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Abstract 

Several computational simulations of how 
children solve the word segmentation problem 
have been proposed, but most have been 
applied only to a limited number of languages. 
One model with some experimental support 
uses distributional statistics of sound sequence 
predictability (Saffran et al. 1996).  However, 
the experimental design does not fully specify 
how predictability is best measured or 
modeled in a simulation.  Saffran et al. (1996) 
assume transitional probability, but Brent 
(1999a) claims mutual information (MI) is 
more appropriate.  Both assume predictability 
is measured locally, relative to neighboring 
segment-pairs. 
This paper replicates Brent’s (1999a) mutual-
information model on a corpus of child-
directed speech in Modern Greek, and 
introduces a variant model using a global 
threshold. Brent’s finding regarding the 
superiority of MI is confirmed; the relative 
performance of local comparisons and global 
thresholds depends on the evaluation metric. 

1 Introduction 

A substantial portion of research in child 
language acquisition focuses on the word 
segmentation problem—how children learn to 
extract words (or word candidates) from a 
continuous speech signal prior to having acquired a 
substantial vocabulary.  While a number of robust 
strategies have been proposed and tested for 
infants learning English and a few other languages 
(discussed in Section 1.1), it is not clear whether or 
how these apply to all or most languages. In 
addition, experiments on infants often leave 
undetermined many details of how particular cues 
are actually used.  Computational simulations of 
word segmentation have also focused mainly on 
data from English corpora, and should also be 
extended to cover a broader range of the corpora 
available. 

The line of research proposed here is twofold: on 
the one hand we wish to understand the nature of 
the cues present in Modern Greek, on the other we 
wish to establish a framework for orderly 
comparison of word segmentation algorithms 
across the desired broad range of languages.  
Finite-state techniques, used by e.g., Belz (1998) in 
modeling phonotactic constraints and syllable 
within various languages, provide one 
straightforward way to formulate some of these 
comparisons, and may be useful in future testing of 
multiple cues. 

Previous research (Rytting, 2004) examined the 
role of utterance-boundary information in Modern 
Greek, implementing a variant of Aslin and 
colleagues’ (1996) model within a finite-state 
framework.  The present paper examines more 
closely the proposed cue of segment predictability.  
These two studies lay the groundwork for 
examining the relative worth of various cues, 
separately and as an ensemble. 

1.1 Infant Studies  

Studies of English-learning infants find the 
earliest evidence for word segmentation and 
acquisition between 6 and 7.5 months (Jusczyk and 
Aslin, 1995) although many of the relevant cues 
and strategies seem not to be learned until much 
later. 

Several types of information in the speech signal 
have been identified as likely cues for infants, 
including lexical stress, co-articulation, and 
phonotactic constraints (see e.g., Johnson & 
Jusczyk, 2001 for a review).  In addition, certain 
heuristics using statistical patterns over (strings of) 
segments have also been shown to be helpful in the 
absence of other cues.   

One of these (mentioned above) is extrapolation 
from the segmental context near utterance 
boundaries to predict word boundaries (Aslin et al., 
1996).  Another proposed heuristic utilizes the 
relative predictability of the following segment or 
syllable. For example, Saffran et al. (1996) have 
confirmed the usefulness of distributional cues for 
8-month-olds on artificially designed micro-
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languages—albeit with English-learning infants 
only. 

The exact details of how infants use these cues 
are unknown, since the patterns in their stimuli fit 
several distinct models (see Section 1.2).  Only 
further research will tell how and to what degree 
these strategies are actually useful in the context of 
natural language-learning settings—particularly for 
a broad range of languages.  However, what is not 
in doubt is that infants are sensitive to the cues in 
question, and that this sensitivity begins well 
before the infant has acquired a large vocabulary. 

1.2 Implementations and Ambiguities 

While the infant studies discussed above focus 
primarily on the properties of particular cues, 
computational studies of word-segmentation must 
also choose between various implementations, 
which further complicates comparisons.  Several 
models (e.g., Batchelder, 2002; Brent’s (1999a) 
MBDP-1 model; Davis, 2000; de Marcken, 1996; 
Olivier, 1968) simultaneously address the question 
of vocabulary acquisition, using previously learned 
word-candidates to bootstrap later segmentations. 
(It is beyond the scope of this paper to discuss 
these in detail; see Brent 1999a,b for a review.) 

Other models do not accumulate a stored 
vocabulary, but instead rely on the degree of 
predictability of the next syllable (e.g., Saffran et 
al., 1996) or segment (e.g., Christiansen et al., 
1998).  The intuition here, first articulated by 
Harris (1954), is that word boundaries are marked 
by a spike in unpredictability of the following 
phoneme.  The results from Saffran et al. (1996) 
show that English-learning infants do respond to 
areas of unpredictability; however, it is not clear 
from the experiment how this unpredictability is 
best measured.  Two specific ambiguities in 
measuring (un)predictability are examined here. 

Brent (1999a) points out one type of ambiguity, 
namely that Saffran and colleagues’ (1996) results 
can be modeled as favoring word-breaks at points 
of either low transitional probability or low mutual 
information.  Brent reports results for models 
relying on each of these measures. It should be 
noted that these models are not the main focus of 
his paper, but provided for illustrative purposes;  
nevertheless, these models provide the best 
comparison to Saffran and colleagues’ experiment, 
and may be regarded as an implementation of the 
same. 

Brent (1999a) compares these two models in 
terms of word tokens correctly segmented (see 
Section 3 for exact criteria), reporting 
approximately 40% precision and 45% recall for 
transitional probability (TP) and 50% precision and 
53% recall for mutual information (MI) on the first 

1000 utterances of his corpus (with improvements 
given larger corpora).  Indeed, their performance 
on word tokens is surpassed only by Brent’s main 
model (MBDP-1), which seems to have about 73% 
precision and 67% recall for the same range.1 

Another question which Saffran et al. (1996) 
leave unanswered is whether the segmentation 
depends on local or global comparisons of 
predictability. Saffran et al. assume implicitly, and 
Brent (1999a) explicitly, that the proper 
comparison is local—in Brent, dependent solely on 
the adjacent pairs of segments.  However, 
predictability measures for segmental bigrams 
(whether TP or MI) may be compared in any 
number of ways.  One straightforward alternative 
to the local comparison is to compare the 
predictability measures compare to some global 
threshold.  Indeed, Aslin et al. (1996) and 
Christiansen et al. (1998) simply assumed the 
mean activation level as a global activation 
threshold within their neural network framework.2 

1.3 Global and Local Comparisons 

The global comparison, taken on its own, seems 
a rather simplistic and inflexible heuristic: for any 
pair of phonemes xy, either a word boundary is 
always hypothesized between x and y, or it never 
is.  Clearly, there are many cases where x and y 
sometimes straddle a word boundary and 
sometimes do not.  The heuristic also takes no 
account of lengths of possible words.  However, 
the local comparison may take length into account 
too much, disallowing words of certain lengths.  In 
order to see that, we must examine Brent’s (1999a) 
suggested implementation of Saffran et al. (1996) 
more closely. 

In the local comparison, given some string 
…wxyz…, in order for a word boundary to be 
inserted between x and y, the predictability 
measure for xy must be lower than both that of wx 
and of yz.  It follows that neither wx nor yz can 
have word boundaries between them, since they 
cannot simultaneously have a lower predictability 
measure than xy.  This means that, within an 
utterance, word boundaries must have at least two 
segments between them, so this heuristic will not 
correctly segment utterance-internal one-phoneme 

                                                      
1 The specific percentages are not reported in the text, 

but have been read off his graph.  Brent does not report 
precision or recall for utterance boundaries; those 
percentages would undoubtedly be higher. 

2 These methodologies did not ignore local 
information, but encoded it within the feature vector.  
However, Rytting (2004) showed that this extra context, 
while certainly helpful, is not strictly necessary in the 
Greek corpus under question.  A context of just one 
phoneme yielded better-than-chance results. 



words.3  Granted, only a few one-phoneme word 
types exist in either English or Greek (or other 
languages).  However, these words are often 
function words and so are less likely to appear at 
edges of utterances (e.g., ends of utterances for 
articles and prepositions; beginnings for postposed 
elements).  Neither Brent’s (1999a) 
implementation of Saffran’s et al. (1996) heuristic 
nor Aslin’s et al. (1996) utterance-boundary 
heuristic can explain how these might be learned. 

Brent (1999a) himself points out another length-
related limitation—namely, the relative difficulty 
that the ‘local comparison’ heuristic has in 
segmenting learning longer words.  The bigram MI 
frequencies may be most strongly influenced by—
and thus as an aggregate largely encode—the most 
frequent, shorter words.  Longer words cannot be 
memorized in this representation (although 
common ends of words such as prefixes and 
suffixes might be).   

In order to test for this, Brent proposes that 
precision for word types (which he calls “lexicon 
precision”) be measured as well as for word 
tokens. While the word-token metric emphasizes 
the correct segmentation of frequent words, the 
word-type metric does not share this bias.  Brent 
defines this metric as follows:  “After each block 
[of 500 utterances], each word type that the 
algorithm produced was labeled a true positive if 
that word type had occurred anywhere in the 
portion of the corpus processed so far; otherwise it 
is labeled a false positive.”  Measured this way, MI 
yields a word type precision of only about 27%; 
transitional probability yields a precision of 
approximately 24% for the first 1000 utterances, 
compared to 42% for MBDP-1.  He does not 
measure word type recall. 

This same limitation in finding longer, less 
frequent types may apply to comparisons against a 
global threshold as well.  This is also in need of 
testing.  It seems that both global and local 
comparisons, used on their own as sole or decisive 
heuristics, may have serious limitations.  It is not 
clear a priori which limitation is most serious; 
hence both comparisons are tested here. 

2 Constructing a Finite-State Model  

2.1 Outline of current research  

While in its general approach the study reported 
here replicates the mutual-information and 
transitional-probability models in Brent (1999a), it 
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apply, since word boundaries are automatically inserted 
at utterance boundaries, while still allowing the 
possibility of a boundary insertion at the next position. 

differs slightly in the details of their use.  First, 
whereas Brent dynamically updated his measures 
over a single corpus, and thus blurred the line 
between training and testing data, our model pre-
compiles statistics for each distinct bigram-type 
offline, over a separate training corpus.4  Secondly, 
we compare the use of a global threshold 
(described in more detail in Section 2.3, below) to 
Brent’s (1999a) use of the local context (as 
described in Section 1.3 above).   

Like (Brent, 1999a), but unlike Saffran et al. 
(1996), our model focuses on pairs of segments, 
not on pairs of syllables.  While Modern Greek 
syllabic structure is not as complicated as 
English’s, it is still more complicated than the CV 
structure assumed in Saffran et al. (1996); hence, 
access to syllabification cannot be assumed.5 

2.2 Corpus Data 

In addition to the technical differences discussed 
above, this replication breaks new ground in terms 
of the language from which the training and test 
corpora are drawn.  Modern Greek differs from 
English in having only five vowels, generally 
simpler syllable structures, and a substantial 
amount of inflectional morphology, particularly at 
the ends of words.  It also contains not only 
preposed function words (e.g., determiners) but 
postposed ones as well, such as the possessive 
pronoun, which cannot appear utterance-initially.  
For an in-depth discussion of Modern Greek, see 
(Holton et al., 1997).   While it is not anticipated 
that Modern Greek will be substantially more 
challenging to segment than English, the choice 
does serve as an additional check on current 
assumptions. 

The Stephany corpus (Stephany, 1995) is a 
database of conversations between children and 
caretakers, broadly transcribed, currently with no 
notations for lexical stress, included as part of the 
CHILDES database (MacWhinney, 2000).  In 
order to preserve adequate unseen data for future 
simulations and experiments, and also to use data 
most closely approximating children of a very 
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theoretical claim, it can be seen as reflecting the fact 
that even before infants seem to begin the word 
segmentation process, they have already been exposed 
to a substantial amount of linguistic material.  However, 
it is not anticipated to affect the general pattern of 
results.   

5 Furthermore, if Brent’s ‘local comparison’ 
implementation were based on syllables to more closely 
coincide with Saffran’s et al. (1996) experiment (not 
something Brent ever suggests), it would fail to detect 
any one-syllable words, clearly problematic for both 
Greek and English, and many languages besides. 



young age, files from the youngest child only were 
used in this study. However, since the heuristics 
and cues used are very simple compared to 
vocabulary-learning models such as Brent’s 
MDLP-1, it is anticipated that they will require 
relatively little context, and so the small size of the 
training and testing corpora will not adversely 
effect the results to a great degree. 

As in other studies, only adult input was used for 
training and testing. In addition, non-segmental 
information such as punctuation, dysfluencies, 
parenthetical references to real-world objects, etc. 
were removed.  Spaces were taken to represent 
word boundaries without comment or correction; 
however, it is worth noting that the transcribers 
sometimes departed from standard orthographic 
practice when transcribing certain types of word-
clitic combinations.  The text also contains a 
significant number of unrealized vowels, such as 
[ap] for /apo/ ‘from’, or [in] or even [n] for /ine/ 
‘is’.  Such variation was not regularized, but 
treated as part of the learning task. 

The training corpus contains 367 utterance 
tokens with a total of 1066 word tokens (319 
types).  Whereas the average number of words per 
utterance (2.9) is almost identical to that in the 
Korman (1984) corpus used by Christiansen et al. 
(1998), utterances and words were slightly longer 
in terms of phonemes (12.8 and 4.4 phonemes 
respectively, compared to 9.0 and 3.0 in Korman). 

The test corpus consists of 373 utterance tokens 
with a total of 980 words (306 types).  All 
utterances were uttered by adults to the same child 
as in the training corpus.  As with the training 
corpus, dysfluencies, missing words, or other 
irregularities were removed; the word boundaries 
were kept as given by the annotators, even when 
this disagreed with standard orthographic word 
breaks.  

2.3 Model Design 

Used as a solitary cue (as it is in the tests run 
here), comparison against a global threshold may 
be implemented within the same framework as 
Brent’s (1999) TP and MI heuristics.  However, it 
may be implemented within a finite-state 
framework as well, with equivalent behavior.  This 
section will describe how the ‘global comparison’ 
heuristic is modeled within a finite-state 
framework. 

While such an implementation is not technically 
necessary here, one advantage of the finite-state 
framework is the compositionality of finite state 
machines, which allows for later composition of 
this approach with other heuristics depending on 
other cues, analogous to Christiansen et al. (1998).  
Since the finite-state framework selects the best 

path over the whole utterance, it also allows for 
optimization over a sequence of decisions, rather 
than optimizing each local decision separately.6 

Unlike Belz (1998), where the actual FSM 
structure (including classes of phonemes that could 
be group onto one arc) was learned, here the 
structure of each FSM is determined in advance.  
Only the weight on each arc is derived from data.  
No attempt is made to combine phonemes to 
produce more minimal FSMs; each phoneme (and 
phoneme-pair) is modeled separately. 

Like Brent (1999a) and indeed most models in 
the literature, this model assumes (for sake of 
convenience and simplicity) that the child hears 
each segment produced within an utterance without 
error. This assumption translates into the finite-
state domain as a simple acceptor (or equivalently, 
an identity transducer) over the segment sequence 
for a given utterance.7 

Word boundaries are inserted by means of a 
transducer that computes the cost of word 
boundary insertion from the predictability scores.  
In the MI model, the cost of inserting a word 
boundary is proportional to the mutual 
information.  For ease in modeling, this was 
represented with a finite state transducer with two 
paths between every pair of phonemes (x,y), with 
zero-counts modeled with a maximum weight of 
99.  The direct path, representing a path with no 
word boundary inserted, costs −MI(x,y), which is 
positive for bigrams of low predictability (negative 
MI), where word boundaries are more likely.  The 
other path, representing a word boundary insertion, 
carries the cost of the global threshold, in this case 
arbitrarily set to zero (although it could be 
optimized with held-out data).  A small subset of 
the resulting FST, representing the connections 
over the alphabet {ab} is illustrated in Figure 1, 
below: 

                                                      
6 See Rabiner (1989) for a discussion of choosing 

optimization criteria. It is worth noting that this 
distinction does not come into play in the one-cue 
model reported here, as all decisions are modeled as 
independent of one another.  However, it is expected to 
take on some importance in models combining multiple 
cues, such as those proposed in Section 4 of this paper. 

7 While modeling the mishearing of segments would 
be more realistic and highly interesting, it is beyond the 
scope of this study.  However, a weighted transducer 
representing a segmental confusion matrix could in 
principle replace the current identity transducer, without 
disrupting the general framework of the model. 



 
Figure 1: The MI model over the alphabet {ab} 

The best (least-cost) path over this subset model 
inserts boundaries between two adjacent a’s and 
two adjacent b’s, but not between ab or ba; thus 
the (non-Greek) string …ababaabbaaa… would be 
segmented …ababa#ab#ba#a#a… by the FSM. 

The FSM for transitional probability has the 
same structure as that of MI, but with different 
weights on each path. For each pair of phonemes 
xy, the cost for the direct path from x to y is 
−log(P(y|x)).  The global threshold cost of 
inserting a word boundary was set (again, 
arbitrarily) as the negative log of the mean of all 
TP values.  In the two-phoneme subset (shown in 
Figure 2), the only change is that the direct 
pathway from a to b is now more expensive than 
the threshold path, so the best path over the FSM 
will insert word boundaries between a and b as 
well.  Hence our example string …ababaabbaaa… 
would be segmented …a#ba#ba#a#b#ba#a#a… by 
the FSM.  (The stranded ‘word’ #b# would of 
course be an error, but this problem does not arise 
in actual Greek input, since two adjacent b’s, like 
all geminate consonants, are ruled out by Greek 
phonotactics.) 

 
Figure 2: The TP model over the alphabet {ab} 

During testing each FST model was composed 
(separately) with the segment identity transducer 
for the utterance under consideration. A short 
sample section of such a composition, with the best 
path in bold, is shown in Figure 3.  

 

 
Figure 3: A section of the composition of the MI 

model and an utterance acceptor 

The output projection of the best path from the 
resulting FST was converted back into text and 
compared to the text of the original utterance.  
These compositions, best-path projections, and 

conversions were performed using the AT&T finite 
state toolkit (Mohri et al., 1998).8   

2.4 A Concrete Example 

Take, for example, an utterance from the test 
corpus /tora#Telis#na#aniksume#afto/ ‘now you 
want us to open this.’  The mutual information and 
transitional probability figures for this utterance 
are given in Table 1. 

 
Context Predictability 

Left Right MI TP 
# t 0.000 3.219 
t o −1.661 0.781 
o r −1.018 2.350 
r a −0.800 1.113 
a T 1.824 6.375 
T e −0.744 1.540 
e l −0.225 3.059 
l i −0.903 1.197 
i s −0.491 2.382 
s n 1.555 4.317 
n a −0.300 1.613 
a a 2.516 4.429 
a n −0.339 2.424 
n i −0.071 2.029 
i k −0.337 2.633 
k s −0.444 2.428 
s u −0.172 3.219 
u m −1.387 2.413 
m e −1.230 1.055 
e a 1.095 3.008 
a f −1.473 2.525 
f t −2.068 0.484 
t o −1.661 0.781 
o # 0.000 3.219 

Table 1: MI and TP values for bigrams in the test 
utterance /tora#Telis#na#aniksume#afto/.  Values 
above threshold are bold; local maxima italicized. 

In this example, the correct boundaries fall 
between the pairs (a,T), (s,n), (a,a), and (e,a).  Both 
the mutual information and the transitional 
probability for the first three of these pairs are 
above the global mean, so word boundaries are 
posited under both global models.9  (Since each of 
these is also a local maximum, the local models 
also posit boundaries between these three pairs.)  
The pair (e,a) is above threshold for MI but not for 

                                                      
8 FSM Library Version 3.7, freely available from 

http://www.research.att.com/sw/tools/fsm/ 
9 Since all values are given in terms of negative MI 

and negative log probability, high values for both 
measures indicate relatively improbable pairings. 



TP, so the global TP model fails to posit a 
boundary here.  Finally, the two local models posit 
a number of spurious boundaries at the other local 
maxima, shown by the italic numbers in the table.  
The resulting predictions for each model are: 

 
Global MI: #tora#Telis#na#aniksume#afto# 
Global TP: #tora#Telis#na#aniksumeafto# 
Local MI: #tora#Te#lis#na#an#iks#ume#afto# 
Local TP: #to#ra#Te#lis#na#ani#ks#ume#afto# 

3 Results 

The four model variants (global MI, global TP, 
local MI, and local TP) were each evaluated on 
three metrics: word boundaries, word tokens, and 
word types.  Note that the first metric reported, 
simple boundary placement, considers only 
utterance-internal word-boundaries, rather than 
including those word boundaries which are 
detected ‘for free’ by virtue of being utterance-
boundaries also.  This boundary measure may be 
more conservative than that reported by other 
authors, but is easily convertible into other metrics.   

The second metric, the percentage of word 
tokens detected, is the same as Brent (1999a).  In 
order for a word to be counted as correctly found, 
three conditions must be met: (a) the word’s 
beginning (left boundary) is correctly detected, (b) 
the word’s ending (right boundary) is correctly 
detected, and (c) these two are consecutive (i.e., no 
false boundaries are posited within the word). 

The last metric (word type) is slightly more 
conservative than Brent’s (1999a) in that the word 
type must have been actually spoken in the same 
utterance (not the same block of 500 utterances) in 
which it was detected to count as a match.  This 
lessens the possibility that a mismatch that happens 
to be segmentally identical to an actual word (but 
whose semantic context may not be conducive to 
learning its correct meaning) is counted as a match.  
However, this situation is presumably rather rare. 

Tables 2 and 3 present the results over the test 
set for both the global and the local comparisons of 
the predictability statistics proposed by Saffran et 
al. (1996) and Brent (1999a). 

 

Table 2: Global Comparison: FST best paths 
with bigrams compared to a global threshold only 

Local 
Comparison 

Bound-
aries 

Word 
Tokens 

Word 
Types 

Precision 42.0% 31.5% 20.1%
Recall 62.6% 41.1% 27.8%MI
F-Score 50.3% 35.7% 23.4%
Precision 41.5% 28.0% 20.2%
Recall 74.1% 41.6% 22.9%TP
F-Score 53.2% 33.5% 21.4%

Table 3: Local Comparison: Replication of Brent 
(1999a); each bigram compared to both neighbors 

4 Conclusion 

4.1 Comparing the Four Variants 

The findings here confirm Brent’s (1999a) 
contention that mutual information is a better 
measure of predictability than is transitional 
probability—at least for the task of identifying 
words, not just boundaries.  This is particularly 
true in the global comparison.  Transitional 
probability finds more word boundaries in the 
‘local comparison’ model, but this does not carry 
over to the task of pulling out the word themselves, 
which is arguably the infant’s main concern.  This 
result should be kept in mind when interpreting or 
replicating (Saffran et al., 1996) or similar studies. 

While Brent’s ‘local comparison’ heuristic was 
unable to pull out one-phoneme-long words, as 
predicted above, this did not adversely affect it as 
much as anticipated.  On the contrary, both the 
local and global comparison heuristics tended to 
postulate too many word boundaries, as Brent had 
observed.  This is not necessarily a bad thing for 
infants, for several reasons.   

First, infants may have a preference for finding 
short words, since these will presumably be easier 
to remember and learn, particularly if the child’s 
phonetic memory is limited.  Second, it is probably 
easier to reject a hypothesized word (for example, 
on failing to find a consistent semantic cue for it) 
than to obtain a word not correctly segmented; 
hence false positives are less of a problem than 
false negatives for the child.  Third and most 
importantly, this cue is not likely to operate on its 
own, but rather as one among many contributing 
cues.  Other cues may act as filters on the 
boundaries suggested by this cue.  One example of 
this is the distribution of segments before utterance 
edges, as used by e.g., Aslin et al. (1996) and 
Christiansen et al. (1998) which indicate the set of 
possible word-final segments in the language. 

Global 
Comparison 

Bound-
aries 

Word 
Tokens 

Word 
Types 

Precision 43.9% 30.8% 22.3%
Recall 54.4% 35.3% 29.7%MI 
F-Score 48.6% 32.9% 25.5%
Precision 40.4% 28.4% 20.0%
Recall 41.7% 29.0% 28.4%TP 
F-Score 41.0% 28.7% 23.5%



However, as far as these results go, the word 
type metric shows that the finite-state model using 
a global threshold suffered slightly less from this 
problem than the local comparison model.  For the 
MI variants, both recall and precision for word 
type were about 2% higher on the global threshold 
variant.  For transitional probability, the precision 
of the local and global models was roughly equal, 
but recall for the global comparison model was 
5.5% higher.  Not only were the global models 
better at pulling out a variety of words, but they 
also managed to learn longer ones (especially the 
global TP variant), including a few four-syllable 
words.  The local model learned no four-syllable 
words, and relatively few three-syllable words. 

The mixed nature of these results suggests that 
evaluation depends fairly crucially on what 
performance metric needs to be optimized.  This 
demands stronger prior hypotheses regarding the 
process and needed input of a vocabulary-
acquiring child.  However, it cannot be blindly 
assumed that children are selecting low points over 
as short a window as Brent’s (1999a) MI and TP 
models suggest.  Quite possibly the best model 
would involve either a hybrid of local and global 
comparisons, or a longer window, or even a 
‘gradient’ window where far neighbors count less 
than near ones in a computed average.   

However, further speculation on point this of 
less importance than considering how this cue 
interacts with others known experimentally to be 
salient to infants.  Christiansen et al. (1998) and 
Johnson and Jusczyk (2001) have already began 
simulating and testing these interactions in 
English.  However, more work needs to be done to 
understand better the nature of these interactions 
cross-linguistically. 

4.2 Further Research  

As mentioned above, one obvious area for future 
research is the interaction between predictability 
cues like MI and utterance-final information; this 
is one of the cue combinations explored in 
Christiansen et al. (1998) in English.  Previous 
research (Rytting, 2004) examined the role of 
utterance-final information in Greek, and found 
that this cue performs better than chance on its 
own.  However, it seems that utterance-final 
information would be more useful as a filter on the 
heuristics explored here to restrain them from 
oversegmenting the utterance. Since nearly all 
Greek words end in /a/, /e/, /i/, /o/, /u/, /n/, or /s/, 
just restricting word boundaries to positions after 
these seven phonemes boosts boundary precision 
considerably with little effect on recall.10 

                                                      
10 Naturally, in unrestricted speech the characteristics 

Preliminary testing suggests that this filter boosts 
both precision and recall at the word level.  
However, a model that incorporates the likelihoods 
of word boundaries after each of these final 
segments, properly weighted, may be even more 
helpful than this simple, unweighted filter. 

Another fruitful direction is the exploration of 
prosodic information such as lexical stress.  With 
the exception of a certain class of clitic groups, 
Greek words have at most one stress.  Hence, at 
least one word boundary must occur between two 
stressed vowels.  Relations between stress and the 
beginnings and endings of words, while not 
predicted to be as robust a cue as in English (see 
e.g., Cutler, 1996), should also provide useful 
information, both alone and in combination with 
segmental cues. 

Finally, the relationship between these more 
‘static’ cues and the cues that emerge as 
vocabulary begins to be acquired (as in Brent’s 
main MBDP-1 model and others discussed above) 
seems not to have received much attention in the 
literature.  As vocabulary is learned, it can help 
bootstrap these cues by augmenting heuristic cues 
with actual probabilities derived from its parses.  
Hence, the combination of e.g., MLDP-1 and these 
heuristics may prove more powerful than either 
approach alone. 
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