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Abstract

In this paper we present a hybrid ap-

proach for the acquisition of syntactico-

semantic patterns from raw text. Our

approach co-trains a decision list learner

whose feature space covers the set of all

syntactico-semantic patterns with an Ex-

pectation Maximization clustering algo-

rithm that uses the text words as attributes.

We show that the combination of the two

methods always outperforms the decision

list learner alone. Furthermore, using a

modular architecture we investigate sev-

eral algorithms for pattern ranking, the

most important component of the decision

list learner.

1 Introduction

Traditionally, Information Extraction (IE) identi-

fies domain-specific events, entities, and relations

among entities and/or events with the goals of:

populating relational databases, providing event-

level indexing in news stories, feeding link discov-

ery applications, etcetera.

By and large the identification and selective ex-

traction of relevant information is built around a

set of domain-specific linguistic patterns. For ex-

ample, for a “financial market change” domain

one relevant pattern is <NOUN fall MONEY

to MONEY>. When this pattern is matched on

the text “London gold fell $4.70 to $308.35”, a

change of $4.70 is detected for the financial in-

strument “London gold”.

Domain-specific patterns are either hand-

crafted or acquired automatically (Riloff, 1996;

Yangarber et al., 2000; Yangarber, 2003; Steven-

son and Greenwood, 2005). To minimize annota-

tion costs, some of the latter approaches use lightly

supervised bootstrapping algorithms that require

as input only a small set of documents annotated

with their corresponding category label. The focus

of this paper is to improve such lightly supervised

pattern acquisition methods. Moreover, we focus

on robust bootstrapping algorithms that can han-

dle real-world document collections, which con-

tain many domains.

Although a rich literature covers bootstrap-

ping methods applied to natural language prob-

lems (Yarowsky, 1995; Riloff, 1996; Collins and

Singer, 1999; Yangarber et al., 2000; Yangar-

ber, 2003; Abney, 2004) several questions remain

unanswered when these methods are applied to

syntactic or semantic pattern acquisition. In this

paper we answer two of these questions:

(1) Can pattern acquisition be improved with

text categorization techniques?

Bootstrapping-based pattern acquisition algo-

rithms can also be regarded as incremental text

categorization (TC), since in each iteration docu-

ments containing certain patterns are assigned the

corresponding category label. Although TC is ob-

viously not the main goal of pattern acquisition

methodologies, it is nevertheless an integral part of

the learning algorithm: each iteration of the acqui-

sition algorithm depends on the previous assign-

ments of category labels to documents. Hence, if

the quality of the TC solution proposed is bad, the

quality of the acquired patterns will suffer.

Motivated by this observation, we introduce a

co-training-based algorithm (Blum and Mitchell,

1998) that uses a text categorization algorithm as

reinforcement for pattern acquisition. We show,

using both a direct and an indirect evaluation, that

the combination of the two methodologies always

improves the quality of the acquired patterns.

48



(2) Which pattern selection strategy is best?

While most bootstrapping-based algorithms fol-

low the same framework, they vary significantly

in what they consider the most relevant patterns in

each bootstrapping iteration. Several approaches

have been proposed in the context of word sense

disambiguation (Yarowsky, 1995), named entity

(NE) classification (Collins and Singer, 1999),

pattern acquisition for IE (Riloff, 1996; Yangarber,

2003), or dimensionality reduction for text catego-

rization (TC) (Yang and Pedersen, 1997). How-

ever, it is not clear which selection approach is

the best for the acquisition of syntactico-semantic

patterns. To answer this question, we have im-

plemented a modular pattern acquisition architec-

ture where several of these ranking strategies are

implemented and evaluated. The empirical study

presented in this paper shows that a strategy previ-

ously proposed for feature ranking for NE recogni-

tion outperforms algorithms designed specifically

for pattern acquisition.

The paper is organized as follows: Sec-

tion 2 introduces the bootstrapping framework

used throughout the paper. Section 3 introduces

the data collections. Section 4 describes the di-

rect and indirect evaluation procedures. Section 5

introduces a detailed empirical evaluation of the

proposed system. Section 6 concludes the paper.

2 The Pattern Acquisition Framework

In this section we introduce a modular pattern ac-

quisition framework that co-trains two different

views of the document collection: the first view

uses the collection words to train a text categoriza-

tion algorithm, while the second view bootstraps

a decision list learner that uses all syntactico-

semantic patterns as features. The rules acquired

by the latter algorithm, of the form p → y, where

p is a pattern and y is a domain label, are the out-

put of the overall system. The system can be cus-

tomized with several pattern selection strategies

that dramatically influence the quality and order

of the acquired rules.

2.1 Co-training Text Categorization and

Pattern Acquisition

Given two views of a classification task, co-

training (Blum and Mitchell, 1998) bootstraps a

separate classifier for each view as follows: (1)

it initializes both classifiers with the same small

amount of labeled data (i.e. seed documents in our

case); (2) it repeatedly trains both classifiers us-

ing the currently labeled data; and (3) after each

learning iteration, the two classifiers share all or a

subset of the newly labeled examples (documents

in our particular case).

The intuition is that each classifier provides

new, informative labeled data to the other classi-

fier. If the two views are conditional independent

and the two classifiers generally agree on unla-

beled data they will have low generalization error.

In this paper we focus on a “naive” co-training ap-

proach, which trains a different classifier in each

iteration and feeds its newly labeled examples to

the other classifier. This approach was shown to

perform well on real-world natural language prob-

lems (Collins and Singer, 1999).

Figure 1 illustrates the co-training framework

used in this paper. The feature space of the

first view contains only lexical information, i.e.

the collection words, and uses as classifier Ex-

pectation Maximization (EM) (Dempster et al.,

1977). EM is actually a class of iterative algo-

rithms that find maximum likelihood estimates of

parameters using probabilistic models over incom-

plete data (e.g. both labeled and unlabeled docu-

ments) (Dempster et al., 1977). EM was theoret-

ically proven to converge to a local maximum of

the parameters’ log likelihood. Furthermore, em-

pirical experiments showed that EM has excellent

performance for lightly-supervised text classifica-

tion (Nigam et al., 2000). The EM algorithm used

in this paper estimates its model parameters us-

ing the Naive Bayes (NB) assumptions, similarly

to (Nigam et al., 2000). From this point further,

we refer to this instance of the EM algorithm as

NB-EM.

The feature space of the second view contains

the syntactico-semantic patterns, generated using

the procedure detailed in Section 3.2. The second

learner is the actual pattern acquisition algorithm

implemented as a bootstrapped decision list clas-

sifier.

The co-training algorithm introduced in this pa-

per interleaves one iteration of the NB-EM algo-

rithm with one iteration of the pattern acquisition

algorithm. If one classifier converges faster (e.g.

NB-EM typically converges in under 20 iterations,

whereas the acquisition algorithms learns new pat-

terns for hundreds of iterations) we continue boot-

strapping the other classifier alone.

2.2 The Text Categorization Algorithm

The parameters of the generative NB model, θ̂, in-

clude the probability of seeing a given category,
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Figure 1: Co-training framework for pattern acquisition.

1. Initialization:

• Initialize the set of labeled examples with n la-
beled seed documents of the form (di, yi). yi is
the label of the ith document di. Each docu-
ment di contains a set of patterns {pi1, pi2, ..., pim}.

• Initialize the list of learned rules R = {}.

2. Loop:

• For each label y, select a small set of pattern
rules r = p → y, r /∈ R.

• Append all selected rules r to R.

• For all non-seed documents d that contain a
pattern in R, set label(d) = argmaxp,y strength(p, y).

3. Termination condition:

• Stop if no rules selected or maximum number
of iterations reached.

Figure 2: Pattern acquisition meta algorithm

P (c|θ̂), and the probability of seeing a word given

a category, P (w|c; θ̂). We calculate both simi-

larly to Nigam (2000). Using these parameters,

the word independence assumption typical to the

Naive Bayes model, and the Bayes rule, the prob-

ability that a document d has a given category c is

calculated as:

P (c|d; θ̂) =
P (c|θ̂)P (d|c; θ̂)

P (d|θ̂)
(1)

=
P (c|θ̂)Π

|d|
i=1

P (wi|c; θ̂)
∑q

j=1
P (cj |θ̂)Π

|d|
i=1

P (wi|cj ; θ̂)
(2)

2.3 The Pattern Acquisition Algorithm

The lightly-supervised pattern acquisition algo-

rithm iteratively learns domain-specific IE pat-

terns from a small set of labeled documents and

a much larger set of unlabeled documents. Dur-

ing each learning iteration, the algorithm acquires

a new set of patterns and labels more documents

based on the new evidence. The algorithm output

is a list R of rules p → y, where p is a pattern

in the set of patterns P , and y a category label in

Y = {1...k}, k being the number of categories in

the document collection. The list of acquired rules

R is sorted in descending order of rule importance

to guarantee that the most relevant rules are ac-

cessed first. This generic bootstrapping algorithm

is formalized in Figure 2.

Previous studies called the class of algorithms

illustrated in Figure 2 “cautious” or “sequential”

because in each iteration they acquire 1 or a small

set of rules (Abney, 2004; Collins and Singer,

1999). This strategy stops the algorithm from be-

ing over-confident, an important restriction for an

algorithm that learns from large amounts of unla-

beled data. This approach was empirically shown

to perform better than a method that in each itera-

tion acquires all rules that match a certain criterion

(e.g. the corresponding rule has a strength over a

certain threshold).

The key element where most instances of this

algorithm vary is the select procedure, which de-

cides which rules are acquired in each iteration.

Although several selection strategies have been

previously proposed for various NLP problems, to

our knowledge no existing study performs an em-

pirical analysis of such strategies in the context of

acquisition of IE patterns. For this reason, we im-

plement several selection methods in our system

(described in Section 2.4) and evaluate their per-

formance in Section 5.

The label of each collection document is given

by the strength of its patterns. Similarly to (Collins

and Singer, 1999; Yarowsky, 1995), we define the

strength of a pattern p in a category y as the pre-

cision of p in the set of documents labeled with

category y, estimated using Laplace smoothing:

strength(p, y) =
count(p, y) + ε

count(p) + kε
(3)

where count(p, y) is the number of documents la-

beled y containing pattern p, count(p) is the over-

all number of labeled documents containing p, and

k is the number of domains. For all experiments

presented here we used ε = 1.

Another point where acquisition algorithms dif-

fer is the initialization procedure: some start with a

small number of hand-labeled documents (Riloff,

1996), as illustrated in Figure 2, while others start

with a set of seed rules (Yangarber et al., 2000;

Yangarber, 2003). However, these approaches are

conceptually similar: the seed rules are simply

used to generate the seed documents.

This paper focuses on the framework introduced

in Figure 2 for two reasons: (a) “cautious” al-
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gorithms were shown to perform best for several

NLP problems (including acquisition of IE pat-

terns), and (b) it has nice theoretical properties:

Abney (2004) showed that, regardless of the selec-

tion procedure, “sequential” bootstrapping algo-

rithms converge to a local minimum of K, where

K is an upper bound of the negative log likelihood

of the data. Obviously, the quality of the local

minimum discovered is highly dependent of the

selection procedure, which is why we believe an

evaluation of several pattern selection strategies is

important.

2.4 Selection Criteria

The pattern selection component, i.e. the select

procedure of the algorithm in Figure 2, consists of

the following: (a) for each category y all patterns

p are sorted in descending order of their scores in

the current category, score(p, y), and (b) for each

category the top k patterns are selected. For all

experiments in this paper we have used k = 3.

We provide four different implementations for the

pattern scoring function score(p, y) according to

four different selection criteria.

Criterion 1: Riloff

This selection criterion was developed specifically

for the pattern acquisition task (Riloff, 1996) and

has been used in several other pattern acquisition

systems (Yangarber et al., 2000; Yangarber, 2003;

Stevenson and Greenwood, 2005). The intuition

behind it is that a qualitative pattern is yielded by a

compromise between pattern precision (which is a

good indicator of relevance) and pattern frequency

(which is a good indicator of coverage). Further-

more, the criterion considers only patterns that are

positively correlated with the corresponding cate-

gory, i.e. their precision is higher than 50%. The

Riloff score of a pattern p in a category y is for-

malized as:

score(p, y) =

{

prec(p, y) log(count(p, y)),
if prec(p, y) > 0.5;

0, otherwise.
(4)

prec(p, y) =
count(p, y)

count(p)
(5)

where prec(p, y) is the raw precision of pattern p
in the set of documents labeled with category y.

Criterion 2: Collins

This criterion was used in a lightly-supervised NE

recognizer (Collins and Singer, 1999). Unlike the

previous criterion, which combines relevance and

frequency in the same scoring function, Collins

considers only patterns whose raw precision is

over a hard threshold T and ranks them by their

global coverage:

score(p, y) =

{

count(p), if prec(p, y) > T ;
0, otherwise.

(6)

Similarly to (Collins and Singer, 1999) we used

T = 0.95 for all experiments reported here.

Criterion 3: χ2 (Chi)

The χ2 score measures the lack of independence

between a pattern p and a category y. It is com-

puted using a two-way contingency table of p and

y, where a is the number of times p and y co-occur,

b is the number of times p occurs without y, c is

the number of times y occurs without p, and d is

the number of times neither p nor y occur. The

number of documents in the collection is n. Sim-

ilarly to the first criterion, we consider only pat-

terns positively correlated with the corresponding

category:

score(p, y) =

{

χ2(p, y), if prec(p, y) > 0.5;
0, otherwise.

(7)

χ
2(p, y) =

n(ad − cb)2

(a + c)(b + d)(a + b)(c + d)
(8)

The χ2 statistic was previously reported to be

the best feature selection strategy for text catego-

rization (Yang and Pedersen, 1997).

Criterion 4: Mutual Information (MI)

Mutual information is a well known information

theory criterion that measures the independence of

two variables, in our case a pattern p and a cate-

gory y (Yang and Pedersen, 1997). Using the same

contingency table introduced above, the MI crite-

rion is estimated as:

score(p, y) =

{

MI(p, y), if prec(p, y) > 0.5;
0, otherwise.

(9)

MI(p, y) = log
P (p ∧ y)

P (p) × P (y)
(10)

≈ log
na

(a + c)(a + b)
(11)

3 The Data

3.1 The Document Collections

For all experiments reported in this paper we used

the following three document collections: (a) the

AP collection is the Associated Press (year 1999)

subset of the AQUAINT collection (LDC catalog

number LDC2002T31); (b) the LATIMES collec-

tion is the Los Angeles Times subset of the TREC-

5 collection1; and (c) the REUTERS collection is

the by now classic Reuters-21578 text categoriza-

tion collection2.
1http://trec.nist.gov/data/docs eng.html
2http://trec.nist.gov/data/reuters/reuters.html
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Collection # of docs # of categories # of words # of patterns

AP 5000 7 24812 140852

LATIMES 5000 8 29659 69429

REUTERS 9035 10 12905 36608

Table 1: Document collections used in the evaluation

Similarly to previous work, for the REUTERS

collection we used the ModApte split and selected

the ten most frequent categories (Nigam et al.,

2000). Due to memory limitations on our test ma-

chines, we reduced the size of the AP and LA-

TIMES collections to their first 5,000 documents

(the complete collections contain over 100,000

documents).

The collection words were pre-processed as fol-

lows: (i) stop words and numbers were discarded;

(ii) all words were converted to lower case; and

(iii) terms that appear in a single document were

removed. Table 1 lists the collection characteris-

tics after pre-processing.

3.2 Pattern Generation

In order to extract the set of patterns available in

a document, each collection document undergoes

the following processing steps: (a) we recognize

and classify named entities3, and (b) we generate

full parse trees of all document sentences using a

probabilistic context-free parser.

Following the above processing steps, we ex-

tract Subject-Verb-Object (SVO) tuples using a se-

ries of heuristics, e.g.: (a) nouns preceding active

verbs are subjects, (b) nouns directly attached to a

verb phrase are objects, (c) nouns attached to the

verb phrase through a prepositional attachment are

indirect objects. Each tuple element is replaced

with either its head word, if its head word is not

included in a NE, or with the NE category oth-

erwise. For indirect objects we additionally store

the accompanying preposition. Lastly, each tuple

containing more than two elements is generalized

by maintaining only subsets of two and three of its

elements and replacing the others with a wildcard.

Table 2 lists the patterns extracted from one

sample sentence. As Table 2 hints, the system

generates a large number of candidate patterns. It

is the task of the pattern acquisition algorithm to

extract only the relevant ones from this complex

search space.

4 The Evaluation Procedures
4.1 The Indirect Evaluation Procedure

The goal of our evaluation procedure is to measure

the quality of the acquired patterns. Intuitively,

3We identify six categories: persons, locations, organiza-
tions, other names, temporal and numerical expressions.

Text The Minnesota Vikings beat the Arizona

Cardinals in yesterday’s game.

Patterns s(ORG) v(beat)

v(beat) o(ORG)

s(ORG) o(ORG)

v(beat) io(in game)

s(ORG) io(in game)

o(ORG) io(in game)

s(ORG) v(beat) o(ORG)

s(ORG) v(beat) io(in game)

v(beat) o(ORG) io(in game)

Table 2: Patterns extracted from one sample sentence. s

stands for subject, v for verb, o for object, and io for indirect

object.

the learned patterns should have high coverage and

low ambiguity. We indirectly measure the quality

of the acquired patterns using a text categorization

strategy: we feed the acquired rules to a decision-

list classifier, which is then used to classify a new

set of documents. The classifier assigns to each

document the category label given by the first rule

whose pattern matches. Since we expect higher-

quality patterns to appear higher in the rule list,

the decision-list classifier never changes the cate-

gory of an already-labeled document.

The quality of the generated classification is

measured using micro-averaged precision and re-

call:

P =

∑q

i=1
TruePositivesi

∑q

i=1
(TruePositivesi + FalsePositivesi)

(12)

R =

∑q

i=1
TruePositivesi

∑q

i=1
(TruePositivesi + FalseNegativesi)

(13)

where q is the number of categories in the docu-
ment collection.

For all experiments and all collections with the

exception of REUTERS, which has a standard

document split for training and testing, we used 5-

fold cross validation: we randomly partitioned the

collections into 5 sets of equal sizes, and reserved

a different one for testing in each fold.

We have chosen this evaluation strategy because

this indirect approach was shown to correlate well

with a direct evaluation, where the learned patterns

were used to customize an IE system (Yangarber

et al., 2000). For this reason, much of the fol-

lowing work on pattern acquisition has used this

approach as a de facto evaluation standard (Yan-

garber, 2003; Stevenson and Greenwood, 2005).

Furthermore, given the high number of domains

and patterns (we evaluate on 25 domains), an eval-

uation by human experts is extremely costly. Nev-

ertheless, to show that the proposed indirect eval-

uation correlates well with a direct evaluation, two

human experts have evaluated the patterns in sev-

eral domains. The direct evaluation procedure is

described next.
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4.2 The Direct Evaluation Procedure

The task of manually deciding whether an ac-

quired pattern is relevant or not for a given domain

is not trivial, mainly due to the ambiguity of the

patterns. Thus, this process should be carried out

by more than one expert, so that the relevance of

the ambiguous patterns can be agreed upon. For

example, the patterns s(ORG) v(score) o(goal) and

s(PER) v(lead) io(with point) are clearly relevant

only for the sports domain, whereas the patterns

v(sign) io(as agent) and o(title) io(in DATE) might

be regarded as relevant for other domains as well.

The specific procedure to manually evaluate the

patterns is the following: (1) two experts sepa-

rately evaluate the acquired patterns for the con-

sidered domains and collections; and (2) the re-

sults of both evaluations are compared. For any

disagreement, we have opted for a strict evalua-

tion: all the occurrences of the corresponding pat-

tern are looked up in the collection and, whenever

at least one pattern occurrence belongs to a docu-

ment assigned to a different domain than the do-

main in question, the pattern will be considered as

not relevant.

Both the ambiguity and the high number of

the extracted patterns have prevented us from per-

forming an exhaustive direct evaluation. For this

reason, only the top (most relevant) 100 patterns

have been evaluated for one domain per collection.

The results are detailed in Section 5.2.

5 Experimental Evaluation

5.1 Indirect Evaluation

For a better understanding of the proposed ap-

proach we perform an incremental evaluation:

first, we evaluate only the various pattern selection

criteria described in Section 2.4 by disabling the

NB-EM component. Second, using the best selec-

tion criteria, we evaluate the complete co-training

system.

In both experiments we initialize the system

with high-precision manually-selected seed rules

which yield seed documents with a coverage of

10% of the training partitions. The remaining 90%

of the training documents are maintained unla-

beled. For all experiments we used a maximum of

400 bootstrapping iterations. The acquired rules

are fed to the decision list classifier which assigns

category labels to the documents in the test parti-

tions.

Evaluation of the pattern selection criteria

Figure 3 illustrates the precision/recall charts

of the four algorithms as the number of patterns

made available to the decision list classifier in-

creases. All charts show precision/recall points

starting after 100 learning iterations with 100-

iteration increments. It is immediately obvious

that the Collins selection criterion performs sig-

nificantly better than the other three criteria. For

the same recall point, Collins yields a classifica-

tion model with much higher precision, with dif-

ferences ranging from 5% in the REUTERS col-

lection to 20% in the AP collection.

Theorem 5 in (Abney, 2002) provides a theo-

retical explanation for these results: if certain in-

dependence conditions between the classifier rules

are satisfied and the precision of each rule is larger

than a threshold T , then the precision of the final

classifier is larger than T . Although the rule inde-

pendence conditions are certainly not satisfied in

our real-world evaluation, the above theorem in-

dicates that there is a strong relation between the

precision of the classifier rules on labeled data and

the precision of the final classifier. Our results pro-

vide the empirical proof that controling the preci-

sion of the acquired rules (i.e. the Collins crite-

rion) is important.

The Collins criterion controls the recall of the

learned model by favoring rules with high fre-

quency in the collection. However, since the other

two criteria do not use a high precision thresh-

old, they will acquire more rules, which translates

in better recall. For two out of the three collec-

tions, Riloff and Chi obtain a slightly better recall,

about 2% higher than Collins’, albeit with a much

lower precision. We do not consider this an im-

portant advantage: in the next section we show

that co-training with the NB-EM component fur-

ther boosts the precision and recall of the Collins-

based acquisition algorithm.

The MI criterion performs the worst of the four

evaluated criteria. A clue for this behavior lies in

the following equivalent form for MI: MI(p, y) =
log P (p|y)−log P (p). This formula indicates that,

for patterns with equal conditional probabilities

P (p|y), MI assigns higher scores to patterns with

lower frequency. This is not the desired behavior

in a TC-oriented system.

Evaluation of the co-training system

Figure 4 compares the performance of the

stand-alone pattern acquisition algorithm (“boot-

strapping”) with the performance of the acquisi-

tion algorithm trained in the co-training environ-
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Figure 3: Performance of the pattern acquisition algorithm for various pattern selection strategies and multiple collections:

(a) AP, (b) LATIMES, and (c) REUTERS

ment (“co-training”). For both setups we used the

best pattern selection criterion for pattern acqui-

sition, i.e. the Collins criterion. To put things in

perspective, we also depict the performance ob-

tained with a baseline system, i.e. the system con-

figured to use the Riloff pattern selection criterion

and without the NB-EM algorithm (“baseline”).

To our knowledge, this system, or a variation of

it, is the current state-of-the-art in pattern acqui-

sition (Riloff, 1996; Yangarber et al., 2000; Yan-

garber, 2003; Stevenson and Greenwood, 2005).

All algorithms were initialized with the same seed

rules and had access to all documents.

Figure 4 shows that the quality of the learned

patterns always improves if the pattern acquisi-

tion algorithm is “reinforced” with EM. For the

same recall point, the patterns acquired in the

co-training environment yield classification mod-

els with precision (generally) much larger than

the models generated by the pattern acquisition

algorithm alone. When using the same pat-

tern acquisition criterion, e.g. Collins, the dif-

ferences between the co-training approach and

the stand-alone pattern acquisition method (“boot-

strapping”) range from 2-3% in the REUTERS

collection to 20% in the LATIMES collection.

These results support our intuition that the sparse

pattern space is insufficient to generate good clas-

sification models, which directly influences the

quality of all acquired patterns.

Furthermore, due to the increased coverage of

the lexicalized collection views, the patterns ac-

quired in the co-training setup generally have bet-

ter recall, up to 11% higher in the LATIMES col-

lection.

Lastly, the comparison of our best system (“co-

training”) against the current state-of-the-art (our

“baseline”) draws an even more dramatic picture:

Collection Domain Relevant Relevant Initial
patterns patterns inter-expert
baseline co-training agreement

AP Sports 22% 68% 84%

LATIMES Financial 67% 76% 70%

REUTERS Corporate 38% 46% 66%
Acquisitions

Table 3: Percentage of relevant patterns for one domain per

collection by the baseline system (Riloff) and the co-training

system.

for the same recall point, the co-training system

obtains a precision up to 35% higher for AP and

LATIMES, and up to 10% higher for REUTERS.

5.2 Direct Evaluation

As stated in Section 4.2, two experts have man-

ually evaluated the top 100 acquired patterns for

one different domain in each of the three collec-

tions. The three corresponding domains have been

selected intending to deal with different degrees of

ambiguity, which are reflected in the initial inter-

expert agreement. Any disagreement between ex-

perts is solved using the algorithm introduced in

Section 4.2. Table 3 shows the results of this di-

rect evaluation. The co-training approach outper-

forms the baseline for all three collections. Con-

cretely, improvements of 9% and 8% are achieved

for the Financial and the Corporate Acquisitions

domains, and 46%, by far the largest difference, is

found for the Sports domain in AP. Table 4 lists

the top 20 patterns extracted by both approaches

in the latter domain. It can be observed that for

the baseline, only the top 4 patterns are relevant,

the rest being extremely general patterns. On the

other hand, the quality of the patterns acquired by

our approach is much higher: all the patterns are

relevant to the domain, although 7 out of the 20

might be considered ambiguous and according to

the criterion defined in Section 4.2 have been eval-

uated as not relevant.

54



 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.3  0.35  0.4  0.45  0.5  0.55  0.6

P
re

c
is

io
n

Recall

co-training
bootstrapping

baseline

(a)

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.2  0.25  0.3  0.35  0.4  0.45

P
re

c
is

io
n

Recall

co-training
bootstrapping

baseline

(b)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.15  0.2  0.25  0.3  0.35  0.4  0.45

P
re

c
is

io
n

Recall

co-training
bootstrapping

baseline

(c)
Figure 4: Comparison of the bootstrapping pattern acquisition algorithm with the co-training approach: (a) AP, (b) LATIMES,

and (c) REUTERS

Baseline Co-training

s(he) o(game) v(win) o(title)

v(miss) o(game) s(I) v(play)

v(play) o(game) s(he) v(game)

v(play) io(in LOC) s(we) v(play)

v(go) o(be) v(miss) o(game)

s(he) v(be) s(he) v(coach)

s(that) v(be) v(lose) o(game)

s(I) v(be) s(I) o(play)

s(it) v(go) o(be) v(make) o(play)

s(it) v(be) v(play) io(in game)

s(I) v(think) v(want) o(play)

s(I) v(know) v(win) o(MISC)

s(I) v(want) s(he) o(player)

s(there) v(be) v(start) o(game)

s(we) v(do) s(PER) o(contract)

v(do) o(it) s(we) o(play)

s(it) o(be) s(team) v(win)

s(we) v(are) v(rush) io(for yard)

s(we) v(go) s(we) o(team)

s(PER) o(DATE) v(win) o(Bowl)

Table 4: Top 20 patterns acquired from the Sports domain

by the baseline system (Riloff) and the co-training system for

the AP collection. The correct patterns are in bold.

6 Conclusions

This paper introduces a hybrid, lightly-supervised

method for the acquisition of syntactico-semantic

patterns for Information Extraction. Our approach

co-trains a decision list learner whose feature

space covers the set of all syntactico-semantic

patterns with an Expectation Maximization clus-

tering algorithm that uses the text words as at-

tributes. Furthermore, we customize the decision

list learner with up to four criteria for pattern se-

lection, which is the most important component of

the acquisition algorithm.

For the evaluation of the proposed approach we

have used both an indirect evaluation based on

Text Categorization and a direct evaluation where

human experts evaluated the quality of the gener-

ated patterns. Our results indicate that co-training

the Expectation Maximization algorithm with the

decision list learner tailored to acquire only high

precision patterns is by far the best solution. For

the same recall point, the proposed method in-

creases the precision of the generated models up

to 35% from the previous state of the art. Further-

more, the combination of the two feature spaces

(words and patterns) also increases the coverage

of the acquired patterns. The direct evaluation of

the acquired patterns by the human experts vali-

dates these results.
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