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Abstract

In this paper we present the evaluation
of a set of string similarity metrics used
to resolve the mapping from strings to
concepts in the UMLS MetaThesaurus.
String similarity is conceived as a single
component in a full Reference Resolution
System that would resolve such a map-
ping. Given this qualification, we obtain
positive results achieving 73.6 F-measure
(76.1 precision and 71.4 recall) for the
task of assigning the correct UMLS con-
cept to a given string. Our results demon-
strate that adaptive string similarity meth-
ods based on Conditional Random Fields
outperform standard metrics in this do-
main.

1 Introduction

1.1 String Similarity and Reference Resolution

String similarity/matching algorithms are used as a
component in reference resolution algorithms. We
use reference resolution in a broad sense, which in-
cludes any of the following aspects:

a. Intra-document noun phrase reference resolu-
tion.

b. Cross-document or corpus reference resolution.

c. Resolution of entities found in a corpus with
databases, dictionaries or other external knowl-
edge sources. This is also called semantic inte-

gration, e.g., (Li et al., 2005), reference ground-
ing, e.g., (Kim and Park, 2004) or normaliza-
tion, e.g., (Pustejovsky et al., 2002; Morgan et
al., 2004).

The last two aspects of reference resolution are
particularly important for information extraction,
and the interaction of reference resolution with in-
formation extraction techniques (see for example
Bagga (1998)). The extraction of a particular set of
entities from a corpus requires reference resolution
for the set of entities extracted (e.g., the EDT task in
ACE1), and it is apparent that there is more variation
in the cross-document naming conventions than in a
single document.

The importance of edit distance algorithms has
already been noticed, (Müller et al., 2002) and the
importance of string similarity techniques in the
biomedical domain has also been acknowledged,
e.g., (Yang et al., 2004).

String similarity/matching algorithms have also
been used extensively in related problems such as
Name databases and similar problems in structured
data, see (Li et al., 2005) and references mentioned
therein.

The problem of determining whether two similar
strings may denotate the same entity is particularly
challenging in the biomedical literature. It has al-
ready been noticed (Cohen et al., 2002) that there
is great variation in the naming conventions, and
noun phrase constructions in the literature. It has
also been noticed that bio-databases are hardly ever
updated with the names in the literature (Blaschke

1http://www.nist.gov/speech/tests/ace/
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et al., 2003). A further complication is that the ac-
tual mentions found in text are more complex than
just names - including descriptors, in particular. Fi-
nally, ambiguity (where multiple entities have the
same name) is very pervasive in biomedicine.

In this paper we investigate the use of several
string similarity methods to group together string
mentions that might refer to the same entity or con-
cept. Specifically, we consider the sub-problem of
assigning an unseen mention to one of a set of exist-
ing unique entities or concepts, each with an associ-
ated set of known synonyms. As our aim here is fo-
cusing on improving string matching, we have pur-
posely factored out the problem of ambiguity (to the
extent possible) by using the UMLS MetaThesaurus
as our data source, which is largly free of strings that
refer to multiple entities. Thus, our work here can be
viewed an important piece in a larger normalization
or reference resolution system that resolves ambigu-
ity (which includes filtering out mentions that don’t
refer to any entity of interest).

The experiments reported on in this paper evalu-
ate a suite of robust string similarity techniques. Our
results demonstrate considerable improvement to be
gained by using adaptive string similarity metrics
based on Conditional Random Fields customized to
the domain at hand. The resulting best metric, we
term SoftTFIDF-CRF, achieves 73.6 F-measure on
the task of assigning a given string to the correct
concept. Additionally, our experiments demonstrate
a tradeoff between efficiency and recall based on � -
gram indexing.

2 Background

2.1 Entity Extraction and Reference
Resolution in the Biomedical Domain

Most of the work related to reference resolution in
this domain has been done in the following areas: a)
Intra-document Reference resolution, e.g (Castaño
et al., 2002; Lin and Liang, 2004) b) Intra-document
Named entity recognition (e.g Biocreative Task 1A
(Blaschke et al., 2003), and others), also called clas-
sification of biological names (Torii et al., 2004) c)
Intra-document alias extraction d) cross-document
Acronym-expansion extraction, e.g., (Pustejovsky
et al., 2001). e) Protein names resolution against
database entries in SwissProt, protein name ground-

ing, in the context of a relation extraction task
(Kim and Park, 2004). One constraint in these ap-
proaches is that they use several patterns for the
string matching problem. The results of the protein
name grounding are 59% precision and 40% recall.
The Biocreative Task 1B task challenged systems
to ground entities found in article abstracts which
contain mentions of genes in Fly, Mouse and Yeast
databases. A central component in this task was re-
solving ambiguity as many gene names refer to mul-
tiple genes.

2.2 String Similarity and Ambiguity

In this subsection consider the string similarity is-
sues that are present in the biology domain in par-
ticular. The task we consider is to associate a string
with an existing entity, represented by a set of known
strings. Although the issue of ambiguity is present
in the examples we give, it cannot be resolved by
using string similarity methods alone, but instead by
methods that take into account the context in which
those strings occur.

The protein name p21 is ambiguous at least
between two entities, mentioned as p21-ras and
p21/Waf in the literature. A biologist can look at
a set of descriptions and decide whether the strings
are ambiguous or correspond to any of these two (or
any other entity).

The following is an example of such a mapping,
where R corresponds to p21-ras, W to p21(Waf) and
G to another entity (the gene). Also it can be noticed
that some of the mappings include subcases (e.g.,
R.1).2

String Form Entity
ras-p21 protein R
p21 R/W
p21(Waf1/Cip1) W
cyclin-dependent kinase-I p21(Waf-1) W
normal ras p21 protein R
pure v-Kirsten (Ki)-ras p21 R.1
wild type p21 R/W
synthetic peptide P21 R/W.2
p21 promoter G
transforming protein v-p21 R.3
v-p21 R.3
p21CIP1/WAF1 W
protein p21 WAF1/CIP1/Sd:1 W

Table 1: A possible mapping from strings to entities.

2All the examples were taken from the MEDLINE corpus.
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If we want to use an external knowlege source to
produce such a mapping, we can try to map it to con-
cepts in the UMLS Methatesaurus and entries in the
SwissProt database.

These two entities correspond to the concepts
C0029007 (p21-Ras) and C0288472 (p21-Waf) in
the UMLS Methathesaurus. There are 27 strings or
names in the UMLS that map to C0288472 (Table
2):

oncoprotein p21 CAP20
CDK2-associated protein 20 kDa MDA 6
Cdk2 inhibitor WAF1 CIP1
Cdk-interacting protein cdn1 protein
CDK-Interacting Protein 1 CDKN1A
CDKN1 protein Cip1 protein
Cip-1 protein mda-6 protein
Cyclin-Dependent Kinase Inhibitor 1A p21
p21 cell cycle regulator p21(cip1)
p21 cyclin kinase inhibitor p21(waf1-cip1)
Pic-1 protein (cyclin) p21-WAF1
senescent cell-derived inhibitor protein 1 protein p21
CDKN1A protein WAF1 protein
WAF-1 Protein

Table 2: UMLS strings corresponding to C0288472

There are 8 strings that map to concept C0029007
(Table 3).

Proto-Oncogene Protein p21(ras) p21(c-ras)
p21 RAS Family Protein p21 RAS Protein
Proto-Oncogene Protein ras c-ras Protein
ras Proto-Oncogene Product p21 p21(ras)

Table 3: UMLS strings corresponding to C0029007

It can be observed that there is only one exact
match: p21 in C0288472 and Table 1. It should
be noted that p21, is not present in the UMLS as a
possible string for C0029007. There are other close
matches like p21(Waf1/Cip1) (which seems very
frequent) and p21(waf1-cip1).

An expression like The inhibitor of cyclin-
dependent kinases WAF1 gene product p21 has
a high similarity with Cyclin-Dependent Kinase
Inhibitor 1 A and The cyclin-dependent kinase-I
p21(Waf-1) partially matches Cyclin-Dependent Ki-
nase

However there are other mappings which look
quite difficult unless some context is given to pro-
vide additional clues (e.g., v-p21).

The SwissProt entries CDN1A FELCA,
CDN1A HUMAN and CDN1A MOUSE are

related to p21(Waf). They have the following set of
common description names:

Cyclin-dependent kinase inhibitor 1, p21, CDK-
interacting protein 1.3

There is only one entry in SwissProt related to p21-
ras: Q9PSS8 PLAFE: with the description name
P21-ras protein and a related gene name: Ki-ras.

It should be noted that SwissProt classifies, as dif-
ferent entities, the proteins that refer to different or-
ganisms. The UMLS MetaThesaurus, on the other
hand, does not make this distinction. Neither is this
distinction always present in the literature.

3 Methods for Computing String
Similarity

A central component in the process of normaliza-
tion or reference resolution is computing string sim-
ilarity between two strings. Methods for measuring
string similarity can generally be broken down into
character-based and token-based approaches.

Character-based approaches typically consist of
the edit-distance metric and variants thereof. Edit
distance considers the number of edit operations (ad-
dition, substitution and deletion) required to trans-
form a string ��� into another string �
	 . The Leven-
stein distance assigns unit cost to all edit operations.
Other variations allow arbitrary costs or special costs
for starting and continuing a “gap” (i.e., a long se-
quence of adds or deletes).

Token-based approaches include the Jaccard sim-
ilarity metric and the TF/IDF metric. The meth-
ods consider the (possibly weighted) overlap be-
tween the tokens of two strings. Hybrid token and
character-based are best represented by SoftTFIDF,
which includes not only exact token matches but
also close matches (using edit-distance, for exam-
ple). Another approach is to perform the Jaccard
similarity (or TF/IDF) between the � -grams of the
two strings instead of the tokens. See Cohen et
al. (2003) for a detailed overview and comparison
of some of these methods on different data sets.

3There are two more description names for the human and
mouse entries. The SwissProt database has also associated
Gene names to those entries which are related to some of the
possible names that we find in the literature. Those gene names
are: CDKN1A, CAP20, CDKN1, CIP1, MDA6, PIC1, SDI1,
WAF1, Cdkn1a, Cip1, Waf1. It can be seen that those names are
incorporated in the UMLS as protein names.
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Recent work has also focused on automatic meth-
ods for adapting these string similarity measures
to specific data sets using machine learning. Such
approaches include using classifiers to weight var-
ious fields for matching database records (Cohen
and Richman, 2001). (Belenko and Mooney, 2003)
presents a generative, Hidden Markov Model for
string similarity.

4 An Adaptive String Similarity Model

Conditional Random Fields (CRF) are a recent, in-
creasingly popular approach to sequence labeling
problems. Informally, a CRF bears resemblance to
a Hidden Markov Model (HMM) in which, for each
input position in a sequence, there is an observed
variable and a corresponding hidden variable. Like
HMMs, CRFs are able to model (Markov) depen-
dencies between the hidden (predicted) variables.
However, because CRFs are conditional, discrimina-
tively trained models, they can incorporate arbitrary
overlapping (non-independent) features over the en-
tire input space — just like a discriminative classi-
fier.

CRFs are log-linear models that compute the
probability of a state sequence, ������� ��� � 	
��������� ����� ,
given an observed sequence, �� ��� � � � � 	 ��������� � � � as:� ��������� ��� � "!#%$'&)( * �+,.- �0/+1 - �32 1
4
1 ��� ,65 � � � , � �� �87 �:9

where the 4;1 are arbitrary feature functions, the2 1 are the model parameters and
 <!# is a normaliza-

tion function.
Training a CRF amounts to finding the 2 1 that

maximize the conditional log-likelihood of the data.
Given a trained CRF, the inference problem in-

volves finding the most likely state sequence given
a sequence of observations. This is done using a
slightly modified version of the Viterbi algorithm
(See Lafferty et al. (2001) more for details on
CRFs).

4.1 CRFs for String Similarity

CRFs can be used to measure string similarity by
viewing the observed sequence, �� , and the state se-
quence, �� , as sequences of characters. In practice
we are presented with two strings, �3� , and �=	 of pos-
sibly differing lengths. A necessary first step is to

align the two strings by applying the Levenstein dis-
tance procedure as described earlier. This produces
a series of edit operations where each operation has
one of three possible forms: 1) >@? �BA (addition), 2)�DCE? � A (substitution) and 3) �BCF?G> (deletion). The
observed and hidden sequences are then derived by
reading off the terms on the right and left-hand sides
of the operations, respectively. Thus, the possible
state values include all the characters in our domain
plus the special null character, > .

Feature Description Variables
State uni-gram H.IKJ.L
State bi-gram H.I J�M�N8O I J L
Obs. uni-gram; state uni-gram H�PQJ O IKJ.L
Obs. bi-gram; state uni-gram H�P J�M�N8O P J�O I J L
Obs. is punctuation and state uni-gram H�PQJ O IKJ.L
Obs. is a number and state uni-gram H�PQJ O IKJ.L

Table 4: Features used for string similarity

We employ a set of relatively simple features in
our string similarity model described in Table 4. One
motivation for keeping the set of features simple was
to determine the utility of string similarity CRFs
without spending effort designing domain-specific
features; this is a primary motivation for taking a
machine learning approach in the first place. Addi-
tionally, we have found that more specific, discrimi-
nating features (e.g., observation tri-grams with state
bi-grams) tend to reduce the performance of the
CRF on this domain - in some cases considerably.

4.2 Practical Considerations

We discuss a few practical concerns with using
CRFs for string similarity.

The first issue is how to scale CRFs to this task.
The inference complexity for CRFs is RS��� 	 7 � where� is the size of the vocabulary of states and 7 is the
number of input positions. In our setting, the num-
ber of state variable values is very large - one for
each character in our alphabet (which is on the or-
der of 40 or more including digits and punctuation).
Moreover, we typically have very large training sets
largely due to the fact that T.U 	�V training pairs are
derivable from an equivalence class of size W .

Given this situation, standard training for CRFs
becomes unwieldy, since it involves performing in-
ference over the entire data set repeatedly (typically
a few hundred iterations are required to converge).
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As such, we resort to an approximation: Voted Per-
ceptron training (Collins, 2002). Voted Perceptron
training does not involve maximizing log-likelihood,
but instead updates parameters via stochastic gradi-
ent descent with a small number of passes over the
data.

Another consideration that arises is given a pair
of strings, which one should be considered the “ob-
served” sequence and which one the “hidden” se-
quence.

Another consideration that arises is given a pair
of strings, which string should be considered the
“observed” sequence and which the “hidden” se-
quence?4 We have taken to always selecting the
longest string as the “observed” string, as it appears
most natural, though that decision is somewhat arbi-
trary.

A last observation is that the probability assigned
to a pair of strings by the model will be reduced ge-
ometrically for longer string pairs (since the prob-
ability is computed as a product of 7 terms, where7 is the length of the sequence). We have taken to
normalizing the probabilities by the length of the se-
quence roughly following the approach of (Belenko
and Mooney, 2003).

A final point here is that it is possible to use
Viterbi decoding to find the W -best hidden strings
given only the observed string. This provides a
mechanism to generate domain-specific string alter-
ations for a given string ranked by their probability.
The advantage of this approach is that such alter-
ations can be used to expand a synonym list; exact
matching can then be used greatly increasing effi-
ciency. Work is ongoing in this area.

5 Matching Procedure

Our matching procedure in this paper is set in the
context of finding the concept or entity (each with
some existing set of known strings) that a given
string, � , is referring to. In many settings, such as the
BioCreative Task 1B task mentioned above, it is nec-
essary to match large numbers of strings against the
lexicon - potentially every possible phrase in a large

4Note that a standard use for models such as this is to find the
most likely hidden sequence given only the observed sequence.
In our setting here we are provided the hidden sequence and
wish to compute it’s (log-)probability given the observed se-
quence.

number of documents. As such, very fast matching
times (typically on the order of milliseconds) are re-
quired.

Our method can be broken down into two steps.
We first select a reasonable candidate set of strings
(associated with a concept or lexical entry), XY��Z� � �B	 ��������� � U , reasonably similar to the given string� using an efficient method. We then use one of a
number of string similarity metrics on all the pairs:[ � � � �]\]� [ � � � 	B\]������� [ � � � U \

The set of candidate strings, �3� � �D	 ��������� � U is deter-
mined by the � -gram match ratio, which we define
as: �
^`_ 7ba � ��� � �=C���� �dc � Wfef���g�FhiWfef��� C ���� Wfef���g�FjiWfef��� C ���

where Wfek��lf�m�on=pE� such that p is a � -gram of lrq .
This set is retrieved very quickly by creating a � -
gram index: a mapping between each � -gram and
the strings (entries) in which it occurs. At query
time, the given string is broken into � -grams and
the sets corresonding to each � -gram are retrieved
from the index. A straightforward computation finds
those entries that have a certain number of � -grams
in common with the query string � from which the
ratio can be readily computed.

Depending on the setting, three options are possi-
ble given the returned set of candidates for a string� :

1. Consider � and �BC equivalent where �BC is the
most similar string

2. Consider � and � C equivalent where � C is the
most similar string and � ats ��� � � C �vuxw , for
some threshold w

3. Consider � and � C equivalent for all � C where� a�s ��� � � C �%uyw , for some threshold w
In the experiments in this paper, we use the first

criterion since for a given string, we know that it
should be assigned to exactly one concept (see be-
low).

6 Experiments and Results

6.1 Data and Experimental Setup

We used the UMLS MetaThesaurus for all our ex-
periments for three reasons: 1) the UMLS repre-
sents a wide-range of important biomedical concepts
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for many applications and 2) the size of the UMLS
(compared with BioCreative Task 1B, for example)
promotes statistically significant results as well as
sufficient training data 3) the problem of ambiguity
(multiple concepts with the same name) is largely
absent in the UMLS.

The UMLS is a taxonomy of medical and clini-
cal concepts consisting of 1,938,701 lexical entries
(phrase strings) where each entry belongs to one (or,
in very rarely, more than one) of 887,688 concepts.
We prepared the data by first selecting only those
lexical entries belonging to a concept containing 12
or more entries. This resulted in a total of 129,463
entries belonging to 7,993 concepts. We then di-
vided this data into a training set of 95,167 entries
and test set of 34,296 entries where roughly 70% of
the entries for each concept were placed in the train-
ing set and 30% in the test set. Thus, the training
set and test set both contained some string entries
for each of the 7,993 concepts. While restricting the
number of entries to 12 or more was somewhat arbi-
trary, this allowed for at least 7 (70% of 12) entries
in the training data for each concept, providing suf-
ficient training data.

The task was to assign the correct concept identi-
fier to each of the lexical entries in the test set. This
was carried out by finding the most similar string
entry in the training data and returning the con-
cept identifier associated with that entry. Since each
test instance must be assigned to exactly one con-
cept, our system simply ranked the candidate strings� �'� � 	
������� � U based on the string similarity metric
used. We compared the results for different maxi-
mum � -gram match ratios. Recall that the � -gram
match mechanism is essentially a filter; higher val-
ues correspond to larger candidate pools of strings
considered by the string similarity metrics.

We used six different string similarity metrics
that were applied to the same set of candidate re-
sults returned by the � -gram matching procedure
for each test string. These were TFIDF, Lev-
enstein, q-gram-Best, CRF, SoftTFIDF-Lev and
SoftTFIDF-CRF. TFIDF and Levenstein were de-
scribed earlier. The q-gram-Best metric simply se-
lects the match with the lowest � -gram match ratio
returned by the � -gram match procedure described

Precision Recall F-measure
SoftTFIDF-CRF( z={ | ) 0.761 0.714 0.736
SoftTFIDF-Lev( zD{ | ) 0.742 0.697 0.718
CRF( zD{ } ) 0.729 0.705 0.717~ -gram Best( zD{ �'�Q| ) 0.714 0.658 0.685
Levenstein( zD{ � ) 0.710 0.622 0.663
TFIDF( z={ �'�Q| ) 0.730 0.576 0.644

Table 5: Maximum F-measure attained for each
string similarity metric, with corresponding preci-
sion and recall values. The numbers in parentheses
indicate the � -gram match value for which the high-
est F-measure was attained.

above5. The SoftTFIDF-Lev model is the Soft-
TFIDF metric described earlier where the secondary
metric for similarity between pairs of tokens is the
Levenstein distance.

The CRF metric is the CRF string similarity
model applied to the entire strings. This model was
trained on pairs of strings that belonged to the same
concept in the training data, resulting in 130,504
string pair training instances. The SoftTFIDF-CRF
metric is the SoftTFIDF method where the sec-
ondary metric is the CRF string similarity model.
This CRF model was trained on pairs of tokens (not
entire phrases). We derived pairs of tokens by find-
ing the most similar pairs of tokens (similarity was
determined here by Levenstein distance) between
strings belonging to the same concept in the training
data. This resulted in 336,930 string pairs as training
instances.

6.2 Results

We computed the precision, recall and F-measure
for each of the string similarity metrics across dif-
ferent � -gram match ratios shown in Fig. 1. Both
a precision and recall error is introduced when the
top-returned concept id is incorrect; just a recall er-
ror occurs when no concept id is returned at all - i.e.
when the � -gram match procedure returns the empty
set of candidate strings. This is more likely to occur
when for lower � values and explains the poor recall
in those cases. In addition, we computed the mean
reciprocal rank of each of the methods. This is com-
puted using the ranked, ordered list of the concepts
returned by each method. This scoring method as-

5This is essentially the Jaccard similarity metric over ~ -
grams instead of tokens
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Figure 1: Precision, Recall, F-measure and Mean
Reciprocal Rank comparisions for each string simi-
larity metric across different � -gram match ratios.

signs a score of �D� ^ for each test instance where ^
is the position in the ranked list at which the correct
concept is found. For example, by returning the cor-
rect concept as the 4th element in the ranked list, a
method is awarded �D�B� �Y� ���;� . The mean recip-
rocal rank is just the average score over all the test
elements.

As can be seen, the SoftTFIDF-CRF string-
similarity metric out-performs all the other meth-
ods on this data set. This approach is robust to
both word order variations and character-level dif-
ferences, the latter with the benefit of being adapted
to the domain. Word order is clearly a critical fac-
tor in this domain6 though the CRF metric, entirely
character-based, does surprisingly well - much bet-
ter than the Levenstein distance. The q-gram-Best
metric, being able to handle word order variations
and character-level differences, performs fairly.

The graphs illustrate a tradeoff between efficiency
and accuracy (recall). Lower � -gram match ratios
return fewer candidates with correspondingly fewer
pairwise string similarities to compute. Precision ac-
tually peaks with a � -gram match ratio of around
0.2. Recall tapers off even up to high q-gram lev-
els for all metrics, indicating that nearly 30% of
the test instances are probably too difficult for any
string similarity metric. Error analysis indicates that
these cases tend to be entries involving synonymous
“nicknames”. Acquiring such synonyms requires
other machinery, e.g., (Yu and Agichtein, 2003).

7 Conclusions

We have explored a set of string similarity metrics
in the biological domain in the service of reference
resolution. String similarity is only one parameter to
be considered in this task. We presented encourag-
ing results for assigning strings to UMLS concepts
based solely on string similarity metrics — demon-
strating that adaptive string similarity metrics show
significant promise for biomedical text processing.
Further progress will require a system that 1) uti-
lizes context of occurrence of respective strings for
handling ambiguity and 2) further improves recall

6Inspection of the data indicates that the purely character-
based methods are more robust than one might think. There are
at least 8 strings to match against for a concept and it is likely
that at least one of them will have similar word order to the test
string.
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through expanded synonyms.
Future work should also consider the depen-

dent nature (via transitivity) of reference resolution.
Comparing a test string against all (current) mem-
bers of an equivalence class and considering multi-
ple, similar test instances simultaneously (McCal-
lum and Wellner, 2003) are two directions to pursue
in this vein.
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