
Epsilon-Free Grammars and Lexicalized Grammars that Generate
the Class of the Mildly Context-Sensitive Languages

Akio FUJIYOSHI
Department of Computer and Information Sciences, Ibaraki University

4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan
fujiyoshi@cis.ibaraki.ac.jp

Abstract

This study focuses on the class of string
languages generated by TAGs. It examines
whether the class of string languages can be
generated by some epsilon-free grammars and
by some lexicalized grammars. Utilizing spine
grammars, this problem is solved positively.
This result for spine grammars can be trans-
lated into the result for TAGs.

1 Introduction

The class of grammars called mildly context-sensitive
grammars has been investigated very actively. Since it
was shown that tree-adjoining grammars (TAG) (Joshi et
al., 1975; Joshi and Schabes, 1996; Abeillé and Ram-
bow, 2000), combinatory categorial grammars (CCG),
linear indexed grammars (LIG), and head grammars (HG)
are weakly equivalent (Vijay-Shanker and Weir, 1994),
the class of string languages generated by these mildly
context-sensitive grammars has been thought to be very
important in the theory of formal grammars and lan-
guages. This study is strongly motivated by the work of
K. Vijay-Shanker and D. J. Wier (1994) and focuses on
the class of string languages generated by TAGs.

In this paper, it is examined whether the class of string
languages generated by TAGs can be generated by some
epsilon-free grammars and, moreover, by some lexical-
ized grammars. An epsilon-free grammar is a grammar
with a restriction that requires no use of epsilon-rules,
that is, rules defined with the empty string. Because the
definitions of the four formalisms presented in the paper
(Vijay-Shanker and Weir, 1994) allow the use of epsilon-
rules, and all of the examples use epsilon-rules, it is nat-
ural to consider the generation problem by epsilon-free
grammars. Since the notion of lexicalization is very im-
portant in the study of TAGs (Joshi and Schabes, 1996),

the generation problem by lexicalized grammars is also
considered.

To solve these problems, spine grammars (Fujiyoshi
and Kasai, 2000) are utilized, and it is shown that for
every string language generated by a TAG, not only an
epsilon-free spine grammar but also a lexicalized spine
grammar that genarates it can be constructed. Spine
grammars are a restricted version of context-free tree
grammars (CFTGs), and it was shown that spine gram-
mars are weakly equivalent to TAGs and equivalent to
linear, non-deleting, monadic CFTGs. Because consider-
ably simple normal forms of spine grammars are known,
they are useful to study the formal properties of the class
of string languages generated by TAGs.

Since both TAGs and spine grammars are tree gen-
erating formalisms, they are closely related. From any
epsilon-free or lexicalized spine grammar constructed in
this paper, a weakly equivalent TAG is effectively ob-
tained without utilizing epsilon-rules or breaking lexical-
ity, the results of this paper also hold for TAGs. Though
TAGs and spine grammars are weakly equivalent, the tree
languages generated by TAGs are properly included in
those by spine grammars. This difference occurs due to
the restriction on TAGs that requires the label of the foot
node to be identical to the label of the root node in an aux-
iliary tree. In addition, restrictions on rules of spine gram-
mars are more lenient in some ways. Because rules of
spine grammars may be non-linear, non-orderpreserving,
and deleting, during derivations the copies of subtrees
may be made, the order of subtrees may be changed,
and subtrees may be deleted. At this point, spine gram-
mars are different from other characterizations of TAGs
(Möennich, 1997; Möennich, 1998).

2 Preliminaries

In this section, some terms, definitions and former results
which will be used in the rest of this paper are introduced.

Let N be the set of all natural numbers, and let N+ be

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.

Pages 16-23.

TAG+7: Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms.
May 20-22, 2004, Vancouver, BC, CA.

Pages 16-23.

the set of all positive integers. The concatenation operator
is denoted by ‘ · ’. For an alphabet Σ, the set of strings
over Σ is denoted by Σ∗, and the empty string is denoted
by λ.

2.1 Ranked Alphabets, Trees and Substitution

A ranked alphabet is a finite set of symbols in which each
symbol is associated with a natural number, called the
rank of a symbol. Let Σ be a ranked alphabet. For a ∈ Σ,
the rank of a is denoted by r(a). For n ≥ 0, it is defined
that Σn = {a ∈ Σ | r(a) = n}.

A set D is a tree domain if D is a nonempty finite sub-
set of (N+)∗ satisfying the following conditions:

• For any d ∈ D, if d′, d′′ ∈ (N+)∗ and d = d′ · d′′,
then d′ ∈ D.

• For any d ∈ D and i, j ∈ N+, if i ≤ j and d ·j ∈ D,
then d · i ∈ D.

Let D be a tree domain and d ∈ D. Elements in D are
called nodes. A node d′ is a child of d if there exists
i ∈ N+ such that d′ = d · i. A node is called a leaf if it
has no child. The node λ is called the root. A node that is
neither a leaf nor the root is called an internal node. The
path from the root to d is the set of nodes {d′ ∈ D | d′ is
a prefix of d}.

Let Σ be a ranked alphabet. A tree over Σ is a func-
tion α : D → Σ where D is a tree domain. The set of
trees over Σ is denoted by TΣ. The domain of a tree α
is denoted by Dα. For d ∈ Dα, α(d) is called the la-
bel of d. The subtree of α at d is α/d = {(d′, a) ∈
(N+)∗ × Σ | (d · d′, a) ∈ α}.

The expression of a tree over Σ is defined to be a
string over elements of Σ, parentheses and commas. For
α ∈ TΣ, if α(λ) = b, max{i ∈ N+ | i ∈ Dα} = n
and for each 1 ≤ i ≤ n, the expression of α/i is
αi, then the expression of α is b(α1, α2, . . . , αn). Note
that n is the number of the children of the root. For
b ∈ Σ0, trees are written as b instead of b().When the
expression of α is b(α1, α2, . . . , αn), it is written that
α = b(α1, α2, . . . , αn), i.e., each tree is identified with
its expression.

It is defined that ε is the special symbol that may be
contained in Σ0. The yield of a tree is a function from TΣ

into Σ∗ defined as follows. For α ∈ TΣ, (1) if α = a ∈
(Σ0 − {ε}), yield(α) = a, (1’) if α = ε, yield(α) = λ
and (2) if α = a(α1, α2, . . . , αn) for some a ∈ Σn and
α1, α2, . . . , αn ∈ TΣ, yield(α) = yield(α1) · yield(α2) ·
· · · · yield(αn).

Let Σ be a ranked alphabet, and let I be a set that is
disjoint from Σ. TΣ(I) is defined to be TΣ∪I where Σ ∪
I is the ranked alphabet obtained from Σ by adding all
elements in I as symbols of rank 0.

Let X = {x1, x2, . . .} be the fixed countable set of
variables. It is defined that X0 = ∅ and for n ≥ 1, Xn =
{x1, x2, . . . , xn}. x1 is situationally denoted by x.

Let α, β ∈ TΣ and d ∈ Dα. It is defined that
α〈d← β〉= {(d′, a) | (d′, a) ∈ α and d is not a prefix
of d′}∪{(d · d′′, b) | (d′′, b) ∈ β}, i.e., the tree α〈d← β〉
is the result of replacing α/d by β.

Let α ∈ TΣ(Xn), and let β1, β2, . . . , βn ∈ TΣ(X).
The notion of substitution is defined. The result of sub-
stituting each βi for nodes labeled by variable xi in α,
denoted by α[β1, β2, . . . , βn], is defined as follows.

• If α = a ∈ Σ0, then a[β1, β2, . . . , βn] = a.

• If α = xi ∈ Xn, then xi[β1, β2, . . . , βn] = βi.

• If α = b(α1, α2, . . . , αk), b ∈ Σk and k ≥ 1, then
α[β1, β2, . . . , βn] =

b(α1[β1, β2, . . . , βn], . . . , αk[β1, β2, . . . , βn]).

2.2 Context-Free Tree Grammars

The context-free tree grammars (CFTGs) were intro-
duced by W. C. Rounds (1970) as tree generating sys-
tems. The definition of CFTGs is a direct generalization
of context-free grammars (CFGs).

Definition 2.1 A context-free tree grammar (CFTG) is a
four-tuple G = (N, Σ, P, S), where:

• N and Σ are disjoint ranked alphabets of nontermi-
nals and terminals, respectively.

• P is a finite set of rules of the form

A(x1, x2, . . . , xn)→ α

with n ≥ 0, A ∈ Nn, and α ∈ TN∪Σ(Xn). For
A ∈ N0, rules are written as A → α instead of
A()→ α.

• S, the initial nonterminal, is a distinguished symbol
in N0.

For a CFTG G, the one-step derivation
G
⇒ is the rela-

tion on TN∪Σ×TN∪Σ such that for a tree α ∈ TN∪Σ and
a node d ∈ Dα, if α/d = A(α1, α2, . . . , αn), A ∈ Nn,
α1, α2, . . . , αn ∈ TN∪Σ and A(x1, x2, . . . , xn) → β is
in P , then α

G
⇒ α〈d← β[α1, α2, . . . , αn]〉.

An (n-step) derivation is a finite sequence of trees
α0, α1, . . . , αn ∈ TN∪Σ such that n ≥ 0 and α0

G
⇒

α1
G
⇒ · · ·

G
⇒ αn. When there exists a derivation α0,

α1, . . . , αn, it is writen that α0
G

n
⇒ αn or α0

G

∗
⇒ αn.

The tree language generated by G is the set L(G) =
{α ∈ TΣ | S

G

∗
⇒ α}. The string language generated by G

is LS(G) = {yield(α) | α ∈ L(G)}. Note that LS(G) ⊆
(Σ0 − {ε})∗.

Let G and G′ be CFTGs. G and G′ are equivalent
if L(G) = L(G′). G and G′ are weakly equivalent if
LS(G) = LS(G′).

1717

2.3 Spine Grammars

Spine grammars are CFTGs with a restriction called
spinal-formed. To define this restriction, each nontermi-
nal is additionally associated with a natural number.

Definition 2.2 A head-pointing ranked alphabet is a
ranked alphabet in which each symbol is additionally as-
sociated with a natural number, called the head of a sym-
bol, and the head of a symbol is satisfying the following
conditions:

• If the rank of the symbol is 0, then the head of the
symbol is also 0.

• If the rank of the symbol is greater than 0, then the
head of the symbol is greater than 0 and less or equal
to the rank of the symbol.

Let N be a head-pointing ranked alphabet. For A ∈ N ,
the head of A is denoted by h(A).

Definition 2.3 Let G = (N, Σ, P, S) be a CFTG where
N is a head-pointing ranked alphabet. For n ≥ 1, a rule
A(x1, x2, . . . , xn) → α in P is spinal-formed if it satis-
fies the following conditions:

• There is exactly one leaf in α that is labeled by
xh(A). The path from the root to the leaf is called
the spine of α.

• For a node d ∈ Dα, if d is on the spine and α(d) =
B ∈ N with r(B) ≥ 1, then d · h(B) is a node on
the spine.

• Every node labeled by a variable in Xn − {xh(A)}
is a child of a node on the spine.

The intuition of this restriction is given as follows.
Let α be the right-hand side of a spinal-formed rule,
and let d be a node on the spine of α. Suppose that
α/d = B(α1, α2, . . . , αn) and B ∈ Nn. Suppose also
that the rule B(x1, x2, . . . , xn) → β is applied to d.
Then, the tree α〈d← β[α1, α2, . . . , αn]〉 also satisfies
the conditions of the right-hand side of a spinal-formed
rule, i.e., the spines of α and β are combined into the
new well-formed spine. Note that every node labeled by
a variable in Xn − {xh(A)} is still a child of a node on
the new spine.

A CFTG G = (N, Σ, P, S) is spinal-formed if every
rule A(x1, x2, . . . , xn) → α in P with n ≥ 1 is spinal-
formed. To shorten our terminology, it is said ‘spine
grammars’ instead of ‘spinal-formed CFTGs’.

Example 2.4 Examples of spinal-formed and non-
spinal-formed rules are shown. Let Σ = {a, b, c} where
the ranks of a, b, c are 0, 1, 3, respectively. Let N =
{A, B, C, D, E} where the ranks of A, B, C, D, E are
4, 2, 5, 1, 0, respectively, and the head of A, B, C are
3, 1, 5, respectively. Note that r(D) = 1 and r(E) = 0

$

%

2x

1α

E 2x (F

(' 1x

3x

$

2x

2α

4x

%

F

(' 1x

3xD

E

'
3α

F

('

3x

4α F

(

D

$

E 2x (%

(3xD

E

4x

$

E 2x (%

3x

'

D

%

D (

1x

Figure 1: Right-hand sides of rules

imply that h(D) = 1 and h(E) = 0. See Figure 1.
The rule A(x1, x2, x3, x4)→ α1 is spinal-formed though
x2 occurs twice and x4 does not occur in α1. The rule
A(x1, x2, x3, x4)→ α2 is not spinal-formed because the
third child of the node labeled by A is not on the spine
despite h(A) = 3. The rule A(x1, x2, x3, x4) → α3 is
not spinal-formed because there are two nodes labeled by
xh(A). The rule A(x1, x2, x3, x4) → α4 is not spinal-
formed because the node labeled by x4 is not a child of a
node on the spine.

For spine grammars, the following results are known.

Theorem 2.5 (Fujiyoshi and Kasai, 2000) The class of
string languages generated by spine grammars coincides
with the class of string languages generated by TAGs.

Theorem 2.6 (Fujiyoshi and Kasai, 2000) For any spine
grammar, there exists a equivalent spine grammar G =
(N, Σ, P, S) that satisfies the following conditions:

• For all A ∈ N , the rank of A is either 0 or 1.

• For each A ∈ N0, if A → α is in P , then either
α = a with a ∈ Σ0 or α = B(C) with B ∈ N1 and
C ∈ N0. See (1) and (2) in Figure 2.

• For each A ∈ N1, if A(x) → α is in P , then ei-
ther α = B1(B2(· · · (Bm(x)) · · ·)) with m ≥ 0 and

1818

$ D $

%

&

$
E

x
& �

&i �
� &i �

� &nx� �

$

x

% �

% �

%m

x

(1) (2)

(3) (4)

Figure 2: Rules in normal form

B1, B2, . . . , Bm ∈ N1 or α = b(C1, C2, . . . , Cn)
with n ≥ 1, b ∈ Σn, and C1, C2, . . . , Cn such
that all are in N0 but Ci = x for exactly one
i ∈ {1, . . . , n}. See (3) and (4) in Figure 2.

A spine grammar satisfies the condition of Theorem 2.6 is
said to be in normal form. Note that for a spine grammar
in normal form, the heads assigned for each nonterminal
are not essential anymore because h(A) = r(A) for all
A ∈ N .

Theorem 2.7 (Fujiyoshi and Kasai, 2000) For any spine
grammar, there exists a weakly equivalent spine grammar
G = (N, Σ, P, S) that satisfies the following conditions:

• For all A ∈ N , the rank of A is either 0 or 1.

• For all a ∈ Σ, the rank of a is either 0 or 2.

• For each A ∈ N0, if A → α is in P , then either
α = a with a ∈ Σ0 or α = B(C) with B ∈ N1 and
C ∈ N0. See (1) and (2) in Figure 3.

• For each A ∈ N1, if A(x) → α is in P , then α is
one of the following forms:

α = B(C(x)) with B, C ∈ N1,
α = b(C, x) with b ∈ Σ2 and C ∈ N0, or
α = b(x, C) with b ∈ Σ2 and C ∈ N0.

See (3),(4), and (5) in Figure 3.

A spine grammar satisfies the condition of Theorem 2.7
is said to be in strong normal form.

3 The Construction of Epsilon-Free Spine
Grammars

According to our definition of spine grammars, they are
allowed to generate trees with leaves labeled by the spe-
cial symbol ε, which is treated as the empty string while
taking the yields of trees. In this section, it is shown
that for any spine grammar, there exists a weakly equiv-
alent epsilon-free spine grammar. Because any epsilon-
free spine grammar cannot generate a tree with its leaves

$ D $

%

&

$

x

$

x

%

&

x

$

x

E

x &

E

x&

(1) (2)
(3)

(4) (5)

Figure 3: Rules in strong normal form

labeled by ε, it is clear that for a spine grammar with
epsilon-rules, there generally doesn’t exist an equivalent
epsilon-free spine grammar.

Definition 3.1 A spine grammar G = (N, Σ, P, S) is
epsilon-free if for any rule A(x1, x2, . . . , xn) → α in P ,
α has no node labeled by the symbol ε.

Theorem 3.2 For any spine grammar G = (N, Σ, P, S),
if λ 6∈ LS(G), then we can construct a weakly equiva-
lent epsilon-free spine grammar G ′. If λ ∈ LS(G), then
we can construct a weakly equivalent spine grammar G ′

whose epsilon-rule is only S → ε.

Proof. Since it is enough to show the existence of a
weakly equivalent grammar, without loss of generality,
we may assume that G is in strong normal form. We may
also assume that the initial nonterminal S doesn’t appear
in the right-hand side of any rule in P .

We first construct subsets of nonterminals E0 and E1

as follows. For initial values, we set E0 = {A ∈
N0|A → ε ∈ P} and E1 = ∅. We repeat the follow-
ing operations to E0 and E1 until no more operations are
possible:

• If A → B(C) with B ∈ E1 and C ∈ E0 is in P ,
then add A ∈ N0 to E0.

• If A(x) → b(C, x) with C ∈ E0 is in P , then add
A ∈ N1 to E1.

• If A(x) → b(x, C) with C ∈ E0 is in P , then add
A ∈ N1 to E1.

• If A(x) → B(C(x)) with B, C ∈ E1 is in P , then
add A ∈ N1 to E1.

In the result, E0 satisfies the following.

E0 = {A ∈ N0|∃α ∈ TΣ, A
G

∗
⇒ α, yield(α) = λ}

We construct G′ = (N ′, Σ′, P ′, S) as follows. The
set of nonterminals is N ′ = N ′

0 ∪ N ′
1 such that N ′

0 =
N0 ∪ {A|A ∈ N1} and N ′

1 = N1. The set of terminal

1919

is Σ′ = Σ ∪ {c}, where c is a new symbol of rank 1.
The set of rules P ′ is the smallest set satisfying following
conditions:

• P ′ contains all rules in P except rules of the form
A→ ε.

• If S ∈ E0, then S → ε is in P ′.

• If A → B(C) is in P and C ∈ E0, then A → B is
in P ′.

• If A(x)→ B(C(x)) is in P , then A→ B(C) is in
P ′.

• If A(x) → b(C, x) or A(x) → b(x, C) is in P and
C ∈ E0, then A(x)→ c(x) is in P ′.

• If A(x) → b(C, x) or A(x) → b(x, C) is in P , then
A→ c(C) is in P ′.

To show LS(G′) = LS(G), we prove the following (i),
(ii), and (iii) hold by induction on the length of deriva-
tions:

(i) For A ∈ N0, A
G

′

∗
⇒ α′ and α′ ∈ TΣ if and only

if A
G

∗
⇒ α for some α ∈ TΣ such that yield(α) =

yield(α′) 6= λ.

(ii) For A ∈ N1, A(x)
G

′

∗
⇒ α′ and α′ ∈ TΣ(X1) if and

only A(x)
G

∗
⇒ α for some α ∈ TΣ(X1) such that

yield(α) = yield(α′).

(iii) For A ∈ N ′
0 − N0, A

G
′

∗
⇒ α′ and α′ ∈ TΣ if and

only if A(x)
G

∗
⇒ α for some α ∈ TΣ(X1) such that

yield(α[ε]) = yield(α′) 6= λ.

We start with “only if” part. For 0-step derivations,
(i), (ii), and (iii) clearly hold since there doesn’t exists
α′ ∈ TΣ nor α′ ∈ TΣ(X1) for each statement.

We consider the cases for 1-step derivations.
[Proof of (i)] If A

G
′
⇒ α′ and α′ ∈ TΣ, then α′ = a for

some a ∈ Σ0, and the rule A → a in P ′ has been used.
Therefore, A→ a is in P , and A

G
⇒ a.

[Proof of (ii)] If A(x)
G

′
⇒ α′ and α′ ∈ TΣ(X1), then α′ =

c(x), and the rule A(x) → c(x) in P ′ has been used. By
the definition of P ′, A(x)→ b(C, x) or A(x)→ b(x, C)
is in P for some C ∈ E0. There exists γ ∈ TΣ such
that C

G

∗
⇒ γ and yield(γ) = λ. Therefore, A(x)

G
⇒

b(C, x)
G

∗
⇒ b(γ, x) or A(x)

G
⇒ b(x, C)

G

∗
⇒ b(x, γ), and

yield(b(γ, x))= yield(b(x, γ))= yield(c(x)).
[Proof of (iii)] There doesn’t exists α′ ∈ TΣ such that
A

G
′
⇒ α′.

For k ≥ 2, assume that (i), (ii), and (iii) holds for any
derivation of length less than k.

[Proof of (i)] If A
G

′

k
⇒ α′, then the rule used at the first

step is one of the follwoing form: (1) A → B(C) or (2)
A → B. In the case (1), A

G
′
⇒B(C)

G
′

∗
⇒ β′[γ′] = α′ for

some β′ ∈ TΣ(X1) and γ′ ∈ TΣ such that B(x)
G

′

∗
⇒ β′

and C
G

′

∗
⇒ γ′. By the induction hypothesis of (ii), there

exists β ∈ TΣ(X1) such that B(x)
G

∗
⇒ β and yield(β) =

yield(β′). By the induction hypothesis of (i), there ex-
ists γ ∈ TΣ such that C

G

∗
⇒ γ, and yield(γ) = yield(γ ′).

By the definition of P ′, A → B(C) is in P . Therefore,
A

G
⇒B(C)

G

∗
⇒ β[γ], and yield(β[γ]) = yield(β′[γ′]). In

the case (2), A
G

′
⇒B

G
′

∗
⇒ α′. By the definition of P ′,

A → B(C) is in P for some C ∈ E0. There exists
γ ∈ TΣ such that C

G

∗
⇒ γ and yield(γ) = λ. By the in-

duction hypothesis of (iii), there exists β ∈ TΣ(X1) such
that B(x)

G

∗
⇒ β and yield(β[ε]) = yield(α′). Therefore,

A
G
⇒B(C)

G

∗
⇒ β[γ], and yield(β[γ]) = yield(α′).

[Proof of (ii)] If A(x)
G

′

k
⇒ α′, then the rule used at the first

step is one of the follwoing form: (1) A(x) → B(C(x)),
(2) A(x) → b(C, x) or (3) A(x) → b(x, C). Becasue
these rule are in P , the proofs are direct from the induc-
tion hypothesis like the proof of the case (1) of (i).

[Proof of (iii)] If A
G

′

k
⇒ α′, then the rule used at the first

step is one of the follwoing form: (1) A → B(C) or
(2) A → c(C). In the case (1), A

G
′
⇒B(C)

G
′

∗
⇒ β′[γ′] =

α′ for some β′ ∈ TΣ(X1) and γ′ ∈ TΣ such that
B(x)

G
′

∗
⇒ β′ and C

G
′

∗
⇒ γ′. By the induction hypothesis of

(ii), there exists β ∈ TΣ(X1) such that B(x)
G

∗
⇒ β and

yield(β) = yield(β′). By the induction hypothesis of
(iii), there exists γ ∈ TΣ(X1) such that C(x)

G

∗
⇒ γ and

yield(γ[ε]) = yield(γ ′). By the definition of P ′, A(x)→
B(C(x)) is in P . Therefore, A(x)

G
⇒B(C(x))

G

∗
⇒ β[γ],

and yield(β[γ[ε]]) = yield(β′[γ′]). In the case (2), A
G

′
⇒

c(C)
G

′

∗
⇒ c(γ′) = α′ for some γ′ ∈ TΣ such that C

G
′

∗
⇒ γ′.

By the induction hypothesis of (i), there exists γ ∈ TΣ

such that C
G

∗
⇒ γ and yield(γ) = yield(γ ′). By the defi-

nition of P ′, A(x) → b(C, x) or A(x) → b(x, C) is in P .
Without loss of generality, we may assume that A(x) →
b(C, x) is in P . Therefore, A(x)

G
⇒ b(C, x)

G

∗
⇒ b(γ, x),

and yield(b(γ, x)[ε]) = yield(c(γ ′)).
The “if” part is similarly proved as follows. For 0-

step derivations, (i), (ii), and (iii) clearly hold since there
doesn’t exists α ∈ TΣ nor α ∈ TΣ(X1) for each state-
ment.

The cases for 1-step derivations are proved.
[Proof of (i)] If A

G
⇒ α and α ∈ TΣ, then α = a for

some a ∈ Σ0, and the rule A → a in P has been used.
Therefore, A→ a is in P ′, and A

G
′
⇒ a.

2020

[Proof of (ii) and (iii)] There doesn’t exists α ∈ TΣ such
that A

G
⇒ α.

For k ≥ 2, assume that (i), (ii), and (iii) holds for any
derivation of length less than k.

[Proof of (i)] If A
G

k
⇒ α, then the rule used at the first step

must be of the form A → B(C). Thus, A
G
⇒B(C)

G

∗
⇒

β[γ] = α for some β ∈ TΣ(X1) and γ ∈ TΣ such that
B(x)

G

∗
⇒ β and C

G

∗
⇒ γ. Here, we have to think of the

two cases: (1) yield(γ) 6= λ and (2) yield(γ) = λ. In
the case (1), by the induction hypothesis of (ii), there ex-
ists β′ ∈ TΣ(X1) such that B(x)

G
′

∗
⇒ β′ and yield(β′) =

yield(β), and by the induction hypothesis of (i), there ex-
ists γ′ ∈ TΣ such that C

G
′

∗
⇒ γ′ and yield(γ′) = yield(γ).

By the definition of P ′, A → B(C) is in P . Therefore,
A

G
′
⇒B(C)

G

∗
⇒ β′[γ′], and yield(β′[γ′]) = yield(β[γ]).

In the case (2), C ∈ E0. Thus, A → B is in P ′. By the
induction hypothesis of (iii), there exists β′ ∈ TΣ(X1)
such that B

G

∗
⇒ β′ and yield(β′) = yield(β[ε]). There-

fore, A
G

′
⇒B

G
′

∗
⇒ β′, and yield(β′) = yield(β[γ]).

[Proof of (ii)] If A(x)
G

k
⇒ α, then the rule used at the first

step is one of the follwoing form: (1) A(x) → B(C(x)),
(2) A(x) → b(C, x) or (3) A(x) → b(x, C). The proof
of the case (1) is direct from the induction hypothesis. In
the case (2), A(x)

G
⇒ b(C, x)

G

∗
⇒ b(γ, x) = α for some

γ ∈ TΣ such that C
G

∗
⇒ γ. Here, we have to think of

the two cases: (a) yield(γ) 6= λ and (b) yield(γ) = λ.
(a) If yield(γ) 6= λ, then by the induction hypothe-
sis of (i), there exists γ ′ ∈ TΣ such that C

G
′

∗
⇒ γ′, and

yield(γ′) = yield(γ). By the definition of P ′, A(x) →
b(C, x) is in P ′. Therefore, A(x)

G
′
⇒ b(C, x)

G
′

∗
⇒ b(γ′, x),

and yield(b(γ′, x)) = yield(b(γ, x)). (b) If yield(γ) = λ,
then C ∈ E0, and A(x) → c(x) is in P ′. Therefore,
A(x)

G
′
⇒ c(x), and yield(c(x)) = yield(b(γ, x)). The

proof of the case (3) is similar to that of the case (2).

[Proof of (iii)] If A(x)
G

k
⇒ α, then the rule used at the first

step is one of the follwoing form: (1) A(x) → B(C(x)),
(2) A(x) → b(C, x) or (3) A(x) → b(x, C). In the
case (1), A(x)

G
⇒B(C(x))

G

∗
⇒ β[γ] = α for some β, γ ∈

TΣ(X1) such that B(x)
G

∗
⇒ β and C(x)

G

∗
⇒ γ. By the

definition of P ′, A → B(C) is in P ′. By the induc-
tion hypothesis of (ii), there exists β′ ∈ TΣ(X1) such
that B(x)

G
′

∗
⇒ β′ and yield(β′) = yield(β). By the in-

duction hypothesis of (iii), there exists γ ′ ∈ TΣ such
that C

G
′

∗
⇒ γ′ and yield(γ′) = yield(γ[ε]). Therefore,

A
G

′
⇒B(C)

G
′

∗
⇒ β′[γ′] and yield(β′[γ′]) = yield(β[γ[ε]]).

In the case (2), A(x)
G
⇒ b(C, x)

G

∗
⇒ b(γ, x) = α for some

γ ∈ TΣ such that C
G

∗
⇒ γ and yield(γ) 6= λ. By the def-

inition of P ′, A → c(C) is in P ′. By the induction hy-
pothesis of (i), there exists γ ′ ∈ TΣ such that C

G
′

∗
⇒ γ′ and

yield(γ′) = yield(γ). Therefore, A
G

′
⇒ c(C)

G
′

∗
⇒ c(γ′),

and yield(c(γ′)) = yield(b(γ, x)[ε]). The proof of the
case (3) is similar to that of the case (2).

By (i), we have the result LS(G′) = LS(G).

4 Lexicalization of Spine Grammars

In this section, lexicalization of spine grammars is dis-
cussed. First, it is seen that there exists a tree language
generated by a spine grammar that no lexicalized spine
grammar can generate. Next, it is shown that for any
spine grammar, there exists a weakly equivalent lexical-
ized spine grammar. In the construction of a lexical-
ized spine grammar, the famous technique to construct
a context-free grammar (CFG) in Greibach normal form
(Hopcroft and Ullman, 1979) is employed. The tech-
nique can be adapted to spine grammars because paths
of derivation trees of spine grammars can be similarly
treated as derivation strings of CFGs.

Definition 4.1 A spine grammar G = (N, Σ, P, S)
is lexicalized if it is epsilon-free and for any rule
A(x1, x2, . . . , xn) → α in P , α has exactly one leaf la-
beled by a terminal and the other leaves are labeled by a
nonterminal or a variable.

The following example is a spine grammar that no lex-
icalized spine grammar is equivalent.

Example 4.2 Let us consider the spine grammar G =
(N, Σ, P, S) such that Σ = {a, b} with r(a) = 0 and
r(b) = 1, N = {S} with r(S) = 0, and P consists of
S → a and S → b(S). The tree language generated by
G is L(G) = {a, b(a), b(b(a)), b(b(b(a))), . . .}. Suppose
that L(G) is generated by a lexicalized spine grammar
G′. Because LS(G) = {a}, all trees in L(G) have to be
derived in one step, and the set of rules of G ′ has to be
{S → a, S → b(a), S → b(b(a)), S → b(b(b(a))), . . .}.
However, the number of rules of G ′ has to be finite.
Therefore, L(G) can not be generated by any lexicalized
spine grammar.

To prove the main theorem, the following lemmas are
needed.

Lemma 4.3 For any spine grammar G, we can construct
a weakly equivalent spine grammar in normal form G ′ =
(N, Σ, P, S) that doesn’t have a rule of the form A(x)→
b(x) with A ∈ N1 and b ∈ Σ1.

Proof. Without loss of generality, we may assume that
G is in normal form. For each rule of the form A(x) →
b(x), delete it and add the rule A(x) → x. Then, a
weakly equivalent grammar is constructed.

Lemma 4.4 For any spine grammar G, we can con-
struct an equivalent spine grammar in normal form G ′ =

2121

(N, Σ, P, S) that doesn’t have a rule of the form A(x)→
x with A ∈ N1.

Proof. Omitted.

The following lemmas guarantees that the technique to
construct a CFG in Greibach normal form (Hopcroft and
Ullman, 1979) can be adapted to spine grammars.

Lemma 4.5 Define an A-rule to be a rule with a nonter-
minal A on the left-hand side. Let G = (N, Σ, P, S) be a
spine grammar such that r(A) ≤ 1 for all A ∈ N .

For A ∈ N0, let A → α be a rule in P such that
α(d) = B for some d ∈ Dα and B ∈ N0. Let {B → β1,
B → β2, . . . , B → βr} be the set of all B-rules. Let
G′ = (N, Σ, P ′, S) be obtaind from G by deleting the rule
A→ α from P and adding the rules A→ α〈d← βi〉 for
all 1 ≤ i ≤ r. Then L(G ′) = L(G).

For A ∈ N1, let A(x) → α be a rule in P such that
α(d) = B for some d ∈ Dα and B ∈ N1. Let {B(x) →
β1, B(x) → β2, . . . , B(x) → βr} be the set of all B-
rules. Let G′′ = (N, Σ, P ′′, S) be obtaind from G by
deleting the rule A(x)→ α from P and adding the rules
A(x) → α〈d← βi[α/d · 1]〉 for all 1 ≤ i ≤ r. Then
L(G′′) = L(G).

Proof. Omitted.

Lemma 4.6 Let G = (N, Σ, P, S) be spine grammar
such that r(A) ≤ 1 for all A ∈ N .

For A ∈ N0, let A → α1, A → α2, . . . , A → αr

be the set of A-rules such that for all 1 ≤ i ≤ r, there
exists a leaf node di ∈ Dαi labeled by A. Let A →
β1, A → β2, . . . , A → βs be the remaining A-rules. Let
G′ = (N ∪ {Z}, Σ, P ′, S) be the spine grammar formed
by adding a new nonterminal Z to N1 and replacing all
the A-rules by the rules:

1)
A→ βi

A→ Z(βi)

}

1 ≤ i ≤ s

2)
Z(x)→ αi〈di ← x〉
Z(x)→ Z(αi〈di ← x〉)

}

1 ≤ i ≤ r

Then L(G′) = L(G).
For A ∈ N1, let A(x) → A(α1), A(x) → A(α2), . . . ,

A(x) → A(αr) be the set of A-rules such that A is
the label of the root node of the right-hand side. Let
A(x) → β1, A(x) → β2, . . . , A(x) → βs be the re-
maining A-rules. Let G ′′ = (N ∪ {Z}, Σ, P ′′, S) be the
spine grammar formed by adding a new nonterminal Z
to N1 and replacing all the A-rules by the rules:

1)
A(x)→ βi

A(x)→ βi[Z(x)]

}

1 ≤ i ≤ s

2)
Z(x)→ αi

Z(x)→ αi[Z(x)]

}

1 ≤ i ≤ r

Then L(G′′) = L(G).

Proof. Omitted.

Theorem 4.7 For any spine grammar G = (N, Σ, P, S),
we can construct a weakly equivalent lexicalized spine
grammar G′.

Proof. Since it is enough to show the existence of a
weakly equivalent grammar, without loss of generality,
we may assume that G is epsilon-free and G is in normal
form without a rule of the form A(x) → b(x) with A ∈
N1 and b ∈ Σ1. We may also assume that G is in normal
form without a rule of the form A(x) → x with A ∈ N1.

Each rule in P is one of the following form:

Type 1 A→ a with A ∈ N0 and a ∈ Σ0,

Type 2 A→ B(C) with A ∈ N0, B ∈ N1, and C ∈ N0,

Type 3 A(x)→ b(C1, C2, . . . , Cn) with A ∈ N1, n ≥ 2
b ∈ Σn, and C1, C2, . . . , Cn such that all are in N0

but Ci = x for exactly one i ∈ {1, . . . , n}, or

Type 4 A(x) → B1(B2(· · · (Bm(x)) · · ·)) with A ∈
N1, m ≥ 1, and B1, B2, . . . , Bm ∈ N1.

Because of the assumption above, m ≥ 1 and n ≥ 2.
First, by the technique to construct a CFG in Greibach

normal form, we replace all type 1 and type 2 rules with
rules of the form A → B1(B2(· · · (Bm(a)) · · ·)) with
m ≥ 0, a ∈ Σ0, and B1, . . . , Bm ∈ N1 and new type 4
rules with a new nonterminal on the left-hand side. See
(1) in Figure 4.

Secondly, we consider type 4 rules of the form A(x)→
B(x). By the standard technique of formal language the-
ory, those rules can be replaced by other type 4 rules with
at least 2 nonterminals on the right-hand side.

Thirdly, by the technique to construct a CFG in
Greibach normal form, we replace all type 1 and type 2
rules with A(x) → b(γ1, γ2, . . . , γn) with γ1, γ2, . . . , γn

such that all are in N0 but γi ∈ TN1
(X1) for exactly one

i ∈ {1, . . . , n}. See (2) in Figure 4.
Lastly, the remaining non-lexicalized rules are only of

the form A(x) → b(γ1, γ2, . . . , γn). Because n ≥ 2,
the right-hand side has a node labeled by a nonterminal
in N0. This node can be replaced by the right-hand side
of the rules of the form Ci → D1(D2(· · · (Dm(a)) · · ·)).
See (3) in Figure 4.

A weakly equivalent lexicalized spine grammar G ′ is
constructed.

If G is epsilon-free and dosen’t have a rule of the form
A(x) → b(x) with A ∈ N1 and b ∈ Σ1, then the equiv-
alence of the construted grammar is preserved. The fol-
lowing corollary is immediate.

Corollary 4.8 For any epsilon-free spine grammar G =
(N, Σ, P, S) such that Σ1 = ∅, we can construct an
equivalent lexicalized spine grammar G ′.

2222

$ D

$

%

&

$
E

x
& � &i � � &i � � &nx� �

$

x

% �

% �

%m

x

% �

% �

%m

$

(1)
D

$

x

% �

% �

%m

x

E

& � &i � � &i � � &n� �

(2)

$

x

% �

% �

%m

x

E

& � &i � � &i � � &n� �

$

x

% �

% �

%m

x

E

&i � � &i � � &n� �

(3)

' �

' �

'm

D

=

x

% �

% �

%m

x

Figure 4: The explanation for the proof

5 The Results for TAGs

From a spine grammar, a weakly equivalent TAG is ob-
tained easily. Recall the definition of TAGs in the paper
(Joshi and Schabes, 1996). Let G = (N, Σ, P, S) be a
spine grammar in strong normal form. A weakly equiva-
lent TAG G′ = (Σ0, N ∪ (Σ − Σ0), I, A, S) can be con-
structed as follows. The set of initial trees is the smallest
set satisfying following conditions:

• The tree S ↓ is in I .

• If A → a with A ∈ N0 and a ∈ Σ0 is in P , then
ANA(a) is in I .

• If A → B(C) with A ∈ N0, B ∈ N1, and C ∈ N0

is in P , then ANA(BOA(C ↓)) is in I .

The set of auxiliary trees is the smallest set satisfying fol-
lowing conditions:

• If A(x) → B(C(x)) with A ∈ N1 and B, C ∈ N1

is in P , then ANA(BOA(COA(ANA∗))) is in A.

• If A(x) → b(C, x) with A ∈ N1, b ∈ Σ2 and C ∈
N0 is in P , then ANA(bNA(C ↓, ANA∗)) is in A.

• If A(x) → b(x, C) with A ∈ N1, b ∈ Σ2 and C ∈
N0 is in P , then ANA(bNA(ANA∗, C ↓)) is in A.

The way to construct a weakly equivalent TAG from a
spine grammar in strong normal form was shown. By a
similar way, a weakly equivalent TAG is effectively ob-
tained from any epsilon-free or lexicalized spine gram-
mar constructed in this paper without utilizing epsilon-
rules or breaking lexicality. Therefore, the results for
spine grammars also hold for TAGs.

Corollary 5.1 For any TAG, we can construct a weakly
equivalent epsilon-free TAG.

Corollary 5.2 For any TAG, we can construct a weakly
equivalent lexicalized TAG.

References
Anne Abeillé and Owen Rambow, editors. 2000. Tree

adjoining grammars: formalisms, linguistic analysis
and processing. CSLI Publications, Stanford, Califor-
nia.

Akio Fujiyoshi and Takumi Kasai. 2000. Spinal-formed
context-free tree grammars. Theory of Computing Sys-
tems, 33(1):59–83.

John E. Hopcroft and Jeffrey D. Ullman. 1979. Introduc-
tion to Automata Theory, Languages and Computation.
Addison Wesley, Reading, Massachusetts.

Aravind K. Joshi and Yves Schabes, 1996. Handbook of
Formal Languages, volume 3, chapter Tree-adjoining
grammars, pages 69–124. Springer, Berlin.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi.
1975. Tree adjunct grammars. J. Computer & System
Sciences, 10(1):136–163.

Uwe Möennich. 1997. Adjunction as substitution: an
algebraic formulation of regular, context-free and tree
adjoining languages. In G. V. Morrill G-J. Kruijff and
R. T. Oehrle, editors, Formal Grammars 1997: Pro-
ceedings of the Conference, Aix-en-Provence, pages
169–178.

Uwe Möennich. 1998. TAGs M-constructed. In TAG+
4th Workshop, Philadelphia.

William C. Rounds. 1970. Mapping and grammars on
trees. Mathematical Systems Theory, 4(3):257–287.

K. Vijay-Shanker and David J. Weir. 1994. The equiv-
alence of four extensions of context-free grammars.
Mathematical Systems Theory, 27(6):511–546.

2323

