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Abstract 
We studied contrast and variability in 
a corpus of gene names to identify 
potential heuristics for use in 
performing entity identification in the 
molecular biology domain.  Based on 
our findings, we developed heuristics 
for mapping weakly matching gene 
names to their official gene names.  
We then tested these heuristics against 
a large body of Medline abstracts, and 
found that using these heuristics can 
increase recall, with varying levels of 
precision.  Our findings also 
underscored the importance of good 
information retrieval and of the ability 
to disambiguate between genes, 
proteins, RNA, and a variety of other 
referents for performing entity 
identification with high precision. 

1 Introduction 

Almost all current approaches to entity 
identification are actually not tackling the 
identification per se, but rather merely the (still 
difficult) location of named entities in text.  The 
difference between these is that entity location 
consists of the (difficult enough) task of 
demarcation of the boundaries of names in text, 
whereas entity identification consists of the 
same thing, plus mapping the located names to 
the canonical entities that they refer to.  In this 
paper we present data on variability in the 

orthographic representation of gene names, and 
then show how knowledge about that variability 
can be used for heuristics that increase recall in 
the entity identification task.  (We use the term 
"gene name" as shorthand for "gene, protein, or 
RNA name.") 
 

To understand why it is important to be able 
to map located names to the canonical entities 
that they refer to, consider the outcome of 
running an information extraction routine with 
access only to entity location against a 
hypothetical document about rat somatotropin.  
It contains the synonymous names rat 
somatotropin, somatotropin, and growth 
hormone, all of which refer to the same 
biomolecule, whose canonical name we will 
assume to be somatotropin.  (The document is 
hypothetical; somatotropin and its synonyms are 
not.)  Suppose that the paper includes three 
separate assertions, of the form somatotropin is 
upregulated by X, transcription of rat 
somatotropin is blocked by Y, and growth 
hormone is expressed by cells of type Z.  The 
system correctly extracts three assertions, but 
incorrectly attributes them to three separate 
biomolecules, only one of which is the canonical 
form.  Now consider the outcome of running an 
information extraction routine with access to 
entity identification against the same document.  
Again, the system extracts three assertions, but 
this time all three assertions are correctly 
attributed to the same biomolecule, i.e. 
somatotropin.  Krauthammer et al. (2000), who 
are arguably the only researchers who have 
attempted to do actual identification as we 
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define it, have noted that while it is possible to 
recognize gene names in the face of variability, 
it remains difficult to map the recognized names 
to their canonical referents.  They point out that 
heuristics might be helpful in doing this. 

We studied variability in gene names with 
an eye toward finding such heuristics.  Our goal 
was to differentiate between kinds of variability 
that tend to differentiate between names with 
different referents, e.g. aha vs. aho or ACE1 vs. 
ACE2, as opposed to kinds of variability that 
only differentiate between synonyms that share 
a referent, such as tumour protein homologue 
and tumor protein homolog or ACE and ACE1. 
We then use data on contrast and variability to 
suggest our heuristics.  The idea behind using 
such heuristics is that an identified entity in 
some text that differs minimally from the 
canonical name for some entity can be mapped 
to that canonically-labelled entity if such 
mapping is allowed by some heuristic. 

We use the term contrast to describe or refer 
to dimensions or features which can be used to 
distinguish between two samples of natural 
language with different meaning.  Issues of 
contrast versus variability can be discussed with 
reference to individual characters or sequences 
of characters, or with reference to more abstract 
features, such as orthographic case.  In the 
molecular biology domain, we will say that 
some feature is contrastive if it encodes the 
difference between the names of two different 
genes.  In other words, contrasts occur inter-
entity.  We will say that some feature is 
(noncontrastively) variable if it differs merely 
between synonyms; in other words, variability 
occurs within members of a synonym set. 

We can trivially identify the contrast 
between BRCA1 vs. MHC class I polypeptide-
related sequence C, or between sonic hedgehog 
vs. eyeless.  What we are really interested in is 
minimally different tuples—sets that differ with 
respect to only one feature.  For instance, we 
would want to look at BRCA1 and BRCA2, 
which differ with respect to whether the 
character at the right edge is 1 or 2, or estrogen 
receptor beta and oestrogen receptor beta, 
which differ with respect to the presence or 
absence of an o at the left edge.  Ideally, then, 
we are looking for sets of names that differ only 
by a single unit.  However, the size and scope of 
the unit needs further discussion.  When dealing 
with written language, the unit of concern will 

usually be the grapheme.  A grapheme may be 
as small as a single character, but may also be 
considerably longer, e.g. the sequence ough in 
dough or through.  In this study, we considered 
graphemes longer than a single character only in 
the case of vowels.  Sometimes we will want to 
consider tuples that differ with respect to strings 
that are considerably larger than a grapheme, 
such as a word, or a string of parenthesized 
material; this will be discussed further in the 
first Methods section.  The issue of tuple size 
will be discussed there, as well. 

2 

2.1 Corpus 

Methods I: Investigating 
dimensions of contrast and 
variability 

We examined a large corpus of gene names and 
of synonyms for those gene names to determine 
what sorts of features are contrastive in gene 
names, and what sorts of features can vary 
without affecting the referential status of a gene 
name.  The corpus was derived from the 
LocusLink LL_tmpl file (the version on the 
LocusLink download site at 2:32 p.m. on Sept. 
13, 2001), available by ftp from 
ftp://ncbi.nlm.nih.gov.  This is an 
easily readable dump of LocusLink, which 
“provides a single query interface to curated 
sequence and descriptive information about 
genetic loci.  It presents information on official 
nomenclature, aliases, sequence accessions, 
phenotypes, EC numbers, MIM numbers, 
UniGene clusters, homology, map locations, and 
related web sites” 
(www.ncbi.nlm.nih.gov/locuslink).
We then pulled out the names and synonyms for 
all LocusLink entries for the species Mus 
musculus, Rattus norvegicus, and Homo 
sapiens.  We took the fields labelled as 
OFFICIAL GENE NAME, PREFERRED 
GENE NAME, OFFICIAL SYMBOL, 
PREFERRED SYMBOL, PRODUCT, 
PREFERRED PRODUCT, ALIAS SYMBOL, 
and ALIAS PROT.  Some genes were unnamed, 
and these were excluded from the analysis.  To 
our surprise, we also found that some gene 
names were duplicated within the same genome-
-e.g., in the M. musculus genome, there are two 
genes named reciprocal translocation, Ch4 6 



and 7, Adler 17; we filtered out duplicate names 
and excluded them, as well.  This left 42,608 
genes for the mouse, 4457 for the rat, and 
25,915 for the human.  For each organism, we 
created one file containing just gene names, and 
for each organism we created a set of files 
containing all gene names and their synonyms.  
For the gene name file, we used just those fields 
labelled OFFICIAL GENE NAME or 
PREFERRED GENE NAME; for the combined 
name/synonym files, we used all of the fields 
given above. 

2.2 

2.3 

2.4 

2.5 

Finding contrasts in the corpus 
For each species, we pulled out a list of all 
names that were indicated as OFFICIAL GENE 
NAME or PREFERRED GENE NAME in the 
LL_tmpl file.  Each name in this file represents 
a different gene.  We examined the names in this 
single large file for contrastive differences. 

Finding noncontrastive variability 
in the corpus 

For each species, for each gene, we pulled out 
the list of all names that were indicated by any 
of the set of labels listed above, and stored them 
separately.  With each of the many resulting 
files (one per gene), we examined the small set 
of synonymous names for noncontrastive 
variability. 

Finding minimal tuples 
The most obvious way to find minimal tuples 
would be to first determine the minimum edit 
distance between all pairs of gene names, and 
then select all pairs with minimum edit distance 
below some cutoff value.  However, this 
approach would suffer from two obvious flaws.  
The first flaw is that it is computationally 
expensive, since it is a O(n2)-complex problem.  
The second flaw is that it is ineffective.  It only 
yields tuples of size 2, but in fact sets of 
minimally differing gene names occur in sets of 
size 3, 4, 5, and even considerably larger, e.g. 
the three-member set conserved sequence block 
I, conserved sequence block II, and conserved 
sequence block III.  We chose an alternative 
approach to the problem of finding minimal 
tuples.  It consists of the following steps: 
 
For each gene name 
�� transform the gene name to some reduced 

form 
�� using the reduced form as the key in a hash 

of keys � lists, add the full form to a list of 
full forms from which that reduced form 
was derived 

 
For each key in the hash 
�� retrieve the list of names that is mapped to 

by that key 
�� if the list of names pointed to by that key 

has more than one element, report the list 
 

For example, if the input is the list of gene 
names gamma-glutamyltransferase 1, gamma-
glutamyltransferase 2, gamma-
glutamyltransferase 3, matrix metalloproteinase 
23A, matrix metalloproteinase 23B, and acrosin, 
and the transformation that is being applied to 
each name consists of deletion of the last 
character, then the output will be two lists of > 1 
element pointed to by gamma-
glutamyltransferase and matrix 
metalloproteinase 23, and one list of a single 
element, acrosin.  The two lists with > 1 
element would be reported as minimal tuples. 

Transformations 
We applied four transformations designed to 
investigate syntagmatic, or positional, effects.  
These consisted of removing the first character, 
the first word, the last character, and the last 
word. 
 

We applied four transformations designed to 
investigate paradigmatic, or content-based, 
effects.  These consisted of mapping vowel 
sequences to a constant string (the purpose of 
this being to look at American vs. British 
dialectal differences in gene names); 
replacement of hyphens with spaces; removal of 
parenthesized material; and normalization of 
case.  These relatively simple transformations 
miss a number of categories of differences 
between gene names, e.g. single-character 
differences in non-edge positions, such as 0 
BETA-1 GLOBIN vs. 0 BETA-2 GLOBIN; 
single-word differences in non-edge positions, 
such as DOPAMINE D1A RECEPTOR vs. 
DOPAMINE D2 RECEPTOR; proper substring 
relationships, such as EYE vs. EYE2; and 
interactions between the features that we did 
examine, such as calsequestrin 1 (fast-twitch, 
skeletal muscle) vs. calsequestrin 2 (cardiac 



muscle), which is not found by any one heuristic 
but would be found by the combination of the 
parenthesized-material transformation followed 
by either of the right-edge transformations.  
Nonetheless, they seem like a reasonable 
starting point. 

Results I 3 

Table 1 and Graphs 1, 2, 3, and 4 summarize our 
findings on contrast and variability in gene 
names. 
 

One surprising finding was that every 
paradigmatic dimension of contrast that we 
examined turned out to be contrastive in at least 
some very small number of cases.  We did not 
expect hyphenation to ever be contrastive, but 
found that within the H. sapiens genome, the 
two genes at LocusLink ID's 51086 and 112858 
differ in just that feature, having the names 
putative protein-tyrosine kinase and putative 
protein tyrosine kinase, respectively.  The two 
genes at LocusLink ID's 51251 and 90859 differ 
in the same way, being named uridine 5'-
monophosphate hydrolase 1 and uridine 5' 
monophosphate hydrolase 1, respectively. 

 

Graph 1. Hyphenation: contrast and 
variability
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Graph 2. Case: contrast and 
variability
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DOC S Contrastive 

(i.e., names) 
%N Variable 

(i.e., 
synonyms) 

 

LMC M 4 .009 72
 R 4 0.090 801
 H 2 0.008 123
LMW M 2556 5.999 135
 R 836 18.757 759
 H 4013 15.485 258
RMC M 15540 36.472 360
 R 687 15.414 49
 H 8684 33.510 921
RMW M 22290 52.314 191
 R 940 21.090 25
 H 11627 44.866 675
VS M 7 0.016 37
 R 0 0.000 4
 H 4 0.015 30
HYPH M 0 0.000 78
 R 0 0.000 0
 H 4 0.015 100
CASE M 1 0.002 327
 R 3 0.067 848
 H 0 0.000 452
PM M 14 0.033 102
 R 13 0.292 25
 H 51 0.197 526
 
Table 1.  Contrastive and noncontrastive 
variability in gene names.  “Percentage” 
columns give percentage of total names 
considered for that species, rounded to three 
decimal places.  DOC = dimension of 
contrast, L/RMC = left/right-most char, 
L/RMW = left/right-most word, VS = vowel 
sequences, HYPH = hyphenation, CASE = 
case, PM = parenthesized material.  S = 
species, M = mouse, R = rat, H = human.  %N 
= contrastive names as percentage of total 
names for that species. 
 
 
We did not expect case ever to be contrastive, 
but found that within the R. norvegicus genome, 
the two genes at LocusLink ID's 24969 and 
83789 differ with respect to just that feature, 
having the names Ribosomal protein S2 and 
ribosomal protein S2, respectively.  The two 
genes at LocusLink ID's 56764 and 65028 differ 
in the same way, having the names dnaj-like 
protein and DnaJ-like protein.  As Graphs 1 and 



2 show, these contrasts were not common, but 
we were surprised to observe them at all. 
 

(In considering these findings, it should be 
noted that these results are specific to a 
particular version of LocusLink.  We were 
interested in the extent to which these 
unexpected minimal pairs might be erroneous, 
so we examined the corresponding LOCUSID’s 
in a subsequent revision of the file from several 
months later (May 1, 2002, 10:21 a.m.).  We 
found that some of these entries had been 
combined, and some had been assigned an 
OFFICIAL_GENE_NAME, but others were 
unchanged, and so while we cannot eliminate 
the possibility that they are in error and have just 
managed to elude the editing process thus far, it 
is certainly the case that these anomalous 
contrasts continue to exist in the database, and 
we have no reason to assume that such names 
will not continue to be entered into the database, 
erroneously or otherwise, and therefore it 
behooves us to consider their implications for 
entity identification.) 
 

Graph 3. Parenthesized material: 
contrast and variability

14

102

13 25
51

526

0

100

200

300

400

500

600

Contrastive Synonymous

N
am

es

mouse
rat
human

      We found marked edge effects.  Contrasts 
are much more likely to be marked at the name 
boundary than are noncontrastive differences.  
There is a marked asymmetry in the 
directionality of the location of contrastive 
differences: they are much more likely to appear 
at the right edge of the word than at the left edge 
of the word.  There are also marked intra-species 
differences.  For example, although large edge 
effects are obvious for names (as opposed to 
synonyms) in the mouse and human genomes, 

they are not in the rat genome.  In interpreting 
variability, it will likely be helpful to have some 
awareness of what species is being discussed. 

Graph 4. Edge effects: 
contrastive on left, 

synonymous on right
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4 Methods II: Testing the 
heuristics 

These findings suggested a set of heuristics for 
allowing weakened pattern matches on gene 
names.  The heuristics are stated as 
transformations applied to regular expressions 
representing gene names to generate new regular 
expressions for the same gene names, but the 
heuristics can be applied in other ways as well, 
e.g. by grammar-based generation of alternate 
forms.  The heuristics are listed below: 
 
1.  Equivalence of vowel sequences: for any 
regular expression representing a gene name, 
substitute the regular expression formed by 
replacing all vowel sequences with one or more 
of any vowel. 
 
2.  Optionality of hyphens: for any regular 
expression representing a gene name, substitute 
the regular expression formed by replacing 
every hyphen with the disjunction of a hyphen 
or a space. 
 
3.  Optionality of parenthesized material: for any 
regular expression representing a gene name, 
substitute the regular expression formed by 
making any paired parentheses and the material 
they enclose (and surrounding whitespace, as 
appropriate) optional. 
 



4.  Case insensitivity: for any regular expression, 
apply it case-insensitively. 
 

To evaluate the extent to which each of 
these heuristics led to increased entity 
recognition, we ran our heuristics against a large 
body of Medline abstracts.  We counted the 
number of entities that were found by an exact 
pattern match to a LocusLink name, and counted 
the number of additional names that were found 
by each heuristic.  Although none of our 
heuristics specifically addressed 
morphologically-induced variability, we also 
added a search for pluralized gene names, so 
that we could compare the extent to which 
recognition of plurals improved recall to the 
extent to which our heuristics improved recall.  

5 Results II 

Table 2 shows the results.  As intuition would 
suggest, all heuristics were effective in locating 
more names than strict pattern matches alone.  
For example, optional hyphenation heuristic 
allowed the official gene name alpha-2-
macroglobulin to find a match in Moreover, C5a 
also enhanced transcription of the gene for the 
type-2 acute phase protein alpha 2-
macroglobulin n HC indirectly by increasing 
LPS-dependent IL-6 release from KC. 
  
names located by strict pattern matching 1846
Additional names located by vowel 
sequence heuristic matches 

586

Additional names located by optional 
hyphen heuristic matches 

37

Additional names located by case 
insensitive heuristic matches 

864

Additional names located by optional 
parentheses heuristic matches 

432

Additional names located by plural 
matches 

87

 
Table 2.  Names found by strict pattern 
match, heuristics, and plurals. 
 

However, we were concerned about the 
possibility of poor precision, i.e. false-positives.  
For this reason, we ran our heuristics against the 
same body of Medline abstracts, then randomly 
selected up to 100 tokens of gene names 
suggested by each heuristic  (some found less 
than 100 tokens in our corpus--see Table 2 

above).  We labelled each putative gene name 
with the canonical gene name that we believed it 
to refer to, and then asked a subject matter 
expert to evaluate whether the gene names that 
we had identified were or were not the gene 
names that we believed them to be.  The expert 
was presented with a three-way forced-choice 
paradigm, the options being yes, no, and can't 
tell.  It seemed useful to be able to compare the 
precision of our technique with the incidence of 
false positives from strict pattern matches, so the 
expert was also presented with a number of 
strict matches (i.e., not identified by our 
heuristics) to evaluate, in a quantity roughly 
equivalent to the number of heuristically-
suggested names that they were asked to 
evaluate.  Table 3 shows the results. 
 
condition total 

tokens 
marked 

yes 
marked 

no 
marked 
“can’t 
tell” 

percentage 
false 

positive 
((can’t tell 

+ no) � 
total 

tokens) x 
100 

Vowel 
seq. 

100 15 81 4 85.0
Hyph. 37 34 0 3 8.1
Case 
insens. 

97 72 20 5 25.8
Paren. 
Material 

99 93 0 6 6.1
   
Plurals 86 75 8 3 12.8
Strict 
pattern 
match 

500 425 40 35 15.0

 
Table 3.  False positives. 
 
We note the following: 
 
1.  Even strict pattern matches and forms that 
vary only with respect to inflectional 
morphology (i.e., the plurals) yield a nontrivial 
percentage of false positives—a percentage 
which is actually higher than two of our 
heuristics (optionality of hyphenation and 
optionality of parenthesized material). 
 
2.  Two of our heuristics (equivalence of vowel 
sequences and case insensitivity) yielded 
unexpectedly high rates of false positives.  The 
vowel sequence heuristic can probably be made 
to yield a lower rate by fine-tuning it.  For 
example, false positives from this heuristic can 
be reduced by disregarding any weak matches 



that come from one or more name-final upper-
case I’s, since these are commonly used in gene 
names to form Roman numerals.  The high false 
positive rate of the case insensitivity heuristic is 
unexpected, and will be investigated further.  

6 Conclusions 

Entity identification is a difficult task whose 
success is partly dependent on performance in 
other tasks, including disambiguation and 
information retrieval.  Disambiguation of the 
actual referent of an apparent gene or protein 
name is even more important than one might 
expect.  Hatzivassiloglou et al. (2001) points out 
the benefits and the difficulties inherent in 
distinguishing between genes, proteins, and 
RNA; we found that it was also important to 
differentiate between genes, proteins, RNA, and 
receptors, promoters, antagonists, domains, and 
binding sites, as well as diseases, syndromes, 
conditions, phenotypes, and mutants, as all of 
these were noted by our subject-matter expert as 
sources of false positives.  Good information 
retrieval is clearly also a prerequisite for high-
precision entity identification.  In some cases, 
false positives arose when (abstracts of) 
irrelevant documents were used as input. 

Heuristics can be useful tools for increasing 
recall in entity identification, as well as for 
helping us ensure that we are performing true 
entity identification, as opposed to entity 
location.  Tanabe and Wilbur (in press) point out 
the value of combining knowledge sources in 
the entity identification task; our heuristics seem 
especially promising in part because they are 
based on a combination of two sources: (1) the 
expertise of NLP application developers about 
the sorts of variability that need to be dealt with 
in NLP systems (e.g. in text normalization), and 
(2) on empirical data about variability in the 
names themselves.  Future work should 
concentrate on three areas.  The first is 
extending our study of variability to include 
other dimensions of contrast, such as the ones 
that we point out that our study ignored, so that 
we can increase the inventory of heuristics.  The 
second is integrating our heuristics with a 
system that identifies weak matches with gene 
names, i.e. candidates for application of the 
heuristics.  The third is elucidating the place of 
orthographic variability within all causes of 
pattern match failure.  
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