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Abstrat

The paper emphasizes some sublasses of ontext free grammars for whih there exists a parallel

approah useful for solving the membership problem. We ombine the lassial style of LR parsers

attahed to a grammar G with a \mirror" proess for G. The input word will be analysed from both sides

using two proessors. We present the general bidiretional parser (for any ontext free language) using

a nondeterministi devie. A general MIMD model for desribing the bidiretional parsing is presented.

Our general bidiretional parser an be also used as a deterministi model for the known LR(k) and

RL(k) parsers. Aordingly, the membership problem may be solved in linear time omplexity with

a parallel algorithm. Finally, we present an example of a ontext free grammar useful for desribing

syntati dependenies for English language.

1 Introdution

In reent years, reognition algorithms, both sequential and parallel, for ontext free grammars (with

appliations to parsing programming languages) or for non ontext free languages (with appliations

to omputational linguisti) have been the subjet of study by many omputer sientists ([7, 11℄).

In ([11℄) was desribed a formal framework for bidiretional tabular parsing of general ontext free

languages, and some appliations to natural language proessing were studied. Moreover, an algorithm

for head-driven parsing and a general algorithm for island-driven parsing were studied.

The main purpose of this paper is to provide parallel parsing for (sublasses of) ontext free gram-

mars using two proessors. Similar ideas onerning parsing of the input word from both sides were

presented in [9, 8℄. However, the mention papers do not onstrut e�etively any parsers and do not

mention any parallel model of omputers for suh omputation.

In this paper, we de�ne a new parser for the lass of ontext free languages. The input word is

analysed from both sides, but the parse strategy is in up-to-up sense (LR and RL styles are ombined

for this parallel strategy). Some of the theoretial results used in this paper were reported previously

in [3, 4℄.

The assoiated derivation tree orresponding to the input word w is down to up traversed by both

proessors, i.e. from the leaves to its root. Only one proessor will be strongly ative after the parallel

algorithm \meets" the \middle" of the input word:
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Figure 1. Up-to-up bidiretional parsing

The \derivation forests" ST

1

and ST

2

will be parsed in parallel, and, �nally, the subtree ST

3

will

be parsed in a sequential way.

The seond setion ontains the de�nition of the general up-to-up bidiretional parser. The or-

retness of this parser is proven as the main result of this setion (Theorem 2.1). The third setion

presents a very onvenient parallel approah for desribing the general up-to-up bidiretional parsing

strategy. The hosen model is a MIMD omputer. Two proessors P1 and P2 analyse the input word

from both sides. Theorems 3.1 and 3.2 ensure the �niteness and orretness of our parallel algorithm.

The next setion points out the de�nition of some new sublasses of ontext free grammars. We alled

them LR � RL grammars. These grammars an be viewed as some ombinations between lassial

LR grammars and the mirror ones. The �fth setion presents an example of a simple ontext free

grammar useful for desribing syntati dependenies for English language. Some open problems are

emphasized in Conlusions.

2 The General Bidiretional Parser

We suppose the reader familiar with the notions as ontext free grammars, words ([5, 10℄). Let
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Notation 2.1 Let G = (V
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The ourrene of A

b;e

signi�es that A is the label of the derivation subtree of root v in the forests

ST

1

or ST

2

(Figure 1), and the frontier has the orresponding right most derivation [r

b

; r

b+1

; :::; r

e

℄.

In the following de�nition, we shall desribe our up-to-up bidiretional parser whih ontains 14

transitions. Some of the transitions an be \ompated" (e.g. 1

0

, 5

0

and 7

0

or 2

0

, 6

0

and 7

0

, a.s.o.).

We de�ned expliitely all the possible ases (similar to \artesian produt" of the lassial transitions)



beause it is easier to prove the orretness of our model.

De�nition 2.1 Let G = (V

N

; V

T

; S; P ) be a ontext free grammar. Let C�fs
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; s
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[fACC;REJg be the set of all possible

on�gurations, where # is a speial harater (a new terminal symbol). The general up-to-up bidi-

retional parser (denoted by G

u

BP (G)) is the pair (C

0

;`), where C

0

= f(s

1

; �;#;#w#;#; �; �) j

w 2 V
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T

g � C is alled the set of initial on�gurations. The �rst omponent is the state, the seond

(ordered from right to left) and the last but one (ordered from left to right) omponents of a on�gura-

tion are for storing the partial syntati analysis. The last omponent is for storing the �nal syntati

analysis. The third and the �fth omponents are the work - staks. The fourth omponent represents

the urrent ontent of the input word. The transition relation (`� C � C, sometimes denoted by

G

u

BP (G)

) between on�gurations is given by:
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Our model is a two-stak mahine ([5℄). The di�erenes onsist in the existene of two heads (instead

of only one) whih may read the input tape, and two output tapes whih an be aessed only in write

style, and has only two states. Therefore, our model an simulate a Turing mahine.

Theorem 2.1 ([3℄) Let G be a ontext free grammar, S being its start symbol. Then
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3 Parallel Approah for General Bidiretional Parsing

In this setion, we present a very onvenient parallel approah for desribing the general up-to-up

bidiretional parsing strategy. Our model is a MIMD (multiple instrution stream and multiple data

stream) omputer. We onsider two proessors P1 and P2 whih operate asynhronously and share a

ommon memory ([1℄).



In the following, we shall present a parallel algorithm whih desribes the general up-to-up bidi-

retional parsing strategy. In fat, our parallel algorithm (denoted by (PAR-UUBP)) learly follows

De�nition 2.1 of the general up-to-up bidiretional parser. Our algorithm uses the following variables:

� w2 V

�

T

the input word, n= jwj;

� i1, i2 two ounters for the urrent positions in w;

� aept a boolean variable whih takes the true value i� w2 L(G);

� Stak1, Stak2 two working staks for P1 and P2;

� Output_tape1, Output_tape2 the output tapes of P1 and P2 for storing the partial syntati

analysis;

� Output_tape the output tape for storing the global syntati analysis;

� exit a boolean variable whih is true i� P1 or P2 detet the non-aeptane of w.

The variables w, i1, i2, aept, Output_tape, exit are stored in the ommon memory. We use

some prede�ned proedures, suh as:

� pop(Stak,�) - the value of � will be the string of length j�j starting from the �rst symbol of

Stak; after that, the string � is removed from Stak;

� push_first(Stak,A) - add to the ontent of Stak the symbol A; A will be the new top of Stak;

� push_last(Stak,�) - add to the ontent of Stak, starting from the last symbol of Stak, the

string �; Stak will have the same top.

Now, the method of parallel algorithm (PAR-UUBP) an be pointed out (we suppose that the

ontext free grammar G = (V

N

; V

T

; S; P ) is already read):

begin

read(n); read(w); i1:=1; i2:=n; aept:=false; exit:=false;

repeat in parallel

ation1(P1); ation2(P2)

until (i1>=i2) or (exit=true);

if (exit = true) then aept := false

else repeat ation3(P1, P2) until (exit = true);

if (aept = true) then

write('w is aepted and has the right syntatial analysis',Output_tape);

else write('w is not aepted');

end.

It remains to desribe the proedures ation1(P1), ation2(P2) and ation3(P1,P2).

proedure ation1(P1);

begin

ase

if (9 r1 = A! h(�) 2 P; � is in Stak1 starting from the top) then begin

/* redue ation */

let � := u
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if (� does not ontain any symbol from V
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else b
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00

; bg;

pop(Stak1,�); push_first(Stak1,A

b

00

;e

00

); push_first(Output_tape1,r1);

end;

if (i1 <= i2) then begin /* shift ation */

push_first(Stak1,w[i1℄); i1 := i1+1;

end

otherwise: begin /* baktrak is needed; */

if (all the baktrak steps are over) and (still no redue or shift

ation ould be made) then exit := true;

end

end;

The desription of proedure ation2(P2) is very similar to ation1(P1).

proedure ation2(P2);

begin

ase

if (9 r2 = A! h(�) 2 P; � is in Stak2 starting from the top) then begin

/* redue ation */

let � := u
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; bg;

pop(Stak2,�); push_first(Stak2,B
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); push_first(Output_tape2, r2);

end;

if (i1 < i2) then begin /* shift ation */

push_first(Stak2,w[i2℄); i2 := i2-1;

end

otherwise: begin /* baktrak is needed; */

if (all the baktrak steps are over) and (still no redue or shift

ation ould be made) then exit := true;

end

end;

Finally, we desribe the proedure ation3(P1,P2) in a sequential way. The goal is to simulate the

transitions 10

0

, 11

0

, 12

0

and 13

0

for G

u

BP (G) from De�nition 2.1. The input tape is now empty, i.e.

w has been already read (of ourse, if exit has the value false), but we read symbols from Stak2



(send by proessor P2) modifying the ontent of the Output_tape1 and Output_tape2 putting the

results in Output_tape.

proedure ation3(P1,P2);

begin

ase

if (9 r1 = A! h(�) 2 P; � is in Stak1 starting from the top) then begin

/* redue ation */

let � = u
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C

b;e

::: �

0
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;e
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00

; where u 2 V
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let �
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1

from Output_tape1 suh that j�

0

1

j = e

0

� b+ 1;

pop(Output_tape1,�

0

1

); pop(Stak1,�); push(Stak2,A);

push_first(Output_tape,r1); push_last(Output_tape,�

0

1

);

end;

if (top of Stak2 is a terminal symbol) then begin

/* shift-terminal ation */

pop(Stak2,a), where a 2 V

T

; push_first(Stak1,a);

end;

if (top of Stak2 is from V') then begin /*shift-nonterminal ation*/

pop(Stak2,A

b;e

); push_first(Stak1,A);

let �

0

2

from Output_tape2 suh that j�

0

2

j = e� b+ 1;

pop(Output_tape2,�

0

2

); push_first(Output_tape,�

0

2

);

end;

if (Output_tape1=;) and (Output_tape2=;) and (Stak1=S) and (Stak2=;)

then begin aept:=true; exit:=true end;

otherwise: begin /* baktrak is needed; */

if (all the baktrak steps are over) and (still no redue or shift

ation ould be made) then exit := true

end;

end;

Theorem 3.1 ([3℄) - �niteness of Algorithm (PAR-UUBP))

The Algorithm (PAR-UUBP) performs a �nite number of steps until terminates its exeution.

Theorem 3.2 ([3℄) - orretness of Algorithm (PAR-UUBP))

For a given ontext free grammar G = (V

N

; V

T

; S; P ) and w 2 V

�

T

as its input, Algorithm (PAR-

UUBP) gives the answer "w is aepted and has the right syntatial analysis �" if S

�

=)

G;rm

w

and \w is not aepted." otherwise.



4 Deterministi Bidiretional Parsing for LR-RL Grammars

Deterministi (and linear) parallel algorithms (as partiular ases of the general up-to-up bidiretional

parsing algorithm) for solving the membership problem, an be derived for some \ombinations" of

sublasses of ontext free languages. The deterministi up-to-up bidiretional parser has the same

devie as the general model. The only di�erene is the uniqueness of hoosing the prodution r from

the set of the given produtions of the input grammar (i.e. no baktrak step is needed). We use the

de�nitions of LR(k) ([6℄) grammars.

De�nition 4.1 Let G be a ontext free grammar and k be a natural number. We say that G is RL(k)

if

e

G is a LR(k) grammar. A language L is RL(k) if there exists a RL(k) grammar whih generates

L.

In a similar way to De�nition 4.1, we an de�ne the \mirror" of lassial sublasses of LR(k)

grammars useful in ompiler tehniques. We ombine the LR(k) and RL(k) styles for obtaining the

deterministi up-to-up bidiretional parsing for ontext free languages.

De�nition 4.2 Let G be a ontext free grammar and k

1

, k

2

2 N:We say that G is a LR(k

1

)�RL(k

2

)

grammar i� G is both a LR(k

1

) and RL(k

2

) grammar. A language L is alled LR(k

1

) � RL(k

2

) if

there exists G a LR(k

1

)�RL(k

2

) grammar for whih L = L(G):

We an remark that G is a LR(k

1

) � RL(k

2

) grammar i� G is a RL(k

2

) � LR(k

1

) grammar. Of

ourse, beause the lass of LR(k) languages, for k � 1; equals to the lass of LR(1) languages ([6℄),

then the above de�nition has pratial interest for k

1

; k

2

2 f0; 1g.

Partiularly, the deterministi up-to-up bidiretional parsing is similar to the general parallel ap-

proah, the only di�erene being the lak of baktrak steps. The proedures ation1(P1) and

ation2(P2) are related to lassial sequential syntatial analysis algorithms for LR(1) (or the sub-

lasses LR(0), SLR(1) and LALR(1)) and RL(1). We also get a linear running time for the proedures

ation1(P1) and ation2(P2) instead of an exponential sequential running time (baktrak steps

are no more required).

Obviously, the proedure ation3(P1,P2) has no baktrak steps for the sublasses of grammars

given in De�nition 4.2. Consequently, the proedure ation3(P1,P2) is deterministi and has a linear

running time.

The orretness of the deterministi parallel algorithms is ensured by the orretness of the general

parallel algorithm and the orretness of eah of the sequential syntati analysers for the mentioned

sublasses of ontext free grammars (suh as LR(1), RL(1)).

Theorem 4.1 ([3℄) - the omplexity of the deterministi parallel algorithms)

Let us denote with T

1

(n); T

2

(n) and T

3

(n) the running time of the sequential proedures

ation1(P1), ation2(P2) and ation3(P1,P2), where n is the length of the input word. Supposing

that the routing time is zero, the parallel running time t(n) satis�es the relations:

minfT

1

(n);T

2

(n)g

2

+

T

3

(n) � t(n) � maxfT

1

(n); T

2

(n)g+ T

3

(n); and t(n) 2 O(n):



5 A Natural Language Example

We present a modi�ed ontext free grammar similar to the one presented in [12℄ for desribing syntati

dependenies for English language.

The term 'grammatial ategory' overs the parts of speeh and types of phrases, suh as noun

phrase and prepositional phrase. For onveniene, we will abbreviate them, so that 'NOUN' beomes

'N', 'NOUN PHRASE' beomes 'NP', 'DETERMINER' beomes 'D', et. Let us onsider the following

ontext free grammar:

G = (fS; NP; V P; D; A; N; PP; V; Pg; V

T

; S; P rod); where V

T

� �

�

; � being the English

alphabet and Prod being the following set of produtions:

1: S ! NP VP 7: NP ! N 13: D ! the 21: N ! hunter

2: NP ! D A A N PP 8: VP ! V NP PP 14: D ! some 22: V ! attak

3: NP ! A A N PP 9: VP ! V NP 15: A! big 23: V ! ate

4: NP ! D A N PP 10: VP ! V PP 16: A! brown 24: V ! wathed

5: NP ! A N PP 11: VP ! V 17: A! old 25: P ! for

6: NP ! D N 12: PP ! P NP 18: N ! birds 26: P ! beside

19: N ! fleas 27: P ! with

20: N ! dog

In [12℄, the produtions 1,..., 12 are alled rules, and 13, ..., 27 are alled lexion.

Using a JAVA implementation for our bidiretional parsing algorithm, we determine the viable pre�x

automaton for grammarG whih has 88 states orresponding to LR(1) items with no onits (redue-

redue, redue-shift), so G is a LR(1) grammar. Moreover, we onstrut the viable pre�x automaton

for grammar

e

G whih has 70 states orresponding to RL(1) items with no onits (redue-redue,

redue-shift), so

e

G is a RL(1) grammar.

Aording to De�nition 4.2, it follows that grammar G is a LR(1)�RL(1) grammar. We onsider

now the input word:

w = the big brown dog with fleas wathed the birds beside the hunter

We shall simulate a possible exeution of the bidiretional parsing algorithm for this example (pro-

essors P1 and P2 work synhronously). We have n = jwj and i1 and i2 two pointers between 1 and

12. We shall point out the iterations of the proedures ation(P1) and ation(P2). The exeution

of these proedures will �nish when i1 > i2.



Proessor P1 Proessor P2

Ation: Initial Ation: Initial

Stak1 = [ ℄ Stak2 = [ ℄

i1 = 1 i2 = 12

Output_tape1 = [ ℄ Output_tape2 = [ ℄

Ation: Shift Ation: Shift

Stak1 = [the℄ Stak2 = [hunter℄

i1 = 2 i2 = 11

Output_tape1 = [ ℄ Output_tape2 = [ ℄

Ation: Redue Ation: Redue

Stak1 = [D

1;1

℄ Stak2 = [N

1;1

℄

i1 = 2 i2 = 11

Output_tape1 = [13℄ Output_tape2 = [21℄

Ation: Shift Ation: Shift

Stak1 = [D

1;1

, big℄ Stak2 = [the, N

1;1

℄

i1 = 3 i2 = 10

Output_tape1 = [13℄ Output_tape2 = [21℄

Ation: Redue Ation: Redue

Stak1 = [D

1;1

, A

2;2

℄ Stak2 = [D

2;2

, N

1;1

℄

i1 = 3 i2 = 10

Output_tape1 = [15, 13℄ Output_tape2 = [21, 13℄

Ation: Shift Ation: Redue

Stak1 = [D

1;1

, A

2;2

, brown℄ Stak2 = [NP

1;3

℄

i1 = 4 i2 = 10

Output_tape1 = [15, 13℄ Output_tape2 = [6, 21, 13℄

Ation: Redue Ation: Shift

Stak1 = [D

1;1

, A

2;2

, A

3;3

℄ Stak2 = [beside, NP

1;3

℄

i1 = 4 i2 = 9

Output_tape1 = [16, 15, 13℄ Output_tape2 = [6, 21, 13℄

Ation: Shift Ation: Redue

Stak1 = [D

1;1

, A

2;2

, A

3;3

, dog℄ Stak2 = [P

4;4

, NP

1;3

℄

i1 = 5 i2 = 9

Output_tape1 = [16, 15, 13℄ Output_tape2 = [6, 21, 13, 26℄

Ation: Redue Ation: Redue

Stak1 = [D

1;1

, A

2;2

, A

3;3

, N

4;4

℄ Stak2 = [PP

1;5

℄

i1 = 5 i2 = 9

Output_tape1 = [20, 16, 15, 13℄ Output_tape2 = [12, 6, 21, 13, 26℄

Ation: Shift Ation: Shift

Stak1 = [D

1;1

, A

2;2

, A

3;3

, N

4;4

, with℄ Stak2 = [birds, PP

1;5

℄

i1 = 6 i2 = 8

Output_tape1 = [20, 16, 15, 13℄ Output_tape2 = [12, 6, 21, 13, 26℄



Proesor P1 Proesor P2

Ation: Redue Ation: Redue

Stak1 = [D

1;1

, A

2;2

, A

3;3

, N

4;4

, P

5;5

℄ Stak2 = [N

6;6

, PP

1;5

℄

i1 = 6 i2 = 8

Output_tape1 = [27, 20, 16, 15, 13℄ Output_tape2 = [12, 6, 21, 13, 26, 18℄

Ation: Shift Ation: Shift

Stak1 = [D

1;1

, A

2;2

, A

3;3

, N

4;4

, P

5;5

, fleas℄ Stak2 = [the, N

6;6

, PP

1;5

℄

i1 = 7 i2 = 7

Output_tape1 = [27, 20, 16, 15, 13℄ Output_tape2 = [12, 6, 21, 13, 26, 18℄

Ation: Redue Ation: Redue

Stak1 = [D

1;1

, A

2;2

, A

3;3

, N

4;4

, P

5;5

, N

6;6

℄ Stak2 = [D

7;7

, N

6;6

, PP

1;5

℄

i1 = 7 i2 = 7

Output_tape1 = [19, 27, 20, 16, 15, 13℄ Output_tape2 = [12, 6, 21, 13, 26, 18, 13℄

Ation: Redue Ation: Redue

Stak1 = [D

1;1

, A

2;2

, A

3;3

, N

4;4

, P

5;5

, NP

6;7

℄ Stak2 = [NP

6;8

, PP

1;5

℄

i1 = 7 Stak2 = [NP

6;8

, PP

1;5

℄

Output_tape1 = [7, 19, 27, 20, 16, 15, 13℄ Output_tape2 = [12, 6, 21, 13, 26, 6, 18,

13℄

Ation: Redue Ation: Shift

Stak1 = [D

1;1

, A

2;2

, A

3;3

, N

4;4

, PP

5;8

℄ Stak2 = [wathed, NP

6;8

, PP

1;5

℄

i1 = 7 i2 = 6

Output_tape1 = [12, 7, 19, 27, 20, 16, 15, Output_tape2 = [12, 6, 21, 13, 26, 6, 18,

13℄ 13℄

Ation: Redue Ation: Redue

Stak1 = [NP

1;9

℄ Stak2 = [V

9;9

, NP

6;8

, PP

1;5

℄

i1 = 7 i2 = 6

Output_tape1 = [2, 12, 7, 19, 27, 20, 16, 15, Output_tape2 = [12, 6, 21, 13, 26, 6, 18,

13℄ 13, 24℄

Now, the proessors P1 and P2 meet in the \middle" of the input word, and only proessor P1 will

be strongly ative. Proessor P2 only sends the data (i.e. Stak2, Output_tape2) to the internal

memory of P1. In fat, we shall illustrate the exeution steps made by the proedure ation(P1,P2).

Ation: Shift-Nonterminal Ation: Shift-Nonterminal

Stak1 = [NP

1;9

, V ℄ Stak1 = [NP

1;9

, V , NP , PP ℄

Stak2 = [NP

6;8

, PP

1;5

℄ Stak2 = [ ℄

Output_tape1 = [2, 12, 7, 19, 27, 20, 16, 15, Output_tape1 = [2, 12, 7, 19, 27, 20, 16, 15,

13℄ 13℄

Output_tape2 = [12, 6, 21, 13, 26, 6, 18, 13℄ Output_tape2 = [ ℄

Output_tape = [24℄ Output_tape = [12, 6, 21, 13, 26, 6, 18, 13,

24℄



Ation: Shift-Nonterminal Ation: Redue

Stak1 = [NP

1;9

, V , NP ℄ Stak1 = [NP

1;9

, V P ℄

Stak2 = [PP

1;5

℄ Stak2 = [ ℄

Output_tape1 = [2, 12, 7, 19, 27, 20, 16, 15, Output_tape1 = [2, 12, 7, 19, 27, 20, 16, 15,

13℄ 13℄

Output_tape2 = [12, 6, 21, 13, 26℄ Output_tape2 = [ ℄

Output_tape = [6, 18, 13, 24℄ Output_tape = [8, 12, 6, 21, 13, 26, 6, 18,

13, 24℄

The �nal transition is:

Ation: Redue

Stak1 = [S℄

Stak2 = [ ℄

Output_tape1 = [ ℄

Output_tape2 = [ ℄

Output_tape = [1, 8, 12, 6, 21, 13, 26, 6, 18, 13, 24, 2, 12, 7, 19, 27, 20, 16, 15, 13℄

In onlusion, the word w is aepted by the bidiretional parser and it has the right syntati

analysis �

rm

= [1; 8; 12; 6; 21; 13; 26; 6; 18; 13; 24; 2; 12; 7; 19; 27; 20; 16; 15; 13℄:

We an extend our example aording to agreement restritions between words and phrases. For

example, the NP \a dogs" is not orret English beause the artile \a" indiates a single objet

while the noun \dogs" indiates a plural objet. There are many other forms of agreement (subjet -

verb, gender, et). To use suh agreement restritions, the ontext free grammar is extended to allow

onstituents to have features ([2℄). For example, we might de�ne a feature NUMBER that may

take a value of either \s" (for singular) or \p" (for plural), and we then might write an augmented

ontext free grammar rule suh as:

NP ! D N only when NUMBER(D) = NUMBER(N).

There is an interesting issue of whether an augmented ontext free grammar an desribe languages

that annot be desribed by a simple ontext free grammar. The answer depends on the onstraints

on what an be a feature value. If the set of feature values is �nite, then it would always be possible to

reate new onstituent ategories for every ombination of features. Thus it is expressively equivalent

to a ontext free grammar. If the set of feature values is unonstrained, however, then suh grammars

have arbitrary omputational power. In pratie, even when the set of values is not expliitly restrited,

this power is not used, and the standard parsing algorithms an be used on grammars that inludes

features ([2℄).

6 Conlusions

We have seen that our bidiretional parser model is in fat a two-stak mahine ([5℄) and therefore

our model an simulate a Turing mahine. In this paper the bidiretional parsing uses LR(k) style

(and its \mirror" RL(k) style, of ourse).



Open problems and future work: to get a more preise estimation of the running time of the

deterministi parallel algorithm; to �nd further losure and inlusion properties of LR�RL grammars

and languages; to extend our bidiretional approah to non ontext free languages - with appliations

to omputational linguisti and natural language proessing.

We want to thank to the unknown referees for their useful remarks whih improve the paper.
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