
Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP 2006), pages 408–414,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Arabic OCR Error Correction Using Character Segment Correction,

Language Modeling, and Shallow Morphology

Walid Magdy and Kareem Darwish

IBM Technology Development Center
P.O. Box 166 El-Ahram, Giza, Egypt

{wmagdy,darwishk}@eg.ibm.com

Abstract

This paper explores the use of a character
segment based character correction
model, language modeling, and shallow
morphology for Arabic OCR error cor-
rection. Experimentation shows that
character segment based correction is su-
perior to single character correction and
that language modeling boosts correction,
by improving the ranking of candidate
corrections, while shallow morphology
had a small adverse effect. Further,
given sufficiently large corpus to extract
a dictionary and to train a language
model, word based correction works well
for a morphologically rich language such
as Arabic.

1 Introduction

Recent advances in printed document digitization
and processing led to large scale digitization ef-
forts of legacy printed documents producing
document images. To enable subsequent proc-
essing and retrieval, the document images are
often transformed to character-coded text using
Optical Character Recognition (OCR). Although
OCR is fast, OCR output typically contains er-
rors. The errors are even more pronounced in
OCR’ed Arabic text due to Arabic’s orthographic
and morphological properties. The introduced
errors adversely affect linguistic processing and
retrieval of OCR’ed documents. This paper ex-
plores the effectiveness post-OCR error correc-
tion. The correction uses an improved character
segment based noisy channel model, language
modeling, and shallow morphological processing
to correct OCR errors. The paper will be organ-
ized as follows: Section 2 provides background
information on Arabic OCR and OCR error cor-
rection; Section 3 presents the error correction

methodology; Section 4 reports and discusses
experimental results; and Section 5 concludes the
paper and provides possible future directions.

2 Background

This section reviews prior work on Arabic OCR
for Arabic and OCR error correction.

2.1 Arabic OCR

The goal of OCR is to transform a document im-
age into character-coded text. The usual process
is to automatically segment a document image
into character images in the proper reading order
using image analysis heuristics, apply an auto-
matic classifier to determine the character codes
that most likely correspond to each character im-
age, and then exploit sequential context (e.g.,
preceding and following characters and a list of
possible words) to select the most likely charac-
ter in each position. The character error rate can
be influenced by reproduction quality (e.g.,
original documents are typically better than pho-
tocopies), the resolution at which a document
was scanned, and any mismatch between the in-
stances on which the character image classifier
was trained and the rendering of the characters in
the printed document. Arabic OCR presents sev-
eral challenges, including:
• Arabic’s cursive script in which most charac-
ters are connected and their shape vary with posi-
tion in the word.
• The optional use of word elongations and liga-
tures, which are special forms of certain letter
sequences.
• The presence of dots in 15 of the 28 letters to
distinguish between different letters and the op-
tional use of diacritic which can be confused
with dirt, dust, and speckle (Darwish and Oard,
2002).
• The morphological complexity of Arabic,
which results in an estimated 60 billion possible

408

surface forms, complicates dictionary-based er-
ror correction. Arabic words are built from a
closed set of about 10,000 root forms that typi-
cally contain 3 characters, although 4-character
roots are not uncommon, and some 5-character
roots do exist. Arabic stems are derived from
these root forms by fitting the root letters into a
small set of regular patterns, which sometimes
includes addition of “infix” characters between
two letters of the root (Ahmed, 2000).
There is a number of commercial Arabic OCR
systems, with Sakhr’s Automatic Reader and
Shonut’s Omni Page being perhaps the most
widely used. Retrieval of OCR degraded text
documents has been reported for many lan-
guages, including English (Harding et al., 1997),
Chinese (Tseng and Oard, 2001), and Arabic
(Darwish and Oard, 2002).

2.2 OCR Error Correction

Much research has been done to correct
recognition errors in OCR-degraded collections.
There are two main categories of determining
how to correct these errors. They are word-level
and passage-level post-OCR processing. Some of
the kinds of word level post-processing include
the use of dictionary lookup, probabilistic
relaxation, character and word n-gram frequency
analysis (Hong, 1995), and morphological
analysis (Oflazer, 1996). Passage-level post-
processing techniques include the use of word n-
grams, word collocations, grammar, conceptual
closeness, passage level word clustering,
linguistic context, and visual context. The
following introduces some of the error correction
techniques.
• Dictionary Lookup: Dictionary Lookup, which
is the basis for the correction reported in this
paper, is used to compare recognized words with
words in a term list (Church and Gale, 1991;
Hong, 1995; Jurafsky and Martin, 2000). If a
word is found in the dictionary, then it is
considered correct. Otherwise, a checker
attempts to find a dictionary word that might be
the correct spelling of the misrecognized word.
Jurafsky and Martin (2000) illustrate the use of a
noisy channel model to find the correct spelling
of misspelled or misrecognized words. The
model assumes that text errors are due to edit
operations namely insertions, deletions, and
substitutions. Given two words, the number of
edit operations required to transform one of the
words to the other is called the Levenshtein edit
distance (Baeza-Yates and Navarro, 1996). To

capture the probabilities associated with different
edit operations, confusion matrices are
employed. Another source of evidence is the
relative probabilities that candidate word
corrections would be observed. These
probabilities can be obtained using word
frequency in text corpus (Jurafsky and Martin,
2000). However, the dictionary lookup approach
has the following problems (Hong, 1995):
a) A correctly recognized word might not be in
the dictionary. This problem could surface if the
dictionary is small, if the correct word is an
acronym or a named entity that would not
normally appear in a dictionary, or if the
language being recognized is morphologically
complex. In a morphological complex language
such as Arabic, German, and Turkish the number
of valid word surface forms is arbitrarily large
which complicates building dictionaries for spell
checking.
b) A word that is misrecognized is in the
dictionary. An example of that is the recognition
of the word “tear” instead of “fear”. This
problem is particularly acute in a language such
as Arabic where a large fraction of three letters
sequences are valid words.
• Character N-Grams: Character n-grams maybe
used alone or in combination with dictionary
lookup (Lu et al., 1999; Taghva et al., 1994).
The premise for using n-grams is that some letter
sequences are more common than others and
other letter sequences are rare or impossible. For
example, the trigram “xzx” is rare in the English
language, while the trigram “ies” is common.
Using this method, an unusual sequence of letters
can point to the position of an error in a
misrecognized word. This technique is
employed by BBN’s Arabic OCR system (Lu et
al., 1999).
• Using Morphology: Many morphologically
complex languages, such as Arabic, Swedish,
Finnish, Turkish, and German, have enormous
numbers of possible words. Accounting for and
listing all the possible words is not feasible for
purposes of error correction. Domeij proposed a
method to build a spell checker that utilizes a
stem lists and orthographic rules, which govern
how a word is written, and morphotactic rules,
which govern how morphemes (building blocks
of meanings) are allowed to combine, to accept
legal combinations of stems (Domeij et al.,
1994). By breaking up compound words,
dictionary lookup can be applied to individual
constituent stems. Similar work was done for
Turkish in which an error tolerant finite state

409

recognizer was employed (Oflazer, 1996). The
finite state recognizer tolerated a maximum
number of edit operations away from correctly
spelled candidate words. This approach was
initially developed to perform morphological
analysis for Turkish and was extended to
perform spelling correction. The techniques
used for Swedish and Turkish can potentially be
applied to Arabic. Much work has been done on
Arabic morphology and can be potentially
extended for spelling correction.
• Word Clustering: Another approach tries to
cluster different spellings of a word based on a
weighted Levenshtein edit distance. The insight
is that an important word, specially acronyms
and named-entities, are likely to appear more
than once in a passage. Taghva described an
English recognizer that identifies acronyms and
named-entities, clusters them, and then treats the
words in each cluster as one word (Taghva,
1994). Applying this technique for Arabic
requires accounting for morphology, because
prefixes or suffixes might be affixed to instances
of named entities. DeRoeck introduced a
clustering technique tolerant of Arabic’s
complex morphology (De Roeck and Al-Fares,
2000). Perhaps the technique can be modified to
make it tolerant of errors.
• Using Grammar: In this approach, a passage
containing spelling errors is parsed based on a
language specific grammar. In a system
described by Agirre (1998), an English grammar
was used to parse sentences with spelling
mistakes. Parsing such sentences gives clues to
the expected part of speech of the word that
should replace the misspelled word. Thus
candidates produced by the spell checker can be
filtered. Applying this technique to Arabic might
prove challenging because the work on Arabic
parsing has been very limited (Moussa et al.,
2003).
• Word N-Grams (Language Modeling): A
Word n-gram is a sequence of n consecutive
words in text. The word n-gram technique is a
flexible method that can be used to calculate the
likelihood that a word sequence would appear
(Tillenius, 1996). Using this method, the
candidate correction of a misspelled word might
be successfully picked. For example, in the
sentence “I bought a peece of land,” the possible
corrections for the word peece might be “piece”
and “peace”. However, using the n-gram method
will likely indicate that the word trigram “piece
of land” is much more likely than the trigram

“peace of land.” Thus the word “piece” is a more
likely correction than “peace”.

3 Error Correction Methodology

This section describes the character level model-
ing, the language modeling, and shallow mor-
phological analysis.

3.1 OCR Character Level Model

A noisy channel model was used to learn how
OCR corrupts single characters or character
segments, producing a character level confusion
model. To train the model, 6,000 OCR cor-
rupted words were obtained from a modern print-
ing of a medieval religious Arabic book (called
“The Provisions of the Return” or “Provisions”
for short by Ibn Al-Qayim). The words were
then manually corrected, and the corrupted and
manually corrected versions were aligned. The
Provisions book was scanned at 300x300 dots
per inch (dpi), and Sakhr’s Automatic Reader
was used to OCR the scanned pages. From the
6,000 words, 4,000 were used for training and
the remaining words were set aside for later test-
ing. The Word Error Rate (WER) for the 2,000
testing words was 39%. For all words (in train-
ing and testing), the different forms of alef
(hamza, alef, alef maad, alef with hamza on top,
hamza on wa, alef with hamza on the bottom, and
hamza on ya) were normalized to alef, and ya
and alef maqsoura were normalized to ya. Sub-
sequently, the characters in the aligned words
can aligned in two different ways, namely: 1:1
(one-to-one) character alignment, where each
character is mapped to no more than one charac-
ter (Church and Gale, 1991); or using m:n align-
ment, where a character segment of length m is
aligned to a character segment of length n (Brill
and Moore, 2000). The second method is more
general and potentially more accurate especially
for Arabic where a character can be confused
with as many as three or four characters. The
following example highlights the difference be-
tween the 1:1 and the m:n alignment approaches.
Given the training pair (rnacle, made):

1:1 alignment :

r n a c l e

m ε a d ε e

410

m:n alignment:

For alignment, Levenstein dynamic program-

ming minimum edit distance algorithm was used
to produce 1:1 alignments. The algorithm com-
putes the minimum number of edit operations
required to transform one string into another.
Given the output alignments of the algorithm,
properly aligned characters (such as a ���� a and e

���� e) are used as anchors, ε’s (null characters)
are combined to misaligned adjacent characters

producing m:n alignments, and ε’s between cor-
rectly aligned characters are counted as deletions
or insertions.
To formalize the error model, given a clean word

χ = #C1..Ck.. Cl..Cn# and the resulting OCR de-

graded word δ = #D1..Dx.. Dy..Dm#, where Dx.. Dy

resulted from Ck.. Cl, ε representing the null
character, and # marking word boundaries, the
probability estimates for the three edit operations
for the models are:

Psubstitution (Ck..Cl −> Dx.. Dy) =

)..(

)....(

lk

yxlk

CCcount

DDCCcount →

Pdeletion (Ck..Cl −> ε) =
)..(

)..(

lk

lk

CCcount

CCcount ε→

Pinsertion (ε −> Dx.. Dy) =
)(

)..(

Ccount

DDcount yx→ε

When decoding a corrupted string δ composed of
the characters D1..Dx.. Dy..Dm, the goal is to find

a string χ composed of the characters C1..Ck..

Cl..Cn such that P(δ|χ)·P(χ) is maximum. P(χ) is
the prior probability of observing χ in text and
P(δ|χ) is the probability of producing δ from χ.
P(χ) was computed from a web-mined collection
of religious text by Ibn Taymiya, the main
teacher of the medieval author of the “Provi-
sions” book. The collection contained approxi-
mately 16 million words, with 278,877 unique
surface forms.

P(δ|χ) is calculated using the trained model, as
follows:

∏=
yx DDall

lkyx CCDDPP
..:

)..|..()|(χδ

The segments Dx.. Dy are generated by finding all

possible 2n-1 segmentations of the word δ. For
example, given “macle” then all possible seg-
mentations are (m,a,c,l,e), (ma,c,l,e), (m,ac,l,e),
(mac,l,e), (m,a,cl,e), (ma,cl,e), (m,acl,e),
(macl,e), (m,a,c,le), (ma,c,le), (m,ac,le), (mac,le),
(m,a,cle), (ma,cle), (m,acle), (macle).
All segment sequences Ck.. Cl known to produce
Dx.. Dy for each of the possible segmentations are
produced. If a sequence of C1.. Cn segments

generates a valid word χ which exists in the web-
mined collection, then argmaxχ P(δ|χ)·P(χ) is
computed, otherwise the sequence is discarded.
Possible corrections are subsequently ranked.
For all the experiments reported in this paper, the
top 10 corrections are generated. Note that error
correction reported in this paper does not assume
that a word is correct because it exists in the
web-mined collection and assumes that all words
are possibly incorrect.
The effect of two modifications to the m:n char-
acter model mentioned above were examined.
The first modification involved making the char-
acter model account for the position of letters in
a word. The intuition for this model is that since
Arabic letters change their shape based on their
positions in words and would hence affect the
letters with which they would be confused.
Formally, given L denoting the positions of the
letter at the boundaries of character segments,
whether start, middle, end, or isolated, the char-
acter model would be:

Psubstitution (Ck..Cl −> Dx.. Dy | L) =

)|..(

)|....(

LCCcount

LDDCCcount

lk

yxlk →

Pdeletion (Ck..Cl −> ε | L) =
)|..(

)|..(

LCCcount

LCCcount

lk

lk ε→

Pinsertion (ε −> Dx.. Dy) =
)|(

)|..(

LCcount

LDDcount yx→ε

The second modification involved giving a small
uniform probability to single character substiu-
tions that are unseen in the training data. This
was done in accordance to Lidstone’s law to
smooth probabilities. The probability was set to
be 100 times smaller than the probability of the
smallest seen single character substitution*.

* Other uniform probability estimates were examined for the
training data and the one reported here seemed to work best

r n a c l e

 m a d e

411

3.2 Language Modeling

For language modeling, a trigram language
model was trained on the same web-mined col-
lection that was mentioned in the previous sub-
section without any kind of morphological proc-
essing. Like the text extracted from the “Provi-
sions” book, alef and ya letter normalizations
were performed. The language model was built
using SRILM toolkit with Good-Turing smooth-
ing and default backoff.

Given a corrupted word sequence ∆ = {δ1 .. δi ..
δn} and Ξ = {Χ1 .. Χi .. Χn}, where Χi ={χi0 .. χim}

are possible corrections of δi (m = 10 for all the
experiments reported in the paper), the aim was

to find a sequence Ω = {ω1 .. ωi .. ωn}, where

ωi ∈ Χi, that maximizes:

()
4342144444 344444 21
odelCharacterM

iji

delLanguageMo

jijiij
mjni

PP)|(,| ,2,1
..1,..1

χδχχχ ⋅

 Π −−==

3.3 Language Modeling and Shallow Mor-

phological Analysis

Two paths were pursued to explore the combined
effect of language modeling and shallow mor-
phological analysis.
In the first, a 6-gram language model was trained
on the same web-mined collection after each of
the words in the collection was segmented into
its constituent prefix, stem, and suffix (in this
order) using language model based stemmer (Lee
et al., 2003). For example, “ TUآPQRو – wktAbhm”
was replaced by “w# ktAb +hm” where # and +
were used to mark prefixes and suffixes respec-
tively and to distinguish them from stems. Like
before, alef and ya letter normalizations were
performed and the language model was built us-
ing SRILM toolkit with the same parameters.
Formally, the only difference between this

model and the one before is that Χi ={χi0 .. χim}
are the {prefix, stem, suffix} tuples of the possi-

ble corrections of δi (a tuple is treated as a block).
Otherwise everything else is identical.
In the second, a trigram language model was
trained on the same collection after the language
modeling based stemming was used on all the
tokens in the collection (Lee et al., 2003). The
top n generated corrections were subsequently
stemmed and the stems were reranked using the
language model. The top resulting stem was
compared to the condition in which language
modeling was used without morphological
analysis (as in the previous subsection) and then
the top resulting correction were stemmed. This

path was pursued to examine the effect of correc-
tion on applications where stems are more useful
than words such as Arabic information retrieval
(Darwish et al., 2005; Larkey et al., 2002).

3.4 Testing the Models

The 1:1 and m:n character mapping models were
tested while enabling or disabling character posi-
tion training (CP), smoothing by the assignment
of small probabilities to unseen single character
substitutions (UP), language modeling (LM), and
shallow morphological processing (SM) using
the 6-gram model.
As mentioned earlier, all models were tested us-
ing sentences containing 2,000 words in total.

4 Experimental Results

Table 1 reports on the percentage of words for
which a proper correction was found in the top n
generated corrections using different models.
The percentage of words for which a proper cor-
rection exists in the top 10 proposed correction is
the upper limit accuracy we can achieve given
than we can rerank the correction using language
modeling. Table 2 reports the word error rate for
the 1:1 and m:n models with and without CP,
UP, LM, and SM. Further, the before and after
stemming error rates are reported for setups that
use language modeling. Table 3 reports on the
stem error rate when using the stem trigram lan-
guage model.
The best model was able to find the proper cor-
rection within the top 10 proposed correction for
90% of the words. The failure to find a proper
correction within the proposed corrections was
generally due to grossly misrecognized words
and was rarely due to words that do not exist in
web-mined collection. Perhaps, more training
examples for the character based models would
improve correction.

Corrections 1 2 3 4 5 10

1:1 75.3 80.3 83.1 84.5 85 86.5

1:1 + CP 76.9 82.1 83.5 83.2 85 86

1:1 + UP 76 81 83.6 84.6 85.2 86.7

m:n 78.3 83.5 85.4 86.7 87.1 88.5

m:n + CP 79.9 83.9 84.0 85.5 85.9 86.8

m:n + UP 78.4 83.7 85.6 84.1 87.0 90.0

Table 1: Percentage of words for which a proper cor-

rection was found in the top n generated corrections

412

Model 1:1 m:n

 Word Stem Word Stem

No Correction 39.0% - 39.0% -

Base Model 24.7% - 21.8% -

+ CP 23.1% - 21.5% -

+ UP 24% - 21.6% -

+ LM 15.8% 14.6% 13.3% 12.1%

+ LM + CP 16.5% 15.1% 15.5% 14.7%

+ LM + UP 15.4% 14.3% 11.7% 10.8%

+ SM + UP 27.8% 26.5% 24.5% 23.0%

Table 2: Word/stem error rate for correction with the

different models

Model 1:1 m:n

Stem 3-gram 16.1% 12.9%

Table 3: Stem error rate for top correction using stem

trigram language model

The results indicate that the m:n character model
is better than the 1:1 model in two ways. The
first is that the m:n model yielded a greater per-
centage of proper corrections in the top 10 gen-
erated corrections, and the second is that the
scores of the top 10 corrections were better
which led to better results compared to the 1:1
model when used in combination with language
modeling. For the m:n model with language
modeling, the language model properly picked
the proper correction from the proposed correc-
tion 98% of the time (for the cases where a
proper correction was within the proposed cor-
rections).
Also the use of smoothing, UP, produced better
corrections, while accounting for character posi-
tions had an adverse effect on correction. This
might be an indication that the character segment
correction training data was sparse. Using the 6-
gram language model on the segmented words
had a severely negative impact on correction ac-
curacy. Perhaps is due to insufficient training
data for the model. This situation lends itself to
using a factored language model using the sur-
face form of words as well as other linguistic
features of the word such as part of speech tags,
prefixes, and suffixes.
As for training a language model on words ver-
sus stems, the results suggest that word based
correction is slightly better than stem based cor-
rection. The authors’ intuition is that this re-
sulted from having a sufficiently large corpus to
train the language model and that this might have
been reversed if the training corpus for the lan-
guage model was smaller. Perhaps further inves-
tigation would prove or disprove the authors’
intuition.

5 Conclusion and Future Work

The paper examined the use of single character
and character segment models based correction
of Arabic OCR text combined with language
modeling and shallow morphological analysis.
Further, character position and smoothing issues
were also examined. The results show the supe-
riority of the character segment based model
compared to the single character based model.
Further, the use of language modeling yielded
improved error correction particularly for the
character segment based model. Accounting for
character position and shallow morphological
analysis had a negative impact on correction,
while smoothing had a positive impact. Lastly,
given a large in-domain corpus to extract a cor-
rection dictionary and to train a language model
is a sufficient strategy for correcting a morpho-
logically rich language such as Arabic with a
70% reduction in word error rate.
For future work, a factor language model

might prove beneficial to incorporate morpho-
logical information and other factors such as part
of speech tags while overcoming training data
sparseness problems. Also, determining the size
of a sufficiently large corpus to generate a cor-
rection dictionary and to train a language model
is desirable. Finally, word prediction might
prove useful for cases where OCR grossly mis-
recognized words.

Reference

Agirre, E., K. Gojenola, K. Sarasola, and A. Vouti-
lainen. Towards a Single Proposal in Spelling Cor-
rection. In COLING-ACL'98 (1998).

Ahmed, M. A Large-Scale Computational Processor
of Arabic Morphology and Applications. MSc. The-

sis, in Faculty of Engineering Cairo University:

Cairo, Egypt. (2000).

Baeza-Yates, R. and G. Navarro. A Faster Algorithm
for Approximate String Matching. In Combinato-

rial Pattern Matching (CPM'96), Springer-Verlag

LNCS (1996).

Brill, E. and R. Moore. An improved error model for
noisy channel spelling correction. In the proceed-
ings of the 38th Annual Meeting on Association for

Computational Linguistics, pages 286 – 293 (2000).

Church, K. and W. Gale. “Probability Scoringfor
Spelling Correction.” Statistics and Computing, 1:
93-103 (1991).

Darwish, K. and D. Oard. Term Selection for Search-
ing Printed Arabic. In SIGIR-2002 (2002).

413

Darwish, K., H. Hassan, and O. Emam. Examining
the Effect of Improved Context Sensitive Morphol-
ogy on Arabic Information Retrieval. In ACL Work-

shop on Computation Approaches to Semitic Lan-

guages, Ann Arbor, (2005).

De Roeck, A. and W. Al-Fares. A Morphologically
Sensitive Clustering Algorithm for Identifying Ara-
bic Roots. In the 38th Annual Meeting of the ACL,
Hong Kong, (2000).

Domeij, R., J. Hollman, V. Kann. Detection of spell-
ing errors in Swedish not using a word list en clair.
Journal of Quantitative Linguistics (1994) 195-201.

Harding, S., W. Croft, and C. Weir. Probabilistic Re-
trieval of OCR-degraded Text Using N-Grams. In
European Conference on Digital Libraries (1997).

Hong, T. Degraded Text Recognition Using Visual
and Linguistic Context. Ph.D. Thesis, Computer

Science Department, SUNY Buffalo: Buffalo (1995).

Jurafsky, D. and J. Martin. Speech and Language
Processing. Chapter 5: pages 141-163. Prentice
Hall (2000).

Larkey, L., L. Ballesteros, and M. Connell. Improving
stemming for Arabic information retrieval: light
stemming and cooccurrence analysis. In proceed-
ings of the 25th annual international ACM SIGIR

conference, pages 275-282 (2002).

Lee, Y., K. Papineni, S. Roukos, O. Emam, and H.
Hassan. Language Model Based Arabic Word Seg-
mentation. In the Proceedings of the 41st Annual
Meeting of the Association for Computational Lin-

guistics, pages 399 - 406 (2003).

Lu, Z., I. Bazzi, A. Kornai, J. Makhoul, P. Natarajan,
and R. Schwartz. A Robust, Language-Independent
OCR System. In the 27th AIPR Workshop: Ad-

vances in Computer Assisted Recognition, SPIE
(1999).

Moussa B., M. Maamouri, H. Jin, A. Bies, X. Ma.
Arabic Treebank: Part 1 - 10Kword English Trans-
lation. Linguistic Data Consortium (2003).

Oflazer, K. Error-Tolerant Finite State Recognition
with Applications to Morphological Analysis and
Spelling Correction. Computational Linguistics

22(1), 73-90 (1996).

Taghva, K., J. Borsack, and A. Condit. An Expert
System for Automatically Correcting OCR Output.
In SPIE - Document Recognition (1994).

Tillenius, M., Efficient generation and ranking of
spelling error corrections. NADA (1996).

Tseng, Y. and D. Oard. Document Image Retrieval
Techniques for Chinese. In Symposium on Docu-

ment Image Understanding Technology, Columbia,

MD (2001).

414

