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Abstract

Two methods for stochastically modelling bidirectionality in chart parsing are presented. A probabilistic island-

driven parser which uses such models (either isolated or in combination) has been built and tested on wide-coverage

corpora. The best results are accomplished by the hybrid approaches that combine both methods.

1    Introduction

Although most methods for context-free grammar parsing are based on a uniform way of guiding the parsing

process (e.g. top-down, bottom-up, left-corner), there have recently been several attempts to introduce more

flexibility, allowing bidirectionality, in order to make parsers more sensitive to linguistic phenomena

([1],[2],[3]).

We can roughly classify such approaches into head-driven and island-driven parsing. They respectively

assume the existence of a distinguished symbol in each rule, the head, and certain distinguished words in the

sentence to be parsed, the islands, playing a central role on the respective parsing approach. While assigning

heads to rules is a heavy knowledge intensive task, selecting islands can be carried out straightforwardly:

unambiguous words, base NPs (in the case of textual input), accurately recognised fragments (in the case of

speech), might be considered islands.

The problem is, however, that simply starting with islands or heads does not assure improvements over

the basic parsing schemata. Only with appropriate heuristics for deciding where and in which direction to

proceed can we restrict the syntactic search space and obtain better results, counteracting the overhead that

these more complex algorithms suppose.

What we present here are two methods for modelling bidirectionality in parsing, as well as a bidirectional

island-driven chart parser that uses such stochastic models. In the remainder of this paper we describe our

parser and stochastic models in section 2. We discuss the planning of the experiments and their results in

section 3, and the evaluation of the quality of the results in section 4. Finally, we present our conclusions in

section 5.

2    The Stochastic Island-Driven Methodology

In island-driven parsing, the conventional left-to-right approach of chart parsing is enhanced with two

features: the bidirectionality (parsing can take place either left-to-right or right-to-left) and the islands



(dynamically determined positions of the sentence from which the process starts). Island-driven flexibility

permits the use of optimal heuristics that cannot be applied to unidirectional strategies. These heuristics are

based on two stochastic models, which allow to select the most probable island, to be extended to the most

probable side. Our models provide sort of Figures of Merit (FOMs) as [4] or [5], in order to deliver a single

best-first analysis, but based on the concept of islands and applying these FOMs to their extension.

Our island-driven probabilistic chart parser performs a combination of bottom-up expansion and top-down

prediction (the latter to be sure that no constituent is lost whenever no island has been selected within a

portion of the input) by managing two agendas, guided by the stochastic parameters. The algorithm has been

already described in [6], hence we will focus on the description of the stochastic models.

Given a Stochastic Context-Free Grammar (SCFG), what we try to model is the likelihood of extending

(either to right or left) an (either inactive or active) edge, or partial analysis, growing islands of ‘certainty’.

Two basic models have been studied. The local model is static, as it just takes into account grammatical

information. The neighbouring model considers also the immediate environment around each island, that is,

the islands and gaps (the segments of the input sentence spanning between adjacent islands) surrounding it.

2.1  The Local Model

The local approach is based on regarding the probability of an edge to be extended (and the same applies to

the prediction) as the probability of the next symbol to be expanded having the terminal(s) symbol(s) in the

corresponding position of the sentence as either left or right corner. Being G a SCFG, T the set of terminal

symbols of G, N the set of nonterminal symbols of G, Ri the i-th production of G and P(Ri) its attached

probability, [A, i, j]
1

 is an island labelled A spanning positions i to j, and {left|right}_corner are functions

from N x T to [0,1], being {left|right}_corner(A, a) the probability that a derivation tree rooted A could have

symbol a as a {left|right}  corner:
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 Similarly, {left|right}_corner* are functions from N x T* to [0,1], so that, for any list of symbols la:
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Left-corner probabilities are symmetrically defined. All these probabilities are pre-computed and stored in

two structures (the Lreachability and the Rreachability tables), so that:

- For expansion to the left of an island (inactive edge) labelled A:
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 - For expansion to the left of (or prediction to the left from) an active edge (lt being the list of terminal

categories of word wi-1):
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Special cases where either α or β are empty are also considered. Expansions and predictions to the right are

symmetrically defined.

Computing the reachability tables is far from being a trivial problem. We have using an extension of [6]’s
approach for massively recursive grammars, extending it to deal with bidirectionality. The interdependencies
between nonterminals are represented as a linear equations system. The problem has been that we

                                                     
1 We will employ the usual double dotted rule notation for the edges.
2 P(A>>a/G) denotes the probability that, starting with the nonterminal A, successive application of rules in grammar G
produces a sequence beginning with terminal a.



encountered an unfeasible dimension for our grammars. Therefore, the process has been divided into three
steps:
1. Computation of the strongly connected components.
2. Solution of a linear system for each component.
3. Development of an algorithm for the combination of the obtained results.

2.2  The Neighbouring Model

In this approach, in order to take the decision of extending an island we will consider the information

provided by the neighbours, that is, the islands and gaps immediately surrounding such island, as well as

distances to them (the lengths of the gaps). Roughly speaking, we intend to model the distances (in terms of

number of terminals) between nodes in the parse tree, and guide the decisions accordingly. Hence, the

probabilities of length distributions for each rule of the grammar must be previously learnt from a training

corpus.

Given two islands [A, i, j] and [B, j+d, l], separated by a distance d, three types of relationship have been

considered
3

 (see Figures 1 to 3) :
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And we’ll denote each probability, for i=1..3:
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3 These cases account only for those situations in which there is at least one rule that includes directly at least one of the
islands considered, according to our notion of neighbourhood. Therefore, in order to get a full  coverage, a back-off to
other method is needed.
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These probabilities are pre-computed for each possible pair of islands and distance d=0..limit (being all

cases of d>limit treated as a whole). The limit is a parameter that in our experiments has been set to 3,

considering average distances between islands. The application of this model to the expansions and

predictions to the right is as follows (left direction symmetrical):

• For expansion of an island [A, i, j], being [B, j+d, k] the closest island to the right:
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The first addend accounts for cases of A and B being in the same rule right-hand side (RHS), while the

second one considers all possibilities of B being derived in 1 or more steps from a nonterminal H which is in

the same rule RHS as A, plus all possibilities of A being derived from a nonterminal H which is in the same

rule RHS as B.

• For expansion of (or prediction from) an active edge [A→ β . Al α Ar . γ, i, j], being [B, j+d, k] the

closest island to the right:
      ),/()..( ),,/(]),,[w,]/G,,,..([ 2

30,,
11

1 BldPlprobBArdPkdjBjiAAAP iacc
lddiN

irrl
right

edge

i

γγγγαβ
γ

−×=+=+→ ∑
≤−≤≤∈

−

The idea is the same, albeit particularising to the rule of the active edge. To the left the formula is

symmetrical, using P
3
 instead of P

2 
and Al 

instead of Ar
. Prob is a recursive function that, given the ‘trained’

G, provides for the distribution of probabilities of the lengths of any subsequence of terminal and

nonterminal symbols.

Several heuristics have been adopted as regards the neighbouring strategy. First of all, neighbouring

probabilities applied to top-down prediction have empirically shown to generate a significant edge overhead

(see comments in section 3.2). Therefore, some limitations have been imposed to their application:

1. For the initial determination of the edges to be used for prediction, local probability acts as a filter (that

is, only when local is non-zero will the neighbouring probability be used to determine if and when the

edge will be used for prediction); for distances d>2, local approach is directly used.

2. Subsequent recursive predictions will be guided only by local probabilities, limited in turn by a

threshold. This threshold has been empirically set.

In order to avoid the maximum number of computations at run time, the probabilities mentioned above are

pre-computed, using the frequencies of distributions of lengths learnt from the training corpus. These data

are stored in two tables containing the probabilities of each pair of categories to be at distances from 0 to

limit, as well as a single case for distances greater than limit. Simpler tables, to account for the cases of

extensions/predictions to the left of the first island of the sentence (as well as to the right of the last one), are

also calculated.

3    The Experiments

3.1  Setting

We hasten to emphasise that our experiments have been aimed at comparing, in the same environment, the

performance of the local versus the neighbouring approach (including hybrid versions) as well as the

performance of our island-driven approach with the classical bottom-up4, our baseline. By bottom-up

(henceforth BU) we mean a chart parser which operates combining the edges of the chart bottom-up and left-

to-right. We consider that the parse returned by this method is the first analysis found, so that the process

will stop as soon as this happens, possibly leaving items in the agenda.

 Our methodology does not supply a specific knowledge source, as [8] or others do, but it can be applied

to any existent SCFG. It has been tested using several artificial grammars, and even a limited-coverage

                                                     
4 As expected, the top-down approach led to far worse results, so it was discarded.



grammar for Spanish corpus Lexesp [6]. However, we wished to compare our strategies using a grammar as

close as possible to a real one, so we chose Penn Treebank II [9], 1,25Mw. The grammar underlying the

bracketing has been extracted, but its size (17534 rules) was simply too big to contemplate for our parser.

Therefore, we have applied a simple thresholding mechanism to prune rules from the grammar [10],

consisting of removing all rules that account for fewer than n% of rule occurrences of rules in each category.

We have used n=22, obtaining a grammar with 941 rules, 26 nonterminals and 45 terminals
5

.

In order to estimate the parameters of both models, a training corpus of 49000 sentences has been used

(previously, probabilities attached to the grammar rules were learnt). While local parameters can be

considered accurately learnt, neighbouring parameters are far more complex, which implies sparseness

problems. A corpus of 1000 sentences extracted randomly from sections 13 and 23 (from those sentences

covered by our grammar) was used for testing. Average sentence length of the test set was 21.5 words.

The criterion for the selection of the islands has been to consider as initial islands those non-ambiguous

words. Therefore, the analysis of these sentences must be performed without previous PoS-tagging, i.e.,

words have been ambiguated, they own all their possible tags and not only those contained in the PTB.

However, section 4 describes some results for a tagged corpus, obtained using base-NPs as initial islands.

Additionally, other criteria based on the syntactic ambiguity of the categories according to the grammar are

currently being tested.

Efficiency has been measured in terms of the number of inactive and active edges created during the

parsing process, that is, the ones required to find the first parse.

3.2  Results

Overall figures are shown in Table 1. In general, the use of SCFG has proven to be relatively successful if an

appropriate grammar for a given language is available, together with a large enough labeled corpus of

written sentences so that productions probabilities can be estimated with acceptable precision. A problem

with inducing grammars from the PTB is that, because the trees are very flat, there are lots of rare kinds of

flat trees with many children. In our case, the flatness itself is a benefit for our methodology, as well as the

larger length of the right-hand sides of its rules (3,59 in average), as it allows the expansion of several islands

at the same level. However, the variety provokes that the neighbouring method suffers from data sparseness.

As mentioned in section 2.2, by strict application of neighbouring probabilities we do not get a full coverage.

Local model is empirically demonstrated to be the best method as a back-off (versus BU). Therefore,

henceforth by neighbouring we will mean the neighbouring model plus a back-off to local method when no

analysis is found.

PTB-II Local Neighbouring BU

Inactive edges 2569 1488 6679

Active edges 13777 14402 53164

Table 1: Comparative results for corpus PTB-II6

                                                     
5 We have not worried about the subsequent reduction of coverage, inasmuch as our goal is to compare our approach
with our baseline in the same framework.
6 Neighbouring's prediction threshold is 0.1.



Detailed Results

We have tried to test the behaviour of each method depending on the kind of sentences being parsed. The

idea is to be able to figure out in which cases a more informed model should be applied, using then a sort of

hybrid method which chooses the approach on the way. Therefore, the corpus has been divided into groups

according to several criteria, and the average number of edges needed to parse the  sentences of each group

has been computed for each method. The performance of our approaches is quantitatively more appealing

than BU´s for all cases, though differences vary and may indicate in turn different behaviours of the models.

The examined criteria have been:

1) Length of the sentence (L = #words), starting from group 0 (L<10) to 9 (L>38).

2) Ambiguity rate, A = #tags / #words. Ambiguity groups go from 0 (A<2) to group 9 (A>3.5).

3) Density of islands, D = #islands / #words. Densities span from group 0 (D<0.25) to group 9 (D>0.70).

4) Maximum Island Distance, MID = length of the longest gap. We consider MID values from MID<2

(group 0) to MID>11 (group 9).

5) Island Dispersion, DI = Σ length_of_gaps / #gaps. Dispersions span from group 0 (DI<1.5) until group 9

(DI>7).

Figures 4 and 5 depict the results for criteria 1 and 3.

As regards sentence lengths, notice that both local and neighbouring always outperform BU, the

performance gap increasing with the sentence length. Local's performance keeps above neighbouring's in all

groups except for the longest sentences, which is encouraging if we mean to deal with real corpus. As

sentences get more ambiguous, BU’s performance degrades notoriously, whereas our methods´ is smoother

and more nearly monotonic. Regarding the island density, as the number of islands gets close to the total

number of words, performance of basic BU is more comparable to local and neighbouring (though the latter

is always better). MID’s graphic presents a suspicious similarity with length’s one (though the increment of

number of edges is more gradual). By computing the crossover between both measures, we have seen that it

may happen because the cases of largest gaps often overlap with those of the largest sentence lengths. Once

more local and neighbouring dispersions are quite comparable, and smoother and more nearly monotonic

than BU's.
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Hybrid Results

So far, in order to reach a complete coverage of the corpus for the neighbouring model, a back-off is

performed whenever no parse is found. Using this strategy, neighbouring’s performance does not improve

local’s. Hence, why not try the back-off before? Let’s present two new heuristic strategies, where the



difference between both will lie in the criteria employed to change to the local approach. In the first one, we

will change when a percentage of the sentence has been covered by the islands that are being extended. In

the second one, whenever a certain number of extension-prediction loops have been performed. Needless to

say both the optimum percentage and number of cycles are computed empirically according to a test set. In

Figure 6, we have represented the average number of edges for a coverage percentage from 0% (purely local

approach) to 100% (purely neighbouring approach). There is a clear minimum for 40% of coverage

(hereinafter neighb-40%), and it can be seen that performance degrades for both pure approaches. As to the

second method, we find a clear minimum for 4 cycles (neighb-4cycles), and again performance degrades for

non-mixed approaches.

A more thorough study reveals that, one main advantage of the neighbouring approach in front of the

local one is the extension at lexical level. That is why simply starting the parsing process by introducing

terminal and pre-terminal edges into the extension heap according to neighbouring probabilities, and then

backing off to the local model, represents an improvement in most cases. Neighbouring probabilities guide

the analysis at a preliminary stage of the extension of the islands, backing off to the local model whenever

the former approach would have to start a much more blind process of prediction. The guiding potential of

neighbouring approach during the extension is higher but, due to the data sparseness, lots of potentially

possible cases are assigned probability zero and must be left behind for prediction, which introduces far more

overhead than the extension.

Besides, whenever a back-off to the local model must be performed, all lexical edges (and not only the

islands) have to be re-introduced in the extension heap in order to be sure of getting a full coverage. The fact

that in some cases this mode of operation gets a better performance than a pure local or neighbouring

approach might indicate that in these cases, the original islands have not been correctly chosen, and point at a

new direction of research in other methods of selection [12].

The criteria described above have been applied to the complete test set for both optima obtained. Results

can be seen for the cycles approach and the length criterion in Figure 7. Except for the single case of MID

strictly smaller than 2, the neighb-4cycles approach clearly outperforms both purely local and neighbouring

approaches. Similar results are obtained for the neighb-40% approach.
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of sentence lengths and for each method

Thresholding

It has been mentioned in section 3.1 that the neighbouring statistical parameters learnt by our training

process might not be correct, due to the sparseness of the input data. Several experiments have been carried



out in order to evaluate the most adequate threshold from which to consider that a probability is not

informative enough (as it is learnt by a not sufficient number of occurrences), making necessary a back-off to

the local model. For each matrix of pre-computed probabilities, the distribution of values has been studied,

and according to it, a threshold has been defined. For a subset of sentences, a battery of experiments has been

performed, each one applying the threshold gradually to the following probabilities:

1. Extension probabilites.

2. Prediction probabilities.

3. Lexical extension probabilities.

4. A special treatment is devoted to certain prediction probabilities. When distances between adjacent

islands are larger than the parameter limit defined by the user, the lack of occurrences in the training set

is particularly critical. This leads to a typical situation: lots of prediction edges entering the prediction

heap with high probabilities, learnt by means of a ridiculous number of occurrences. Prediction explodes

locally, not allowing the use of other more suitable pending edges situated in other areas of the sentence.

As a result, the neighbouring probabilities are not informative anymore as a guide to the process. In

order to restrict the effects of this situation, another type of threshold (Tp) is introduced.

Figure 8 shows the comparison of the average number of edges for the different thresholds. Method 0 is

local7, 1 corresponds to conventional neighbouring, and methods 2 to 17 are more and more restrictive

applications of thresholds.  A particularly steep fall is found from method 7, which is when the application of

Tp starts. The following methods correspond to different values of Tp. An improvement of around 50% is

obtained with respect to local and neighbouring performance.

Once the different values and combinations of thresholds tested, the optima have been applied to the

whole test set. The results are shown in Figure 9. Method 0 corresponds to BU, 1 is local and method 2,

neighbouring. Methods 3 and 4 are applications of the first three thresholds (the only difference being

respectively the application of the first and second threshold for neighbouring lexical probabilities). Thus,

we can see the difference with respect to methods 5 and 6, which correspond respectively to applications of

previous thresholds plus the most optimal threshold Tp (hereinafter respectively neighb-thresh1 and neighb-

thresh2). The number of edges significantly decreases with respect to the other methods (around 45% for

local and neighbouring, not to mention BU!).

                                                     
7 BU has been avoided in purpose as its quantity of edges is significantly larger, which would have prevented the rest of
the data from being seen in detail.
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4    Assessing the Quality of the Parses

Up to now, the evaluation of the parse trees returned by each method has been performed on the basis of the

number of edges created in order to complete the analysis. Nothing has been done as to the quality of the

result. In this line, two measures have been considered: probability and accuracy.

4.1  Probabilities

The probability of a parse tree is usually regarded as the product of the probabilities of the rules involved.

Average probabilities were computed for each basic method, as well as for the most optimum hybrid ones.

Results can be seen in Table 2: as expected, the maximum average probability corresponds to the PTB

parses. The following method is the local approach, being the third rank occupied by neighb-40%. BU is

ranked fourth.

Probability

PTB 0.932

BU 0.636

Local 0.774

Neighbouring 0.389

Neighb-40% 0.641

Neighb-4cycles 0.590

Neighb-thresh1 0.609

Table 2: Average probabilities for each method

4.2  Accuracy Metrics

We have tried to compute the similarity of the PTB parse to the parses returned by our methods, both the

homogeneous and the hybrid ones. The metrics computed are those described in [11] plus two precision

rates, namely: Labelled and Bracketed Recall Rates (LR and BR), Consistent Brackets Recall Rate (CBR),

and Labelled and Bracketed Precision Rates (LP and BP).

Table 3 shows the obtained results for the 1000 sentences in the test set. As to the hybrid methods, we

have included the ones giving optimum results. It is important to emphasize that ‘Viterbi’ parses (the ones

which maximize the probability) and ‘worse’ parses (the ones that minimize the probability) are going to be

our upper and lower bounds, since the specific features of our framework (partial grammar, non-tagged

sentences) do not allow to compare our results with other systems.

As to the comparison between our methods and basic BU, local model presents considerably better

results, followed by neighb-40%. Specially striking are the CBR figures: better results are obtained by

methods that do not stand out for the other measures, such as even the “worse” parse trees.  Seemingly the

reason is that these parses are basically composed by unary and binary rules (average length of 1.6 for the

rules used by ‘worse’ versus 2.0 for those in local), which makes more difficult a crossing bracket to happen.

Although only the hybrid methods giving better average number of edges have been included in Table 3,

we have also studied the effects of the different back-off strategies on the accuracy.  In general, it can be

seen that, with the exception of the CBR metric, accuracy starts improving for the first stages of the hybrid

approaches (until number of cycles equals 3, until coverage equals 35%), and then gradually degrades as

back-off to local is postponed.



LR BR CBR LP BP

‘Viterbi’ 0.577 0.633 0.746 0.541 0.592

BU 0.412 0.514 0.705 0.299 0.369

Local 0.423 0.497 0.640 0.344 0.403

Neighbouring 0.373 0.460 0.675 0.230 0.282

Neighb-40% 0.412 0.483 0.641 0.318 0.370

Neighb-4cycles 0.394 0.469 0.634 0.294 0.348

Neighb-thresh2 0.405 0.483 0.641 0.306 0.364

‘Worse’ 0.347 0.445 0.696 0.175 0.223

Table 3: Evaluation metrics for untagged corpus

Additionally, we show the results of a new set of experiments, in which we have considered previously

extracted base NPs as initial islands, thus allowing to start from a tagged corpus (see Table 4). This approach

is described in detail in [12], however, we just wanted to show how the fact of both working with a

disambiguated corpus and selecting the subset of the test set for which parses in the PTB contain only rules

belonging to our reduced grammar can make the accuracy increase. Obviously our grammar is restricted, and

we have started from a correctly disambiguated corpus, which is unrealistic, for any tagged corpus would

imply the existence of a certain error rate. To what extent would this error affect the accuracy of the parses,

the same way that our starting from disambiguated corpus has been affected, remains unexplored.

LR BR CBR LP BP

BU 0.824 0.837 0.897 0.676 0.687

Local 0.906 0.914 0.934 0.888 0.896

Neighbouring 0.860 0.875 0.906 0.778 0.790

Table 4: Evaluation metrics for tagged corpus

5    Conclusions and Future Work

Two stochastic models for dealing with bidirectionality in island-driven chart parsing have been presented.

The models provide for the probability of extension of each island given either the stochastic grammar (local

model) or both the grammar and the immediately adjacent islands (neighbouring model). A chart parser has

been built that uses such models, either independently or in combination. Several experiments with a broad

coverage (though not complete) grammar of English have been carried out. Parsing performance has been

analysed according to several criteria, our approaches dramatically outperforming the baseline BU strategy.

Several hybrid methods which combine local and neighbouring approaches have also been defined,

improving the performance of the single ones. Other evaluation metrics have been considered, including the

probabilities of the different parses and its similarity to the PTB ones. Local and neighb-40% present the best

results.

Performance already improved, the accuracy remains to be increased. In fact, the idea of our hybrid

approaches has the same motivation as that of the ideas of ‘work’ and ‘competitorship’ of [5], thus pointing

out a possible extension for improving both our performance and accuracy; [5] also provides interesting

ideas to deal with the data-sparseness which may be applied to our neighbouring model.



It has also been mentioned that another source of improvement could be the method of selection of the

islands. Several refinements are currently being evaluated, such as considering criteria based on both the

degree of ambiguity of the lexical categories of each word, and the degree of ambiguity of the categories

according to the grammar.
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