
In: Proceedings of CoNLL-2000 and LLL-2000, pages 176-183, Lisbon, Portugal, 2000.

Learning from a Substructural Perspect ive

P i e t e r A d r i a a n s and E r i k d e H a a s
Syllogic,

P.O. Box 2729, 3800GG Amersfoor t , The Nether lands ,
a n d

Universi ty of A m s t e r d a m , Fac. of Mathemat ics , C o m p u t e r Science, Physics and Astronomy,
P lan tage Muidergracht 24, 1018TV A m s t e r d a m , The Nether lands

pieter, adriaans@ps.net, erik@propersolution.nl

A b s t r a c t

In this paper we study learning from a logical
perspective. We show that there is a strong re-
lationship between a learning strategy, its for-
mal learning framework and its logical represen-
tational theory. This relationship enables one
to translate learnability results from one theory
to another. Moreover if we go from a classi-
cal logic theory to a substructural logic theory,
we can transform learnability results of logical
concepts to results for string languages. In this
paper we will demonstrate such a translation by
transforming the Valiant learnability result for
boolean concepts to a learnability :result for a
class of string pat tern languages.

1 I n t r o d u c t i o n

There is a strong relation between a learn-
ing strategy, its formal learning framework and
its representational theory. Such a representa-
tional theory typically is (equivalent to) a logic.
As an example for this strong relationship as-
sume that the implication A ~ B is a given
fact, and you observe A; then you can deduce
B, which means that you can learn B from A
based on the underlying representational the-
ory. The learning strategy is very tightly con-
nected to its underlying logic. Continuing the
above example, suppose you observe -~B. In a
representational theory based on classical logic
you may deduce ~A given the fact A ~ B.
In intuitionistic logic however, this deduction
is not valid. This example shows that the char-
acter of the representational theory is essential
for your learning strategy, in terms of what can
be learned from the facts and examples.

In the science of the representational theo-
ries, i.e. logic, it is a common approach to

connect different representational theories, and
transform results of one representational theory
to results in an other representational theory.
Interesting is now whether we can transform
learnability results of learning strategies within
one representational theory to others. Observe
that to get from a first order calculus to a string
calculus one needs to eliminate structural rules
from the calculus. Imagine now that we do the
same transformation to the learning strategies,
we would come up with a learning strategy for
the substructural string calculus starting from a
learning strategy for the full first order calculus.

The observation that learning categorial
grammars translates to the task of learning
derivations in a substructural logic theory moti-
vates a research program that investigates learn-
ing strategies from a logical point of view (Adri-
aans and de Haas, 1999). Many domains for
learning tasks can be embedded in a formal
learning framework based on a logical repre-
sentational theory. In Adriaans and de Haas
(1999) we presented two examples of substruc-
tural logics, that were suitable representational
theories for different learning tasks; The first
example was the Lambek calculus for learning
categorial grammars, the second example dealt
with a substructural logic that was designed to
study modern Object Oriented modeling lan-
guages like UML (OMG, 1997), (Fowler, 1997).
In the first case the representation theory is first
order logic without structural rules, the formal
learning theory from a logical point of view is
inductive substructural logic programming and
an example of a learning strategy in this frame-
work is EMILE, a learning algorithm that learns
categorial grammars (Adriaans, 1992).

In this paper we concentrate on the trans-
formation of classical logic to substructural
logic and show that Valiant's proof of PAC-

176

learnability of boolean concepts can be trans-
formed to a PAC learnability proof for learning
a class of finite languages. We discuss the ex-
tension of this learnability approach to the full
range of substructural logics. Our strategy in
exploring the concept of learning is to look at
the logical structure of a learning algorithm, and
by this reveal the inner working of the learning
strategy.

In Valiant (1984) the principle of Probably
Approximately Correct learning (PAC learning)
was introduced. There it has been shown that
k-CNF (k-length Conjunctive Normal Form)
boolean concepts can be learned efficiently in
the model of PAC learning. For the proof
that shows that these boolean concepts can be
learned efficiently Valiant presents a learning al-
gorithm and shows by probabilistic arguments
that boolean concept can be PAC learned in
polynomial time. In this paper we investigate
the logical mechanism behind the learning al-
gorithm. By revealing the logical mechanism
behind this learning algorithm we are able to
study PAC learnability of various other logics in
the substructural landscape of first order propo-
sitional logic.

In this paper we will first briefly introduce
substructural logic in section 2. Consequently
we will reconstruct in section 3 Valiant's result
on learnability of boolean concepts in terms of
logic. Then in section 4 we will show that the
learnability result of Valiant for k-CNF boolean
concepts can be transformed to a learnability re-
sult for a grammar of string patterns denoted by
a substructural variant of the k-CNF formulas.
We will conclude this paper with a discussion
an indicate how this result could be extended
to learnability results for categorial grammars.

2 S u b s t r u c t u r a l l og i c

In Gentzen style sequential formalisms a sub-
structural logic shows itself by the absence of
(some of) the so-called structural rules. Exam-
ples of such logics are relevance logic (Dunn,
1986), linear logic (Girard, 1987) and BCK logic
(Grishin, 1974). Notable is the substructural
behavior of categorial logic, which in its proto-
type form is the Lambek calculus. Categorial
logics are motivated by its use as grammar for
natural languages. The absence of the struc-
tural rules degrades the abstraction of sets in

the semantic domain to strings, where elements
in a string have position and arity, while they
do not have that in a set. As we will see further
on in this paper the elimination of the struc-
tural rules in the learning context of the boolean
concepts will transform the learning framework
from sets of valuated variables to strings of val-
uated variables.

E x a m p l e 2.1 In a domain of sets the following
'expressions' are equivalent, while they are not
in the domain of strings:

a, a, b, a ~ a, b, b

In a calculus with all the structural rules the fea-
tures 'position' and 'arity' are irrelevant in the
semantic domain, because aggregates that differ
in these features can be proved equivalent with
the structural rules. To see this observe that
the left side of the above equation can be trans-
formed to the right side by performing the fol-
lowing operation:

a, a, b, a

a, b, a

a, a, b

a, b

a, b, b

contract a, a in .first two positions
to a

exchange b, a in last to positions to
a,b

contract again a, a in first two
positions to a

weaken expression b in last position
to b, b

In figure 2 we list the axiomatics of the first
order propositional sequent calculus 1, with the
axioms , the cut rule, rules for the connectives
and the structural rules for exchange, weakening
and contraction.

3 P A C Boolean concept learning
r e v i s i t e d

In this section we describe the principle of Prob-
ably Approximately Correct Learning (PAC
learning) of Boolean concepts. We will reveal

1Note t h a t in the variant we use here we have a special
case of the RA rule.

177

representa t iona l
theory

First order
propositional) ~

logic j I

formal learning
f r a m e w o r k

learn ing s t ra tegy

Boolean \ ~ PAC learning ,
-4 concepts ~ k-CNF)

1
Substructural
proposition=) 411

1 1
String . PAC learning ,

, ~ languages

Figure 1: Relation between learning strategy, learning framework and representational theory

(Ax) A ~ A (Cut)

(LA) F , A , B ~ A (RA)
F, A A B ~ A

(LV) F , A ~ A F , B ~ A
F,A V B ~ A (RV)

F =~ A,A F ~ , A , ~ A
F', F ~ A', A

F ~ A , A F t ~ B , A
F,F t =~ A A B , A
F ~ A,A F ~ B , A

F ~ A V B , A F ~ A V B , A

(Ex) F'AAB'F~=-~ A
F,B A A,F ~ ~ A

F ~ A
(Weak) F, A ~ A

(Contr) F, A, A ~ A
F , A ~ A

Figure 2: First order propositional sequent calculus

the logical deduction process behind the learn-
ing algorithm.

Consider the sample space for boolean con-
cepts. An example is a vector denoting the
truth (presence,l) or falsehood (absence,0) of
propositional variables. Such an example vec-
tor can be described by a formula consisting of
the conjunction of all propositional variables or
negations of propositional variables, depending
on the fact whether there is a 1 or a 0 in the

position of the propositional variable name in
the vector. A collection of vectors, i.e. a con-
cept, in its turn can be denoted by a formula
too, being the disjunction of all the formula's of
the vectors.

E x a m p l e 3.1 Let universe U = {a,b} and let
concept f = {(0, 1)}, then the following formula
exactly describes f :

~ A b

178

A little more extensive: Let uni-
verse [.j, = {a,b,c} and let concept
f ' = {(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)}
Then the following formula exactly describes f l
(with a clear translation):

(~AbAa) V (~ AbA c) V (~A bA c) V (aAbAc)

Note that these formulas are in Disjunctive nor-
mal form (DNF).

An interesting observation now is that the
learning algorithm of Valiant that learns k-CNF
formulas actually is trying to prove the equiv-
alence between a DNF formula and a k-CNF
formula.

E x a m p l e 3.2 Let universe U = {a,b} and let
concept f = {(0, 1)}, then the following sequent
should be 'learned' by a 2-CNF learning algo-
rithm 2:

~ A b ,¢:,. (aVb) A (~Vb) A (~Vb)

A little more extensive: Let U' =
{a, b, c} and let concept f ' =
{(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)} Then
the following sequent should be 'learned' by a
2-CNF learning algorithm:

(~ Ab A ~) V (HAhA c) V (~A bA c) V (aAbAc)
(~V b) A (~V b) A (a V b)

The above observation says in logical terms
that the learning algorithm needs to implement
an inductive procedure to find this desired proof
and the concluding concept description (2-CNF
formula) from examples. In the search space for
this proof the learning algorithm can use the ax-
ioms and rules from the representational theory.
In the framework of boolean concept learning
this means that the learning algorithm may use
all the rules and axioms from the representa-
tional theory of classical propositional logic.

E x a m p l e 3.3 Let IJ = {a, b} and let concept
f = {(0, 1)} and assume f can be represented
by a 2-CNF formula, to learn the 2-CNF de-
scription of concept f the learning algorithm
needs to find the proof for a sequent starting

2i.e. an algorithm that can learn 2-CNF boolean con-
cepts.

from the D N F formula ~ A b to a 2-CNF for-
mula and vice versa (¢~.) and to do so it may
use all the rules and axioms from the first or-
der propositional calculus including the struc-
tural rules. The proof for one side of such a
sequent is spelled out in figure 3.

In general an inductive logic programming al-
gorithm for the underlying representational the-
ory can do the job of learning the concept; i.e.
from the examples (DNF formulas) one can in-
duce possible sequents, targeting on a 2-CNF
sequent on the righthand side. The learning al-
gorithm we present here is more specific and
simply shows that an efficient algorithm for the
proof search exists.

The steps:

1. Form the collection G of all 2-CNF
clauses (p V q)

2. do l times

(a)

(b)

pick an example al A.-. Aam

form the collection of all
2-CNF clauses deducible from

al A ... A am and intersect this
collection with G resulting in

a new C

Correctness proof (out l ine): By (Ax),
(RV), (Weak), (LA) and (Ex) we can proof
that for any conjunction (i.e. example vector)
a l A . . . A a m we have for all 1 _< i < m and
any b a clause of a 2-CNF in which ai occurs
with b, hence having all clauses deducible from
the vector proven individually enabling one to
form the collection of all clauses deducible from
a vector; i.e.

al A . . . Aam ~ ai Vb
al A . . . A am :::*" b V ai

By (RA) and (Contr) we can proof the conjunc-
tion of an arbitrary subset of all the clauses de-
ducible from the vector, in particular all those
clauses that happen to be common to all the
vectors for each individual vector we have seen
so far, hence proving the 2-CNF for every indi-
vidual vector; i.e.

al A .. • A am ~ clause1 A .. • A clausep

179

b ~ b (Ax) b =*- b (Ax)
(av) (av)

b ~ E V b (Weak) b =~ a V b (Weak)
gg=t-E(Ax) (Rv) b , g ~ g g V b (L^) b , g ~ a V b (LA)
EE=~,,.EVb:_ (Weak) bAE=*,ggVb b A g = ~ a V b (Sx)

E , b ~ E V b _ (L^) g g A b ~ E V b (Ex) E A b = ~ a V b (RA)
E A b ~ E V b (E A b), (E A b) =-~ (E V b) A (a V b) (a^)

(E A b), (E A b), (E A b) ~ (E V b) A (E V b) A (a V b)
(Contr)

(E A b) , (E A b) ~ (E V b) A (E V b) A (a V b)

(~A b) =* (~Vb) A (EV b) A (a V b)
(Contr)

Figure 3: Proof to be found for boolean concept learning

Now by (L V) we can prove the complete DNF
to 2-CNF sequent; i.e.

vector1 V • • • V vector/ ~ clause1 A • • • A clausep

It is easy to see that for the above algorithm
the same complexity analysis holds as for the
Valiant algorithm, because we have the same
progression in l steps, an the individual steps
have constant overhead.

4 P A C l e a r n i n g s u b s t r u c t u r a l l o g i c

When we transform the representational theory
of the boolean concept learning framework to a
substructural logic, we do the following:

• eliminate the s tructural rules from the cal-
culus of first order propositional logic

When we want to translate the learnability re-
sult of k - C N F expressible boolean concepts we
need to do the same with the formal learning
framework and the strategy (algorithm). In
other words:

• the learning framework will contain con-
cepts that are sensitive to the features
which were before abstracted by the struc-
tural rules ('position' and 'arity')

• the learning algorithm from above is no
longer allowed to use the s tructural rules
in its inductive steps.

Below we present a learning algorithm for
the substructural logic representational theory.
Suppose again the universe U = { a l , . . . ,an},
and the concept f is a CNF expressible concept
for vectors of length m.

1. s tart with m empty clauses (i.e. disjunction
of zero literals) c lause1 , . . . , clausem

2. do l t imes

(a) pick an example al A . . . A am

(b) for all 1 < i < m add ai to clause/ if
ai does not occur in clause/.

C o r r e c t n e s s p r o o f (o u t l i n e) : By (Ax) and
(RV) we can proof for any ai that the sequent
ai =-~ clause/for any clause/containing ai as one
of its disjuncts, especially for a clause/contain-
ing next to ai all the a~ from the former exam-
ples. Then by (RA) and (LA) we can position
all the vectors and clauses in the r ight-hand po-
sition; i.e.

al A . . . A am ~ clause1 A -. . A clausem

Hence justifying the adding of the literal ai of
a vector in clausei. Now (L V) completes the
sequent for all the example vectors; i.e.

(al A . . . A am) V (a i A . . . A aim) V . . .
clause1 A .- . A clausem

For the algorithmic complexity in terms of
PAC learning, suppose we want present exam-
ples of concept f and that the algorithm learned
concept f f in l steps. Concept f f then de-
scribes a subse t of concept f because on every
position in the CNF formula contains a sub-
set of the allowed variables; i.e. those vari-
ables that have encountered in the examples 3.

anote that the CNF formula's can only describe par-
ticular sets of n-strings; namely those sets that are com-
plete for varying symbols locally on the different posi-
tions in the string.

180

~ ~ (Ax)

~ v b

b ~ b (Ax) b ~ b (Ax)
(RV) (RV)

b ~ V b b ~ a V b (at)
b, b =* (~V) A (a V b)

(RV) (LA)
b A b ~ (gVD) A (a V b)

(at)
~,b Ab ~ (~V b) A (~V b) A (a V b)

g A b A b ~ (~Vb) A (~Vb) A (aVb)
(LA)

(E A E A a) V (g A E A b) V (gA bAa) V (EA bA b) V (b A E A a)
V (b A E A b) V (bA bA a) V (bA bA b) ~ (gVb) A (gV b) A (a V b)

(LV)

Figure 4: Proof to be found for string pa t t e rn learning

Now let e = P (f A f ~) be the error then again
5 = (1 - e) TM is the confidence parameter as we
have m positions in the string. By the same
argument as for the Valiant a lgor i thm we may
conclude tha t e and 5 decrease exponential ly in
the number of examples l, meaning tha t we have
an efficient polynomial t ime learning a lgor i thm
for arbi t rary e and 5.

5 D i s c u s s i o n

We showed tha t the learnability result of
Valiant for learning boolean concepts can be
t ransformed to a learnabili ty result for pat-
tern languages by looking at the transforma-
t ion of the under lying representat ional theories;
i.e. looking at the t ransformat ion from clas-
sical first order proposi t ional logic (underlying
the boolean concepts) to subst ructura l first or-
der proposi t ional logic (underlying the pa t te rn
languages). An interesting extension would be
to look at the subs t ruc tura l concept language
tha t includes implication (instead of the CNF
formula's only). A language tha t allows impli-
cation coincides wi th the full Lambek calculus,
and a learning a lgor i thm and learnability result
for this framework amounts to results for all lan-
guages tha t can be described by context free
grammars . This is subject to future research.

R e f e r e n c e s "

P. Adriaans and E. de Haas. 1999. Grammar in-
duction as substructural inductive logic program-
ming. In Proceedings of the workshop on Learning
Language in Logic (LLL99), pages 117-126, Bled,
Slovenia, jun.

P. Adriaans. 1992. Language Learning from a Cate-
gorial Perspective. Ph.D. thesis, Universiteit van
Amsterdam. Academisch proefschrift.

J. Dunn. 1986. Relevance logic and entailment. In
F. Guenthner D. Gabbay, editor, Handbook of
Philosophical Logic III, pages 117-224. D. Reidel
Publishing Company.

M. Fowler. 1997. UML Distilled: Applying the Stan-
dard Object Modeling Language. Addison Wesley
Longman.

J.-Y. Girard. 1987. Linear logic. Theoretical Com-
purer Science, 50:1-102.

V.N. Grishin. 1974. A non-standard logic, and its
applications to set theory. In Studies in formal-
ized languages and nonclassical logics, pages 135-
171. Nanka.

Object Management Group OMG. 1997. Uml 1.1
specification. OMG documents ad970802-ad0809.

L.G. Valiant. 1984. Theory of the learnable. Comm.
o/the ACM, 27:1134-1142.

181

A d d e n d u m : P A C l e a r n i n g

The model of PAC learning arises from the work
of Valiant (Valiant, 1984). In this model of
learning it is assumed tha t we have a sample
space U* of vectors over an a lphabet U, where
each posi t ion in a vector denotes the presence
(1) or absence (0) of a symbol a ~_-- U in the
sample vector. A concept f is a subset of vec-
tors from the sample space U*.

Example 5.1 Le t U = { a , b } be an alphabet,
then the following table describes the sample
space U* over U:

a b

0 0
0 1
1 0
1 1

an example of a concept is f := {(0, 1)} and an
other example is g := {(0, 0), (0, 1), (1, 1)}.

A concept can be learned by an a lgor i thm by
giving this a lgor i thm positive a n d / o r negative
examples of the target concept to be learned.
An algor i thm efficiently learns a concept if this
a lgori thm produces a descript ion of this con-
cept in polynomial t ime. Informally eL concept is
PAC (Probably Approximately Correct) learned
if the a lgor i thm produces a description of a con-
cept tha t is by approximat ion the same as the
target concept from which examples are feeded
into the algori thm. A collection of concepts con-
s t i tutes to a concept class. A concept class can
be (PAC) learned if all the concepts in the con-
cept class can be (PAC) learned.

D e f i n i t i o n 5.2 (PAC Learnable) Let F be a
concept class, 5 (0 < 5 < 1) a confidence param-
eter, c (0 < e < 1) an error parameter. A con-
cept class F is PAC learnable if for all targets
f E F and all probability distributions P on the
sample space U* the learning algorithm A out-
puts a concept g E F such that with probability
(1 -5) it holds that we have a chance on an error
with P (f Ag) _< e (where f a g = (f - g) U (g - f))

We are especially interested in concept classes
tha t are defined by some formalism (language).
In other words a language can describe come

collection of concepts. An example of such
a language is the language of boolean formu-
las. A boolean formula describes a concept
tha t consists of all the vectors over the alpha-
bet of proposi t ional variable names tha t satisfy
the formula. These concepts are called boolean
concepts.

E x a m p l e 5.3 Let U := {a, b} be an alphabet of
propositional variable names. Then the formula

A b describes the concept f := {(0, 1)} of the
sample space U*; and the formula ~V b describes
the concept g := {(0, 0), (0, 1), (1, 1)}.

In Valiant (1984) Valiant proves tha t the lan-
guage of k-CNF boolean formula 's can be ef-
ficiently PAC learned. This means tha t for an
arbi t rary k the concept class defined by the lan-
guage of k-CNF formula 's can be PAC learned
by an a lgor i thm in a polynomial number of
steps. Below we briefly recapi tulate this result.

D e f i n i t i o n 5.4 (Boolean concept languages)
Let U be a set of propositional variable names,
then the language L of boolean formulas is de-
fined by:

L := UIL V LIL A LIL

A literal is a propositional variable or a negation
of a propositional variable; i.e.

LIT := UIU

A conjunction of a collection of formulas C is
a finite sequence of formulas from C connected
by the binary connective A; i.e.

CON(C) := CICON(C) A C

A disjunction of a collection of formulas C is a
finite sequence of formulas from C connected by
the binary connective V; i.e.

DIS(C) := CIDIS(C) V C

A formula is a CNF.formula (Conjunctive Nor-
mal Form) if the formula is a conjunction of
disjunctions of literals. A formula is a k-CNF
formula if all the disjuctions in the formula are
of length k. A formula is a DNF formula (Dis-
junctive Normal Form) if the formula is a dis-
junction of conjunctions of literals.

T h e o r e m 5.5 (Valiant (198~)) The classes of
k-CNF boolean concept languages are PAC
learnable in polynomial time.

182

v.

v2 ~

al an

sam pie space
(set of all vectors)

f a r

Figure 5: Valiant's proof

P r o o f (o u t l i n e) : Let U := { a l , . . . , a n } (n •
Af) be a alphabet and let concept f be a set
of vectors V := {v l , . . . ,Vm}(m _< n) over U*,
which is equivalent to the k-CNF formula A.

Let P be an arbi t rary probability distribution
over concept f such that Ev~e/P(vi) = 1; i.e.
P (f) -- 1. Examples picked using the distribu-
tion based on P will be feeded into the following
learning algorithm:

• Form the collection G := {ci,... ,Cnk }
of all the clauses (disjunctions of

literals) of length k.

• do l times

- v := pick-an-example

- for each ci in G

• delete ci from G if v 7-z ci

Now suppose that the algorithm learned con-
cept f ' from l examples (l taken from the algo-
ri thm). The concept f ' now is a concept that
is a subset of f , because it may not have seen
enough examples to eliminate all the clauses
that are in conflict with f ; i.e. there are still
clauses in ff' restricting this concept in the con-
junction of clauses, while it is disqualified by a
vector in f . What is the size of the number of
examples I we need to let f ' approximate f with

for boolean concept learning

a confidence 5 and error e. We have that

P (f) = 1
= P (f A f ')

(the error is the chance of rejecting an
example in f because it is not in f ')

= (1 - ,) m

(confidence is the chance of not making an
error after learning from I examples)

thus
ln5 < lln(1 - c)
resulting in the following expression for h

ln5
l <

- l n (1 - e)

This means that the confidence parameter 5 and
the error parameter e are exponentially small
w.r.t, the number of examples l feeded into the
learning algorithm. This means that for an arbi-
t rary 5 and e we can keep l polynomial because
the 5 and e decrease exponentially with respect
to I.

183

