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Abstract 

Nested Named Entities (nested NEs), one 
containing another, are commonly seen in 
biomedical text, e.g., accounting for 
16.7% of all named entities in GENIA 
corpus. While many works have been 
done in recognizing non-nested NEs, 
nested NEs have been largely neglected. 
In this work, we treat the task as a binary 
classification problem and solve it using 
Support Vector Machines. For each token 
in nested NEs, we use two schemes to set 
its class label: labeling as the outmost 
entity or the inner entity. Our preliminary 
results show that while the outmost 
labeling tends to work better in 
recognizing the outmost entities, the inner 
labeling recognizes the inner NEs better. 
This result should be useful for 
recognition of nested NEs. 

1 Introduction 

Named Entity Recognition (NER) is a key task in 
biomedical text mining, as biomedical named 
entities usually represent biomedical concepts of 
research interest (e.g., protein/gene/virus, etc).  

Nested NEs (also called embedded NEs, or 
cascade NEs) exhibit an interesting phenomenon in 
biomedical literature. For example, “human 
immuneodeficiency virus type 2 enhancer” is a 
DNA domain, while “human immunodeficiency 
virus type 2” represents a virus. For simplicity, we 
call the former the outmost entity (if it is not inside 
another entity), while the later the inner entity (it 
may have another one inside).  

Nested NEs account for 16.7% of all entities in 
GENIA corpus (Kim, 2003). Moreover, they often 

represent important relations between entities 
(Nedadic, 2004), as in the above example. 
However, there are few results on recognizing 
them. Many studies only consider the outmost 
entities, as in BioNLP/NLPBA 2004 Shared Task 
(Kim, 2004).  

In this work, we use a machine learning method 
to recognize nested NEs in GENIA corpus. We 
view the task as a classification problem for each 
token in a given sentence, and train a SVM model. 
We note that nested NEs make it hard to be 
considered as a multi-class problem, because a 
token in nested entities has more than one class 
label. We therefore treat it as a binary-class 
problem, using one-vs-rest scheme. 

1.1 Related Work 

Overall, our work is an application of machine 
learning methods to biomedical NER. While most 
of earlier approaches rely on handcrafted rules or 
dictionaries, many recent works adopt machine 
learning approaches, e.g, SVM (Lee, 2003), HMM 
(Zhou, 2004), Maximum Entropy (Lin, 2004) and 
CRF (Settles,2004), especially with the availability 
of annotated corpora such as GENIA, achieving 
state-of-the-art performance. We know only one 
work (Zhou,2004) that deals with nested NEs to 
improve the overall NER performance. However, 
their approach is basically rule-based and they did 
not report how well the nested NEs are recognized. 

2 Methodology 

We use SVM-light (http://svmlight.joachims.org/) 
to train a binary classifier on the GENIA corpus. 

2.1 Data Set 

The GENIA corpus (version 3.02) contains 97876 
named entities (35947 distinct) of 36 types, and 
490941 tokens (19883 distinct). There are 16672 
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nested entities, containing others or nested in 
others (the maximum embedded levels is four). 
Among all the outmost entities, 2342 are protein 
and 1849 are DNA, while there are 9298 proteins 
and 1452 DNAs embedded in other entities.  

2.2 Features and Class Label 

For each token, we generate four types of features, 
reflecting its characteristics on orthography, part-
of-speech, morphology, and special nouns. We 
also use a window of (-2, +2) as its context.

For each token, we use two schemes to set the 
class label: outmost labeling and inner labeling. In 
the outmost labeling, a token is labeled +1 if the 
outmost entity containing it is the target entity, 
while in the inner labeling, a token is labeled +1 if 
any entity containing it is the target entity. 
Otherwise, the token is labeled -1. 

3 Experiment And Discussion 

We report our preliminary experimental results on 
recognizing protein and DNA nested entities. For 
each target entity type (e.g., protein) and each 
labeling scheme, we obtain a data set containing 
490941 instances. We run 5-fold cross-validation, 
and measure performance (P/R/F) of exact match, 
left/right boundary match w.r.t. outmost and inner 
entities respectively. The results are shown in 
Table 1 and Table 2. 
  

  Outmost labeling 
(P/R/F) 

Inner labeling
(P/R/F) 

Exact 0.772 /0.014 /0.028 0.705 /0.017 /0.033
Left 0.363 /0.373 /0.368 0.173 /0.484 /0.254

Outmost 
Entities 

Recognized Right 0.677 /0.199 /0.308 0.674 /0.208 /0.318
 Overall 0.60/0.20/0.23 0.52/0.24/0.20 

Exact 0.692 /0.229 /0.344 0.789 /0.679 /0.730
Left 0.682 /0.289 /0.406 0.732 /0.702 /0.717

Inner 
Entities 

Recognized Right 0.671 /0.255 /0.370 0.769 /0.719 /0.743
 Overall 0.68/0.26/0.37 0.76/0.70/0.73 

Table 1 Performance of nested protein entities 
 
From the tables, we can see that while the outmost 
labeling works (slightly) better for the outmost 
entities, the inner labeling works better for the 
inner entities. This result seems reasonable in that 
each labeling scheme tends to introduces more 
entities of its type in the training set.  

It is interesting to see that the inner labeling 
works much better in identifying inner proteins 
than in inner DNAs. The reason could be due to 

the fact that there are about three times more inner 
proteins than the outmost ones, while the numbers 
of inner DNAs and outmost DNAs are roughly the 
same (see Section 2.1).    

Another observation is that the inner labeling 
gains significantly (over the outmost labeling) in 
the inner entities, comparing to its loss in the 
outmost entities. We are not sure whether this is 
the general trend for other types of entities, and if 
so, what causes it. We will address this issue in our 
following work.  

 
  Outmost labeling 

(P/R/F) 
Inner labeling
(P/R/F) 

Exact 0.853 /0.005 /0.009 0.853 /0.005 /0.009
Left 0.682 /0.542 /0.604 0.543 /0.555 /0.549

Outmost
Entities 

Recognized Right 0.324 /0.070 /0.114 0.321 /0.070 /0.115
 Overall 0.62/0.21/0.24 0.57/0.21/0.22 

Exact 0.269 /0.333 /0.298 0.386 /0.618 /0.475
Left 0.272 /0.405 /0.325 0.336 /0.618 /0.435

Inner 
Entities 

Recognized Right 0.237 /0.376 /0.290 0.350 /0.694 /0.465
 Overall 0.26/0.37/0.30 0.36/0.64/0.46 

Table 2 Performance of nested DNA entities 
 

We hope these results can help in recognizing 
nested NEs, and also attract more attention to the 
nested NE problem. We are going to further our 
study by looking into more related issues.  

References  
J. Kim, et al. 2003. GENIA corpus – a semantically 

annotated corpus for bio-textmining. Bioinformatics, 
Vol 19.  

J. Kim, et al. 2004. Introduction to the Bio-Entity 
Recognition Task at JNLPBA. Proceedings of 
JNLPBA. 

K. Lee, et al. 2003. Two-Phase Biomedical NE 
Recognition based on SVMS. Proceedings of ACL 
Workshop on NLP in Biomedical.  

Y. Lin, et al. 2004. A Maximum Entropy Approach to 
Biomedical Named Entity Recognition. Proceedings 
of KDD Workshop on Data Mining and 
Bioinformatics.  

G. Nenadic, et al. 2004. Mining Biomedical Abstracts: 
What’s in a Term? Proceedings of IJCNLP 2004.  

B. Settles. 2004. Biomedical Named Entity Recognition 
Using Conditional Random Fields and Rich Feature 
Sets. Proceedings of Joint Workshop on NLPBA.  

G. Zhou, et al. 2004. Recognizing Names in Biomedical 
Texts: a Machine Learning Approach. Bioinformatics, 
Vol. 20, no. 7. 

113


