
The Talent System: TEXTRACT Architecture and Data Model

Mary S. Neff
IBM Thomas J. Watson

Research Center
P.O. Box 704

Yorktown Heights, NY
10598

MaryNeff@us.ibm.com

Roy J. Byrd
IBM Thomas J. Watson

Research Center
P.O. Box 704

Yorktown Heights, NY 10598

byrd@watson.ibm.com

Branimir K. Boguraev
IBM Thomas J. Watson

Research Center
P.O. Box 704

Yorktown Heights, NY
10598

bkb@watson.ibm.com

Abstract

We present the architecture and data model for
TEXTRACT, a document analysis framework for
text analysis components. The framework and
components have been deployed in research
and industrial environments for text analysis
and text mining tasks.

1

Introduction

In response to a need for a common infrastructure and
basic services for a number of different, but coordi-
nated, text analysis activities with a common set of re-
quirements, the Talent (Text Analysis and Language
ENgineering Tools) project at IBM Research developed
the first TEXTRACT system in 1993. It featured a com-
mon C API and a tripartite data model, consisting of
linked list annotations and two hash table extensible
vectors for a lexical cache and a document vocabulary.
The experience of productizing this system as part of
IBM’s well-known commercial product Intelligent
Miner for Text (IM4T1) in 1997, as well as new research
requirements, motivated the migration of the analysis
components to a C++ framework, a more modular archi-
tecture modeled upon IBM’s Software Solutions (SWS)
Text Analysis Framework (TAF).

The current version of TEXTRACT that we outline
here is significantly different from the one in IM4T;
however, it still retains the tripartite model of the central
data store.

In this paper, we first give an overview of the
TEXTRACT architecture. Section 3 outlines different
operational environments in which the architecture can
be deployed. In Section 4, we describe the tripartite

2

1 http://www-3.ibm.com/software/data/iminer/fortext/

data model. In Section 5, we illustrate some fundamen-
tals of plugin design, by focusing on Talent’s Finite
State Transducer component and its interaction with the
architecture and data model. Section 6 reviews related
work. Finally, we conclude and chart future directions.

The TEXTRACT Architecture: Overview

TEXTRACT is a robust document analysis framework,
whose design has been motivated by the requirements of
an operational system capable of efficient processing of
thousands of documents/gigabytes of data. It has been
engineered for flexible configuration in implementing a
broad range of document analysis and linguistic proc-
essing tasks. The common architecture features it
shares with TAF include:

• interchangeable document parsers allow the ‘in-
gestion’ of source documents in more than one
format (specifically, XML, HTML, ASCII, as
well as a range of proprietary ones);

• a document model provides an abstraction layer
between the character-based document stream
and annotation-based document components,
both structurally derived (such as paragraphs and
sections) and linguistically discovered (such as
named entities, terms, or phrases);

• linguistic analysis functionalities are provided
via tightly coupled individual plugin compo-
nents; these share the annotation repository, lexi-
cal cache, and vocabulary and communicate with
each other by posting results to, and reading
prior analyses from, them;

• plugins share a common interface, and are dis-
patched by a plugin manager according to de-
clared dependencies among plugins; a resource
manager controls shared resources such as lexi-
cons, glossaries, or gazetteers; and at a higher

level of abstraction, an engine maintains the
document processing cycle;

• the system and individual plugins are softly con-
figurable, completely from the outside;

• the architecture allows for processing of a stream
of documents; furthermore, by means of collec-
tion-level plugins and applications, cross-
document analysis and statistics can be derived
for entire document collections.

 TEXTRACT is industrial strength (IBM, 1997), Unicode-
ready, and language-independent (currently, analysis
functionalities are implemented primarily for English).
It is a cross-platform implementation, written in C++.

TEXTRACT is ‘populated’ by a number of plugins,
providing functionalities for:

• tokenization;
• document structure analysis, from tags and white

space;
• lexicon interface, complete with efficient look-

up and full morphology;
• importation of lexical and vocabulary analyses

from a non-TEXTRACT process via XML markup;
• analysis of out-of-vocabulary words (Park,

2002);
• abbreviation finding and expansion (Park and

Byrd, 2001);
• named entity identification and classification

(person names, organizations, places, and so
forth) (Ravin and Wacholder, 1997);

• technical term identification, in technical prose
(Justeson and Katz, 1995);

• vocabulary determination and glossary extrac-
tion, in specialized domains (Park et al., 2002);

• vocabulary aggregation, with reduction to ca-
nonical form, within and across documents;

• part-of-speech tagging (with different taggers)
for determining syntactic categories in context;

• shallow syntactic parsing, for identifying phrasal
and clausal constructs and semantic relations
(Boguraev, 2000);

• salience calculations, both of inter- and intra-
document salience;

• analysis of topic shifts within a document (Bogu-
raev and Neff, 2000a);

• document clustering, cluster organization, and
cluster labeling;

• single document summarization, configurable to
deploy different algorithmic schemes (sentence
extraction, topical highlights, lexical cohesion)
(Boguraev and Neff, 2000a, 2000b);

• multi-document summarization, using iterative
residual rescaling (Ando et al., 2000);

• pattern matching, deploying finite state technol-
ogy specially designed to operate over document
content abstractions (as opposed to a character
stream alone).

The list above is not exhaustive, but indicative of the

kinds of text mining TEXTRACT is being utilized for; we
anticipate new technologies being continually added to
the inventory of plugins. As will become clear later in
the paper, the architecture of this system openly caters
for third-party plugin writers.

Figure 1: TEXTRACT Architecture

Specific TEXTRACT configurations may deploy cus-
tom subsets of available plugin components, in order to
effect certain processing; such configurations typically
implement an application for a specific content analysis
/ text mining task. From an application's point of view,
TEXTRACT plugins deposit analysis results in the shared
repository; the application itself ‘reads’ these via a well
defined interface. Document application examples to
date include document summarization, a customer
claims analysis system (Nasukawa and Nagano, 2001),
and so forth.

Collection applications have a document analysis
component, which may also write to the shared reposi-
tory. These include named relation extraction (Byrd
and Ravin, 1999), custom dictionary building (Park, et
al., 2001), indexing for question answering (Prager et
al., 2000), cross-document coreference (Ravin and Kazi,
1999), and statistical collection analysis for document
summarization or lexical navigation (Cooper and Byrd,
1997).

Figure 2: TEXTRACT’s GUI

For packaging in applications, Textract has, in addi-
tion to native APIs, a C API layer for exporting the con-
tents of the data store to external components in C++ or
Java.

3 Different Operational Environments
 For the purposes of interactive (re-)configuration of

TEXTRACT’s processing chain, rapid application proto-
typing, and incremental plugin functionality develop-
ment, the system’s underlying infrastructure capabilities
are available to a graphical interface. This allows cont-
trol over individual plugins; in particular, it exploits the
configuration object to dynamically reconfigure speci-
fied plugins on demand. By exposing access to the
common analysis substrate and the document object,
and by exploiting a mechanism for declaring, and inter-
preting, dependencies among individual plugins, the
interface further offers functionality similar to that of
GATE (Cunningham, 2002). Such functionality is facili-
tated by suitable annotation repository methods, includ-
ing a provision for ‘rolling back’ the repository to an
earlier state, without a complete system reInit().

4 The TEXTRACT Data Model

The plugins and applications communicate via the anno-
tations, vocabulary, and the lexical cache. The collec-
tion object owns the lexical cache; the document object
contains the other two subsystems: the annotation re-
pository, and the document vocabulary. Shared read-
only resources are managed by the resource manager.

Annotations: Annotations contain, minimally, the
character locations of the beginning and ending position
of the annotated text within the base document, along
with the type of the annotation. Types are organized
into families: lexical, syntactic, document structure,
discourse, and markup. The markup family provides
access to the text buffer, generally only used by the to-
kenizer. The annotation repository owns the type sys-
tem and pre-populates it at startup time. Annotation
features vary according to the type; for example, posi-
tion in a hierarchy of vocabulary categories (e.g. Person,
Org) is a feature of lexical annotations. New types and
features (but not new families) can be added dynami-
cally by any system component. The annotation reposi-
tory has a container of annotations ordered on start
location (ascending), end location (descending), priority
of type family (descending), priority within type family
(descending), and type name (ascending). The general
effect of the family and type priority order is to reflect
nesting level in cases where there are multiple annota-
tions at different levels with the same span. With this
priority, an annotation iterator will always return an NP

In addition, the GUI is configurable as a development
environment for finite state (FS) grammar writing and
debugging, offering native grammar editing and compi-
lation, contextualized visualization of FS matching, and
in-process inspection of the annotation repository at
arbitrary level of granularity. Figure 2 is broadly in-
dicative of some of the functional components exposed:
in particular, it exemplifies a working context for a
grammar writer, which includes an interface for setting
operational parameters, a grammar editor/compiler, and
multiple viewers for the results of the pattern match,
mediated via the annotation repository, and making use
of different presentation perspectives (e.g. a parse tree
for structural analysis, concordance for pattern match-
ing, and so forth.)

(noun phrase) annotation before a covered word annota-
tion, no matter how many words are in the NP.

Iterators over annotations can move forward and
backward with respect to this general order. Iterators
can be filtered by set of annotation families, types or a
specified text location. A particular type of filtered it-
erator is the subiterator, an iterator that covers the span
of a given annotation (leaving out the given annotation).
Iterators can be specified to be “ambiguous” or “unam-
biguous.” Ambiguous scans return all the annotations
encountered; unambiguous scans return only a single
annotation covering each position in the document, the
choice being made according to the sort order above.
Unambiguous scans within family are most useful for
retrieving just the highest order of analysis. All the
different kinds of filters can be specified in any combi-
nation.

Lexical Cache: One of the features on a word an-
notation is a reference to an entry in the lexical cache.
The cache contains one entry for each unique token in
the text that contains at least one alphabetic character.
Initially designed to improve performance of lexical
lookup, the cache has become a central location for au-
thority information about tokens, whatever the source:
lexicon, stop word list, gazetteer, tagger model etc. The
default lifetime of the lexical cache is the collection;
however, performance can be traded for memory by a
periodic cache refresh.

The lexical lookup (lexalyzer) plugin populates the
lexical cache with tokens, their lemma forms, and mor-
pho-syntactic features. Morpho-syntactic features are
encoded in an interchange format which mediates
among notations of different granularities (of syntactic
feature distinctions or morphological ambiguity), used
by dictionaries (we use the IBM LanguageWare dic-
tionaries, available for over 30 languages), tag sets, and
finite state grammar symbols. In principle, different
plugins running together can use different tag sets by
defining appropriate tagset mapping tables via a con-
figuration file. Similarly, a different grammar morpho-
syntactic symbol set can also be externally defined. As
with annotations, an arbitrary number of additional fea-
tures can be specified, on the fly, for tokens and/or
lemma forms. For example, an indexer for domain ter-
minology cross references different spellings, as well as
misspellings, of the same thing. The API to the lexical
cache also provides an automatic pass-through to the
dictionary API, so that any plugin can look up a string
that is not in the text and have it placed in the cache.

Vocabulary: Vocabulary annotations (names, do-
main terms, abbreviations) have a reference to an entry
in the vocabulary. The canonical forms, variants, and
categories in the vocabulary can be plugin-discovered
(Nominator), or plugin-recovered (matched from an
authority resource, such as a glossary). Collection sali-

ence statistics (e.g. tfxidf), needed, for example, by the
summarizer application, are populated from a resource
derived from an earlier collection run. As with the an-
notations and lexical entries, a plugin may define new
features on the fly.

Resource Manager: The Resource Manager, im-
plemented as a C++ singleton object so as to be avail-
able to any component anywhere, manages the files and
API’s of an eclectic collection of shared read-only re-
sources: a names authority data base (gazetteer), prefix
and suffix lists, stop word lists, the IBM LanguageWare
dictionaries with their many functions (lemmatization,
morphological lookup, synonyms, spelling verification,
and spelling correction), and, for use in the research
environment, WordNet (Fellbaum, 1998). The API
wrappers for the resources are deliberately not uniform,
to allow rapid absorption and reuse of components. For
performance, the results of lookup in these resources are
cached as features in the lexical cache or vocabulary.

5

5.1

TEXTRACT Plugins

TEXTRACT plugins and applications need only to con-
form to the API of the plugin manager, which cycles
through the plugin vector with methods for: con-
struct(), initialize(), processDocument(),
and endDocument(). Collection applications and
plugins look nearly the same to the plugin manager;
they have, additionally, startCollection() and
endCollection() methods. The complete API also
includes the interfaces to the annotation repository, lexi-
cal cache, and vocabulary.

Plugin Example: TEXTRACT’s Finite State
Transducer

Numerous NLP applications today deploy finite state
(FS) processing techniques—for, among other things,
efficiency of processing, perspicuity of representation,
rapid prototyping, and grammar reusability (see, for
instance, Karttunen et al., 1996; Kornai, 1999). TEX-
TRACT's FS transducer plugin (henceforth TFST), en-
capsulates FS matching and transduction capabilities
and makes these available for independent development
of grammar-based linguistic filters and processors.

In a pipelined architecture, and in an environment
designed to facilitate and promote reusability, there are
some questions about the underlying data stream over
which the FS machinery operates, as well as about the
mechanisms for making the infrastructure compo-
nents—in particular the annotation repository and
shared resources—available to the grammar writer.
Given that the document character buffer logically ‘dis-
appears’ from a plugin’s point of view, FS operations

now have to be defined over annotations and their prop-
erties. This necessitates the design of a notation, in
which grammars can be written with reference to
TEXTRACT’s underlying data model, and which still
have access to the full complement of methods for ma-
nipulating annotations.

In the extreme, what is required is an environment
for FS calculus over typed feature structures (see Becker
et al., 2002), with pattern-action rules where patterns
would be specified over type configurations, and actions
would manipulate annotation types in the annotation
repository. Manipulation of annotations from FS speci-
fications is also done in other annotation-based text
processing architectures (see, for instance, the JAPE
system; Cunningham et al, 2000). However, this is
typically achieved, as JAPE does, by allowing for code
fragments on the right-hand side of the rules.

Both assumptions—that a grammar writer would be
familiar with the complete type system employed by all
‘upstream’ (and possibly third party) plugins, and that a
grammar writer would be knowledgeable enough to
deploy raw API's to the annotation repository and re-
source manager—go against the grain of TEXTRACT’s
design philosophy.

Consequently, we make use of an abstraction layer
between an annotation representation (as it is imple-
mented) and a set of annotation property specifications
which define individual plugin capabilities and granu-
larity of analysis. We also have developed a notation
for FS operations, which appeals to the system-wide set
of annotation families, with their property attributes, as
well as encapsulates operations over annotations—such
as create new ones, remove existing ones, modify and/or
add properties, and so forth—as primitive operations.
Note that the abstraction hides from the grammar writer
system-wide design decisions, which separate the anno-
tation repository, the lexicon, and the vocabulary (see
Section 3 above): thus, for instance, access to lexical
resources with morpho-syntactic information, or, in-
deed, to external repositories like gazetteers or lexical
databases, appears to the grammar writer as querying an
annotation with morpho-syntactic properties and attrib-
ute values; similarly, a rule can post a new vocabulary
item using notational devices identical to those for post-
ing annotations.

The freedom to define, and post, new annotation
types ‘on the fly’ places certain requirements on the
FST subsystem. In particular, it is necessary to infer
how new annotations and their attributes fit into an al-
ready instantiated data model. The FST plugin there-
fore incorporates logic in its reInit() method which
scans an FST file (itself generated by an FST compiler
typically running in the background), and determines—
by deferring to a symbol compiler—what new annota-
tion types and attribute features need to be dynamically
configured and incrementally added to the model.

An annotation-based regime of FS matching needs a
mechanism for picking a particular path through the
input annotation lattice, over which a rule should be
applied: thus, for instance, some grammars would in-
spect raw tokens, others would abstract over vocabulary
items (some of which would cover multiple tokens), yet
others might traffic in constituent phrasal units (with an
additional constrain over phrase type) or/and document
structure elements (such as section titles, sentences, and
so forth).

For grammars which examine uniform annotation
types, it is relatively straightforward to infer, and con-
struct (for the run-time FS interpreter), an iterator over
such a type (in this example, sentences). However, ex-
pressive and powerful FS grammars may be written
which inspect, at different—or even the same—point of
the analysis annotations of different types. In this case
it is essential that the appropriate iterators get con-
structed, and composed, so that a felicitous annotation
stream gets submitted to the run-time for inspection;
TEXTRACT deploys a special dual-level iterator designed
expressly for this purpose.

Additional features of the TFST subsystem allow for
seamless integration of character-based regular expres-
sion matching, morpho-syntactic abstraction from the
underlying lexicon representation and part-of-speech
tagset, composition of complex attribute specification
from simple feature tests, and the ability to constrain
rule application within the boundaries of specified anno-
tation types only. This allows for the easy specification,
via the grammar rules, of a variety of matching regimes
which can transparently query upstream annotators of
which only the externally published capabilities are
known.

A number of applications utilizing TFST include a
shallow parser (Boguraev, 2000), a front end to a glos-
sary identification tool (Park et al., 2002), a parser for
temporal expressions, a named entity recognition de-
vice, and a tool for extracting hypernym relations.

6 Related Work

The Talent system, and TEXTRACT in particular, belongs
to a family of language engineering systems which in-
cludes GATE (University of Sheffield), Alembic
(MITRE Corporation), ATLAS (University of Pennsyl-
vania), among others. Talent is perhaps closest in spirit
to GATE. In Cunningham, et al. (1997), GATE is de-
scribed as “a software infrastructure on top of which
heterogeneous NLP processing modules may be evalu-
ated and refined individually or may be combined into
larger application systems.” Thus, both Talent and
GATE address the needs of researchers and developers,

on the one hand, and of application builders, on the
other.

The GATE system architecture comprises three
components: The GATE Document Manager (GDM),
The Collection of Reusable Objects for Language Engi-
neering (CREOLE), and the GATE Graphical Interface
(GGI). GDM, which corresponds to TEXTRACT’s
driver, engine, and plugin manager, is responsible for
managing the storage and transmission (via APIs) of the
annotations created and manipulated by the NLP proc-
essing modules in CREOLE. In TEXTRACT’s terms, the
GDM is responsible for the data model kept in the docu-
ment and collection objects. Second, CREOLE is the
GATE component model and corresponds to the set of
TEXTRACT plugins. Cunningham, et al. (1997) em-
phasize that CREOLE modules, which can encapsulate
both algorithmic and data resources, are mainly created
by wrapping preexisting code to meet the GDM APIs.
In contrast, TEXTRACT plugins are typically written ex-
pressly in order that they may directly manipulate the
analyses in the TEXTRACT data model. According to
Cunningham, et al. (2001), available CREOLE modules
include: tokenizer, lemmatizer, gazetteer and name
lookup, sentence splitter, POS tagger, and a grammar
application module, called JAPE, which corresponds to
TEXTRACT’s TFST. Finally, GATE’s third component,
GGI, is the graphical tool which supports configuration
and invocation of GDM and CREOLE for accomplish-
ing analysis tasks. This component is closest to
TEXTRACT’s graphical user interface. As discussed ear-
lier, the GUI is used primarily as a tool for grammar
development and AR inspection during grammar writ-
ing. Most application uses of TEXTRACT are accom-
plished with the programming APIs and configuration
tools, rather than with the graphical tool.

Most language engineering systems in the
TEXTRACT family have been motivated by a particular
set of applications: semi-automated, mixed-initiative
annotation of linguistic material for corpus construction
and interchange, and for NLP system creation and
evaluation, particularly in machine-learning contexts.
As a result, such systems generally highlight graphical
user interfaces, for visualizing and manipulating annota-
tions, and file formats, for exporting annotations to
other systems. Alembic (MITRE, 1997) and ATLAS
(Bird, et al., 2000) belong to this group. Alembic, built
for participation in the MUC conferences and adhering
to the TIPSTER API (Grishman, 1996), incorporates
automated annotators (“plugins”) for word/sentence
tokenization, part-of-speech tagging, person/ organiza-
tion/ location/ date recognition, and coreference analy-
sis. It also provides a phrase rule interpreter similar to
TFST. Alembic incorporates ATLAS’s “annotation
graphs” as its logical representation for annotations.
Annotation graphs reside in “annotation sets,” which are
closest in spirit to TEXTRACT’s annotation repository,

although they don't apparently provide APIs for fine-
grained manipulation of, and filtered iterations over, the
stored annotations. Rather, ATLAS exports physical
representations of annotation sets as XML files or rela-
tional data bases containing stand-off annotations,
which may then be processed by external applications.

Other systems in this genre are Anvil (Vintar and
Kipp (2001), LT-XML (Brew, et al., 2000), MATE
(McKelvie, et al., 2000), and Transcriber (Barras, et al.,
(2001). Like ATLAS, some of these were originally
built for processing speech corpora and have been ex-
tended for handling text. With the exception of GATE,
all of these systems are devoted mainly to semi-
automated corpus annotation and to evaluation of lan-
guage technology, rather than to the construction of
industrial NLP systems, which is TEXTRACT’s focus.
As a result, TEXTRACT uses a homogeneous implemen-
tation style for its annotation and application plugins,
with a tight coupling to the underlying shared analysis
data model. This is in contrast to the more loosely-
coupled heterogeneous plugin and application model
used by the other systems.

7 Conclusion

In this paper, we have described an industrial infra-
structure for composing and deploying natural language
processing components that has evolved in response to
both research and product requirements. It has been
widely used, in research projects and product-level ap-
plications.

A goal of the Talent project has been to create tech-
nology that is well-suited for building robust text analy-
sis systems. With its simple plugin interface (see
Section 5), its rich declarative data model, and the flexi-
ble APIs to it (Section 4), TEXTRACT has achieved that
goal by providing a flexible framework for system
builders. The system is habitable (external processes
can be ‘wrapped’ as plugins, thus becoming available as
stages in the processing pipeline), and open (completely
new plugins can be written—by anyone—to a simple
API, as long as their interfaces to the annotation reposi-
tory, the lexical cache, and the vocabulary (Section 4),
follow the published set of specifications.

Openness is further enhanced by encouraging the
use of TFST, which directly supports the development,
and subsequent deployment, of grammar-based plugins
in a congenial style. Overall, TEXTRACT’s design char-
acteristics prompted the adoption of most of the archi-
tecture by a new framework for management and
processing of unstructured information at IBM Research
(see below).

Performance is not generally an inherent property of
an architecture, but rather of implementations of that
architecture. Also, the performance of different con-

figurations of the system would be dependent on the
number, type, and algorithmic design and implementa-
tion of plugins deployed for any given configuration.
Thus it is hard to quantify TEXTRACT’s performance.
The most recent implementation of the architecture is in
C++ and makes extensive use of algorithms, container
classes and iterators from the C++ Standard Template
Library for manipulating the data objects in the data
model; its performance therefore benefits from state-of-
the-art implementations of the STL. As an informal
indication of achievable throughput, an earlier product
implementation of the tokenization base services and
annotation subsystem, in the context of an information
retrieval indexer, was able to process documents at the
rate of over 2 gigabytes-per-hour on a mid-range Unix
workstation.

Allowing TEXTRACT’s plugins to introduce — dy-
namically — new annotation types and properties is an
important part of an open system. However, a limita-
tion of the current design is the fixed organization of
annotations into families (see Section 4). This makes it
hard to accommodate new plugins which need to appeal
to information which is either not naturally encodable in
the family space TEXTRACT pre-defines, or requires a
richer substrate of (possibly mutually dependent) feature
sets.

In a move towards a fully declarative representation
of linguistic information, where an annotation maxi-
mally shares an underlying set of linguistic properties, a
rational re-design of TEXTRACT (Ferrucci and Lally,
2003) is adopting a hierarchical system of feature-based
annotation types; it has been demonstrated that even
systems supporting strict single inheritance only are
powerful enough for a variety of linguistic processing
applications (Shieber, 1986), largely through their well-
understood mathematical properties (Carpenter, 1992).

Some of this migration is naturally supported by the
initial TEXTRACT data model design. Other architec-
tural components will require re-tooling; in particular,
the FST subsystem will need further extensions for the
definition of FS algebra over true typed feature struc-
tures (see, for instance, Brawer, 1998; Wunsch, 2003).
We will return to this issue in a following paper.

8 Acknowledgements

We acknowledge the contributions of our colleagues,
current and former, in the design and implementation of
the Talent system and plugins: Rie Ando, Jim Cooper,
Aaron Kershenbaum, Youngja Park, John Prager, Yael
Ravin, Misook Choi, Herb Chong, and Zunaid Kazi.

References
Ando, Rie K., Branimir K. Boguraev, Roy J. Byrd and

Mary S. Neff. 2000. Multi-document summarization
by visualizing topical content. Advanced Summari-
zation Workshop, NAACL/ANLP-2000, Seattle,
WA, April 2000.

Barras, Claude, Edouard Geoffrois, Zhibiao Wu, and
Mark Liberman. 2001. Transcriber: development and
use of a tool for assisted speech corpora production.
In Speech Communication (33):5-22.

Becker, Marcus, Witold Drożdżyński, Hans-Ulrich
Krieger, Jakub Poskorski, Ulrich Schäfer, Feiyu Xu.
2002. SProUT—Shallow processing with unification
and typed feature structures. Proceedings of the In-
ternational Conference on Natural Language Proc-
essing (ICON 2002), Mumbai, India.

Bird, Steven, David Day, John Garofolo, John Hender-
son, Christohe Laprun, and Mark Liberman. 2000.
ATLAS: A Flexible and extensible architecture for
linguistic annotation. In Proceedings of the Second
International Conference on Language Resources
and Evaluation: 1699-1706.

Brew, Chris, David McKelvie, Richard Tobin, Henry
Thompson, and Andrei Mikheev. 2000. The XML
Library LT XML version 1.2 – User Documentation
and Reference Guide," available at http://
www.ltg.ed.ac.uk/corpora/xmldoc/release

/book1.htm.

Boguraev, Branimir K. 2000. Towards finite-state
analysis of lexical cohesion", In Proceedings of the
3rd International Conference on Finite-State Meth-
ods for NLP, INTEX-3, Liege, Belgium.

Boguraev, Branimir K. and Mary S. Neff. 2000a. Dis-
course segmentation in aid of document summariza-
tion. In Proceedings of the 33rd Hawaii International
Conference on System Sciences, Maui, HI, January
2000.

Boguraev, Branimir K. and Mary S. Neff. 2000b. Lexi-
cal cohesion, discourse segmentation, and document
summarization. In RIAO-2000, Paris, April 2000.

Brawer, Sascha. 1998. Patti: Compiling Unification-
Based Finite-State Automata into Machine Instruc-
tions for a Superscalar Pipelined RISC Processor,
MA Thesis, University of the Saarland, Saarbrücken,
Germany.

Byrd, Roy and Yael Ravin. 1999. Identifying and ex-
tracting relations in text. Presented at the NLDB’99
Conference, Klagenfurt, Austria.

Carpenter, Robert. 1992. The Logic of Typed Feature
Structures. Cambridge University Press, Cambridge,
England.

Cooper, James and Roy J. Byrd. 1997. Lexical naviga-
tion – visually prompted query expansion and re-
finement. In DIGILIB 97.

Cunningham, Hamish, Diana Maynard and Valentin
Tablan. 2000. JAPE: A Java Annotation Patterns
Engine. Research memo CS – 00 – 10, Institute for
Language, Speech and Hearing (ILASH), and De-
partment of Computer Science, University of Shef-
field, UK.

Cunningham, Hamish, Diana Maynard, Valentin Tab-
lan, Cristian Ursu, and Kalina Bontcheva. 2001 De-
veloping Language Processing Components with
GATE. GATE v2.0 User Guide, University of Shef-
field.

Cunningham, Hamish, Diana Maynard, Kalina
Bontcheva, Valentin Tablan. 2002. GATE: A
framework and graphical development environment
for robust NLP tools and applications. Proceedings
of the 40th Anniversary Meeting of the Association
for Computational Linguistics (ACL'02). Philadel-
phia.

Cunningham, Hamish, K. Humphreys, R. Gaizauskas,
and Yorick Wilks. 1997. Software infrastructure for
natural language processing," in Proceedings of the
Fifth Conference on Applied Natural Language
Processing (ANLP-97).

Grishman, Ralph. 1996. TIPSTER Architecture Design
Document Version 2.2 Technical Report, DARPA.

Fellbaum, Christiane. 1998. WordNet, An Electronic
Lexical Database. MIT Press.

Ferrucci, David and Adam Lally. 2003. Accelerating
corporate research in the development, application,
and deployment of human language technologies.
NAACL Workshop on Software Engineering and
Architecture of Language Technology Systems, Ed-
monton, Canada.

IBM Corp, Intelligent Miner for Text Product Overview,
1997. http://www3.ibm.com/software/data/
iminer/fortext/.

Justeson, John S. and Slava Katz. 1995. Technical ter-
minology: some linguistic properties and an algo-
rithm for identification in text. Natural Language
Engineering, 1(1):9-27.

Karttunen, Lauri, Jean-Pierre Chanod, Gregory Grefen-
stette and Anne Schiller. 1996. Regular expressions

for language engineering. Natural Language Engi-
neering, 4(1), pp.305-328.

Kornai, Andras. 1999. Extended Finite State Models of
Language, Cambridge University Press, Cambridge,
UK.

McKelvie, David, Amy Isard, Andreas Mengel, Morten
Baun Møller, Michael Grosse, Marion Klein. 2000.
The MATE Workbench - an annotation tool for XML
coded speech corpora. In Speech Communication.

MITRE Corporation. 1997. Alembic Workbench Users
Guide. available at http://www.mitre.org/

technology/alembic-workbench/.

Nasukawa, Tetsuya and T. Nagano. 2001. Text analy-
sis and knowledge mining system. In IBM Systems
Journal (40:4): 967-984.

Park, Youngja. 2002. Identification of probable real
words: an entropy-based approach. In Proceedings of
ACL Workshop on Unsupervised Lexical Acquisition:
pp 1-8.

Park, Youngja and Roy J. Byrd. 2001. Hybrid text
mining for finding terms and their abbreviations, In
EMNLP-2001.

Park, Youngja, Roy J. Byrd and Branimir K. Boguraev.
2002. Automatic glossary extraction: beyond termi-
nology identification. In Proceedings of the 19th In-
ternational Conference on Computational
Linguistics (COLING): 772-778.

Prager, John, Eric Brown, Anni Coden, and Dragomir
Radev. 2000. Question-answering by predictive an-
notation. In Proceedings of SIGIR 2000: 184-191,
Athens, Greece.

Ravin, Yael and Zunaid Kazi. 1999. Is Hillary Rodham
Clinton the president? Disambiguating names across
documents. In Proceedings of the ACL ’99 Work-
shop on Coreference and its Applications, June 1999.

Ravin, Yael and Nina Wacholder. 1997. Extracting
names from natural-language text. IBM Research
Report 20338.

Shieber, Stuart. 1986. An Introduction to Unification-
Based Approaches to Grammar, CSLI Lecture Notes,
Vol. 4, Stanford University, California.

Vintar, Spela and Michael Kipp. 2001. Multi-track an-
notation of terminology using Anvil.

Wunsch, Holger. 2003. Annotation Grammars and
Their Compilation into Annotation Transducers. MA
Thesis, University of Tübingen, Germany.

http://www3.ibm.com/software/data/
http://www.mitre.org/

	Introduction
	The Textract Architecture: Overview
	Different Operational Environments
	The Textract Data Model
	Textract Plugins
	Plugin Example: Textract’s Finite State Transduce

	Related Work
	Conclusion
	Acknowledgements

