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Abstract

We present a method to approximate a LTAG
grammar by a CFG. A key process in the ap-
proximation method is finite enumeration of
partial parse results that can be generated dur-
ing parsing. We applied our method to the
XTAG English grammar and LTAG grammars
which are extracted from the Penn Treebank,
and investigated characteristics of the obtained
CFGs. We perform CFG filtering for LTAG by
the obtained CFG. In the experiments, we de-
scribe that the obtained CFG is useful for CFG
filtering for LTAG parser.

1 Introduction

Recently, lexicalized grammars such as Lexicalized Tree
Adjoining Grammar (LTAG) (Schabes et al., 1988) and
Head-Driven Phrase Structure Grammar (HPSG) (Pollard
and Sag, 1994) have attracted much attention in prac-
tical application context (Deep Thought Project, 2003;
Kototoi Project, 2001; Kay et al., 1994; Carroll et al.,
1998). However, inefficiency of parsing with those gram-
mars have prevented us from adopting them for practi-
cal usage. Especially in the LTAG framework, although
many studies proposed parsers that are theoretically effi-
cient (Vijay-Shanker and Joshi, 1985; Schabes and Joshi,
1988; van Noord, 1994; Nederhof, 1998), we do not at-
tain any practical LTAG parser that runs efficiently with
large-scale hand-crafted grammars such as the XTAG En-
glish grammar (XTAG Research Group, 2001).

Yoshinaga et al. (Yoshinaga et al., 2003) demonstrated
that a drastic speed-up of LTAG parsing can be achieved
when a LTAG grammar is compiled into a HPSG (Yoshi-
naga and Miyao, 2002) and a CFG filtering technique for
HPSG-Style grammar (Kiefer and Krieger, 2000; Tori-
sawa et al., 2000) is applied to the obtained HPSG. In ex-
periments with the XTAG English grammar, they found
that an HPSG parser with CFG filtering (Torisawa et
al., 2000) outperformed a theoretically efficient LTAG

parser (Sarkar, 2000) in terms of empirical time complex-
ity. Although their approach does not guarantee the theo-
retical bound of parsing complexity,O(n6) for a sentence
of lengthn, the empirical results of their CFG filtering are
still satisfactory.

In this paper, we propose a novel context-free approxi-
mation method for LTAG by reinterpreting the method by
Yoshinaga et al. in the context of LTAG parsing. A fun-
damental idea is to enumerate partial parse results that
can be generated during parsing. We assign CFG non-
terminal labels to the partial parse results, and then regard
their possible combinations as CFG rules.

In order to investigate the characteristics of CFGs pro-
duced by our method, we applied our method to two kinds
of LTAG grammars. One is the XTAG English gram-
mar, which is a large-scale hand-crafted LTAG, and the
other is LTAG grammars extracted from Penn Treebank
Wall Street Journal by the grammar extraction method de-
scribed in (Miyao et al., 2003). Then, we compare pars-
ing speed of a CKY parser using the obtained CFG with
parsing speed of an existing LTAG parser.

The remainder of the paper is organized as follows.
Section 2 introduces background of our research. Sec-
tion 3 describes our approximation method. Section 4
reports experimental results with the two kinds of LTAG
grammars.

2 Background

2.1 Lexicalized Tree-Adjoining Grammar (LTAG)

An LTAG consists of a set of tree structures, which are as-
signed to words, calledelementary trees. A parse tree is
derived by combining elementary trees using two gram-
mar rules calledsubstitution and adjunction. Figure 1
shows elementary trees for“I”, “run” and“can”, and
depicts how they are combined by substitution and ad-
junction.

Substitution replaces a leaf node of an elementary tree
by another elementary tree whose root node has the same
label as the leaf node. In Figure 1, the leaf node labeled
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Figure 1: LTAG: elementary trees, substitution and ad-
junction

“NP” of α1 is replaced byα2, which has a root node la-
beled “NP.”

Adjunction replaces an internal node of an elementary
tree by another elementary tree whose root node and one
leaf node called afoot node have the same label as the
internal node. In Figure 1, the internal node labeled “VP”
of α1 is replaced byβ2, which has a root node and a foot
node labeled “VP.”

2.2 CFG filtering

CFG filtering (Harbusch, 1990; Maxwell III and Kaplan,
1993; Torisawa and Tsujii, 1996) is a parsing scheme that
filters out impossible parse trees using a CFG extracted
from a given grammar prior to parsing. In CFG filtering,
we first perform an off-line extraction of a CFG from a
given grammar, (Context-free (CF) approximation). By
using the obtained CFG we can compute efficiently the
necessary condition for parse trees the original grammar
could generate. Parsing using the obtained CFG as a fil-
ter comprises two phases (Figure 2). In the first phase,
we parse a sentence by the obtained CFG. In this phase,
the necessary condition represented by the CFG acts as
a filter of parse trees. In the second phase, using the
whole constraints in the original grammar, we examine
the generated parse trees, and eliminate overgenerated
parse trees.

The performance of parsers with CFG filtering de-
pends on the degree of the CF approximation (Yoshinaga
et al., 2003). If CF approximation is good, the number
of overgenerated parse trees is small. Thus, the key to
achieve efficiency in LTAG parsing is to maintain gram-
matical restrictions in CFG as efficiently as possible. The
more of the grammatical constraints in the given gram-
mar the obtained CFG captures, the more effectively we
can restrict the search space.

There are existing CFG filtering techniques for
LTAG (Harbusch, 1990; Poller and Becker, 1998). These
techniques extract CFG rules by simply dividing elemen-
tary trees into branching structures as shown in Figure 3.
Since the obtained CFG can capture only local constraints
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Figure 3: The existing CF approximation for LTAG

given in the elementary trees, we must examine many
global constraints in the second phase.

CFG filtering techniques have also been developed for
HPSG (Torisawa and Tsujii, 1996; Torisawa et al., 2000;
Kiefer and Krieger, 2000). CFG rules are extracted by
applying grammar rules to lexical entries and by enumer-
ating partial parse results (sign) that can be generated dur-
ing parsing (in Figure 4). The obtained CFG can capture
global constraints given in the lexical entries, because the
generated partial parse results preserve the whole con-
straints given in the lexical entries.

As Yoshinaga et al. demonstrated using HPSG-style
grammar converted from LTAG, finite enumeration of
partial parse results produces a better CFG filter than the
existing CF approximation for LTAG because of its abil-
ity to capture the global constraints. In the paper, we
re-interpret CF approximation of HPSG by Yoshinaga’s
method (Yoshinaga et al., 2003).

3 CF Approximation algorithm for LTAG

In this section, we describe an algorithm of our CF ap-
proximation of LTAG. In the following, we first describe
an approximation of LTAG which consists only of single-
anchored elementary trees. We then describe an approx-
imation of general LTAG which includes multi-anchored
elementary trees.

In Section 3.1, we introduce a basic idea in our method.
In Section 3.2, we explain our method in detail. In Sec-
tion 3.3, we explain the way of applying our method to
LTAG which comprises multi-anchored elementary trees.
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3.1 Basic Idea

The fundamental idea of our approximation method is to
enumerate partial parse results that can be generated dur-
ing parsing. We obtain a CFG by assigning CFG non-
terminal labels to the partial parse results, and regard-
ing bottom-up derivation relationships between the par-
tial parse results as CFG rules.

By recursively applying substitution and adjunction
to elementary trees, we enumerate partial parse results
derivable by LTAG. We adopt one of the existing mode,
head-corner traversal (van Noord, 1994) (Figure 5), to
recursively apply grammar rules.

In the first step of head-corner traversal, an elementary
tree is taken as input and a directed path from an anchor
node calledhead-corner to the root node is defined in a
certain manner. The path traverses along all the nodes in
the elementary tree. Then, grammar rules are incremen-
tally applied to each node along the path.

We assign a non-terminal label of CFG to a subtree.
A labeled subtree must include all information for enu-
meration. We determine this subtree as follows. A tree
is divided into two parts, at the node to which we are ap-
plying a grammar rule (Figure 6). The “lower” part of
the tree is a subtree below the node to which we are ap-
plying a grammar rule. The “upper” part consists of the
nodes to which we will apply grammar rules in the rest
of enumeration. We need only the “upper” part of the
tree that includes all information necessary in the rest of
the enumeration process. In this paper, we call the node
to which we are applying a grammar rule aprocessing
node, and we call the upper part of a tree anactive par-
tial tree. CFG non-terminal labels are assigned to each
active partial tree.

By assigning CFG non-terminals to generated active
partial trees, we obtain CFG rules as bottom-up deriva-
tion relationships between them. In Figure 7, the fol-
lowing CFG rules are obtained:G → A F, F → E,
E → D E, D → B andE → C.
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3.2 Algorithm

Table 1 shows pseudo-code of our approximation algo-
rithm. The algorithm takes LTAGG as input and outputs
a CFGG′.

We start by explaining the top-level function
‘‘extract cfg from ltag.’’ The function
iteratively picks up two active partial parse trees from
the set of active partial trees generated so far, and
applies possible grammar rules. Whenever a new active
partial parse tree is generated, we assign a new CFG
non-terminal label and add it to the set. In case that
new partial parse results have not been added during one
iteration, we exit withG′, which is the resulting CFG.

The function‘‘apply rules’’ applies the gram-
mar rules to two active partial trees, and change the pro-
cessing node to the next node. We apply unary rule in
line 5, substitution in line 8, and adjunction in line 12.

Let us consider the extraction of CFG from LTAG de-
fined in Figure 1. Figure 7 shows the extraction pro-
cess. The initial active partial treesA, B andC originate
from α1, α2, andβ1. In the first iteration in the func-
tion ‘‘extract cfg from ltag’’, two partial ac-
tive trees,D and E, and two CFG rules,D → B and
E → C are extracted. In the second iteration, one partial
active tree,F and two CFG rules,E → D E andF → E
are extracted. In the third iteration, one partial active tree,
G, and one CFG rule,G → A F are extracted.

When substitution is applied to an active partial tree,
the size of the parent’s active partial tree is smaller than
child’s active partial trees. Thus, the number of gener-
ated active partial trees is finite, and the number of non-
terminal labels in the obtained CFG is finite as well. In
other words, if the CFG rules comprise only substitutions,
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Table 1: The pseudo code of our algorithm

INPUT: G /* LTAG */
OUTPUT: G′ /* CFG */

Tn: /* a set of all active partial trees for nth iteration generated so far */
NTn: /* a set of new active partial trees for nth iteration */

Initialize:
Tn := φ
NT1 := etree(G)
G′ := φ
n := 1

1: procedure extract cfg from ltag(G)
2: begin
3: while ( NTn �= φ )
4: Tn := Tn−1∪NTn
5: foreach ntn in ( NTn )
6: foreach tn in ( Tn )
7: NT := apply rules( tn, ntn )
8: NTn+1 = NT ∪NTn+1
9: end foreach
10: end foreach
11: n++
12: end while
13: return G′
14: end extract cfg from ltag

1: procedure apply rules(t1, t2)
2: begin
3: NT := φ
4: if ( sibling( c node( t1 ) == nil ) ) /* if we cannot apply grammar rules */
5: NT = unary( t1 )
6: G′ = make rule( t1, NT ) ∪ G′
7: else if ( sibling( c node( t1 ) ) == ‘‘subst’’ ) /* if we can apply substitution */
8: NT = substitute( t2, t1 )
9: G′ = make rule( t2, t1 ) ∪ G′
10: else if ( sibling( c node( t1 ) ) == ‘‘foot’’ ) /* if we can apply adjunction */
11: if ( depth foot( t1 ) == 1 || count adjoing( t1 ) <= LIMIT )
12: NT = adjoin( t1, t2 )
13: G′ = make rule( t2, t1 ) ∪ G′
14: if ( depth foot( t1 ) >= 2 && count adjoing( t1 ) > LIMIT )
15: NT = ∗
16: G′ = make rule( t2, t1 ) ∪ G′
17: end if
18: end if
19: return NT
20: end apply rules

etree: To return the elementary trees with head-corner paths.
c node: To return the processing node of the argument.
unary: To return an active partial tree with the node

which we will apply the grammar rules after.
make rule: To return the CFG rule of arguments
substitute: To apply the rule and to return new active partial tree,

if we can apply the grammar rule of substitution to the arguments,
adjoin: To apply the rule and to return new active partial tree,

if we can apply the grammar rule of adjunction to the arguments.
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Figure 7: Approximation of LTAG to CFG

LTAG can be converted to CFG in finite size.
We must be careful about the depth of a foot node of

an auxiliary tree when adjunction is applied to an active
partial tree. If the depth of a foot node is one, active par-
tial tree becomes the same as one of the two active partial
trees to which adjunction are applied. If the depth of a
foot node is two or more, parent’s active partial tree takes
a form of a combination of two active partial trees (Fig-
ure 8). This means that the number of active partial trees
increases infinitely, if there are some auxiliary trees with
a foot node at depth two or more.

In order to prevent the infinite increase of active partial
trees, we count the number of the applications of adjunc-
tion which generates new active partial trees, and assign
a special non-terminal “∗” to active partial trees when the
number of the applications reach a certain threshold. We
then add CFG rules,∗ → X ∗ and∗ → ∗ X for all non-
terminal labels “X” in order to guarantee that the resulted
CFG can generate all parse trees that LTAG can generate.
By using these rules, resulted CFG always generate parse
trees which are derivable by the given grammar. Thus the
obtained CFG can be used as a filter.

3.3 Extention to LTAG including multi-anchored
trees

Our method can be applied to LTAG with elementary
trees which contain only one anchor. It is the reason that
the path from a head node to a root node becomes set-
tled uniquely. The above approximation algorithm a han-
dle general LTAG with multi-anchored trees by simply
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converting those trees into single anchored trees. When
a grammar includes multi-anchored elementary trees, we
simply replace an anchor node of them by a node to which
can be applied a grammar rule of substitution (e.g.TO in
Figure 9), and add a new elementary tree (e.g.TO-“to”
in Figure 9).

4 Experiments

In order to observe the characteristics of CFG obtained
by our method, we performed three experiments. In Sec-
tion 4.1, we apply our method to the XTAG English
grammar. In Section 4.2, we apply our method to LTAG
grammars of various size extracted from a corpus, and
investigate the relation between the size of LTAG gram-
mars and the specification of the obtained CFG. In Sec-
tion 4.3, we examine the characteristics of the obtained
CFG in terms of the parsing speed, and compare the pars-
ing speed of a CKY parser using the obtained CFG with
the parsing speed of an existing LTAG parser.

4.1 Experiment on threshold value of adjunction

We applied our algorithm to the XTAG English grammar.
In Table 2, we show the obtained CFG approximation of
the XTAG English grammar. In this experiment, we var-
ied threshold value of times of adjunction, which gener-
ates a new active partial tree, 0.
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Table 2: approximating the XTAG English grammar by
CFG

# of elementary trees of XTAG 924
# of terminal labels 924
# of non-terminal labels 2,779
# of rules 31,503

Even if the threshold is small, an obtained CFG is use-
ful for parsing, because we hardly perform an adjunction
using an auxiliary tree with a foot node with the depth
of two or more in LTAG parsing. The maximum number
of the possible rules is 2,779× (924+2,779)+2,779×
(924+ 2,779)× (924+2,779)= 370338,116,519,448.
Our method produced 31,503 rules (about 0.00008% of
all possible ones). Thus our method is efficient with re-
spect to avoiding meaningless increase of the number of
CFG rules. The small percentages means that obtained
CFG is excellent as a filter.

4.2 Experiment on Various Size of LTAG

We extracted LTAG grammars from Section 02-06, 02-
11, 02-16, and 02-21 of Penn Treebank Wall Street Jour-
nal (Table 3), and applied our method to the LTAG gram-
mars.

We investigated the relation between the size of termi-
nal labels, the size of non-terminal labels, and the size of
CFG rules (Table 4). The increase of the number of non-
terminal labels is slower than the increase of the number
of terminal labels. Thus, our method is applicable for a
larger LTAG than the LTAG which we used for this ex-
periment.

4.3 Comparing our method to an existing LTAG
parser

We investigated parsing performance of the obtained
CFG.

We selected sentences which consists of 15 or less
words from Section 23 of Penn Treebank Wall Street
Journal, and experimented on parsing the sentences by
two ways. One way is an existing LTAG parser with the
XTAG English grammar. The other way is a CKY parser
with the obtained CFG from the XTAG English grammar
with threshold 1. The reason why we used the sentences
which consists of 15 or less words is that existing LTAG
parser is too slow to parse longer sentences.

Figure 10 and Figure 11 show the performances of an
existing LTAG parser (Sarkar, 2000) and a CKY parser
with the obtained CFG respectively. The CKY parsing is
fast enough to employ a CFG filter. For longer sentences,
it is expectable that our algorithm is effective.

5 Concluding Remarks and Future
direction

In this paper, we showed an approximating method of
LTAG by CFG. A specification of a CFG obtained from
the XTAG English grammar shows that our method is ef-
ficient in the number of CFG rules. In addition, we com-
pared parsing performance between the existing LTAG
parser and the CKY parser with CFG which is obtained
from automatically extracted LTAG grammars. The com-
parison showed that the obtained CFG is useful for CFG
filtering for a LTAG parser. We will implement CFG fil-
tering for a LTAG parser, and verify the efficiency of CFG
filtering with our approximated CFG.
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