
GENERALIZED "-SKIP DISCRIMINATING-REVERSE

PARSING ON GRAPH-STRUCTURED STACK

Fortes G�alvez, Jos�e

Departamento de Inform�atica y Sistemas

Universidad de Las Palmas de Gran Canaria, Spain

jfortes@dis.ulpgc.es

Jacques Farr�e

Laboratoire I3S

CNRS and Universit�e de Nice-Sophia Antipolis, France

jf@essi.fr

Abstract

We introduce "DR automata, which determine next shift-reduce parsing actions from (typically very

short) stack-su�x explorations, while avoiding to process "-deriving nonterminals. We present their use

with a Tomita-like graph-structured stack parser, resulting in acceptance of the general class of (reduced)

context-free grammars.

1 Introduction

In a previous paper [8] we directly apply discriminating-reverse, DR, automata [6, 7] to parse context-

free grammars [3], CFG, in combination with a Tomita-like graph-structured stack, GSS [20]. However,

the method shown there cannot handle grammars showing hidden left recursion [15].

DR(k) accepts the full class of LR(k) grammars [12], while producing e�cient deterministic shift-

reduce parsers of small size [5, 7]. Parsing actions are determined by e�cient stack-su�x explorations,

with an average depth usually smaller than 2 symbols.

In this paper we introduce "DR as an alternative underlying parser, which allows to avoid pro-

cessing problematic "-deriving nonterminals, in order to extend the method to the general class of

reduced CFG.

Notation will be mostly conventional; see [19] for instance. The original (reduced) CFG G will

be augmented, with P

0

= fS

0

!`Sag [P . Productions in P

0

are numbered from 1 to jP

0

j, and

g-th production is sometimes represented by A

g

�!�. Parsing action p indicates by convention the

production number to use in a reduction if p = g > 0, or to shift if p = 0. We say that A is null

(resp. nullable) if First(A) = f"g (resp. First(A) � f"g). We note with a bar, as in ��, the (possibly

empty) string resulting after removal of all null nonterminals in �. We shall use letter � to denote

some (possibly empty) string of nullable nonterminals.

2 "-skip Discriminating-Reverse Construction

(Nondeterministic) DR parsers, as well as our "DR parsers, are shift-reduce parsers which determine

the next set of legal parsing actions with the help of a stack-su�x exploration automaton. The

automaton is started from the di�erent stack tops, and it keeps track of the set of parsing actions

which are compatible with the stack su�x already read.

top

A

�

v

w��

S

0

��

��

Figure 1: "-free tree for "DR(0) item [_p;A; ��]

Di�erently from DR, our "DR parsers perform no reduction from ", i.e., every stack nonterminal

actually derives some "-free section of the input string. Accordingly, no production A!" is e�ectively

considered. Furthermore, the construction considers all the possibilities for nonterminals deriving ",

and thus their possible absence from the stack contents. The resulting construction can be seen as

a virtual grammar transformation where every nullable nonterminal is both kept and removed from

the grammar productions, and where every null nonterminal is removed. A similar idea of \skipping"

"-deriving nonterminals can be found in other general parsers [9, 14, 15].

2.1 The "DR(0) Automaton

In order to simplify the exposition, we shall only consider case k = 0.

An "DR(0) automaton A

0

is a deterministic �nite-state automaton, DFA, where each state is

associated to a set of compatible actions, such that, if fully developed, would read the whole stack

from its top, and accept precisely the language of all legal stack contents.

Each automaton state q

i

is associated with a set of "DR(0) items. A generic item [_p;A; ��] indicates

that next stack symbols to explore are those in �� from right to left (see Fig. 1, where �� represents the

stack su�x already explored), and then those in all legal stack pre�xes �� on the left of A, i.e., only

productions of the form B!A� are considered. Finally, _p notes a dotted parsing action, which may

take the forms \p

�

" or \

�

p". The dot

1

on the right indicates that the corresponding p-th production's

right-hand side to reduce has not been fully explored yet. Otherwise the dot is written on the left

(this includes by convention the shift action, i.e., p = 0).

State item sets I

q

i

can be computed from a reduced grammar as follows:

� Initial state:

I

q

0

= f[_p;A; ��] jA

g

�!�� 2 P

0

; �� 6= "g;

where _p is \g

�

" if

�

� = ", and \

�

0" otherwise. Note that all nonempty null-free pre�xes of the right

hand sides are considered. See again Fig. 1, considering �� = ".

� Transition function:

�(I;X) = C

0

(f[_p;A; �] j [_p;A; �X�] 2 Ig):

1

We use the notational convention of not showing the action dot position when it results unchanged or is irrelevant.

top

A

�

�� v w

�'

D

�

tau

S

0

u

Figure 2: "-free tree illustrating completer function C

0

for item [_p;A; �]

Here we consider all possible � actually deriving " as candidates to skip. Completer function C

0

is

de�ned by

C

0

(I) = I [f[

�

p;D; �'] j [_p;A; �] 2 I; D!' 2 P

0

;)

�

Av; �' 6= "g:

Again, we skip, if possible, "-deriving right-hand-side pre�xes in order to compute new items which

permit to pursue stack exploration after ascent in the parsing tree (see Fig. 2).

In practical grammars, a small section of automaton A

0

will normally su�ce to determine parsing

actions. In general, it may stop as soon as further stack exploration cannot re�ne the parsing-action

set of current state. In fact, the construction algorithm begins building such an automaton, but only

generates its useful discriminating (and full right-hand side; see below) section. This mechanism

dramatically prunes the automaton, while preserving its discriminatory power. However, since only

symbols deriving some nonempty input section will be present on top of the stack, in general there

are several possible "-free handles

2

to reduce using a same production. State construction continues

until the longest possibility is veri�ed before triggering the reduction of such handles.

2.2 An "DR(0) Generation Algorithm

Figure 3 shows the new version of the grammar compilation algorithm. A parsing table StTbl is built

in order to explore some stack su�x from its top. Item sets I are computed, and their corresponding

StTbl rows q

I

are built as needed. Transitions on next stack symbols to (possibly new) states are built

as far as it is still possible to further discriminate amongst the di�erent parsing actions in the set,

and to guarantee that all possible "-free handles which are compatible with the reduce actions are

completely explored. Eventually, the decision to (nondeterministically) perform that set of actions is

taken on next stack symbol.

2

We say that a nonempty stack-su�x � is an ("-free) handle compatible with some right-hand side � if after removing

zero or more nullable nonterminal occurrences from �� we obtain �.

algorithm Generator of nondeterministic "DR(0) parsing tables with right-hand side check

input Reduced context-free grammar G

output Table StTbl (st-state, symb)

begin

StAut := fI

q

0

g; StTbl := ;;

for every new I 2 StAut do

for Xj 9[_p; A;�X�] 2 I do

if 8[p

�

; A; �X�] 2 I : �)

�

" = � then

% decisions upon stack symbol (if same context for all actions)

St := fp j [_p;A;�X�] 2 Ig

if 8A� : fp j [_p;A; �X�] 2 Ig 2 fSt ; ;g

then StTbl (q

I

; X) := St

else

% state transitions upon stack symbol

I

0

:= �(I;X); add I

0

to StAut

StTbl (q

I

; X) := fgo-st q

I

0

g

end

Figure 3: Compilation algorithm for G"DR(0) parsing

S

0

1

�!`Sa S

2

�!x S

3

�!BSb S

4

�!ASb B

5

�!AA A

6

�!"

` S a x b

q

0

0 0 q

1

2 q

2

q

1

q

3

q

2

3,4

q

3

1

Figure 4: Grammar G

hlr

and its "DR(0) parsing table

In order to illustrate the method, Fig. 4 shows a simple grammar with hidden left recursivity, and

its "DR(0) parsing table.

3

Note that A and B are null nonterminals, and thus nor they neither

their rules are considered for the construction. Accordingly, the corresponding state item sets are the

following:

I

q

0

= f[1

�

; S

0

;`Sa]; [2

�

; S; x]; [3

�

; S; Sb]; [4

�

; S; Sb]; [

�

0; S

0

;`]; [

�

0; S

0

;`S]; [

�

0; S; S]g;

I

q

1

= f[1

�

; S

0

;`S]g;

I

q

2

= f[3

�

; S; S]; [4

�

; S; S]g;

I

q

3

= f[1

�

; S

0

;`]g:

States q

1

and q

3

only serve to verify the right-hand side of rule 1. In state q

2

, it is clear that, beyond

stack symbol S, actions 3 and 4 will follow exactly the same language of stack su�xes

4

on the left of

left-hand side S, so we can decide here to perform both actions and to stop construction.

3

The size of the "DR(0) automaton can be compared to the 10-state LALR(1) automaton for the same grammar

(named G

8

) in [16].

4

In fact that same conclusion could have been reached already in q

0

: state q

2

serves in fact to end the veri�cation

of "-free handle Sb.

S b`

5 b 8S

A

0

B

A 6

A

A

4

B

S 7 b 9

B

3

B

S

Figure 5: GLR GSS (left) and G"DR GSS (right) for grammar G

hlr

after shift of �rst b

3 Generalized "-skip Discriminating-Reverse Parsing

Since GSS are relatively more intuitive than other constructions, we present them in combination with

our "DR(0) automata in order to parse context-free grammars. We show, for the sake of completeness,

the algorithm [8] for parsing and for computing the parse (shared) forest, where we have included some

minor adaptations due to the form of "DR(0) parsing tables and to the "-free forests.

Di�erently from GLR parsers, our GSS do not contain automaton states, but plain grammar sym-

bols. This often results in a drastic simpli�cation of the GSS compared to GLR. For example,

for grammar G

hlr

, GLR needs �rst to build a relatively complex GSS for "-deriving viable pre�xes

" + (A + B)

�

(A + AA + B), what is not required for G"DR. Figure 5 shows the graphs for a GLR

parser (left, according to the LALR(1) table in [16]) and for our G"DR(0) parser (right) after the

input xb has been read.

3.1 GSS-Based "DR(0) Parsing

In our algorithm (see Fig. 6) a node � of the GSS is a tuple [symbol, set of predecessor nodes, set of

right-hand sides]. Obviously, the third component is empty for nodes of terminal symbols. Current

exploration points in the GSS are represented by tuples [�; �

t

; q], where � is the next node to check,

�

t

the topmost node from which the exploration started, and q the next "DR(0) automaton state.

The underlying "DR(0) automaton uses the parsing table previously generated from a context-free

grammar. State item sets themselves need not to be stored at parsing time, and thus state codes are

used instead.

Before each input-shift step is performed, the G"DR parser has to start exploring, from the current

tops of the GSS, all the possible paths allowed by the "DR(0) automaton. The same steps as a

single-stack parser are followed in parallel

5

, eventually performing the corresponding reduce actions

on the GSS. Stack tops will be merged if they correspond to the same symbol and have exactly the

same predecessors Pred in the GSS. Successive exploration phases are restarted from new GSS tops,

until no more reductions can be performed and the only remaining action is to shift. The next input

terminal is jointly shifted for the di�erent tops.

As a result of this construction, all right-hand sides associated to a same node actually derive the

same section of the input text, i.e., they are in local ambiguity. Although the notion of predecessor

set is more natural when using a GSS, our construction allows to replace it by a single index pointing

5

Blank parsing table entries simply result in abandoning current exploration line.

algorithm Generalized "-skip discriminating-reverse parser

input "DR(0) parsing table StTbl and input string `za

output Forest of non-" deriving parsing trees rooted at reduced, or rejection on erroneous input

begin

shifttops := ;

repeat % parsing actions on next input symbol

read (a); �

0

:= NewNode(a); Pred(�

0

) := shifttops

currtops := f�

0

g; shifttops := ;; reduced := ;

repeat % GSS explorations while reductions are done

reductions := ;

curr := f[�

t

; �

t

; q

0

] j �

t

2 currtopsg

repeat % check next symbol

next := ;

for [�; �

t

; q] 2 curr do

at := StTbl (q; Symb (�))

if at = fgo-st q

0

g then for �

0

2 Pred (�) do add [�

0

; �

t

; q

0

] to next

else

if 0 2 at then add �

t

to shifttops

for g 2 at�f0g do add [g; �; �

t

] to reductions

curr := next;

until curr = ;

currtops := ; % compute new tops from reductions and shared forest

for [g; �; �

t

] 2 reductions and A

g

�!� do

for [H;�] 2 handle-corr(g; �; �

t

) and �

l

= 1 : � do

if 9�

0

t

2 reduced j Symb(�

0

t

) = A and Pred(�

0

t

) = Pred(�

l

) then

add [g;H; �] to SD (�

0

t

) % node merge

else

�

0

t

:= NewNode(A); Pred(�

0

t

) := Pred(�

l

); SD (�

0

t

) := f[g;H; �]g

add �

0

t

to reduced, currtops

until currtops = ;

until shifttops = ;

if 9� 2 reduced j Symb(�) = S

0

then accept else reject input % error

end

Figure 6: G"DR(0) parsing algorithm

to the right end of the text section covered by the symbols in the predecessor set.

During the process, as in GLR, some GSS sections are eventually found to be nonviable and

discarded together with their corresponding forest sections.

6

However, di�erently from GLR, in-

creased GSS sharing may introduce possible paths that do not correspond to viable pre�xes.

3.2 Shared Forest Computation

For a reduction with A

g

�!X

1

� � �X

n

, function handle-corr (g; �; �

t

) returns the set of all pairs [H; �],

where � are node sequences corresponding to g-compatible ("-free) handles in the paths from �

t

to �,

and H � f1; : : : ; ng codes the correspondence between right-hand side symbols and ("-free) handle

nodes.

7

Some of these cases may later be found incompatible with the rest of the input, and will

6

Since nodes from incorrect paths will eventually become inaccessible, their deletion is implicit and can be left to a

garbage collector.

7

If we note j

1

< � � � < j

jHj

for all j

h

2 H and � = �

1

� � � �

jHj

, then �

h

corresponds to X

j

h

.

4 3

A B

2

6

B

5

A

b` b

S

S

x

a

"

Figure 7: "-subforest model (for circled nodes), and "-free parse forest for input xbb (grammar G

hlr

)

thus be implicitly removed.

8

In the algorithm, �

l

represents the leftmost node of these compatible

handles �. Not all predecessors of �

l

are necessarily legal, since they can be on a path that is not a

correct su�x. Computation of predecessors can be improved, with a small cost, in order to avoid to

keep paths that have been found illegal during the GSS exploration, by eliminating nodes from the

Pred component of the leftmost node on a legal path. However, such paths cannot lead to wrong

constructions, and they should typically be eliminated rapidly from next reductions. Thus, it is not

clear that such an improvement would lead to a more e�cient parsing.

Nodes of the GSS are easily and naturally reused for the packed shared forest representation. Single

derivations from a node are represented by its corresponding set SD containing [production-number,

symbol-node correspondence, handle-nodes] triples.

9

In the end, the di�erent parses of the input text can be easily and e�ciently recovered from the

single derivations starting from the top node, whose symbol is S

0

if the input is a legal sentence.

4 Example of Parsing and Forest Construction

Let us �rst follow the construction steps of the "-free section of the parsing forest for an example

sentence xbb (see again G

hlr

parsing table of Fig. 4):

1. The stack is initialized with the bottom marker `, which decides in initial state q

0

to shift. Ex-

ploration is restarted from q

0

using the new topmost symbol x, which indicates to reduce using

production S

2

�!x. Then, topmost S decides to shift in q

0

. The GSS at this point is shown by the

right graph of Fig. 5.

2. Now, reverse exploration of su�x Sb decides reductions S

3

�!BSb and S

4

�!ASb. Accordingly,

function handle-corr returns, for both reductions, [f2; 3g; �

S

�

b

], indicating that "-deriving symbols

B and A, respectively, have not been reduced. Thus both reductions are performed for a same

new S node having f`g as Pred set. After shifting b we have GSS and forest shown

10

in Fig. 7.

3. The previous process would be likewise repeated in case of more b's. As a last step, stack su�x `Sa

is found compatible with action set f1g, and thus parse successfully ends.

8

[15] also introduce this form of nondeterminism. A theoretical, but probably impractical, alternative to avoid this

e�ect is to apply the discrimination process among all possible "-free handles instead of productions.

9

Strictly, handle-corr computation could be left to a post-parsing phase, specially if only a small section of the trees

in the forest will be processed by the application. In this case, SD could instead contain the arguments of handle-corr.

10

Solid lines in the �gure correspond to the Pred relation, and dotted lines to the shared forest.

S

0

1

�!`Sa S

2

�!A S

3

�!S A

4

�!SS A

5

�!a A

6

�!"

` S a A a

q

0

0 q

1

q

2

2 5

q

1

0,3,4 0,3,4

q

2

1 q

3

q

3

1

Figure 8: Grammar G

ia

and its "DR(0) parsing table

Of course, the resulting forest lacks the "-deriving sections. In the case of nonterminals with a �nite

number of possible "-deriving trees, it is trivial to pre-compile their "-subforest models and to attach

them if needed to the parse forest. In the case of nonterminals with in�nitely many possible "-deriving

trees, the convenient representation might be application-dependent. Nevertheless, it is again triv-

ial |and should usually su�ce| to produce compact subforest models where each nonterminal is

represented by only one node, as shown in Fig. 7 for our example grammar.

Another Example

Consider now in�nitely ambiguous grammarG

ia

, which is shown with its corresponding G"DR parsing

table in Fig. 8. In this case, there is no null but two nullable nonterminals |A and S. Accordingly,

the corresponding state item sets are the following:

I

q

0

= f[1

�

; S

0

;`Sa]; [2

�

; S; A]; [3

�

; S; S]; [4

�

; A; SS]; [5

�

; A; a]; [

�

0; S

0

;`]; [

�

0; S

0

;`S]; [

�

0; A; S]g;

I

q

1

= f[3

�

; S; "]; [4

�

; A; S]; [4

�

; A; "]; [

�

0; S

0

;`]; [

�

0; A; "]g

[f[

�

3; S

0

;`]; [

�

3; A; S]; [

�

4; S

0

;`]; [

�

4; A; S]; [

�

0; A; S]g;

I

q

2

= f[1

�

; S

0

;`S]g;

I

q

3

= f[1

�

; S

0

;`]g:

The second subset of I

q

1

is added after applying completer function C

0

. Note that, in q

2

, action 1

can be decided on `, since S is nullable. Again, it is useless to continue construction beyond q

1

, since

action set f0; 3; 4g cannot be further re�ned.

Figure 9 shows the �nal shared forest for input aa, including the di�erent GSS at di�erent times

during parsing.

11

After reducing a to A, exploration is restarted from q

0

, indicating reduction S

2

�!A. Now, stack `S

is found compatible with action set f0; 3; 4g, what results in S being considered in the Pred set for

next topmost a, and in the reductions shown in the �gure.

12

Eventually, stack su�x SS is found

compatible with action set f0; 3; 4g. The latter reduction has now also SS as possible "-free handle

13

|apart from (topmost) S| resulting in a new A-node, since its Pred set (` node) is di�erent from

the lower A-node Pred set (left-hand node S).

11

The corresponding Nozohoor-Farshi GLR construction, for instance, would result in a too complicated �gure to be

shown here.

12

Note that reduction A

4

�!SS has in fact a single "-free handle S with two possible correspondences in the right-hand

side. Accordingly, function handle-corr returns [f1g; �

S

] and [f2g; �

S

].

13

Corresponding to [f1; 2g; �

S

�

0

S

].

44

SS

44

SS

2 2

44

SS

2

4

S

4

2

5 5

3 3

3

1

3

6

A

A

a

A

a

S S

`

A

S

S

0

"

a

Figure 9: "-subforest model (for circled nodes), and "-free parse forest for input aa (grammar G

ia

)

5 Evaluation and Conclusion

General CFG parsers [10, 18] have historically received considerable attention. Amongst the most

acknowledged techniques we can cite the Earley [4], CYK [17, 21], and GHR [9]. More recently,

natural language applications have given place to GLR [20, 16] |although its theoretical base can be

traced back to [13]|, which is also being adopted, in some cases with restrictions, for programming

and speci�cation languages, e.g. [1].

Unrestricted GLR, and in particular the use of a GSS, has the disadvantage of requiring [11], in

the worst case, O(n

p+1

) time, where p is the size of the longest right-hand side. However, it has been

shown that a grammar transformation into Chomsky Normal Form [3] or, equivalently, sharing of

right-hand side sections, e.g. [11], allows to attain O(n

3

). In our parser, we have the additional cost

of exploring stack su�xes. We conjecture that the small average exploration depth characteristic of

deterministic DR parsers will mostly hold for non-LR grammars. However, our explorations tend to

\develop" the di�erent possibilities, so it is unclear whether the above solutions would be useful for

our method.

On the other hand, G"DR parsers present some very particular advantages. There is no need to

store stack states, but plain vocabulary symbols. This considerably reduces the complexity of the GSS

or alternative structures. The automaton tables are very small, in particular for k > 0 in comparison

with LR(k). Moreover, it has been shown [2] that increasing the deterministic LR power in fact

reduces e�ciency because it increases the stack-state complexity, but this is not the case for G"DR,

where we can improve deterministic discrimination without increasing the complexity of the GSS at

a relatively low cost. Finally, in most practical applications, specially in programming languages,

sentences are not highly ambiguous. A clever implementation should allow to parse unambiguous

sections without excessive ine�ciency with respect to a deterministic parser, what is hardly the case

for non-compiling methods.

In conclusion, our G"DR parsers accept in a natural way unrestricted context-free grammars, with

simpler and cycle-free GSS. This new approach to CFG parsing deserves further research, from both

theoretical and practical viewpoints, in order to evaluate its interest as an alternative to more con-

ventional general parsers.

Although we have only presented the k = 0 case, we expect that some k > 0 will show to be better

in practice. Finally, while the construction shown minimizes nondeterminism, it is still possible to

use a \pruned" construction resulting in parsers showing more nondeterminism. On the other hand,

there is the possibility to further reduce nondeterminism by using a correct-pre�x variant, at the cost

of a larger automaton.

References

[1] J. Aycock, R. N. Horspool, J. Janousek, and B. Melichar. Even faster generalized LR parsing.

Acta Informatica, 37(9):633{651, 2001.

[2] S. Billot and B. Lang. The structure of shared forests in ambiguous parsing. In Proceedings of

the 27th Annual Meeting of the Association for Computational Linguistics, pages 143{151. ACL,

1989.

[3] N. Chomsky. On certain formal properties of grammars. Information and Control, 2:136{167,

1959.

[4] J. Earley. An e�cient context-free parsing algorithm. Communications of the ACM, 13(2):94{102,

Feb. 1970.

[5] J. Fortes G�alvez. Experimental results on discriminating-reverse LR(1) parsing. In P. Fritzson,

editor, Proceedings of the Poster Session of CC'94 - International Conference on Compiler Con-

struction, pages 71{80. Department of Computer and Information Science, Link�oping University,

Mar. 1994. Research report LiTH-IDA-R-94-11.

[6] J. Fortes G�alvez. A practical small LR parser with action decision through minimal stack su�x

scanning. In J. Dassow, G. Rozenberg, and A. Salomaa, editors, Developments in Language

Theory II, pages 460{465. World Scienti�c, 1996.

[7] J. Fortes G�alvez. A Discriminating Reverse Approach to LR(k) Parsing. PhD thesis, Universidad

de Las Palmas de Gran Canaria and Universit�e de Nice-Sophia Antipolis, 1998.

[8] J. Fortes G�alvez and J. Farr�e. Practical nondeterministic DR(k) parsing on graph-structured

stack. In A. Gelbukh, editor, Computational Linguistics and Intelligent Text Processing, volume

2004 of Lecture Notes in Computer Science, pages 411{422. Springer, 2001.

[9] S. L. Graham, M. A. Harrison, and W. L. Ruzzo. An improved context-free recognizer. ACM

Transactions on Programming Languages and Systems, 2(3):415{462, July 1980.

[10] D. Grune and C. J. H. Jacobs. Parsing Techniques. Ellis Horwood, 1990.

[11] J. R. Kipps. GLR parsing in time O(n

3

). In M. Tomita, editor, Current Issues on Parsing

Technology, pages 182{192. Kluwer, 1991.

[12] D. E. Knuth. On the translation of languages from left to right. Information and Control,

8(6):607{639, 1965.

[13] B. Lang. Deterministic techniques for e�cient non-deterministic parsers. In J. Loeckx, editor,

Automata, Languages and Programming, volume 14 of Lecture Notes in Compter Science, pages

255{269. Springer-Verlag, Berlin, 1974.

[14] R. Leermakers. A recursive ascent Earley parser. Information Processing Letters, 41(2):87{91,

1992.

[15] M.-J. Nederhof and J. J. Sarbo. Increasing the applicability of LR parsing. In H. Bunt and

M. Tomita, editors, Recent Advances in Parsing Technology, pages 35{57. Kluwer, 1996.

[16] R. Nozohoor-Farshi. Handling of ill-designed grammars in Tomita's parsing algorithm. In

M. Tomita, editor, Current Issues on Parsing Technology, pages 182{192. Kluwer, 1991.

[17] I. Sakai. Syntax in universal translation. In Proceedings 1961 International Conference on Ma-

chine Translation of Languages and Applied Language Analysis, pages 593{608. Her Majesty's

Stationary O�ce, London, 1962.

[18] K. Sikkel. Parsing Schemata. Springer, 1997.

[19] S. Sippu and E. Soisalon-Soininen. Parsing Theory. Springer, 1988 and 1990.

[20] M. Tomita. E�cient Parsing for Natural Language. Kluwer, 1985.

[21] D. Younger. Recognition and parsing of context-free languages in time n

3

. Information and

Control, 10(2):189{208, 1967.

