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A b s t r a c t  

In this paper we study learning from a logical 
perspective. We show that there is a strong re- 
lationship between a learning strategy, its for- 
mal learning framework and its logical represen- 
tational theory. This relationship enables one 
to translate learnability results from one theory 
to another. Moreover if we go from a classi- 
cal logic theory to a substructural logic theory, 
we can transform learnability results of logical 
concepts to results for string languages. In this 
paper we will demonstrate such a translation by 
transforming the Valiant learnability result for 
boolean concepts to a learnability :result for a 
class of string pat tern languages. 

1 I n t r o d u c t i o n  

There is a strong relation between a learn- 
ing strategy, its formal learning framework and 
its representational theory. Such a representa- 
tional theory typically is (equivalent to) a logic. 
As an example for this strong relationship as- 
sume that  the implication A ~ B is a given 
fact, and you observe A; then you can deduce 
B, which means that  you can learn B from A 
based on the underlying representational the- 
ory. The learning strategy is very tightly con- 
nected to its underlying logic. Continuing the 
above example, suppose you observe -~B. In a 
representational theory based on classical logic 
you may deduce ~A given the fact A ~ B. 
In intuitionistic logic however, this deduction 
is not valid. This example shows that  the char- 
acter of the representational theory is essential 
for your learning strategy, in terms of what can 
be learned from the facts and examples. 

In the science of the representational theo- 
ries, i.e. logic, it is a common approach to 

connect different representational theories, and 
transform results of one representational theory 
to results in an other representational theory. 
Interesting is now whether we can transform 
learnability results of learning strategies within 
one representational theory to others. Observe 
that  to get from a first order calculus to a string 
calculus one needs to eliminate structural rules 
from the calculus. Imagine now that  we do the 
same transformation to the learning strategies, 
we would come up with a learning strategy for 
the substructural  string calculus starting from a 
learning strategy for the full first order calculus. 

The observation that  learning categorial 
grammars translates to the task of learning 
derivations in a substructural  logic theory moti- 
vates a research program that  investigates learn- 
ing strategies from a logical point of view (Adri- 
aans and de Haas, 1999). Many domains for 
learning tasks can be embedded in a formal 
learning framework based on a logical repre- 
sentational theory. In Adriaans and de Haas 
(1999) we presented two examples of substruc- 
tural logics, that  were suitable representational 
theories for different learning tasks; The first 
example was the Lambek calculus for learning 
categorial grammars, the second example dealt 
with a substructural  logic that  was designed to 
study modern Object Oriented modeling lan- 
guages like UML (OMG, 1997), (Fowler, 1997). 
In the first case the representation theory is first 
order logic without structural rules, the formal 
learning theory from a logical point of view is 
inductive substructural  logic programming and 
an example of a learning strategy in this frame- 
work is EMILE, a learning algorithm that learns 
categorial grammars (Adriaans, 1992). 

In this paper we concentrate on the trans- 
formation of classical logic to substructural 
logic and show that  Valiant's proof of PAC- 
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learnability of boolean concepts can be trans- 
formed to a PAC learnability proof for learning 
a class of finite languages. We discuss the ex- 
tension of this learnability approach to the full 
range of substructural logics. Our strategy in 
exploring the concept of learning is to look at 
the logical structure of a learning algorithm, and 
by this reveal the inner working of the learning 
strategy. 

In Valiant (1984) the principle of Probably 
Approximately Correct learning (PAC learning) 
was introduced. There it has been shown that  
k-CNF (k-length Conjunctive Normal Form) 
boolean concepts can be learned efficiently in 
the model of PAC learning. For the proof 
that  shows that  these boolean concepts can be 
learned efficiently Valiant presents a learning al- 
gorithm and shows by probabilistic arguments 
that  boolean concept can be PAC learned in 
polynomial time. In this paper we investigate 
the logical mechanism behind the learning al- 
gorithm. By revealing the logical mechanism 
behind this learning algorithm we are able to 
study PAC learnability of various other logics in 
the substructural landscape of first order propo- 
sitional logic. 

In this paper we will first briefly introduce 
substructural logic in section 2. Consequently 
we will reconstruct in section 3 Valiant's result 
on learnability of boolean concepts in terms of 
logic. Then in section 4 we will show that  the 
learnability result of Valiant for k-CNF boolean 
concepts can be transformed to a learnability re- 
sult for a grammar of string patterns denoted by 
a substructural variant of the k-CNF formulas. 
We will conclude this paper with a discussion 
an indicate how this result could be extended 
to learnability results for categorial grammars. 

2 S u b s t r u c t u r a l  l og i c  

In Gentzen style sequential formalisms a sub- 
structural logic shows itself by the absence of 
(some of) the so-called structural rules. Exam- 
ples of such logics are relevance logic (Dunn, 
1986), linear logic (Girard, 1987) and BCK logic 
(Grishin, 1974). Notable is the substructural 
behavior of categorial logic, which in its proto- 
type form is the Lambek calculus. Categorial 
logics are motivated by its use as grammar for 
natural languages. The absence of the struc- 
tural rules degrades the abstraction of sets in 

the semantic domain to strings, where elements 
in a string have position and arity, while they 
do not have that  in a set. As we will see further 
on in this paper the elimination of the struc- 
tural rules in the learning context of the boolean 
concepts will transform the learning framework 
from sets of valuated variables to strings of val- 
uated variables. 

E x a m p l e  2.1 In a domain of sets the following 
'expressions' are equivalent, while they are not 
in the domain of strings: 

a, a, b, a ~ a, b, b 

In a calculus with all the structural rules the fea- 
tures 'position' and 'arity' are irrelevant in the 
semantic domain, because aggregates that differ 
in these features can be proved equivalent with 
the structural rules. To see this observe that 
the left side of the above equation can be trans- 
formed to the right side by performing the fol- 
lowing operation: 

a, a, b, a 

a, b, a 

a, a, b 

a, b 

a, b, b 

contract a, a in .first two positions 
to a 

exchange b, a in last to positions to 
a,b 

contract again a, a in first two 
positions to a 

weaken expression b in last position 
to b, b 

In figure 2 we list the axiomatics of the first 
order propositional sequent calculus 1, with the 
axioms , the cut rule, rules for the connectives 
and the structural rules for exchange, weakening 
and contraction. 

3 P A C  Boolean concept learning 
r e v i s i t e d  

In this section we describe the principle of Prob- 
ably Approximately Correct Learning (PAC 
learning) of Boolean concepts. We will reveal 

1Note t h a t  in the  variant  we use here we have a special 
case of the  RA rule. 
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representa t iona l  
theory  

First order 
propositional ) ~  

logic j I 

formal  learning 
f r a m e w o r k  

learn ing s t ra tegy  

Boolean \ ~ PAC learning , 
-4 concepts ~ k-CNF ) 

1 
Substructural 
proposition= ) 411 

1 1 
String . PAC learning , 

, ~  languages 

Figure 1: Relation between learning strategy, learning framework and representational theory 

(Ax) A ~ A (Cut) 

(LA) F , A , B ~ A  (RA) 
F, A A B ~ A  

(LV) F , A ~ A  F , B ~ A  
F,A V B ~ A (RV) 

F =~ A,A F ~ , A , ~  A 
F', F ~ A', A 

F ~ A , A  F t ~ B , A  
F,F t =~ A A B ,  A 
F ~ A,A F ~ B , A  

F ~ A V B ,  A F ~ A V B ,  A 

(Ex) F'AAB'F~=-~ A 
F,B A A,F ~ ~ A 

F ~ A  
(Weak) F, A ~ A 

(Contr) F, A, A ~ A 
F , A ~ A  

Figure 2: First order propositional sequent calculus 

the logical deduction process behind the learn- 
ing algorithm. 

Consider the sample space for boolean con- 
cepts. An example is a vector denoting the 
truth (presence,l) or falsehood (absence,0) of 
propositional variables. Such an example vec- 
tor can be described by a formula consisting of 
the conjunction of all propositional variables or 
negations of propositional variables, depending 
on the fact whether there is a 1 or a 0 in the 

position of the propositional variable name in 
the vector. A collection of vectors, i.e. a con- 
cept, in its turn can be denoted by a formula 
too, being the disjunction of all the formula's of 
the vectors. 

E x a m p l e  3.1 Let universe U = {a,b} and let 
concept f = {(0, 1)}, then the following formula 
exactly describes f :  

~ A b  
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A little more extensive: Let uni- 
verse [.j, = {a,b,c} and let concept 
f '  = {(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)} 
Then the following formula exactly describes f l  
(with a clear translation): 

(~AbAa) V (~ AbA c) V (~A bA c) V (aAbAc) 

Note that these formulas are in Disjunctive nor- 
mal form (DNF). 

An interesting observation now is that the 
learning algorithm of Valiant that learns k-CNF 
formulas actually is trying to prove the equiv- 
alence between a DNF formula and a k-CNF 
formula. 

E x a m p l e  3.2 Let universe U = {a,b} and let 
concept f = {(0, 1)}, then the following sequent 
should be 'learned' by a 2-CNF learning algo- 
rithm 2: 

~ A b ,¢:,. (aVb) A (~Vb) A (~Vb) 

A little more extensive: Let U' = 
{a, b, c} and let concept f '  = 
{(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)} Then 
the following sequent should be 'learned' by a 
2-CNF learning algorithm: 

(~ Ab A ~) V (HAhA c) V (~A bA c) V (aAbAc) 
(~V b) A (~V b) A (a V b) 

The above observation says in logical terms 
that the learning algorithm needs to implement 
an inductive procedure to find this desired proof 
and the concluding concept description (2-CNF 
formula) from examples. In the search space for 
this proof the learning algorithm can use the ax- 
ioms and rules from the representational theory. 
In the framework of boolean concept learning 
this means that the learning algorithm may use 
all the rules and axioms from the representa- 
tional theory of classical propositional logic. 

E x a m p l e  3.3 Let IJ = {a, b} and let concept 
f = {(0, 1)} and assume f can be represented 
by a 2-CNF formula, to learn the 2-CNF de- 
scription of concept f the learning algorithm 
needs to find the proof for a sequent starting 

2i.e. an algorithm that can learn 2-CNF boolean con- 
cepts. 

from the D N F  formula ~ A b to a 2-CNF for- 
mula and vice versa (¢~.) and to do so it may 
use all the rules and axioms from the first or- 
der propositional calculus including the struc- 
tural rules. The proof for one side of such a 
sequent is spelled out in figure 3. 

In general an inductive logic programming al- 
gorithm for the underlying representational the- 
ory can do the job of learning the concept; i.e. 
from the examples (DNF formulas) one can in- 
duce possible sequents, targeting on a 2-CNF 
sequent on the righthand side. The learning al- 
gorithm we present here is more specific and 
simply shows that an efficient algorithm for the 
proof search exists. 

The steps: 

1. Form the collection G of all 2-CNF 
clauses (p V q) 

2. do l times 

(a) 

(b) 

pick an example al A.-. Aam 

form the collection of all 
2-CNF clauses deducible from 

al A ... A am and intersect this 
collection with G resulting in 

a new C 

Correctness  proof  (out l ine):  By (Ax), 
(RV), (Weak), (LA) and (Ex) we can proof 
that for any conjunction (i.e. example vector) 
a l  A . . .  A a m  we have for all 1 _< i < m and 
any b a clause of a 2-CNF in which ai occurs 
with b,  hence having all clauses deducible from 
the vector proven individually enabling one to 
form the collection of all clauses deducible from 
a vector; i.e. 

al A . . .  Aam ~ ai Vb 
al A . . .  A am :::*" b V ai 

By (RA) and (Contr) we can proof the conjunc- 
tion of an arbitrary subset of all the clauses de- 
ducible from the vector, in particular all those 
clauses that happen to be common to all the 
vectors for each individual vector we have seen 
so far, hence proving the 2-CNF for every indi- 
vidual vector; i.e. 

al A .. • A am ~ clause1 A .. • A clausep 
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b ~ b (Ax) b =*- b (Ax) 
(av) (av) 

b ~ E V b (Weak) b =~ a V b (Weak) 
gg=t-E(Ax) (Rv) b , g ~ g g V b  (L^) b , g ~ a V b  (LA) 
EE=~,,.EVb:_ (Weak) bAE=*,ggVb b A g = ~ a V b  (Sx) 

E , b ~ E V b _  (L^) g g A b ~ E V b  (Ex) E A b = ~ a V b  (RA) 
E A b ~ E V b  (E A b), (E A b) =-~ (E V b) A (a V b) (a^) 

(E A b), (E A b), (E A b) ~ (E V b) A (E V b) A (a V b) 
(Contr) 

( E A b ) , ( E A b ) ~ ( E V b ) A ( E V b ) A ( a V b )  

(~A b) =* (~Vb) A (EV b) A (a V b) 
(Contr) 

Figure 3: Proof  to be found for boolean concept learning 

Now by ( L V )  we can prove the complete DNF 
to 2-CNF sequent; i.e. 

vector1 V • • • V vector/ ~ clause1 A • • • A clausep 

It is easy to see that  for the above algorithm 
the same complexity analysis holds as for the 
Valiant algorithm, because we have the same 
progression in l steps, an the individual steps 
have constant overhead. 

4 P A C  l e a r n i n g  s u b s t r u c t u r a l  l o g i c  

When we transform the representational theory 
of the boolean concept learning framework to a 
substructural  logic, we do the following: 

• eliminate the s tructural  rules from the cal- 
culus of first order propositional logic 

When we want to translate the learnability re- 
sult of k - C N F  expressible boolean concepts we 
need to do the same with the formal learning 
framework and the strategy (algorithm). In 
other words: 

• the learning framework will contain con- 
cepts that  are sensitive to the features 
which were before abstracted by the struc- 
tural  rules ('position' and 'arity'  ) 

• the learning algorithm from above is no 
longer allowed to use the s tructural  rules 
in its inductive steps. 

Below we present a learning algorithm for 
the substructural  logic representational theory. 
Suppose again the universe U = { a l , . . .  ,an}, 
and the concept f is a CNF expressible concept 
for vectors of length m. 

1. s tart  with m empty  clauses (i.e. disjunction 
of zero literals) c lause1 , . . . ,  clausem 

2. do l t imes 

(a) pick an example al A . . .  A am 

(b) for all 1 < i < m add ai to clause/ if 
ai does not occur in clause/. 

C o r r e c t n e s s  p r o o f  ( o u t l i n e ) :  By (Ax) and 
(RV) we can proof for any ai that  the sequent 
ai =-~ clause/for  any clause/containing ai as one 
of its disjuncts, especially for a clause/contain-  
ing next to ai all the a~ from the former exam- 
ples. Then  by (RA) and (LA) we can position 
all the vectors and clauses in the r ight-hand po- 
sition; i.e. 

al  A . . .  A am ~ clause1 A -. .  A clausem 

Hence justifying the adding of the literal ai of 
a vector in clausei. Now ( L V )  completes the 
sequent for all the example vectors; i.e. 

(al A . . .  A am)  V (a i A . . .  A aim ) V . . . 
clause1 A .- .  A clausem 

For the algorithmic complexity in terms of 
PAC learning, suppose we want present exam- 
ples of concept f and that  the algorithm learned 
concept f f  in l steps. Concept f f  then de- 
scribes a subse t  of concept f because on every 
position in the CNF formula contains a sub- 
set of the allowed variables; i.e. those vari- 
ables that  have encountered in the examples 3. 

anote that  the CNF formula's can only describe par- 
ticular sets of n-strings; namely those sets that  are com- 
plete for varying symbols locally on the different posi- 
tions in the string. 
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~ ~ (Ax) 

~ v b  

b ~ b (Ax) b ~ b (Ax) 
(RV) (RV) 

b ~ V b  b ~ a V b  (at) 
b, b =* (~V) A (a V b) 

(RV) (LA) 
b A b ~  (gVD) A ( a V b )  

(at) 
~,b Ab ~ (~V b) A (~V b) A (a V b) 

g A b A b  ~ (~Vb) A (~Vb) A (aVb)  
(LA) 

( E A E A  a) V ( g A E A  b) V (gA bAa) V (EA bA b) V ( b A E A  a) 
V ( b A E A  b) V (bA bA a) V (bA bA b) ~ (gVb)  A (gV b) A (a V b) 

(LV) 

Figure 4: Proof  to be found for string pa t t e rn  learning 

Now let e = P ( f A f  ~) be the error then  again 
5 = (1 - e) TM is the confidence parameter  as we 
have m positions in the string. By the same 
argument  as for the Valiant a lgor i thm we may 
conclude tha t  e and 5 decrease exponential ly in 
the number  of examples l, meaning tha t  we have 
an efficient polynomial  t ime learning a lgor i thm 
for arbi t rary e and 5. 

5 D i s c u s s i o n  

We showed tha t  the learnability result of 
Valiant for learning boolean concepts can be 
t ransformed to a learnabili ty result for pat- 
tern languages by looking at the transforma- 
t ion of the under lying representat ional  theories; 
i.e. looking at the t ransformat ion from clas- 
sical first order proposi t ional  logic (underlying 
the boolean concepts) to subst ructura l  first or- 
der proposi t ional  logic (underlying the pa t te rn  
languages). An interesting extension would be 
to look at the subs t ruc tura l  concept language 
tha t  includes implication (instead of the CNF 
formula's only). A language tha t  allows impli- 
cation coincides wi th  the full Lambek calculus, 
and a learning a lgor i thm and learnability result 
for this framework amounts  to results for all lan- 
guages tha t  can be described by context free 
grammars .  This  is subject  to future research. 
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A d d e n d u m :  P A C  l e a r n i n g  

The  model  of PAC learning arises from the work 
of Valiant (Valiant, 1984). In this model  of 
learning it is assumed tha t  we have a sample 
space U* of vectors over an a lphabet  U, where 
each posi t ion in a vector denotes the presence 
(1) or absence (0) of a symbol a ~_-- U in the 
sample vector. A concept f is a subset of vec- 
tors from the sample space U*. 

Example 5.1 Le t  U = { a , b }  be an alphabet, 
then the following table describes the sample 
space U* over U: 

a b 

0 0 
0 1 
1 0 
1 1 

an example of a concept is f := {(0, 1)} and an 
other example is g := {(0, 0), (0, 1), (1, 1)}. 

A concept can be learned by an a lgor i thm by 
giving this a lgor i thm positive a n d / o r  negative 
examples of the target concept to be learned. 
An algor i thm efficiently learns a concept if this 
a lgori thm produces a descript ion of this con- 
cept in polynomial  t ime. Informally eL concept is 
PAC (Probably Approximately Correct) learned 
if the a lgor i thm produces a description of a con- 
cept tha t  is by approximat ion  the same as the 
target concept from which examples are feeded 
into the algori thm. A collection of concepts con- 
s t i tutes to a concept class. A concept class can 
be (PAC) learned if all the concepts in the con- 
cept class can be (PAC) learned. 

D e f i n i t i o n  5.2 (PAC Learnable) Let F be a 
concept class, 5 (0 < 5 < 1) a confidence param- 
eter, c (0 < e < 1) an error parameter. A con- 
cept class F is PAC learnable if for all targets 
f E F and all probability distributions P on the 
sample space U* the learning algorithm A out- 
puts a concept g E F such that with probability 
(1 -5 )  it holds that we have a chance on an error 
with P ( f  Ag) _< e (where f a g  = ( f  - g ) U ( g - f ) )  

We are especially interested in concept classes 
tha t  are defined by some formalism (language). 
In other  words a language can describe come 

collection of concepts.  An example of such 
a language is the language of boolean formu- 
las. A boolean formula describes a concept 
tha t  consists of all the vectors over the alpha- 
bet  of proposi t ional  variable names tha t  satisfy 
the formula. These concepts  are called boolean 
concepts. 

E x a m p l e  5.3 Let U := {a, b} be an alphabet of 
propositional variable names. Then the formula 

A b describes the concept f := {(0, 1)} of the 
sample space U*; and the formula ~V b describes 
the concept g := {(0, 0), (0, 1), (1, 1)}. 

In Valiant (1984) Valiant proves tha t  the lan- 
guage of k-CNF boolean formula 's  can be ef- 
ficiently PAC learned. This  means tha t  for an 
arbi t rary k the  concept  class defined by the lan- 
guage of k-CNF formula 's  can be PAC learned 
by an a lgor i thm in a polynomial  number  of 
steps. Below we briefly recapi tulate  this result. 

D e f i n i t i o n  5.4 (Boolean concept languages) 
Let U be a set of propositional variable names, 
then the language L of boolean formulas is de- 
fined by: 

L := UIL V LIL A LIL 

A literal is a propositional variable or a negation 
of a propositional variable; i.e. 

LIT := UIU 

A conjunction of a collection of formulas C is 
a finite sequence of formulas from C connected 
by the binary connective A; i.e. 

CON(C) := CICON(C) A C 

A disjunction of a collection of formulas C is a 
finite sequence of formulas from C connected by 
the binary connective V; i.e. 

DIS(C) := CIDIS(C) V C 

A formula is a CNF.formula (Conjunctive Nor- 
mal Form) if the formula is a conjunction of 
disjunctions of literals. A formula is a k-CNF 
formula if all the disjuctions in the formula are 
of length k. A formula is a DNF formula (Dis- 
junctive Normal Form) if the formula is a dis- 
junction of conjunctions of literals. 

T h e o r e m  5.5 (Valiant (198~)) The classes of 
k-CNF boolean concept languages are PAC 
learnable in polynomial time. 
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v. 

v2 ~ 

al an 

sam pie space  
(set of all vectors) 

f a r  

Figure 5: Valiant's proof 

P r o o f  ( o u t l i n e ) :  Let U := { a l , . . . , a n } ( n  • 
Af) be a alphabet  and let concept f be a set 
of vectors V := {v l , . . . ,Vm}(m _< n) over U*, 
which is equivalent to the k-CNF formula A. 

Let P be an arbi t rary probability distribution 
over concept f such that  Ev~e/P(vi) = 1; i.e. 
P ( f )  -- 1. Examples picked using the distribu- 
tion based on P will be feeded into the following 
learning algorithm: 

• Form the collection G := {ci,... ,Cnk } 
of all the clauses (disjunctions of 

literals) of length k. 

• do l times 

- v := pick-an-example 

- for each ci in G 

• delete ci from G if v 7-z ci 

Now suppose that  the algorithm learned con- 
cept f '  from l examples (l taken from the algo- 
ri thm). The concept f '  now is a concept that  
is a subset of f ,  because it may not have seen 
enough examples to eliminate all the clauses 
that  are in conflict with f ;  i.e. there are still 
clauses in ff' restricting this concept in the con- 
junction of clauses, while it is disqualified by a 
vector in f .  What  is the size of the number of 
examples I we need to let f '  approximate f with 

for boolean concept learning 

a confidence 5 and error e. We have that  

P ( f )  = 1 
= P ( f A f ' )  

(the error is the chance of rejecting an 
example in f because it is not in f ' )  

= (1  - , ) m  

(confidence is the chance of not making an 
error after learning from I examples) 

thus 
ln5 < lln(1 - c) 
resulting in the following expression for h 

ln5 
l <  

- l n ( 1  - e) 

This means that  the confidence parameter  5 and 
the error parameter  e are exponentially small 
w.r.t, the number  of examples l feeded into the 
learning algorithm. This means that  for an arbi- 
t rary 5 and e we can keep l polynomial because 
the 5 and e decrease exponentially with respect 
to I. 
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