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Abstract 

Natural language database interfaces re-
quire translation knowledge to convert 
user questions into formal database que-
ries. Previously, translation knowledge 
acquisition heavily depends on human 
specialties such as NLP, DBMS and do-
main engineering, consequently under-
mining domain portability. This paper 
attempts to semi-automatically construct 
translation knowledge by introducing a 
physically-derived conceptual database 
schema, and by simplifying translation 
knowledge into two structures – class-
referring documents and class-
constraining selection restrictions. Based 
on these two structures, this paper pro-
poses a noun translation method that em-
ploys an information retrieval framework. 

1 Introduction 

A natural language database interface (NLDBI) 
allows users to access database data in a natural 
language (Androutsopoulos et al., 1995). In a typi-
cal NLDBI system, a natural language question is 
analyzed into an internal representation using lin-
guistic knowledge that normally includes domain 
knowledge to reduce analysis ambiguities. The in-
ternal representation is then translated into a target 
database query by applying mapping information 
(Androutsopoulos et al. 1995) that associates the 

analysis results with target database structures. 
This paper uses translation knowledge to refer to 
both domain knowledge and mapping information, 
because both are required to translate a natural lan-
guage question into a database query. 

Previous approaches can be classified according 
to the extent that translation knowledge is inte-
grated into linguistic knowledge. Tightly-coupled 
approaches hard-wire translation knowledge into 
linguistic knowledge in the form of semantic 
grammars (Hendrix et al., 1978; Waltz 1978; 
Templeton and Burger 1983). This approach shows 
a good performance for a particular domain. How-
ever, in adapting to other domains, new semantic 
grammars should be created with a considerable 
effort (Allen 1995).  

In order to improve domain portability, many re-
searchers have concentrated on isolating transla-
tion knowledge from linguistic knowledge through 
loosely-coupled approaches. These approaches can 
be further classified according to the extent that 
question analysis is performed. Syntax-oriented 
systems (Ballard et al., 1984; Damerau 1985; Lee 
and Park 2002) analyze questions up to a syntactic 
level, after which translation knowledge is applied 
to generate a database query. Logical form systems 
(Warren and Pereira 1982; Grosz et al., 1987; Al-
shawi et al., 1992; Androutsopoulos 1993; Klein et 
al., 1998) interpret a user question into a domain-
independent literal meaning level. 

Thus, in loosely-coupled approaches, transport-
ing to a new database domain does not need to 
change linguistic knowledge at all, only tailoring 
translation knowledge to new domains. Even in 
this case, however, translation knowledge is diffi-



cult to describe. For example, syntax-oriented sys-
tems have to devise conversion rules that transform 
parse trees into database query expressions (An-
droutsopoulos et al. 1995), and logical form sys-
tems should define database relations for logical 
predicates. In addition, creating these translation 
knowledge demands considerable human expertise, 
such as NLP/DBMS/domain specialties. To reduce 
these manual interventions, many systems employ 
domain tools (Grosz et al. 1987) to collect domain 
vocabulary about target database structures, 
through a sequence of interactive procedures. 
However, these acquisition processes are passive, 
and time-consuming. Moreover, such tools cannot 
be easily adapted to other systems because they are 
customized to their own systems. 

In order to automate translation knowledge ac-
quisition for a new database, this paper attempts to 
semi-automatically construct translation knowl-
edge by introducing a physically-derived concep-
tual database schema and by simplifying 
translation knowledge into two structures – a set of 
class/value documents having linguistic terms cor-
responding to domain classes, and a set of selec-
tion restrictions on domain classes. Based on these 
two structures, this paper proposes a noun transla-
tion method that employs an information retrieval 
framework.  

The remainder of this paper is as follows. The 
next two sections describe terminologies and a 
conceptual schema used in this paper. Section 4 
explains an overview of a conceptual schema ap-
proach. Section 5 defines our translation knowl-
edge. Section 6 details a noun translation strategy 
using translation knowledge, and concluding re-
marks are given in section 7. For representing Ko-
rean expressions, the Yale Romanization is used. 

2 Terminologies 
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In this paper, a database object is defined as either 
a domain class or a domain class instance. A do-
main class refers to a table or a column in a data-
base. A domain class instance indicates an 
individual column value. For example, suppose 
that a physical database contains two tables, 
TB_Customer and TB_Employee, and 
TB_Customer has a column C_cName, and 
TB_Employee has a column C_eCountry. All these 
are called domain classes. If the columns 
C_cName and C_eCountry have ‘Abraham Lin-

coln’ and ‘France’, respectively, as its values, each 
of these values is called a domain class instance.  

A class term is defined as a lexical term refer-
ring to a domain class. A value term signifies a 
term indicating a domain class instance. For in-
stance, the word ‘customer’ in a user question is a 
class term corresponding to the above domain class 
‘TB_Customer’. The word ‘Lincoln’ is a value 
term referring to the above domain class instance 
‘Abraham Lincoln’. In summary, a class term or a 
value term is used to indicate a word in a user 
question, and a domain class or a domain class in-
stance is used to refer to a database object, such as 
a table, a column, or a column value. 

Physical Entity-Relationship (pER) 
Schema 

 

TB_Cust TB_Prod

TB_Ordr

CL_Date CL_Amnt

pER graph

Domain class Linguistic name Definition

TB_Cust customer Persons or companies that order products
TB_Prod product NULL
TB_Ordr order order information
CL_Date date of order dates when customers ordered products
CL_Amnt amount of order amount of products that customers ordered

Relationship Relationship description

TB_Cust ⇔ TB_Ordr ⇔ TB_Prod
customers order products
customers request orders

pER descriptions
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Figure 1. Physical ER (pER) Schema 
 
For a database, a conceptual schema like entity-
relationship model structurally resembles a seman-
tic network for the database domain. In addition, 
its components like entities, attributes, and rela-
tionships contain linguistic descriptions, which 
may bridge between natural language constructions 
and physical database structures. This paper tries to 
extract translation knowledge from a conceptual 
schema. However, a conceptual database schema is 
not always available. So, we define a physical En-
tity-Relationship (pER) schema as an approxima-
tion of real conceptual schema. 



A pER schema is composed of a pER graph and 
its linguistic descriptions. A pER graph is structur-
ally equivalent to physical database structures, 
where a node corresponds to a table or a column, 
and an arc defines a relationship between two ta-
bles, or a property between a table and its column. 
So a node in a pER graph is a domain class. Each 
node or arc contains linguistic descriptions that are 
called pER descriptions. As shown in figure 1, 
there are three kinds of pER descriptions - a lin-
guistic name, definition, and relationship descrip-
tion. 

A pER schema is created as follows. First, a 
logical schema is extracted from a target physical 
database. This reverse engineering process is 
automatically performed within a commercially 
available database modeling tool. The logical 
schema has the same structure as a physical data-
base. So the logical schema becomes a pER graph. 
Next, domain experts provide linguistic descrip-
tions for each component of the logical schema 
according to the following guidelines. 

 
A linguistic name – in a noun phrase 
A definition – in a definitional sentence 
A relationship description – in a typical sentence 
including typical domain verbs 

 
The input process is also graphically supported 

by the database modeling tool, and the pER de-
scriptions can be automatically extracted by the 
modeling tool.  

The term physical ER (pER) schema is used be-
cause it is an approximation of the target data-
base’s original ER (entity-relationship) schema in 
the sense that its structures are directly derived 
from a physical database. A pER graph is later 
used to generate conceptual query graphs. The pER 
descriptions have the potential to bridge between 
linguistic constructions and physical database 
structures. From pER descriptions, two translation 
knowledge structures are automatically generated, 
which will be described in section 5. 
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4.1 

Conceptual Schema Approach 

Domain Adaptation 
Figure 2 shows an NLDBI architecture based on a 
conceptual schema. There are two processes; do-
main adaptation and question answering. For a new 

database domain, domain adaptation semi-
automatically constructs translation knowledge. 
Translation knowledge is divided into two struc-
tures: a set of class/value documents corresponding 
to domain classes, and a set of selection restric-
tions on domain classes. A class document con-
tains a set of class terms related to a domain class. 
Class terms are extracted from natural language 
descriptions of a pER schema.  

A value document is created from a set of do-
main class instances associated with a column. Se-
lection restrictions are also derived from linguistic 
descriptions of a pER schema.  
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Figure 2. NLDBI architecture 
 

The domain adaptation process may further 
augment this initial translation knowledge from 
other resources, such as domain materials, diction-
aries, or corpora. 
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5.1 

5.2 

Question Answering 
The question answering proceeds as follows. A 
user writes his or her information need in a natural 
language. A user question is then analyzed to pro-
duce a set of question nouns and a set of predicate-
argument pairs. In Korean, these are obtained after 
morphological analysis, tagging, chunking, and 
partial dependency parsing. Question analysis also 
yields a set of feature-value pairs for each question 
noun. Among others, essential question features 
are a question focus and a value operator. These 
two features determine select-clause items and 
where-clause operators, respectively, in a final 
SQL query. 

In noun translation, each question noun is con-
sidered as an IR query to retrieve lexically or se-
mantically equivalent domain classes in the form 
of class or value documents. Afterwards, to each 
question noun holding two or more relevant do-
main classes, selection restrictions are applied to 
determine one correct domain class. Noun transla-
tion is explained in section 6. 

Conceptual query graph generation creates a 
conceptual query graph (CQG) on the pER graph. 
First, domain classes produced by noun translation 
are marked on the pER graph, and question fea-
ture-value pairs are attached to the nodes of associ-
ated domain classes. On the pER graph, a CQG is 
searched, which is a connected subgraph connect-
ing all the nodes that are attached with certain fea-
ture-value pairs.  

The CQG is assumed to represent a domain-
dependent question meaning, because nodes of the 
graph correspond to domain-dependent objects of 
question nouns, and arcs between nodes represent 
domain-dependent semantic relations between 
question nouns. Unlike the logical form method, 
this approach does not produce an intermediate 
domain-independent question meaning. Instead, a 
domain-dependent question meaning is directly 
represented in the form of a subgraph on a concep-
tual schema. So a final database query is generated 
from the graph. Given a CQG, database query gen-
eration is trivial. Entity nodes of the CQG go to 
SQL-from clause, and arcs between entities consti-
tute SQL join operators. An SQL-select clause is 
obtained from question-focus-attached nodes. All 
value-operator-attached nodes are combined to 
create SQL-where conditions. 

Translation Knowledge 

Translation Knowledge Structures 
Any NLDBI system demands translation knowl-
edge, which consists of domain knowledge and 
mapping information. The former provides an 
analysis module with ambiguity-reducing devices, 
such as domain terminologies, domain-dependent 
selection restrictions, and a domain world model. 
The latter defines mappings between linguistic 
analysis results and target database structures. This 
paper divides translation knowledge into two struc-
tures. One is class-referring information, which is a 
collection of terms that directly refer to each do-
main class or domain class instance. The other is 
class-constraining information: a collection of se-
lection restrictions on domain classes. Compared 
to the previous NLDBI translation knowledge, the 
first encodes both mapping information and do-
main terminologies, and the second corresponds to 
domain-dependent selection restriction. In addition, 
a pER graph plays the role of a domain world 
model. 

Class-Referring Translation Knowledge 

Formally, class-referring translation knowledge is 
defined as a set of pairs of C and D. C is a domain 
class, and D is a document that contains terms lin-
guistically referring to C. D has two types; a class 
document and a value document. For each domain 
class, a class document is created from pER de-
scriptions. In addition, for each domain class cor-
responding to columns, a value document is 
created from column data for the domain class. 
These documents are indexed to create a document 
collection to be used by the later noun translation 
module. 

 
Class Document 
 
A class document contains a set of lexically syn-
onymous class terms for a domain class. Antici-
pated class terms are extracted from both linguistic 
names and definitions in a pER schema. A linguis-
tic name X for a domain class is a noun phrase. In 
Korean, it is a compound noun optionally having a 
Korean genitive case marker ‘uy’ (of). Its general 
form is (N+(uy)?_)*N+ in a regular expression, 
where _ is a word boundary and N is a simple noun. 



A linguistic definition for a domain class is a defi-
nitional sentence, so it takes one of the following 
restricted forms in English translations. 

 
(a kind of) + Y + adjective phrase modifying Y 
X|it + be|mean|indicate|… + (a kind of) + Y + adjective 
phrase modifying Y 

 
Both X and Y are class term candidates, since a 

taxonomic relation exists between them. Y, which 
may be also a compound noun, can be easily iden-
tified using a few patterns. 

Class term extraction proceeds as follows. Given 
a compound noun, its genitive case markers are 
deleted, and each of the remaining compound 
nouns is segmented into a sequence of simple 
nouns. For example, N3N2uy_N1 is converted into 
N3+N2+N1, where the last noun N1 is a head of 
N3N2uy_N1 in Korean, and uy is a genitive case 
marker. Since different combinations of the simple 
nouns may constitute different question words to 
refer to the same domain class, a set of head-
preserving compound nouns are generated from the 
simple nouns as follows.  

 
N3N2의_N1 → N3N2+N1 → N3+N2+N1 → {N3N2N1, N2N1, N1} 

 
Since a head is an underlying concept of the 

compound noun, a head noun is preserved for all 
combinations. 
 
Value Document 
 
For each value term in a user question, an NLDBI 
system should determine the domain class to which 
it belongs. This value recognition problem 
(Templeton and Burger 1983) is critical since, 
unlike class terms, most value terms are open-
ended. In addition, question value terms may take 
different forms from domain class instances stored 
in a database. For example, to refer to a database 
value sam-seng-cen-ca (Samsung Electronics) in 
Korean, users prefer partial forms like sam-seng 
(Samsung) in sam-seng-ey-se cwu-mwun-han (… 
that Samsung ordered). 

To support partial matching between question 
value terms and domain class instances, this paper 
proposes n-gram value indexing. For each column 
of a target database, n-gram value indexing gener-
ates n-grams of the column data to create a value 

document. Among column data, linguistic terms 
are distinguished from alphanumeric terms. 

For a linguistic term of k syllables, all-length n-
grams from bi-grams to k-grams are generated as 
index terms of a value document in order to pre-
pare all substrings expected as question value 
terms. For example, a column value se-wul-thuk-
pyel-si is processed to generate these n-grams, se-
wul, wul-thuk, thuk-pyel, pyel-si, se-wul-thuk, wul-
thuk-pyel, thuk-pyel-si, se-wul-thuk-pyel, wul-thuk-
pyel-si, se-wul-thuk-pyel-si, among which legiti-
mate words as question terms are se-wul, thuk-
pyel-si, se-wul-thuk-pyel-si. 

On the other hand, generating n-grams for al-
phanumeric terms causes a severe storage problem. 
Damerau’s method (Damerau 1985) reduces an 
open-ended set of alphanumeric terms into a closed 
set of patterns. Thus, it is adopted and slightly 
modified to include 2-byte characters like Korean. 
In the modified version, a canonical pattern P is 
defined as follows.  

 
<P> ::= <U>{<U>} 
<U> ::= [<C1>|<C2>|<N>|<S>][1|2|…|255] 
where <Ck> is a sequence of k-byte characters, 
 <N> is a sequence of numbers, 

<S> is a sequence of special characters. 
 

For example, an alphanumeric database value 
se-wul-28@A-ma is converted into a canonical 
pattern, C22N2S1C11C21. Next, in order to provide 
partial matching between patterns, a canonical pat-
tern is decomposed into bi-grams. That is, for 
C22N2S1C11C21, bi-grams _C22, C22N2, N2S1, 
S1C11, C11C21, C21_ are created and stored as in-
dex terms in a value document.  

Pattern-based n-grams provide considerable 
storage reduction over storing canonical patterns, 
since canonical patterns are sliced into smaller n-
grams that will have many duplicate n-grams. 
Hopefully, these n-grams provide partial matching 
capability even to the arbitrary alphanumeric terms. 

5.3 Class-Constraining Translation Knowl-
edge 

As class-constraining translation knowledge, two 
types of selection restrictions are defined for do-
main classes. Kv is a set of selection restrictions 
between domain verbs and domain classes. Kcm is a 

{ } { }cmcmvv CcmKCvK ,,, ==  



set of selection restrictions between surface case 
markers and domain classes. v is a verb appearing 
in pER descriptions, and Cv is a set of domain 
classes corresponding to arguments that v governs. 
cm is a surface case marker appearing in pER de-
scriptions, and Ccm is a set of domain classes corre-
sponding to arguments that cm attaches. 

Kv and Kcm are extracted from predicate-
argument pairs that are acquired by parsing pER 
descriptions. First, each predicate-argument pair is 
expanded to a triple of <verb, noun, case marker>. 
The case marker means a surface case marker of 
the noun. In Korean, the triple <verb, noun, case 
marker> is easily constructed from a predicate-
argument pair, since each nominal argument has a 
surface case marker as a postposition within a 
word boundary. The second term of a triple is re-
placed by a domain class related to the noun. The 
modified triple is further divided into <verb, do-
main class> and <case marker, domain class>. 
Next, by merging a set of <verb, domain class> 
having the same verb, Kv is produced. Similarly, 
Kcm is obtained by merging a set of <case marker, 
domain class> having the same case marker. Kcm 
will be useful for value terms that correspond to 
different domain classes according to its case 
marker. 
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6.1 

6.2 

Noun Translation 

After question analysis, a user question is analyzed 
into a set of question nouns and a set of predicate-
argument pairs. Noun translation utilizes an IR 
framework to translate each question noun into a 
probable domain class. First, class retrieval con-
verts each question noun into an IR query and re-
trieves relevant documents. Here, retrieved 
documents refer to candidate domain classes for 
the question noun, because each document is asso-
ciated with a domain class. Next, class disam-
biguation selects a likely domain class among the 
candidate domain classes retrieved by class re-
trieval using predicate-argument pairs of the user 
question. 

Class Retrieval  

A question noun may be a class term or a value 
term, and a value term may be a linguistic value 
term or an alphanumeric value term. To be used as 
an IR query, these terms are converted into differ-

ent vector queries, as these terms are differently 
treated in indexing class or value documents. That 
is, class terms are converted into word-based terms, 
linguistic value terms into a list of all-length n-
grams, and alphanumeric value terms into a list of 
pattern-based n-grams. We employ three types of 
query representations; a conceptual vector for a 
class term, an all-length n-gram vector for a lin-
guistic value term, and a pattern-based n-gram vec-
tor for an alphanumeric value term. 

It is straightforward to distinguish whether a 
question noun is an alphanumeric term. However, 
it is nontrivial to distinguish between a class term 
and a linguistic value term, because many domain-
dependent class terms are out-of-vocabulary words. 
So, for a question noun other than an alphanumeric 
term, class retrieval creates both a conceptual vec-
tor and an all-length n-grams vector, and retrieves 
documents for each query, and merges the re-
trieved documents. In the following, a conceptual 
vector representation for class terms is described. 

If we simply convert a class term into a single 
term vector, it may cause a severe word mismatch 
problem (Furnas el al., 1987). Thus, the question 
noun is generalized to concept codes, which are 
then included in a vector query.  Unfortunately, 
this method may risk obtaining mistaken similarity 
values if the correct concepts of the two terms are 
not similar while incorrect concepts of the two 
terms are similar. However, considering that do-
main terminologies show marginal sense ambigui-
ties (Copeck et al., 1997), this concern will not be 
critical. 

A query-document similarity is computed as fol-
lows. 

 
Similarity(Q, D) = argmax t WQ(t) * WD(t) 

 
It simply selects the maximum value among 

weights of each matching term t. The reason is that, 
because all query terms belong to one homogene-
ous term group that originates from one lexical 
query term, the similarity between a query and a 
document means the best of similarities between 
the homogeneous group of a query term and ho-
mogeneous groups of several document terms.  

Class Disambiguation 



 
Figure 3. Class Disambiguation 

 
When question nouns are translated into domain 
classes, two types of ambiguities occur. Class term 
ambiguity occurs when a class term in a question 
refers to two or more domain classes. This ambigu-
ity mostly results from general attributes that sev-
eral domain entities share. For example, a question 
noun ‘address’ can refer to any ‘address’ attribute 
that the two entities ‘customer’ and ‘employee’ 
have at the same time. A value term ambiguity oc-
curs when more than two domain classes share at 
least one domain class instance. Hence, date or 
numeric expressions almost always cause value 
term ambiguity. In particular, in an air flight do-
main, country names or city names will be shared 
by many domain classes, such as the location of 
departure and the location of arrival.  

Class retrieval reduces the translation equiva-
lents of each question noun to lexically or semanti-
cally equivalent domain classes. However, the 
above two ambiguities still remain after class re-
trieval. Class disambiguation resolves these ambi-
guities using class-constraining translation 
knowledge of Kv and Kcm. Disambiguation proce-
dures proceed in two stages, as shown in figure 3. 

In the first stage, for each question noun with 
two or more domain classes after class retrieval, Kv 
is searched to find a domain verb that is the most 
similar to the head verb of the question noun. The 
SIM value between two lexical words is the maxi-
mum of concept similarity values between all pos-
sible concept pairs of the two lexical words. Let B 
represent the set of domain classes associated with 
the domain verb, and let A be the set of domain 
classes retrieved by class retrieval for the question 
noun. Then, A is replaced by A intersection B. The 
effect is to reduce ambiguities by removing from A 

inconsistent domain classes that is not expected by 
a governor of the question noun.  
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The second stage takes the remaining ambigui-
ties after applying Kv. Kcm is searched to find the 
same surface case marker as that of the question 
noun, and let C be the set of domain classes asso-
ciated with the case marker. Then, A is further re-
placed by A intersection C. The effect is to select 
from A only the domain classes to which the case 
marker can attach.  

For example, consider the following question. 
 

Q1: sam-seng-ey-se cwu-mwun-han cey-phwum-un ?  
E1: Show me products (cey-phwum) that Samsung(sam-seng) 
ordered (cwu-mwun-han) ? 

 
A word sam-seng-ey-se consists of a root sam-

seng and a postpositional case marker ey-se. Sup-
pose that the question noun sam-seng retrieves 
three ambiguous domain classes {TB_Supplier, 
TB_Customer, TB_Shipper} by class retrieval. 
Then, using a governor cwu-mwun-ha of sam-seng, 
Kv is searched to find <cwu-mwun-ha, 
{TB_Customer, TB_Product, TB_Order.Amount, 
TB_Order.Date} >, and reduce ambiguity as fol-
lows. 

 
A = {TB_Supplier, TB_Customer, TB_Shipper} 
B = {TB_Customer, TB_Product, TB_Order.Amount, 
TB_Order.Date} 
A = A ∩ B = {TB_Customer} 

 
In this case, Kcm is not used. As another example, 

consider this question. 
 

Q2: se-wul-ey-se len-ten-kka-ci pi-hayng-si-kan-un ? 
E2: Show me the flight duration (pi-hayng-si-kan) from(ey-se) 
Seoul(se-wul) to(kka-ci) London(len-ten) ? 

 
By class retrieval, a question noun se-wul will 

retrieve two domain classes {TB_Flight.Departure, 
TB_Flight.Arrival}. Unlike Q1, B will be empty 
since Q2 does not provide any verb. Then, using a 
case marker ey-se, Kcm is searched to find < ey-se, 
{TB_City, TB_Country, TB_Flight.Departure}>, 
and reduce ambiguity as follows. 

 
A = {TB_Flight.Departure, TB_Flight.Arrival} 
C = {TB_City, TB_Country, TB_Flight.Departure } 
A = A ∩ C = {TB_Flight.Departure} 



7 Conclusion 

To effectively deal with the domain portability 
problem, this paper proposed the conceptual 
schema approach, which depends on the following 
three main components that differ from previous 
approaches. 

The first is an introduction of a physical ER 
schema, which is easily created from a target data-
base itself by domain experts with the help of a 
database modeling tool. The schema is used for 
capturing domain-dependent question meaning, 
because semantic constraints among domain ob-
jects are represented in the graph part of the ER 
schema. The second is the automatic construction 
of translation knowledge from a physical ER 
schema. To accomplish this, we defined two types 
of translation knowledge structures: a set of class-
referring documents and a set of class constraining 
selection restrictions. The construction process 
requires only a shallow analysis of linguistic de-
scriptions for a physical ER schema. The third is a 
noun translation strategy based on an information 
retrieval framework, where question nouns are as-
sociated with domain classes, lexically or semanti-
cally. 

In future, we will extend the current translation 
knowledge from other resources, such as domain 
materials, dictionaries, and corpora. 
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