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Abstrat

We briey review the inside-outside and EM algorithm for probabilisti ontext-free grammars. As a

result, we formally prove that inside-outside estimation is a dynami-programming variant of EM. This is

interesting in its own right, but even more when when onsidered in a theoretial ontext sine the well-

known onvergene behavior of inside-outside estimation has been on�rmed by many experiments but

apparently has never been formally proved. However, being a version of EM, inside-outside estimation

also inherits the good onvergene behavior of EM. Therefore, the as yet imperfet line of argumentation

an be transformed into a oherent proof.

1 Inside-Outside Estimation

The modern inside-outside algorithm was introdued by [4℄ who reviewed an algorithm proposed

by [1℄ and extended it to an iterative training method for probabilisti ontext-free grammars enabling

the use of unrestrited free text. In the following, y
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: : : y

N

are numbered (but unannotated) sentenes.

De�nition: Inside-outside re-estimation formulas for probabilisti ontext-free grammars in Chom-

sky normal form are given by (see [4℄, but see also [1℄ for the speial ase N = 1):

p̂(A! a) :=

P

y

N

w=y

1

C

w

(A! a)

P

y

N

w=y

1

C

w

(A)

; and p̂(A! BC) :=

P

y

N

w=y

1

C

w

(A! BC)

P

y

N

w=y

1

C

w

(A)

:

The key variables of this de�nition are so-alled ategory and rule ounts: C
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p(A ! BC)e(s; r; B)e(r + 1; t; C)f(s; t; A) whih are omputed for

eah sentene w := w
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with so-alled inside and outside probabilities: An inside probability

is de�ned as the probability of ategory A generating observations w

s

: : : w

t

, i.e. e(s; t; A) := p(A)
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): In determining a reursive proedure for alulating e, two ases must be onsidered:

� (s = t): Only one observation is emitted and therefore a rule of the form A! w

s

applies: e(s; s; A) =

p(A! w

s

); if (A! w

s

) 2 G (and 0, otherwise).

� (s < t): In this ase we know that rules of the form A ! BC must apply sine more

than one observation is involved. Thus, e(s; t; A) an be expressed as follows: e(s; t; A) =

P

(A!BC)2G
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p (A! BC) � e(s; r; B) � e(r + 1; t; C):

The quantity e an therefore be omputed reursively by determining e for all sequenes of length

1, then 2, and so on. The sentene probability P := p(S )

�

w) is a speial inside probability.

The outside probabilities are de�ned as follows: f(s; t; A) = p (S )
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The quantity f(s; t; A) may be thought of as the probability that A is generated in the re-write

proess and that the strings not dominated by it are w

1

: : : w

s�1

to the left and w

t+1

: : : w

n

to the right. In this ase, the non-terminal A ould be one of two possible settings C !

B A or C ! A B, hene: f(s; t; A) =

P
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and f(s; t; A) =

(

1 if A = S

0 else

: After the inside

probabilities have been omputed bottom-up, the outside probabilities an therefore be omputed

top-down. Unfortunately, no onvergene proofs of inside-outside estimation were given by [1℄ and [4℄.

2 EM for Probabilisti Context-Free Grammars

The EM algorithm was introdued by [3℄ as iterative maximum likelihood estimation for parameter-

ized probability models p(y) using a sample ~p(y) of inomplete data types y whih are de�ned

via a symboli analyzer X(y) dealing with omplete data types x. It is known, that EM

generalizes ordinary maximum likelihood estimation and monotonially inreases the log-likelihood

L(p) :=

P

y

~p(y) � log

P

x2X(y)

p(x): Furthermore, the limit point of a onvergent parameter sequene

is a stationary point (i.e. loal minimum, saddle point or maximum) of the log likelihood [3℄. More-

over, both the parameter sequene and the assoiated sequene of log likelihood values onverge (in

some ases to loal maxima), if some weak onditions are ful�lled [6℄.

Applying EM to probabilisti ontext-free grammars, the grammatial sentenes y are viewed

as inomplete and their syntax trees x as omplete. The required symboli analyzer is given by a

parser omputing all trees x 2 T (y) for a sentene y. Via these non-probabilisti EM omponents, the

probability model for the sentenes is de�ned as p(y) :=
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; where

f

r

(x) is the frequeny of rule r ouring in x, and parameterization is given by rule probabilties

p(r). The key variables of EM re-estimation are onditional expeted frequenies (relying on the

onditional probability p(xjy) :=

p(x)

p(y)

) for rules r and ategories A: p(:jy) [ f

r
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(x) is the frequeny of

ategory A ouring in x, and G

A

is the set of grammar rules with left-hand side A. See e.g. [5℄:

Lemma: EM re-estimation formulas for probabilisti ontext-free grammars are given by:
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(r 2 G; A = lhs(r)) :

3 Inside-Outside as Dynami EM

In this setion, the well-known onvergene properties of the inside-outside algorithm, whih have been

unfortunately omitted in the original literature ([1℄, [4℄), will be formally proven. For this purpose, we

will show that the inside-outside algorithm is a dynami-programming variant of the EM algorithm

for ontext-free grammars. This property is also well-known in stohasti linguistis, but to the best

of our knowledege all mentioned properties have not been formally proven till now.

Theorem: For a ontext-free grammar in Chomsky normal form, let p̂(r) be re-estimated rule

probabilities resulting from one single step of the inside-outside algorithm using the urrent rule

probabilities p(r). Then: (i) The log likelihood L(:) of the training orpus inreases monotonially,

i.e. L(p̂) � L(p): (ii) The limit points of a sequene of re-estimated probabilities are stationary

points (i.e. maxima, minima or saddle points) of the log likelihood funtion. (iii) The inside-outside



algorithm is a dynami-programming variant of the EM algorithm, i.e. p̂(r) orresponds to p̂

EM

(r)

resulting from one single EM iteration (using also p(r) as urrent rule probabilities).

Proof: (i) and (ii) follow using both (iii) and the onvergene properties of EM. (iii): The empirial

distribution of the sentenes is de�ned as ~p(y) =

f(y)

N

, where f(y) is the frequeny of y ouring in the

orpus y
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: : : y

N

. Thus, for eah rule r with left-hand side A: p̂
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Comparing these formulas with the re-estimation formulas presented by [4℄, it follows p̂

EM

(r) = p̂(r);

if for eah sentene y, for eah rule r and eah ategory A the following propositions an be shown:
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This is the goal of the rest of the proof, whih we split in two lemmas. The �rst lemma is probably

due to [2℄, where orresponding formulas are used, but not expliitly proven, to present inside-outside

estimation. The lemma says that ategory ounts an be omputed by summing ertain rule ounts.
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(r) for eah sentene y and eah ategory A.
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In the fourth equation, we used the reursion formula of the inside probabilities. q.e.d.

It follows that the desired identities for the ategory ounts an be alulated (by summation

over all rules with the same left-hand side) using the identities for the rule ounts, sine C

y

(A) =
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(A ! �); and per de�nition f
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(x) : Thus, the proof of the theorem is

ompleted, as one as the following entral lemma has been proven. It states that the ounts of the

inside-outside algorithm an be identi�ed with the expeted rule frequenies of the EM algorithm.

Lemma: For eah sentene y and eah rule r: C
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Proof: The seond equation is simply the de�nition of the expetation. Assuming Chomsky normal

form, two ases must be onsidered. First, the rule has the form A! B C:

For a given sentene y = w
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and given three spans (s; r; B), (r + 1; t; C), (s; t; A) with 1 �
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(
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be the harater-

isti funtion interpreting X

(s;t;A)(s;r;B)(r+1;t;C)

as a simple subset of the set of all possible syntax

trees T (y) of the sentene y. Thus, the frequeny f
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(x) of the rule A ! B C ourring in the

syntax tree x 2 T (y) an be omputed as follows:
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The seond ase, for rules of the form A ! a, follows analogously with spans (s; s; A) and (s; s; a).

Here, the details are omitted, but see [5℄ q.e.d.
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