
Conceptual Schema Approach to Natural Language Database Access

In-Su Kang, Seung-Hoon Na, Jong-Hyeok Lee

Div. of Electrical and Computer Engineering
Pohang University of Science and Technology (POSTECH)
Advanced Information Technology Research Center (AlTrc)

San 31, Hyoja-dong, Nam-gu, Pohang, 790-784, R. of KOREA
{dbaisk, nsh, jhlee}@postech.ac.kr

fax: +82-54-279-5699

Abstract

Natural language database interfaces re-
quire translation knowledge to convert
user questions into formal database que-
ries. Previously, translation knowledge
acquisition heavily depends on human
specialties such as NLP, DBMS and do-
main engineering, consequently under-
mining domain portability. This paper
attempts to semi-automatically construct
translation knowledge by introducing a
physically-derived conceptual database
schema, and by simplifying translation
knowledge into two structures – class-
referring documents and class-
constraining selection restrictions. Based
on these two structures, this paper pro-
poses a noun translation method that em-
ploys an information retrieval framework.

1 Introduction

A natural language database interface (NLDBI)
allows users to access database data in a natural
language (Androutsopoulos et al., 1995). In a typi-
cal NLDBI system, a natural language question is
analyzed into an internal representation using lin-
guistic knowledge that normally includes domain
knowledge to reduce analysis ambiguities. The in-
ternal representation is then translated into a target
database query by applying mapping information
(Androutsopoulos et al. 1995) that associates the

analysis results with target database structures.
This paper uses translation knowledge to refer to
both domain knowledge and mapping information,
because both are required to translate a natural lan-
guage question into a database query.

Previous approaches can be classified according
to the extent that translation knowledge is inte-
grated into linguistic knowledge. Tightly-coupled
approaches hard-wire translation knowledge into
linguistic knowledge in the form of semantic
grammars (Hendrix et al., 1978; Waltz 1978;
Templeton and Burger 1983). This approach shows
a good performance for a particular domain. How-
ever, in adapting to other domains, new semantic
grammars should be created with a considerable
effort (Allen 1995).

In order to improve domain portability, many re-
searchers have concentrated on isolating transla-
tion knowledge from linguistic knowledge through
loosely-coupled approaches. These approaches can
be further classified according to the extent that
question analysis is performed. Syntax-oriented
systems (Ballard et al., 1984; Damerau 1985; Lee
and Park 2002) analyze questions up to a syntactic
level, after which translation knowledge is applied
to generate a database query. Logical form systems
(Warren and Pereira 1982; Grosz et al., 1987; Al-
shawi et al., 1992; Androutsopoulos 1993; Klein et
al., 1998) interpret a user question into a domain-
independent literal meaning level.

Thus, in loosely-coupled approaches, transport-
ing to a new database domain does not need to
change linguistic knowledge at all, only tailoring
translation knowledge to new domains. Even in
this case, however, translation knowledge is diffi-

cult to describe. For example, syntax-oriented sys-
tems have to devise conversion rules that transform
parse trees into database query expressions (An-
droutsopoulos et al. 1995), and logical form sys-
tems should define database relations for logical
predicates. In addition, creating these translation
knowledge demands considerable human expertise,
such as NLP/DBMS/domain specialties. To reduce
these manual interventions, many systems employ
domain tools (Grosz et al. 1987) to collect domain
vocabulary about target database structures,
through a sequence of interactive procedures.
However, these acquisition processes are passive,
and time-consuming. Moreover, such tools cannot
be easily adapted to other systems because they are
customized to their own systems.

In order to automate translation knowledge ac-
quisition for a new database, this paper attempts to
semi-automatically construct translation knowl-
edge by introducing a physically-derived concep-
tual database schema and by simplifying
translation knowledge into two structures – a set of
class/value documents having linguistic terms cor-
responding to domain classes, and a set of selec-
tion restrictions on domain classes. Based on these
two structures, this paper proposes a noun transla-
tion method that employs an information retrieval
framework.

The remainder of this paper is as follows. The
next two sections describe terminologies and a
conceptual schema used in this paper. Section 4
explains an overview of a conceptual schema ap-
proach. Section 5 defines our translation knowl-
edge. Section 6 details a noun translation strategy
using translation knowledge, and concluding re-
marks are given in section 7. For representing Ko-
rean expressions, the Yale Romanization is used.

2 Terminologies

3

In this paper, a database object is defined as either
a domain class or a domain class instance. A do-
main class refers to a table or a column in a data-
base. A domain class instance indicates an
individual column value. For example, suppose
that a physical database contains two tables,
TB_Customer and TB_Employee, and
TB_Customer has a column C_cName, and
TB_Employee has a column C_eCountry. All these
are called domain classes. If the columns
C_cName and C_eCountry have ‘Abraham Lin-

coln’ and ‘France’, respectively, as its values, each
of these values is called a domain class instance.

A class term is defined as a lexical term refer-
ring to a domain class. A value term signifies a
term indicating a domain class instance. For in-
stance, the word ‘customer’ in a user question is a
class term corresponding to the above domain class
‘TB_Customer’. The word ‘Lincoln’ is a value
term referring to the above domain class instance
‘Abraham Lincoln’. In summary, a class term or a
value term is used to indicate a word in a user
question, and a domain class or a domain class in-
stance is used to refer to a database object, such as
a table, a column, or a column value.

Physical Entity-Relationship (pER)
Schema

TB_Cust TB_Prod

TB_Ordr

CL_Date CL_Amnt

pER graph

Domain class Linguistic name Definition

TB_Cust customer Persons or companies that order products
TB_Prod product NULL
TB_Ordr order order information
CL_Date date of order dates when customers ordered products
CL_Amnt amount of order amount of products that customers ordered

Relationship Relationship description

TB_Cust ⇔ TB_Ordr ⇔ TB_Prod
customers order products
customers request orders

pER descriptions

: table / entity

: column / attribute

: a property

: a relationship

TB_Cust TB_Prod

TB_Ordr

CL_Date CL_Amnt

pER graph

Domain class Linguistic name Definition

TB_Cust customer Persons or companies that order products
TB_Prod product NULL
TB_Ordr order order information
CL_Date date of order dates when customers ordered products
CL_Amnt amount of order amount of products that customers ordered

Relationship Relationship description

TB_Cust ⇔ TB_Ordr ⇔ TB_Prod
customers order products
customers request orders

pER descriptions

: table / entity

: column / attribute

: a property

: a relationship

Figure 1. Physical ER (pER) Schema

For a database, a conceptual schema like entity-
relationship model structurally resembles a seman-
tic network for the database domain. In addition,
its components like entities, attributes, and rela-
tionships contain linguistic descriptions, which
may bridge between natural language constructions
and physical database structures. This paper tries to
extract translation knowledge from a conceptual
schema. However, a conceptual database schema is
not always available. So, we define a physical En-
tity-Relationship (pER) schema as an approxima-
tion of real conceptual schema.

A pER schema is composed of a pER graph and
its linguistic descriptions. A pER graph is structur-
ally equivalent to physical database structures,
where a node corresponds to a table or a column,
and an arc defines a relationship between two ta-
bles, or a property between a table and its column.
So a node in a pER graph is a domain class. Each
node or arc contains linguistic descriptions that are
called pER descriptions. As shown in figure 1,
there are three kinds of pER descriptions - a lin-
guistic name, definition, and relationship descrip-
tion.

A pER schema is created as follows. First, a
logical schema is extracted from a target physical
database. This reverse engineering process is
automatically performed within a commercially
available database modeling tool. The logical
schema has the same structure as a physical data-
base. So the logical schema becomes a pER graph.
Next, domain experts provide linguistic descrip-
tions for each component of the logical schema
according to the following guidelines.

A linguistic name – in a noun phrase
A definition – in a definitional sentence
A relationship description – in a typical sentence
including typical domain verbs

The input process is also graphically supported

by the database modeling tool, and the pER de-
scriptions can be automatically extracted by the
modeling tool.

The term physical ER (pER) schema is used be-
cause it is an approximation of the target data-
base’s original ER (entity-relationship) schema in
the sense that its structures are directly derived
from a physical database. A pER graph is later
used to generate conceptual query graphs. The pER
descriptions have the potential to bridge between
linguistic constructions and physical database
structures. From pER descriptions, two translation
knowledge structures are automatically generated,
which will be described in section 5.

4

4.1

Conceptual Schema Approach

Domain Adaptation
Figure 2 shows an NLDBI architecture based on a
conceptual schema. There are two processes; do-
main adaptation and question answering. For a new

database domain, domain adaptation semi-
automatically constructs translation knowledge.
Translation knowledge is divided into two struc-
tures: a set of class/value documents corresponding
to domain classes, and a set of selection restric-
tions on domain classes. A class document con-
tains a set of class terms related to a domain class.
Class terms are extracted from natural language
descriptions of a pER schema.

A value document is created from a set of do-
main class instances associated with a column. Se-
lection restrictions are also derived from linguistic
descriptions of a pER schema.

Database

Class/Value Documents
Selection Restrictions

Question

Question Analysis

{noun}
{<predicate, argument>}

Noun Translation

{<noun, a domain class>}

question focus
value operator

Database Query

Translation Knowledge

Question Answering

Conceptual
Query
Graph
generation

Domain Adaptation

Physical
ER schema

Physical
ER graph

domain
descriptions

Domain text
Dictionary
Corpora

Domain
Knowledge
Extraction

domain
expertDatabase

Class/Value Documents
Selection Restrictions

Question

Question Analysis

{noun}
{<predicate, argument>}

Noun Translation

{<noun, a domain class>}

question focus
value operator

Database Query

Translation Knowledge

Question Answering

Conceptual
Query
Graph
generation

Domain Adaptation

Physical
ER schema

Physical
ER graph

domain
descriptions

Domain text
Dictionary
Corpora

Domain
Knowledge
Extraction

domain
expert

Figure 2. NLDBI architecture

The domain adaptation process may further
augment this initial translation knowledge from
other resources, such as domain materials, diction-
aries, or corpora.

4.2 5

5.1

5.2

Question Answering
The question answering proceeds as follows. A
user writes his or her information need in a natural
language. A user question is then analyzed to pro-
duce a set of question nouns and a set of predicate-
argument pairs. In Korean, these are obtained after
morphological analysis, tagging, chunking, and
partial dependency parsing. Question analysis also
yields a set of feature-value pairs for each question
noun. Among others, essential question features
are a question focus and a value operator. These
two features determine select-clause items and
where-clause operators, respectively, in a final
SQL query.

In noun translation, each question noun is con-
sidered as an IR query to retrieve lexically or se-
mantically equivalent domain classes in the form
of class or value documents. Afterwards, to each
question noun holding two or more relevant do-
main classes, selection restrictions are applied to
determine one correct domain class. Noun transla-
tion is explained in section 6.

Conceptual query graph generation creates a
conceptual query graph (CQG) on the pER graph.
First, domain classes produced by noun translation
are marked on the pER graph, and question fea-
ture-value pairs are attached to the nodes of associ-
ated domain classes. On the pER graph, a CQG is
searched, which is a connected subgraph connect-
ing all the nodes that are attached with certain fea-
ture-value pairs.

The CQG is assumed to represent a domain-
dependent question meaning, because nodes of the
graph correspond to domain-dependent objects of
question nouns, and arcs between nodes represent
domain-dependent semantic relations between
question nouns. Unlike the logical form method,
this approach does not produce an intermediate
domain-independent question meaning. Instead, a
domain-dependent question meaning is directly
represented in the form of a subgraph on a concep-
tual schema. So a final database query is generated
from the graph. Given a CQG, database query gen-
eration is trivial. Entity nodes of the CQG go to
SQL-from clause, and arcs between entities consti-
tute SQL join operators. An SQL-select clause is
obtained from question-focus-attached nodes. All
value-operator-attached nodes are combined to
create SQL-where conditions.

Translation Knowledge

Translation Knowledge Structures
Any NLDBI system demands translation knowl-
edge, which consists of domain knowledge and
mapping information. The former provides an
analysis module with ambiguity-reducing devices,
such as domain terminologies, domain-dependent
selection restrictions, and a domain world model.
The latter defines mappings between linguistic
analysis results and target database structures. This
paper divides translation knowledge into two struc-
tures. One is class-referring information, which is a
collection of terms that directly refer to each do-
main class or domain class instance. The other is
class-constraining information: a collection of se-
lection restrictions on domain classes. Compared
to the previous NLDBI translation knowledge, the
first encodes both mapping information and do-
main terminologies, and the second corresponds to
domain-dependent selection restriction. In addition,
a pER graph plays the role of a domain world
model.

Class-Referring Translation Knowledge

Formally, class-referring translation knowledge is
defined as a set of pairs of C and D. C is a domain
class, and D is a document that contains terms lin-
guistically referring to C. D has two types; a class
document and a value document. For each domain
class, a class document is created from pER de-
scriptions. In addition, for each domain class cor-
responding to columns, a value document is
created from column data for the domain class.
These documents are indexed to create a document
collection to be used by the later noun translation
module.

Class Document

A class document contains a set of lexically syn-
onymous class terms for a domain class. Antici-
pated class terms are extracted from both linguistic
names and definitions in a pER schema. A linguis-
tic name X for a domain class is a noun phrase. In
Korean, it is a compound noun optionally having a
Korean genitive case marker ‘uy’ (of). Its general
form is (N+(uy)?_)*N+ in a regular expression,
where _ is a word boundary and N is a simple noun.

A linguistic definition for a domain class is a defi-
nitional sentence, so it takes one of the following
restricted forms in English translations.

(a kind of) + Y + adjective phrase modifying Y
X|it + be|mean|indicate|… + (a kind of) + Y + adjective
phrase modifying Y

Both X and Y are class term candidates, since a

taxonomic relation exists between them. Y, which
may be also a compound noun, can be easily iden-
tified using a few patterns.

Class term extraction proceeds as follows. Given
a compound noun, its genitive case markers are
deleted, and each of the remaining compound
nouns is segmented into a sequence of simple
nouns. For example, N3N2uy_N1 is converted into
N3+N2+N1, where the last noun N1 is a head of
N3N2uy_N1 in Korean, and uy is a genitive case
marker. Since different combinations of the simple
nouns may constitute different question words to
refer to the same domain class, a set of head-
preserving compound nouns are generated from the
simple nouns as follows.

N3N2의_N1 → N3N2+N1 → N3+N2+N1 → {N3N2N1, N2N1, N1}

Since a head is an underlying concept of the

compound noun, a head noun is preserved for all
combinations.

Value Document

For each value term in a user question, an NLDBI
system should determine the domain class to which
it belongs. This value recognition problem
(Templeton and Burger 1983) is critical since,
unlike class terms, most value terms are open-
ended. In addition, question value terms may take
different forms from domain class instances stored
in a database. For example, to refer to a database
value sam-seng-cen-ca (Samsung Electronics) in
Korean, users prefer partial forms like sam-seng
(Samsung) in sam-seng-ey-se cwu-mwun-han (…
that Samsung ordered).

To support partial matching between question
value terms and domain class instances, this paper
proposes n-gram value indexing. For each column
of a target database, n-gram value indexing gener-
ates n-grams of the column data to create a value

document. Among column data, linguistic terms
are distinguished from alphanumeric terms.

For a linguistic term of k syllables, all-length n-
grams from bi-grams to k-grams are generated as
index terms of a value document in order to pre-
pare all substrings expected as question value
terms. For example, a column value se-wul-thuk-
pyel-si is processed to generate these n-grams, se-
wul, wul-thuk, thuk-pyel, pyel-si, se-wul-thuk, wul-
thuk-pyel, thuk-pyel-si, se-wul-thuk-pyel, wul-thuk-
pyel-si, se-wul-thuk-pyel-si, among which legiti-
mate words as question terms are se-wul, thuk-
pyel-si, se-wul-thuk-pyel-si.

On the other hand, generating n-grams for al-
phanumeric terms causes a severe storage problem.
Damerau’s method (Damerau 1985) reduces an
open-ended set of alphanumeric terms into a closed
set of patterns. Thus, it is adopted and slightly
modified to include 2-byte characters like Korean.
In the modified version, a canonical pattern P is
defined as follows.

<P> ::= <U>{<U>}
<U> ::= [<C1>|<C2>|<N>|<S>][1|2|…|255]
where <Ck> is a sequence of k-byte characters,
 <N> is a sequence of numbers,

<S> is a sequence of special characters.

For example, an alphanumeric database value
se-wul-28@A-ma is converted into a canonical
pattern, C22N2S1C11C21. Next, in order to provide
partial matching between patterns, a canonical pat-
tern is decomposed into bi-grams. That is, for
C22N2S1C11C21, bi-grams _C22, C22N2, N2S1,
S1C11, C11C21, C21_ are created and stored as in-
dex terms in a value document.

Pattern-based n-grams provide considerable
storage reduction over storing canonical patterns,
since canonical patterns are sliced into smaller n-
grams that will have many duplicate n-grams.
Hopefully, these n-grams provide partial matching
capability even to the arbitrary alphanumeric terms.

5.3 Class-Constraining Translation Knowl-
edge

As class-constraining translation knowledge, two
types of selection restrictions are defined for do-
main classes. Kv is a set of selection restrictions
between domain verbs and domain classes. Kcm is a

{ } { }cmcmvv CcmKCvK ,,, ==

set of selection restrictions between surface case
markers and domain classes. v is a verb appearing
in pER descriptions, and Cv is a set of domain
classes corresponding to arguments that v governs.
cm is a surface case marker appearing in pER de-
scriptions, and Ccm is a set of domain classes corre-
sponding to arguments that cm attaches.

Kv and Kcm are extracted from predicate-
argument pairs that are acquired by parsing pER
descriptions. First, each predicate-argument pair is
expanded to a triple of <verb, noun, case marker>.
The case marker means a surface case marker of
the noun. In Korean, the triple <verb, noun, case
marker> is easily constructed from a predicate-
argument pair, since each nominal argument has a
surface case marker as a postposition within a
word boundary. The second term of a triple is re-
placed by a domain class related to the noun. The
modified triple is further divided into <verb, do-
main class> and <case marker, domain class>.
Next, by merging a set of <verb, domain class>
having the same verb, Kv is produced. Similarly,
Kcm is obtained by merging a set of <case marker,
domain class> having the same case marker. Kcm
will be useful for value terms that correspond to
different domain classes according to its case
marker.

6

6.1

6.2

Noun Translation

After question analysis, a user question is analyzed
into a set of question nouns and a set of predicate-
argument pairs. Noun translation utilizes an IR
framework to translate each question noun into a
probable domain class. First, class retrieval con-
verts each question noun into an IR query and re-
trieves relevant documents. Here, retrieved
documents refer to candidate domain classes for
the question noun, because each document is asso-
ciated with a domain class. Next, class disam-
biguation selects a likely domain class among the
candidate domain classes retrieved by class re-
trieval using predicate-argument pairs of the user
question.

Class Retrieval

A question noun may be a class term or a value
term, and a value term may be a linguistic value
term or an alphanumeric value term. To be used as
an IR query, these terms are converted into differ-

ent vector queries, as these terms are differently
treated in indexing class or value documents. That
is, class terms are converted into word-based terms,
linguistic value terms into a list of all-length n-
grams, and alphanumeric value terms into a list of
pattern-based n-grams. We employ three types of
query representations; a conceptual vector for a
class term, an all-length n-gram vector for a lin-
guistic value term, and a pattern-based n-gram vec-
tor for an alphanumeric value term.

It is straightforward to distinguish whether a
question noun is an alphanumeric term. However,
it is nontrivial to distinguish between a class term
and a linguistic value term, because many domain-
dependent class terms are out-of-vocabulary words.
So, for a question noun other than an alphanumeric
term, class retrieval creates both a conceptual vec-
tor and an all-length n-grams vector, and retrieves
documents for each query, and merges the re-
trieved documents. In the following, a conceptual
vector representation for class terms is described.

If we simply convert a class term into a single
term vector, it may cause a severe word mismatch
problem (Furnas el al., 1987). Thus, the question
noun is generalized to concept codes, which are
then included in a vector query. Unfortunately,
this method may risk obtaining mistaken similarity
values if the correct concepts of the two terms are
not similar while incorrect concepts of the two
terms are similar. However, considering that do-
main terminologies show marginal sense ambigui-
ties (Copeck et al., 1997), this concern will not be
critical.

A query-document similarity is computed as fol-
lows.

Similarity(Q, D) = argmax t WQ(t) * WD(t)

It simply selects the maximum value among

weights of each matching term t. The reason is that,
because all query terms belong to one homogene-
ous term group that originates from one lexical
query term, the similarity between a query and a
document means the best of similarities between
the homogeneous group of a query term and ho-
mogeneous groups of several document terms.

Class Disambiguation

Figure 3. Class Disambiguation

When question nouns are translated into domain
classes, two types of ambiguities occur. Class term
ambiguity occurs when a class term in a question
refers to two or more domain classes. This ambigu-
ity mostly results from general attributes that sev-
eral domain entities share. For example, a question
noun ‘address’ can refer to any ‘address’ attribute
that the two entities ‘customer’ and ‘employee’
have at the same time. A value term ambiguity oc-
curs when more than two domain classes share at
least one domain class instance. Hence, date or
numeric expressions almost always cause value
term ambiguity. In particular, in an air flight do-
main, country names or city names will be shared
by many domain classes, such as the location of
departure and the location of arrival.

Class retrieval reduces the translation equiva-
lents of each question noun to lexically or semanti-
cally equivalent domain classes. However, the
above two ambiguities still remain after class re-
trieval. Class disambiguation resolves these ambi-
guities using class-constraining translation
knowledge of Kv and Kcm. Disambiguation proce-
dures proceed in two stages, as shown in figure 3.

In the first stage, for each question noun with
two or more domain classes after class retrieval, Kv
is searched to find a domain verb that is the most
similar to the head verb of the question noun. The
SIM value between two lexical words is the maxi-
mum of concept similarity values between all pos-
sible concept pairs of the two lexical words. Let B
represent the set of domain classes associated with
the domain verb, and let A be the set of domain
classes retrieved by class retrieval for the question
noun. Then, A is replaced by A intersection B. The
effect is to reduce ambiguities by removing from A

inconsistent domain classes that is not expected by
a governor of the question noun.

N A

N : a question noun
V : Governor of N
CM : Case marker of N

Selection Restrictions
Kv={<verb,{domain classes}>}

Kcm=<case marker, {domain classes}>

Vi

CM

C

V* = argmaxi SIM(V, Vi)

A = A ∩ B

B

A = A ∩ C
Case

marker
filtering

Class Retrieval

V

A : a set of domain classes for N
B : a set of domain classes for V*

C : a set of domain classes for CM

|A| ≥ 2

Yes

No

N A

N : a question noun
V : Governor of N
CM : Case marker of N

Selection Restrictions
Kv={<verb,{domain classes}>}

Kcm=<case marker, {domain classes}>

Vi

CM

C

V* = argmaxi SIM(V, Vi)

A = A ∩ B

B

A = A ∩ C
Case

marker
filtering

Class Retrieval

V

A : a set of domain classes for N
B : a set of domain classes for V*

C : a set of domain classes for CM

|A| ≥ 2

Yes

No

The second stage takes the remaining ambigui-
ties after applying Kv. Kcm is searched to find the
same surface case marker as that of the question
noun, and let C be the set of domain classes asso-
ciated with the case marker. Then, A is further re-
placed by A intersection C. The effect is to select
from A only the domain classes to which the case
marker can attach.

For example, consider the following question.

Q1: sam-seng-ey-se cwu-mwun-han cey-phwum-un ?
E1: Show me products (cey-phwum) that Samsung(sam-seng)
ordered (cwu-mwun-han) ?

A word sam-seng-ey-se consists of a root sam-

seng and a postpositional case marker ey-se. Sup-
pose that the question noun sam-seng retrieves
three ambiguous domain classes {TB_Supplier,
TB_Customer, TB_Shipper} by class retrieval.
Then, using a governor cwu-mwun-ha of sam-seng,
Kv is searched to find <cwu-mwun-ha,
{TB_Customer, TB_Product, TB_Order.Amount,
TB_Order.Date} >, and reduce ambiguity as fol-
lows.

A = {TB_Supplier, TB_Customer, TB_Shipper}
B = {TB_Customer, TB_Product, TB_Order.Amount,
TB_Order.Date}
A = A ∩ B = {TB_Customer}

In this case, Kcm is not used. As another example,

consider this question.

Q2: se-wul-ey-se len-ten-kka-ci pi-hayng-si-kan-un ?
E2: Show me the flight duration (pi-hayng-si-kan) from(ey-se)
Seoul(se-wul) to(kka-ci) London(len-ten) ?

By class retrieval, a question noun se-wul will

retrieve two domain classes {TB_Flight.Departure,
TB_Flight.Arrival}. Unlike Q1, B will be empty
since Q2 does not provide any verb. Then, using a
case marker ey-se, Kcm is searched to find < ey-se,
{TB_City, TB_Country, TB_Flight.Departure}>,
and reduce ambiguity as follows.

A = {TB_Flight.Departure, TB_Flight.Arrival}
C = {TB_City, TB_Country, TB_Flight.Departure }
A = A ∩ C = {TB_Flight.Departure}

7 Conclusion

To effectively deal with the domain portability
problem, this paper proposed the conceptual
schema approach, which depends on the following
three main components that differ from previous
approaches.

The first is an introduction of a physical ER
schema, which is easily created from a target data-
base itself by domain experts with the help of a
database modeling tool. The schema is used for
capturing domain-dependent question meaning,
because semantic constraints among domain ob-
jects are represented in the graph part of the ER
schema. The second is the automatic construction
of translation knowledge from a physical ER
schema. To accomplish this, we defined two types
of translation knowledge structures: a set of class-
referring documents and a set of class constraining
selection restrictions. The construction process
requires only a shallow analysis of linguistic de-
scriptions for a physical ER schema. The third is a
noun translation strategy based on an information
retrieval framework, where question nouns are as-
sociated with domain classes, lexically or semanti-
cally.

In future, we will extend the current translation
knowledge from other resources, such as domain
materials, dictionaries, and corpora.

Acknowledgements

This work was supported by the Korea Science and
Engineering Foundation (KOSEF) through the Ad-
vanced Information Technology Research Cen-
ter(AITrc).

References
Allen J. 1995. Natural Language Understanding. Red-

wood City, CA:Benjamin Cummings.

Alshawi, H., Carter, D., Crouch, R., Pulman, S., Rayner,
M., and Smith, A. 1992. CLARE – A Contextual
Reasoning and Cooperative Response Framework for
the Core Language Engine. Final report, SRI
International.

Androutsopoulos, I. 1993. Interfacing a Natural Lan-
guage Front-End to Relational Database. Master’s
thesis, Technical Report 11, Department of Artificial
Intelligence, University of Edinburgh.

Androutsopoulos, I., Ritchie, G.D., and Thanisch, P.
1995. Natural Language Interfaces to Databases – An
Introduction. Natural Language Engineering,
1(1):29-81.

Ballard, B.W., Lusth, J.C., and Tinkham, N.L. 1984.
LDC-1: A Transportable, Knowledge-Based Natural
Language Processor for Office Environments. ACM
Transactions on Office Information Systems 2(1):1-
25.

Copeck, T., Barker, K., Delisle, S., Szpakowicz, S., and
Delannoy, J.F. 1997. What is Technical Text?. Lan-
guage Sciences 19(4):391-424.

Damerau, F. 1985. Problems and Some Solutions in
Customization of Natural Language Database Front
Ends. ACM Transactions on Office Information Sys-
tems 3(2):165-184.

Furnas, G.W., Landauer, T.K., Gomez, L.M., and Du-
mais, S.T. 1987. The vocabulary problem in human-
system communication. Communications of the ACM
30(11):964-971.

Grosz, B.J., Appelt, D.E., Martin, P.A., and Pereira,
F.C.N. 1987. TEAM: An Experiment in the Design
of Transportable Natural-Language Interfaces. Artifi-
cial Intelligence 32(2):173-243.

Hendrix, G.G., Sacerdoti, D., Sagalowicz, D., and
Slocum, J. 1978. Developing a Natural Language In-
terface to Complex Data. ACM Transactions on Da-
tabase Systems 3(2):105-147.

Klein, A., Matiasek, J., and Trost, H. 1998.. The treat-
ment of noun phrase queries in a natural language da-
tabase access system. Proceedings of the COLING-
ACL’98 workshop on the computational treatment of
nominals, Montreal, Quebec, pp.39-45.

Lee, H.D., and Park, J.C. 2002. Interpretation of Natural
language Queries for Relational Database Access
with Combinatory Categorial Grammar. Interna-
tional Journal of Computer Processing of Oriental
Languages 15(3):281-304.

Templeton, M., and Burger, J. 1983. Problems in Natu-
ral Language Interface to DBMS with Examples with
EUFID. Proceeding of the 1st Conference on Applied
Natural Language Processing, Santa Monica, Cali-
fornia, pp.3-16.

Waltz, D.L. 1978. An English Language Question An-
swering System for a Large Relational Database.
Communications of the ACM 21(7):526-539.

Warren, D., and Pereira, F. 1982. An Efficient Easily
Adaptable System for Interpreting Natural Language
Queries. Computational Linguistics 8(3-4):110-122.

