly better than state of
the art published results. This indicates that better
linguistic tailoring of the IOB chunks creates more
consistent data. Overall, we show that using the en-
riched POS tag set, ERTS, yields the best BPC per-
formance. Even using ERTS with no explicit mor-
phological features yields better results than using
RTS in all conditions with or without explicit mor-
phological features. These results are confirmed by
closely observing specific phrases that are directly
affected by the change in POS tag set namely, ADJP,
INTJP and NP. Our results strongly suggests that
choosing the POS tag set carefully has a significant
impact on higher level syntactic processing.

6 Acknowledgements

This work was funded by DARPA Contract No. HR0011-06-C-

0023. Any opinions, findings and conclusions or recommenda-

tions expressed in this material are those of the author and do

not necessarily reflect the views of DARPA.

References

Erin L. Allwein, Robert E. Schapire, and Yoram Singer.
2000. Reducing multiclass to binary: A unifying ap-
proach for margin classifiers. Journal of Machine
Learning Research, 1:113-141.

Daniel Bikel. 2004. Intricacies of Collins Parser. Com-
putational Linguistics.

Tim Buckwalter. 2002. Buckwalter Arabic Morphologi-
cal Analyzer Version 1.0. Linguistic Data Consortium,
University of Pennsylvania, 2002. LDC Catalog No.:
LDC2002L49

David Chiang, Mona Diab, Nizar Habash, Owen Ram-
bow, and Safiullah Shareef. 2006. Parsing Arabic Di-
alects. Proceedings of the European Chapter of ACL
(EACL).

Michael Collins. 2000. Discriminative Reranking for
Natural Language Parsing. Proceedings of the 17th
International Conference on Machine Learning.

Mona Diab, Kadri Hacioglu and Daniel Jurafsky. 2004.
Automatic Tagging of Arabic Text: From Raw Text to
Base Phrase Chunks. Proceedings of North American
Association for Computational Linguistics.

Mona Diab, Kadri Hacioglu and Daniel Jurafsky. 2007.
Automated Methods for Processing Arabic Text: From
Tokenization to Base Phrase Chunking. Book Chapter.
In Arabic Computational Morphology: Knowledge-
based and Empirical Methods. Editors Antal van den
Bosch and Abdelhadi Soudi. Kluwer/Springer Publi-
cations.

Nizar Habash and Owen Rambow. 2005. Arabic
Tokenization, Morphological Analysis, and Part-of-
Speech Tagging in One Fell Swoop. Proceedings of
the Conference of American Association for Compu-
tational Linguistics (ACL).

Kadri Hacioglu and Wayne Ward. 2003. Target word
Detection and semantic role chunking using support
vector machines. HLT-NAACL.

Thorsten Joachims. 1998. Text Categorization with Sup-
port Vector Machines: Learning with Many Relevant
Features. Proc. of ECML-98, 10th European Conf. on
Machine Learning.

Seth Kulick, Ryan Gabbard, and Mitch Marcus. 2006.
Parsing the Arabic Treebank: Analysis and Improve-
ments. in Treebanks and Linguistic Theories.

Taku Kudo and Yuji Matsumato. 2000. Use of support
vector learning for chunk identification. Proc. of the
4th Conf. on Very Large Corpora, pages 142-144.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and
Wigdan Mekki. 2004. The Penn Arabic Treebank
: Building a Large-Scale Annota ted Arabic Corpus.
NEMLAR Conference on Arabic Language Resources
and Tools. pp. 102-109.

Lance A. Ramshaw and Mitchell P. Marcus. 1995.
Text Chunking using transformational based learning.
Proc. of the 3rd ACL workshop on Very Large Corpora

Erik Tjong, Kim Sang, and Sabine Buchholz. 2000. In-
troduction to the CoNLL-2000 shared task: Chunking.
Proc. of the 4th Conf. on Computational Natural Lan-
guage Learning (CoNLL), Lisbon, Portugal, 2000, pp.
127-132.

Vladamir Vapnik. 1995. The Nature of Statistical Learn-
ing Theory. Springer Verlag, New York, USA.

96

Proceedings of the 5th Workshop on Important Unresolved Matters, pages 97–103,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Smoothing a Lexicon-based POS Tagger for Arabic and Hebrew

Saib Mansour Khalil Sima'an Yoad Winter
Computer Science, Technion ILLC Computer Science, Technion

Haifa, 32000, Israel Universiteit van Amsterdam Haifa, 32000, Israel
 Amsterdam, The Netherlands and Netherlands Institute for Ad-

vanced Study
Wassenaar, The Netherlands

saib@cs.technion.ac.il simaan@science.uva.nl winter@cs.technion.ac.il

Abstract

We propose an enhanced Part-of-Speech
(POS) tagger of Semitic languages that
treats Modern Standard Arabic (hence-
forth Arabic) and Modern Hebrew
(henceforth Hebrew) using the same
probabilistic model and architectural set-
ting. We start out by porting an existing
Hidden Markov Model POS tagger for
Hebrew to Arabic by exchanging a mor-
phological analyzer for Hebrew with
Buckwalter's (2002) morphological ana-
lyzer for Arabic. This gives state-of-the-
art accuracy (96.12%), comparable to Ha-
bash and Rambow’s (2005) analyzer-
based POS tagger on the same Arabic
datasets. However, further improvement
of such analyzer-based tagging methods is
hindered by the incomplete coverage of
standard morphological analyzer (Bar
Haim et al., 2005). To overcome this cov-
erage problem we supplement the output
of Buckwalter's analyzer with syntheti-
cally constructed analyses that are pro-
posed by a model which uses character
information (Diab et al., 2004) in a way
that is similar to Nakagawa's (2004) sys-
tem for Chinese and Japanese. A version
of this extended model that (unlike Naka-
gawa) incorporates synthetically con-
structed analyses also for known words
achieves 96.28% accuracy on the standard
Arabic test set.

1 Introduction

Part-of-Speech tagging for Semitic languages has
been an active topic of research in recent years.
(Diab et al., 2004; Habash and Rambow, 2005;
Bar-Haim et al., 2005) are some examples for this
line of work on Modern Standard Arabic and Mod-
ern Hebrew. POS tagging systems aim at classify-
ing input sequences of lexemes by assigning each
such sequence a corresponding sequence of most
probable POS tags. It is often assumed that for
each input lexeme there is a set of a priori possible
POS tag categories, or a probability function over
them, and the tagger has to choose from this lim-
ited set of candidate categories. We henceforth use
the term lexicon to refer to the set of lexemes in a
language and the mapping that assigns each of
them candidate POS tags, possibly with additional
probabilities.

Two ways to obtain a lexicon can be distin-
guished in recent works on POS tagging in Semitic
languages. Data-driven approaches like (Diab et al.
2004) employ the lexicon only implicitly when
extracting features on possible POS tags from an-
notated corpora that are used for training the POS
tagger. Lexicon-based approaches (Habash and
Rambow, 2005; Bar-Haim et al., 2005) use a lexi-
con that is extracted from a manually constructed
morphological analyzer (Buckwalter 2002 and
Segal 2001 respectively).

In this paper we show that although lexicon-
based taggers for Arabic and Hebrew may initially
outperform data-driven taggers, they do not ex-
haust the advantages of data-driven approaches.

97

Consequently, we propose a hybrid model of data-
driven methods and lexicon-based methods, and
show its advantages over both models, in a way
that is reminiscent of Nakagawa's (2004) results
for Chinese and Japanese.

As a first step, we develop a Part-of-Speech tag-
ger that treats Arabic and Hebrew using the same
probabilistic model and architectural setting. We
start out from MorphTagger, a lexicon-based tag-
ger for Hebrew developed by Bar-Haim et al.
(2005), which uses standard Hidden Markov
Model techniques. We port the existing
MorphTagger implementation to Arabic by ex-
changing Segal's (2001) morphological analyzer
with Buckwalter's (2002) morphological analyzer,
and then training the tagger on the Arabic Tree-
bank (Maamouri et al., 2001). Remarkably, this
gives state-of-the-art accuracy (96.12%) on the
same Arabic datasets as Habash and Rambow
(2005). To the best of our knowledge, this is the
first time the same POS tagging architecture is
used both for Arabic and Hebrew texts with com-
parable accuracy.

Despite the initial advantages of this setting, our
empirical study shows that in both languages, fur-
ther improvement in accuracy is hindered by the
incompleteness of the morphological analyzer. By
"incompleteness" we refer not only to the well-
studied problem of unknown words (out-of-
vocabulary). Our results show that for both Arabic
and Hebrew, a more serious problem involves
words for which the analyzer provides a set of
analyses that does not contain the correct one. We
find out that this is the case for 3% of the words in
the development set. This obviously sets an upper
bound on tagger accuracy using methods that are
purely based on a manually constructed lexicon.
We refer to this problem as the "incomplete lexi-
con" problem.

We focus on devising a solution to the incom-
plete lexicon problem by smoothing. We supple-
ment the output of Buckwalter's analyzer with
synthetically constructed analyses that are pro-
posed by a model which uses character information
(Diab et al., 2004) in a way that is similar to Naka-
gawa's (2004) system for Japanese. Unlike Naka-
gawa's method, however, our smoothing method
incorporates synthetically constructed analyses
also for known words, though only when all avail-
able taggings of the sentence have low probabili-
ties according to our model. A version of this

extended model achieves a modest improvement
(96.28%) in accuracy over the baseline on the
standard Arabic test set.

This paper is structured as follows. In section 2
we start with a brief discussion of previous work.
Section 3 describes our adaptation of Bar Haim et
al.’s POS tagging system to Arabic. In section 4
we show that an architecture like Bar Haim et al.’s,
which relies on a morphological analyzer, is likely
to suffer from coverage problems under any con-
figuration where it is used as a stand-alone. In sec-
tion 5 we present our new architecture and the
method of combining the models. Section 6 con-
cludes.

2 Relation to Previous Works

Quite a few works have dealt with extending a
given POS tagger, mainly by smoothing it using
extra-information about untreated words. For ex-
ample, (Church, 1988) uses the simple heuristic of
predicting proper nouns from capitalization. This
method is not applicable to Arabic and Hebrew,
which lack typographical marking of proper nouns.
More advanced methods like those described by
Weischedel et al. (1993) incorporate the treatment
of unknown words within the probability model.
Weischedel et al. use derivational and inflectional
endings to infer POS tags of unknown words. Na-
kagawa (2004) addresses the problem of unknown
words for Japanese and Chinese, and uses a hybrid
method of word-level and character-level informa-
tion. In his model, Nakagawa uses character in-
formation (only) when handling unknown words,
claiming that in word-level methods information
about known words helps to achieve higher accu-
racy compared to character-level models. On the
other hand, when it comes to unknown words, Na-
kagawa uses a character-level method, which is
hypothesized to be more robust in such cases than
word-level methods.

Virtually all works that dealt with coverage
problems of POS taggers have concentrated on the
problem of “unknown” words – words that have no
analysis in the initial tagging system. However, in
the context of analyzer-based tagging systems, we
also have to deal with the problem of “known”
words that miss the correct analysis in the morpho-
logical analyzer. In the Arabic and Hebrew data-
sets we have examined, this problem is more
severe than the unknown words problem. Unlike

98

previous works, we propose to smooth the word-
segment driven model also for “known” words. To
avoid overgeneration, this is done only when all
taggings of the sentence have low probability.

3 Adapting a Hebrew POS-tagger to
Arabic

Bar Haim et al.'s (2005) POS tagging system,
MorphTagger, was developed initially for Hebrew.
Our work is mainly developed for Arabic and
tested over Arabic data. Due to the similarity in the
morphological processes in Hebrew and Arabic
and the generality of Bar Haim et al.'s architecture,
the adaptation process was fairly simple. However,
as far as we know this is the first implementation
of a unified model for Arabic and Hebrew that
achieves state-of-the-art accuracy. MorphTagger
requires two components: a morphological ana-
lyzer to produce a set of analyses for every lexeme,
and a POS tagged corpus for acquiring an HMM
disambiguator. The HMM disambiguator assigns a
probability to every pair xxxxx, where

n
n www ...11 = is a sentence and n

n ttt ...11 = a corre-
sponding sequence of POS tags hypothesized by
the analyzer. This probability is approximated in a
standard HMM fashion:

1 1 1 1 1 1 2
1

(,) () (|) (| ,) (|)
n

n n n n n
i i i i i

i

P w t P t P w t P t t t P w t− −
=

= =∏

For an input sentence nw1 , the pair xxxxx with
the highest probability is selected. The language
(),|(21 −− iii tttP) and lexical ()|(ii twP) models'
parameters are estimated from the tagged corpus
by Maximum-Likelihood Estimator (MLE) fol-
lowed by Katz backoff smoothing for the language
model and Add-λ smoothing for the lexical model,
where a small λ=1 count is given to analyzes pro-
vided by the analyzer but not found in the training
corpus. Furthermore, MorphTagger employs an
array of other smoothing techniques explained in
Bar Haim et al. (2005).

Our implementation of MorphTagger for Arabic
was developed using Buckwalter’s (2002) Mor-
phological Analyzer v1.0 (BMA1.0), and the Ara-
bic Treebank part 1 v2.0 (ATB1), Part 2 v2.0
(ATB2) and Part 3 v1.0 (ATB3). The ATB was
chosen not only because of its size and comprehen-
siveness, but also because Buckwalter’s analyzer
was developed in accordance with the ATB, which

makes the task of combining information from
both sources easier. In all our experiments we use a
tag-set of 24 tags which was mapped from the
original tag-set (191 tags in ATB1) using the map-
ping script of the ATB distribution.

To check the ambiguity level and the difficulty
of the task at hand, we ran BMA1.0 over a testing
set extracted from ATB1. The average number of
analyses per word is 1.83, and the average number
of segmentations per word is 1.2, however, the task
of disambiguating Arabic is still not easy, as 46%
of the data is ambiguous. Those results are compa-
rable to the results of Bar Haim et al. for Hebrew,
according to which the average number of analyses
per word is 2.17 with 1.25 segmentations on aver-
age per word, and 54% of the words are ambigu-
ous.

The performance of MorphTagger over Arabic
was measured using the same test settings of Diab
et al. (2004). Habash and Rambow (2005) use a
different test setting drawn from ATB1. Although
we could not reproduce the exact setting of Habash
and Rambow, comparison to their reported accu-
racy is still quite telling due to the similarity of the
data. The comparison between the accuracy of the
three systems is summarized in Table 1. The re-
sults in this table were obtained using the correct
(“gold”) segmentation and applying the standard F-
measure for POS tagging accuracy. The result of
Diab et al. was reproduced on their setting, and the
result of Habash and Rambow is as reported in
their paper.

System Tagging accuracy

MorphTagger 96.12
Diab et al. 95.81

Habash and Rambow 97.5
Table 1 - Comparison between systems over ATB1

The result achieved by MorphTagger slightly

exceeds Diab et al.’s result (on the same test set-
ting) and is slightly inferior to Habash and Ram-
bow’s reported result. Overall, it is an encouraging
result that the MorphTagger system that was de-
veloped for Hebrew could be easily ported to Ara-
bic and yield state-of-the-art results.

In Table 2, we present the accuracies achieved
for MorphTagger on a cross validated, 10-fold test,
including the standard deviation results in paren-
theses. The results are reported both for gold-
segmentation (GS) and without GS.

nn tw 11 ,

nn tw 11 ,

99

Test setting Accuracy per word (%) Fβ=1 per Word-segment (%)
 Segmentation Tagging Segmentation Tagging

GS 100

94.89
(0.62)

100

95.436
(0.53)

without GS 99.015 (0.24)

94.374
(0.64)

98.854 (0.28)

94.727
(0.56)

Table 2 - MorphTagger performance cross validated

Note that by tagging accuracy per word we

mean the percentage of words correctly segmented
and tagged. The tagging F-measure is calculated in
the standard way, counting the correctly tagged
word-segments and dividing it by the number of
"gold" word-segments for recall, and further by the
number of outputted word-segments for precision.

Analyzing the POS tagging errors of MorphTag-
ger, we found that about 2.8% of the words in
ATB1 were not correctly analyzed by the morpho-
logical analyzer. Such “incomplete lexicon” prob-
lems inevitably lead to tagging errors in
MorphTagger’s architecture. This problem is more
serious still on data taken from ATB2 and ATB3,
where respectively 4.5% and 5.3% of the data led
to “incomplete lexicon” problems. We conclude
that a morphological analyzer can be used to im-
prove upon Diab et al.’s results, as done in Habash
and Rambow and in our straightforward applica-
tion of MorphTagger to Arabic. However, this
method still suffers from considerable coverage
problems, which are discussed in the following
section.

4 Coverage of Morphological Analysis
for Arabic

In order to analyze the coverage problem, we
tested the coverage of BMA1.0 over parts of the
ATB which were composed from articles taken on
different periods of times. The results are summa-
rized in Table 3. The schema of the table includes,
for each part of the ATB: (i) the number of tokens
that include at least one Arabic character (hence-
forth “Arabic words”1); (ii) Out-of-Vocabulary
(OOV) words, unanalyzed by BMA1.0; (iii) the
percentage of proper nouns (NNP) out of the OOV
words; (iv) the number of “no correct” words –

1 This definition of Arabic words is taken from Buckwalter's
analyzer.

words for which BMA1.0 found at least one solu-
tion but the correct analysis according to the ATB
was not among them; and (v,vi,vii) the number of
proper nouns (NNP), nouns (NN) and adjectives
(JJ) from "no correct". A problem that is unique to
the ATB is that some words in the corpus were not
manually annotated and were given the NO_FUNC
tag. Those words are counted as Arabic words, but
are ignored in the rest of the statistics of Table 3.

The noticeable difference in OOV words be-
tween ATB1 and ATB2/ATB3 is expected, be-
cause the lexicon of BMA1.0 was developed using
information extracted from ATB1. ATB2 and
ATB3, which were developed after BMA1.0 was
released (using a more advanced version of Buck-
walter's analyzer), show a different picture. In
those two parts the OOV problem is not too hard: a
heuristic that would assign NNP to each OOV
word would be sufficient in most of the cases.
However, the “No Correct” problem is more diffi-
cult: NNPs account for 5% in ATB2 and 18% in
ATB3 of these words, which are mostly dominated
by missing adjectives and missing nouns (54%
jointly in ATB2 and 37% jointly in ATB3).

Taken together, the OOV problem and the “No
Correct” problem mean that more than 5% of the
words in ATB2 and ATB3 cannot be tagged cor-
rectly using BMA1.0 unless further data are added
to those provided by the morphological analyzer. A
similar coverage result was reached for Hebrew by
Bar Haim et al., using a morphological analyzer for
Hebrew (Segal, 2001). Bar Haim et al. report that
for about 4% of the Hebrew words in their corpus,
the correct analysis was missing. From these data
we conclude that on top of systems like the ones
proposed by Bar Haim et al. and Habash and Ram-
bow, we need to enhance the morphological
analyzer using additional analyses.

100

ATB
part

Arabic
words

OOV NNP of
OOV

No Correct NNP of No
Correct

NN of No
Correct

JJ of No
Correct

1 123798 126
(0.11%)

21
(16.67%)

3369
 (2.82%)

0 517
(15.35%)

980
(29.09%)

2 125729 958
(0.77%)

497
(51.88%)

5663
(4.53%)

282
(4.98%)

1254
(22.14%)

1818
(32.1%)

3 293026 6405
(2.2%)

5241
(81.83%)

15484
(5.32%)

2864
(18.5%)

2238
(14.45%)

3494
(22.57%)

Table 3 - Coverage of Buckwalter's Analyzer

5 Smoothing Using a Data-driven Charac-
ter-based Model

So far we have shown that POS tagging models
that use a morphological analyzer achieve high
accuracy but suffer from coverage problems that
can not be solved by a simple heuristic. On the
other hand, models that use character-based infor-
mation are likely to make relatively good predic-
tions for words that are out of the vocabulary of the
morphological analyzer. We hypothesize that this
may be especially true for Semitic languages, due
to their rich and systematic pattern (template) para-
digms. Such patterns add constant characters to
root characters, and features of substrings of words
may therefore help in predicting POS tags from
those patterns.

Our baseline models for the experiments are
MorphTagger with a NNP heuristic (MorphTag-
ger+NNP) and ArabicSVM (Diab et al.'s system).
As we have already reported in section 3,
MorphTagger+NNP achieved 96.12% tagging ac-
curacy and ArabicSVM achieved 95.87% over the
same testing data used by Diab et al. One simple
hybrid model would be adding the analyses pro-
duced by the SVM to the morphological analyzer
analyses and disambiguate these analyses using
MorphTagger's HMM. This system has improved
accuracy – it achieved accuracy of 96.18%, higher
than both of the base models.

The problem with such model is over-generation
of the SVM: when checked over ATB1 and ATB2,
40% of the new analyses introduced by the SVM
are correct analyses, and 60% are wrong. To avoid
this problem, we suggest conditioning the addition
of SVM analyses on the sentence's tagging prob-

ability calculated by the HMM model. This is justi-
fied due to the fact that there is correlation between
the probability of the tagging of a sentence given
by a language model and the accuracy of the tag-
ging. The relation is shown in Figure 1.

75

80

85

90

95

100

-800 -700 -600 -500 -400 -300 -200 -100 0
normalized log(P(s))

ac
cu

ra
cy

Figure 1 Probability VS Accuracy

Figure 1 shows the relation between the accu-

racy of the tagging and the normalized logarithmic
probability of the tagging. We normalize the prob-
ability of the tagging by the sentence length as
longer sentences usually have lower probabilities.

Following the previous conclusions, we propose
a hybrid model which adds the analyses of the
SVM only in cases where the tagging probability
by the basic MorphTagger system is lower than an
empirically calculated threshold. If the HMM is
confident about the tagging it produces, the prob-
ability of the tagging will be high enough to pass
the threshold, and then the tagging will be output-
ted without adding the SVM analyses which might
add noise to the morphological analyzer output. A
general algorithm is shown in Figure 2.

101

Figure 2 - Enhanced Tagging Algorithm

Note that in the algorithm, a new (word, tag)

pair introduced by the morphological analyzer or
by the character model does not appear in the
tagged corpus, therefore a small count λ=1 is given
in such cases. This method can be improved fur-
ther, especially for the analyses produced by the
data-driven character-based method.

The accuracy we obtained using this system was
96.28% which shows slight improvement over the
previous simple hybrid system. Examining the er-
rors in the simple hybrid method and the condi-
tioned method, we see that the improvement is not
smooth: the conditioned model includes errors
which did not exist in the simple model. These er-
rors occur when correct analyses of the character-
based model were discarded. In general, however,
the conditioned method chooses more correct
analyses. It should be noted that adding the charac-
ter-based model analyses boosted the coverage
from 97% to 98%, but the accuracy did not im-
prove to the same level. The main cause for this is
the weak relation between the probability of a sen-
tence and the accuracy. As it is difficult to model
this relation, we believe that more time should be
invested to improve the HMM probabilities espe-
cially for the character model analyses, which can
boost the chances of choosing good analyses.

6 Conclusions and Future Work

This paper demonstrates that it is possible to suc-
cessfully port a POS tagger originally built for He-
brew to Arabic using a morphological analyzer and
a tagged corpus. The POS tagger (called

MorphTagger) achieves state-of-the-art results
both on Hebrew and Arabic. Despite this positive
result we find that further improvement of accu-
racy is hindered by the coverage of the morpho-
logical analyzer. Contrary to earlier work on POS
tagging, the problem turns out not so much in un-
known (OOV) lexemes as much as in known lex-
emes for which the correct tag is missing. We
showed empirical evidence that this problem arises
for the available treebanks and morphological ana-
lyzers for both Arabic and Hebrew. We propose an
approach that smoothes a given lexical model (ob-
tained from a morphological analyzer and an anno-
tated corpus) by adding synthetically constructed
analyses, obtained from a POS tagger that com-
bines character-level information. Unlike earlier
work, we apply this smoothing only when the
probabilistic model assigns probabilities lower
than a threshold to all possible POS taggings of the
input sentence. This way we obtain moderate im-
provement in Arabic POS tagging.

The problem of missing lexeme-POS pairs in
POS taggers for Semitic languages is more severe
than in languages like English. We conjecture that
this is because of the more complex morphology of
Semitic languages.

In future work it might be worthwhile to con-
sider morphological processes that are more com-
plex than the standard affixation
(suffixing/prefixing) processes in order to general-
ize better over cases in the training data. Such a
generalization may provide better coverage of lex-
eme-POS pairs and would increase the upper
bound on accuracy.

Given a sentence s, perform the following steps:
1. Produce analyses for each word in s using the morphological analyzer

combined with the corpus analyses.
2. Calculate lexical and contextual probabilities using available annotated

corpora (using Maximum Likelihood Estimation).
3. Run Viterbi's Algorithm for HMM disambiguation, and calculate a rank

of the tagging which is composed from the probability given by the
model and the length of the sentence.

4. If [rank>threshold] output tagging.
4'. [Otherwise] run the character based model over the sentence and add the

new analyses generated.
5'. Combine the analyses generated by the morphological analyzer and the

character-based model, update the lexical probabilities and rerun the
model.

102

References
Roy Bar Haim, Khalil Sima’an and Yoad Winter. 2005.

Choosing an Optimal Architecture for Segmentation
and POS-Tagging of Modern Hebrew. ACL Work-
shop on Computational Approaches to Semitic Lan-
guages. A revised and extended version to appear in
Journal of Natural Language Engineering.

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: a case
study in part of speech tagging. In Computational
Linguistics 21, pages 543-565.

Tim Buckwalter. 2002. Arabic Morphological Analyzer
Version 1.0. Linguistic Data Consortium, University
of Pennsylvania.

Kenneth W. Church. 1988. A stochastic parts program
and noun phrase parser for unrestricted text. Pro-
ceedings of the second conference on Applied natural
language processing, Pages 136-143.

Mona Diab, Kadri Hacioglu, and Daniel Jurafsky. 2004.
Automatic Tagging of Arabic Text: From Raw Text to
Base Phras e Chunks. In HLT-NAACL: Short Pa-
pers, pages 149-152.

Nizar Habash and Owen Rambow. 2005. Arabic To-
kenization, Part-of-Speech Tagging and Morphologi-
cal Disambiguation in One Fell Swoop. In
Proceedings of the 43rd Annual Meeting of the As-
sociation for Computational Linguistics, pages 573-
580, Ann Arbor.

Young-Suk Lee, Kishore Papineni, Salim Roukos, Os-
sama Emam, and Hany Hassan. 2003. Language
model based Arabic word segmentation. In ACL,
pages 399-406.

Mohamed Maamouri and Ann Bies. 2004. Developing
an Arabic treebank: Methods, guidelines, proce-
dures, and tools. In Proceedings of the Workshop on
Computational Approaches to Arabic Script-based
Languages (COLING), Geneva.

Christopher D. Manning and Hinrich Schütze. 1999.
Foundations of Statistical Natural Language Proc-
essing. The MIT press, Cambridge, Massachusetts.

Tetsuji Nakagawa. 2004. Chinese and Japanese word
segmentation using word-level and character-level
information. In Proceedings of the 20th International
Conference on Computational Linguistics, pages
466-472, Geneva.

Erel Segal. 2001. Hebrew morphological analyzer for
Hebrew undotted texts. Master's thesis, Computer
Science Department, Technion, Haifa, Israel.

Ralph Weischedel, Marie Meteer, Richard Schwartz,
Lance Ramshaw and Jeff Palmucci. 1993. Coping
with Ambiguity and Unknown Words through Prob-
abilistic Models. Computational Linguistics (Special
issue on using large corpora: II) volume 19, pages
361-382.

103

Proceedings of the 5th Workshop on Important Unresolved Matters, pages 104–110,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

An Amharic Stemmer : Reducing Words to their Citation Forms

Atelach Alemu Argaw
Department of Computer and

Systems Sciences
Stockholm University/KTH, Sweden

atelach@dsv.su.se

Lars Asker
Department of Computer and

Systems Sciences
Stockholm University/KTH, Sweden

asker@dsv.su.se

Abstract

Stemming is an important analysis step in
a number of areas such as natural lan-
guage processing (NLP), information re-
trieval (IR), machine translation(MT) and
text classification. In this paper we present
the development of a stemmer for Amharic
that reduces words to their citation forms.
Amharic is a Semitic language with rich and
complex morphology. The application of
such a stemmer is in dictionary based cross
language IR, where there is a need in the
translation step, to look up terms in a ma-
chine readable dictionary (MRD). We apply
a rule based approach supplemented by oc-
currence statistics of words in a MRD and
in a 3.1M words news corpus. The main
purpose of the statistical supplements is to
resolve ambiguity between alternative seg-
mentations. The stemmer is evaluated on
Amharic text from two domains, news arti-
cles and a classic fiction text. It is shown to
have an accuracy of 60% for the old fash-
ioned fiction text and 75% for the news arti-
cles.

1 Introduction

Stemming is the process of reducing morphologi-
cal variants of a word into a common form. For
morphologically less complex languages like Eng-
lish or Swedish, this usually involves removal of suf-
fixes. For languages like Amharic or Arabic, that
have a much richer morphology, this process also

involves dealing with prefixes, infixes and deriva-
tives in addition to the suffixes. Stemming is widely
used in IR, with the assumption that morphologi-
cal variants represent similar meaning. It is applied
during indexing and is used to reduce the vocab-
ulary size, and it is used during query processing
in order to ensure similar representation as that of
the document collection. In cross language infor-
mation retrieval (CLIR) where a query is typically
posed in one language, and the document collection
from where the documents are retrieved is in another
language, some form of translation is required. For
low resource languages such as Amharic, machine
readable dictionaries (MRDs) play a crucial role by
enabling look up of translations of query terms. In
most cases such MRDs have all entries represented
only by their citation form. Thus in CLIR applica-
tions, it is of outmost importance that query terms
in the source language are reduced to the exact cor-
responding citation form as presented in the MRD.
In this paper we address this particular problem of
stemming Amharic words and reducing them to their
citation forms for CLIR applications.

The remainder of the paper is organized as fol-
lows. Section 2 provides a background information
about the Amharic language, followed by related
work in Section 3 and a brief description of Amharic
morphology in Section 4. Section 5 presents the re-
sources utilized, while Section 6 deals with a de-
tailed description of the stemmer. In section 7 we
describe experiments conducted to evaluate the per-
formance of the stemmer and discuss the obtained
results. We give concluding remarks in Section 8.

104

2 The Amharic Language

Amharic is the official working language of the fed-
eral government of the Federal Democratic Repub-
lic of Ethiopia and is estimated to be spoken by
well over 20 million people as a first or second lan-
guage. Amharic is the second most spoken Semitic
language in the world (after Arabic). It is today
probably the second largest language in Ethiopia (af-
ter Oromo, a Cushitic language) and possibly one
of the five largest languages on the African conti-
nent. Following the Constitution drafted in 1993,
Ethiopia is divided into nine fairly independent re-
gions, each with it’s own nationality language. How-
ever, Amharic is the language for country-wide com-
munication and was also for a long period the prin-
cipal literal language and medium of instruction in
primary and secondary schools of the country, while
higher education is carried out in English. Despite
it’s wide speaker population, computational linguis-
tic resources for Amharic, as most ’low resource’
languages, are very limitted and almost non existent.

Written Amharic uses a unique script which has
originated from the Ge’ez alphabet (the liturgical
language of the Ethiopian Orthodox Church). Writ-
ten Ge’ez can be traced back to at least the 4th
century A.D. The first versions of the language in-
cluded consonants only, while the characters in later
versions represent consonant-vowel (CV) phoneme
pairs. In the modern Ethiopic script each syllable
pattern comes in seven different forms (called or-
ders), reflecting the seven vowel sounds. The first
order is the basic form; the other orders are derived
from it by more or less regular modifications in-
dicating the different vowels. There are 33 basic
forms, giving 7*33 syllable patterns (syllographs),
or fidels. Two of the base forms represent vow-
els in isolation, but the rest are for consonants (or
semi-vowels classed as consonants) and thus cor-
respond to CV pairs, with the first order being the
base symbol with no explicit vowel indicator. The
writing system also includes four (incomplete, five-
character) orders of labialised velars and 24 addi-
tional labialised consonants. In total, there are 275
fidels, but not all the letters of the Amharic script
are strictly necessary for the pronunciation patterns
of the spoken language; some were simply inherited
from Ge’ez without having any semantic or phonetic

distinction in modern Amharic. There are many
cases where numerous symbols are used to denote
a single phoneme, as well as words that have ex-
tremely different orthographic form and slightly dis-
tinct phonetics, but with the same meaning. So are,
for example, most labialised consonants basically
redundant, and there are actually only 39 context-
independent phonemes (monophones): of the 275
symbols of the script, only about 233 remain if the
redundant ones are removed. The script also has a
unique set of punctuation marks and digits. Unlike
Arabic or Hebrew, the language is written from left
to right.

The Amharic writing system uses multitudes of
ways to denote compound words and there is no
agreed upon spelling standard for compounds. As
a result of this - and of the size of the country lead-
ing to vast dialectal dispersion - lexical variation and
homophony is very common.

3 Related work

Pioneering the work on morphological analysis of
Amharic verbs, Abiyot (Bayou, 2000) designed
and implemented a prototype word parser for
Amharic verbs and their derivation. He designed
a knowledge-based system that parses verbs, and
nouns derived from verbs. He used root pattern and
affixes to determine the lexical and inflectional cat-
egory of the words. He tested his system on a lim-
ited number of words (200 verbs and 200 nouns) and
the result showed that 86% of the verbs and 84% of
the nouns were recognized correctly. Another proto-
type morphological analyzer for Amharic was devel-
oped by Tesfaye Bayu (Bayu, 2002) where he used
an unsupervised learning approach based on prob-
abilistic models to extract morphemic components
(prefix, stem and suffix) to construct a morpholog-
ical dictionary. He also investigated an approach
whereby he applied the principle of Auto segmental
Phonology to identify morphemic component of a
stem such as consonantal root, vocalic melodies and
CV-templates. The first system was able to parse
successfully 87% of words of the test data (433 of
500 words). This result corresponds to a precision
of 95% and a recall of 90%. Tested with 255 stems,
the second system identified the morphemic compo-
nentes of 241 (or 94% of the) stems correctly.

105

Fissaha and Haller (Fissaha and Haller, 2003) dis-
cuss the morphology of Amharic verbs in the context
of Machine Translation and present an implemeta-
tion of a morphological analyser for Amharic us-
ing Xerox Finite State Tools (XFST). The different
classification shemes for Amharic verbs that have
been forwarded are discussed followed by the impli-
cation such classifications have on the implementa-
tion strategy. They claim that morphological analy-
sis for Amharic with XFST can handle most of the
morphologcal phenomena except some derivation
processes which involve simultaneous application of
both stem interdigitation and reduplication. Saba
and Gibbon (Amsalu and Gibbon, 2005) extend the
XFST implementation of Amharic morpholgy to in-
clude all word categories. Testing with 1620 words
text from an Amharic bible, they report recall levels
of 94% for verbs, 85% for nouns, and 88% for adjec-
tives while they report precisions of 94% for nouns,
81% for adjectives, 91% for adverbs, and 54% for
verbs, at the above specified recall levels.

A more recent work that applies Conditional
Random Fields to segment and part of speech tag
Amharic words is done by Fissaha (Adafre, 2005).
He reports an accuracy of 84% for the word segmen-
tation. The work deals with bound morphemes of
prepositions, conjunctions, relative markers, auxil-
iary verbs, nagation marker and coordinate conjunc-
tion, but leaves out other bound morphemes such as
definite article, agreement features such as gender
and number, case markers, etc, and considers them
to be part of the word. The best result (84%) is ob-
tained by using character, morphological and lexical
features.

There has been a work done by Alemayehu and
Willet (Alemayehu and Willett, 2002) which inves-
tigates the effectiveness of stemming in information
retrieval for Amharic. They compare performance
of word-based, stem-based, and root-based retrieval
of 40 Amharic queries against 548 Amharic docu-
ments, and show better recall levels for stem and
root based retrieval over word based, but they don’t
provide information on the precision of these exper-
iments.

All the above mentioned works attempt to address
the need to develop a morphological analyser for
Amharic, and show that there has been a great deal
of effort put in the design and implementation of

each system. Although that is the case, none of them
are publicly available, and/or are limitted in some
way. For our current task of stemming for the pur-
pose of CLIR dictionary lookup, full fledged mor-
phological analysis is most likely an overkill since
we only need citation forms of words, and precision
plays a very important role.

4 Amharic Morphology

Amharic has a rich verb morphology which is based
on triconsonantal roots with vowel variants describ-
ing modifications to, or supplementary detail and
variants of the root form. A significantly large part
of the vocabulary consists of verbs, which exhibit
different morphosyntactic properties based on the
arrangment of the consonant-vowel patterns. For ex-
ample, the rootsbr, meaning ’to break’ can have
the perfect formsäbb̈ar with the pattern CVC-
CVC1, imperfect formsäbr with the pattern CVCC,
gerund formsäbr with the pattern CVCC, imper-
ative form sb̈ar with the pattern CCVC, causative
form ass̈abb̈ar with the patternas-CVCCVC, pas-
sive form täs̈abb̈ar with the patterntä-CVCCVC,
etc. Subject, gender, number, etc are also indicated
as bound morphemes on the verb, as well as objects
and possesion markers, mood and tense, benefica-
tive, malfactive, transitive, dative, negative, etc, pro-
ducing a complex verb morphology.

Amharic nouns can be inflected for gender, num-
ber, definiteness, and case, although gender is usu-
ally neutral. Adjectives behave in the same way as
nouns, taking similar inflections, while prepositions
are mostly bound morphemes prefixed to nouns. The
definte article in Amharic is also a bound morpheme,
and attaches to the end of a noun. We have given a
very brief description of some aspects of Amharic
morphology, detailed information can be found in
(Bender, 1968), (Bender and Fulas, 1978), (Yimam,
1995).

We have constructed 65 rules based on the entire
Amharic morphology for the purpose of this study.
The rules vary from simple affixation rules to each
word category to allowed combinations of prefixes
and suffixes for each word category and set of af-
fixes.

1C stands for consonants and V for vowels

106

5 Resources

5.1 The Corpora

We have utilized three different sources of text
for the development of the stemmer and the ex-
periments. The first is a collection of news ar-
ticles from an online news repository, Ethiopian
News Headlines (ENH), which is available at
http://www.ethiozena.net. This corpus consists of
3.1 million words of Amharic news text in a little
more than 10,000 articles. This corpus was used
to collect word frequency and prefix and suffix sta-
tistics i.e. the number of times an affix occurs at-
tached to a known stem, and the occurence sta-
tistics was used to disambiguate between alterna-
tive segmantations of a given word. The second
text source is another Ethiopian news agency, Walta
Information Center (WIC) which can be found at
http://www.waltainfo.com. We used news items
downloaded from WIC to evaluate the stemmer on
independent news texts from another source. The
third text, which was also used for evaluation, is
from the Amharic novel ”Fikir Iske Meqabir” (FIM)
by the renowned Ethiopian author Dr. Hadis Ale-
mayehu. This text (FIM) was selected for the eval-
uation in order to see how well the stemmer would
perform on a text that differed substantially in style
from the news collection.

5.2 The Dictionaries

The simplest and most straight forward way for the
stemmer to verify that a suggested segmentation is
correct is to try to look up the stem in a dictionary.
For this purpose we used three different dictionar-
ies, an Amharic - English, an Amharic - French, and
an Amharic - Amharic dictionary. The Amharic -
English dictionary, by Dr. Amsalu Aklilu, contains
15 000 Amharic words with their English transla-
tions (Aklilu, 1981). The Amharic - French dic-
tionary (Abebe, 2004) has 12 000 Amharic entries
while the Amharic - Amharic dictionary by Kesatie
Birhan has 56 000 entries (Tesema,). All three
dictionaries were made available to us in electronic
form, transliterated to SERA and then merged and
represented in a form suitable for the stemmer.

5.3 Transliteration

The dictionaries and all Amharic news texts men-
tioned above are published using Ethiopic script and
using a variety of fonts, some of which are not Uni-
code compliant. In order to simplify the analysis
and to have a unified representation of the texts, we
transliterated all Amharic texts into SERA which is
a system for ASCII representation of Ethiopic char-
acters (Firdyiwek and Yacob, 1997).

The transliteration was done using a file conver-
sion utility calledg2 which was made available to
us by Daniel Yacob of the Ge’ez Frontier Founda-
tion (http://www.ethiopic.org/).

6 The Stemmer

The stemmer first creates a list consisting of all
possible segmentations of the word that is to be
stemmed. In a second step, each such segmenta-
tion is then verified by matching each candidate stem
against the machine readable dictionary. If no stem
matches the dictionary, the stemmer will modfy the
stem and redo the matching. If more than one stem
matches, the most likely stem will be selected after
disambiguating between the candidate stems based
on statistical and other properties of the stems. In
the cases when exactly one stem matches the dictio-
nary then that segmentation will be presented as the
output from the stemmer.

6.1 Segmentation

For each new word the stemmer first creates a list
of possible segmentations by applying a list of mor-
phological rules for allowed prefixes and suffixes. In
this way, the wordIndeminorewnawould for ex-
ample be segmented into the following 9 different
ways:

(1) Indeminorewna
(2) Indeminorew -na
(3) Indeminore -w -na
(4) Inde- minorewna
(5) Inde- minorew -na
(6) Inde- minore -w -na
(7) Inde- mi- norewna
(8) Inde- mi- norew -na
(9) Inde- mi- nore -w -na

107

For each of the 9 possible segmentations, the re-
maining stem is then matched against the (merged)
three dictionaries. In this case, the only one that is
found as entry in the dictionary isnore, so alterna-
tive 9 is selected as the most likely segmentation of
the word.

6.2 Disambiguation

If more than one of the candidate stems are matched
in the dictionary, those segmentations that have a
stem that matches an entry in the dictionary are
ranked according to length and frequency of the
stem. The longest stem that have a match in the
dictionary is selected and if more than one stem of
equal length matches the dictionary then the stem
that is more frequent is preferred before the less fre-
quent. The frequency score is based on how often
the stem occurs in the ENH corpus described above.
The wordbeteyazew would for example be seg-
mented in the following ways:

(1) beteyazew
(2) beteyaze -w
(3) beteyaz -e -w
(4) be- teyazew
(5) be- teyaze -w
(6) be- teyaz -e -w
(7) be- te- yazew
(8) be- te- yaze -w
(9) be- te- yaz -e -w

In this case the three stemsteyaze (5), yaze
(8) andyaz (9) all have matching entries in the dic-
tionary butteyaze is selected as the most likely
stem since it is the longest.

6.3 Modification

For approximately 30% of the words, the stem does
not match the dictionary. In these cases, the stem
will be slightly modifed and a second attempt to
match the entries in the dictionary will be done. For
example the wordIndegeleSut should correctly
be segmented intoInde- geleSe -u -t. With
the approach described so far, the segmentation
based on prefixes and suffixes would yield the stem
geleS which will not have a match in the dictio-
nary. Instead, for the dictionary lookup to succeed,

we first need to add the vowele at the end of the
stem. For the wordastawqWalwhich should cor-
rectly segment intoastaweqe -W -al we will
first have to inserte both betweenw andq and again
afterq to reach the correct form of the stem. This
process of modifying the stem by adding vowels, is
applied to the candidate stems if no matches by the
unmodifed stems are made in the dictionary. For
the current implementation of the stemmer, this is
done by inserting one of the vowels ’e’ or ’a’ be-
tween the consonants if the unmatched stem con-
tains two consecutive consonants, or after the last
consonant if the stem ends in a consonant. If exactly
one of the modifed stems will match the dictionary,
then that segmentation will be ranked as the most
likely. If more than one modifed stem matches, then
the longest will be selected. For the words where
this modification of the stem is done, approximately
30% will successfully match their correct entry in
the dicionary while 20% make an incorrect match
and the remaining 50% will not match the dictionary
at all.

6.4 Out-of-dictionary terms

Finally, the approximately 15% of the words that do
not have any stem that matches entries in the dic-
tionary (even after the modifiaction) will be ranked
according to the length of the stem and the number
of times that the stem occurs in the ENH corpus. In
this case, it is the shorter stems that are preferred.
For example the wordbekomixnu will have four
possible segmentations, none of which occurs in the
dictionary.

(1) bekomixnu
(2) bekomixn -u
(3) be- komixnu
(4) be- komixn -u

In this case, alternative 4,komixn is the short-
est stem that occurs as a unique word in the ref-
erence corpus and is therefor selected as the most
likely segmentation before either one of the alterna-
tive stemsbekomixnu, bekomixn or komixnu.

108

7 Experimental Evaluation

In order to evaluate the performance of the stem-
mer, we selected the first 1503 words (= 1000 unique
words) from the WIC corpus described above. We
also selected a 470 words long text from the book
”Fikir Iske Meqabir” to get a text with 300 unique
words.

On the WIC data the stemmer had an overall ac-
curay of 76.9 %. For 48 % of the words, the stem-
mer found exactly one segmentation with a stem that
was matching the dictionary, and for these words
it had an accuracy of 83.75 %. For 36.3 % of the
words, the stemmer found more than one segmenta-
tion that matched the dictionary and therefor needed
to do additional disambiguation between alternative
segmentations. For these words, the stemmer had
an accuracy of 69.1 %. For the remaining 15.7 % of
the words, the stemmer found no match in the dictio-
nary for any of the possible segmentations. For these
words the stemmer had an accuracy of 73.9 %. In
the cases when there is only one match in the dictio-
nary, the extra sources for error that are introduced
by having to disambiguate between alternative seg-
mentations are avoided and hence the stemmer has
best accuracy for those words that have exactly one
segmentation with a stem that will match the dictio-
nary.

For the 300 unique words from Fikir Iske
Meqabir, the stemmer had an overall accuracy of
60.0 % In a similar fashion as for the WIC data, the
stemmer performed best on the subset of words for
which there was exacly one match in the dictionary.
For this group the performance was 68.8 % correct
but the overall accuracy was lowered by the fact that
the stemmer performed worse on the words that had
either more than one match, or no match at all in the
dictionary. These numbers were 54.8 % and 42.1 %
respectively.

8 Conclusion

We have presented the design and development of
an Amharic stemmer which reduces words to their
citation forms for the purpose of dictionary lookup
in CLIR. Given the resource constraints we have,
and the specificity of the stemmer, the overall per-
formance could be acceptable, but needs further im-
provment. The stemming depends highly on word

entries in the three MRDs for verification purposes.
These MRDs altogether consist of a limitted amount
of entries, overall 83000, with a very high level of
overlap, leaving 47176 unique entries. Although it is
not the largest source of error, it accounts for around
15% of the words segmentation decided on corpus
statististics only since they are not found in the dic-
tionaries. We intend to use more dictionaries with
the assumption that there will be a performance in-
crease with the increasing number of citation forms
to refer to. On the other hand, increasing the amount
of citation forms also will increase the percentage
of words that will have more than one match in the
dictionaries. That would lead us to focus on the dis-
ambiguation strategy in the future. So long as the
morphological rule exists, we are able to get the cor-
rect segmentation for a word in a possible segmen-
tations list. And when we have two or more likely
segmentations that are picked out since they have
matching stems in dictionaries, we need to design a
smarter way of disambiguation that would take into
account contextual information and part of speech
tags, etc, in addition to the currently used occurence
frequency approach.

Although conducting a full fledged morphological
analyser for Amharic is beyond the scope of this pa-
per, we would like to note that there is a need to cre-
ate a forum for collaboration and exchange among
researchers involved in developing NLP resources
for Amharic and other Semitic languages and orga-
nize the considerable effort that is being made indi-
vidually. We also hope that some of the ideas and
procedures that are described in this paper could
be more generally applicable to other Semitic lan-
guages as well.

Acknowledgements

The copyright to the two volumes of the French-
Amharic and Amharic-French dictionary (”Dic-
tionnaire Francais-Amharique” and ”Dictionnaire
Amharique-Francais”) by Dr Berhanou Abebe and
Eloi Fiquet is owned by the French Ministry of For-
eign Affairs. We would like to thank the authors and
the French embassy in Addis Ababa for allowing us
to use the dictionary in this research.

The content of the “English - Amharic Dictio-
nary” is the intellectual property of Dr Amsalu

109

Aklilu. We would like to thank Dr Amsalu as well
as Daniel Yacob of the Geez frontier foundation for
making it possible for us to use the dictionary and
other resources in this work.

We would also like to thank Ato Negash of Walta
Information Center for allowing us to use part of
their news texts in this research.

References

Berhanou Abebe. 2004. Dictionnaire Amharique-
Francais. Shama Books, Addis Ababa, Ethiopia.

Sisay Fissaha Adafre. 2005. Part of speech tagging for
amharic using conditional random fields. InProceed-
ings of ACL-2005 Workshop on Computational Ap-
proaches to Semitic Languages.

Amsalu Aklilu. 1981. Amharic - English Dictionary.
Mega Publishing Enterprise, Ethiopia.

Nega Alemayehu and Peter Willett. 2002. The effective-
ness of stemming for information retrieval in amharic.
In Short Communication.

Saba Amsalu and Dafydd Gibbon. 2005. Finite state
morphology of amharic. InProceedings of RANLP.

Abiyot Bayou. 2000. Design and development of word
parser for amharic language. Masterthesis, Addis
Abeba Univeristy.

Tesfaye Bayu. 2002. Automatic morphological analyser:
An experiment using unsupervised and autosegmental
approach. Masterthesis, Addis Ababa University.

M. Lionel Bender and Hailu Fulas. 1978. Amharic verb
morphology. InEast Lansing: Michigan State Univer-
sity, African Studies Center.

M. Lionel Bender. 1968.Amharic Verb Morphology: A
Generative Approach. Ph.D. thesis, Graduate School
of Texas.

Yitna Firdyiwek and Daniel Yacob. 1997. System for
ethiopic representation in ascii.

Sisay Fissaha and Johann Haller. 2003. Amharic verb
lexicon in the context of machine translation. InActes
de la 10e conference TALN, Batz-sur-Mer.

Kesatie Birhan Tesema.YeAmarinja Mezgebe Qalat.
Adis Abeba.

Baye Yimam. 1995. ye amargna sewasew (Amharic
Grammar). EMPDA.

110

Author Index

Abate, Solomon Teferra, 33
Adler, Meni, 57
Alemu Argaw, Atelach, 104
Asker, Lars, 104
Attia, Mohammed, 65

Bouillon, Pierrette, 41

Cavalli-Sforza, Violetta, 81

Dada, Ali, 9
Darwish, Kareem, 25
Diab, Mona, 89

Elhadad, Michael, 57
Emam, Ossama, 25

Fluhr, Christian, 73

Gabay, David, 57

Halimi, Sonia, 41
Hassan, Hany, 25
Hockey, Beth Ann, 41

Magdy, Walid, 25
Manour, Saib, 97
McCord, Michael, 81
Menzel, Wolfgang, 33

Netzer, Yael, 57
Nwesri, Abdusalam F.A., 49

Rayner, Manny, 41
Raza, Hafsa, 17

Scholer, Falk, 49
Semmar, Nasredine, 73
Shaalan, Khaled, 17
Sima’an, Khalil, 97
Smrz, Otakar, 1

Tahaghoghi, S.M.M., 49

Winter, Yoad, 97

111

 A C L 2 0 0 7

PRAGUE

	Program
	ElixirFM -- Implementation of Functional Arabic Morphology
	Implementation of the Arabic Numerals and their Syntax in GF
	Person Name Entity Recognition for Arabic
	Arabic Cross-Document Person Name Normalization
	Syllable-Based Speech Recognition for Amharic
	Adapting a Medical speech to speech translation system (MedSLT) to Arabic
	Finding Variants of Out-of-Vocabulary Words in Arabic
	Can You Tag the Modal? You Should.
	Arabic Tokenization System
	Arabic to French Sentence Alignment: Exploration of A Cross-language Information Retrieval Approach
	An Arabic Slot Grammar Parser
	Improved Arabic Base Phrase Chunking with a new enriched POS tag set
	Smoothing a Lexicon-based POS Tagger for Arabic and Hebrew
	An Amharic Stemmer : Reducing Words to their Citation Forms

