
Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 514–518
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

514

UNBNLP at SemEval-2019 Task 5 and 6: Using Language Models to
Detect Hate Speech and Offensive Language

Ali Hakimi Parizi, Milton King and Paul Cook
Faculty of Computer Science, University of New Brunswick

Fredericton, NB E3B 5A3, Canada
ahakimi@unb.ca, milton.king@unb.ca, paul.cook@unb.ca

Abstract

In this paper we apply a range of approaches
to language modeling — including word-
level n-gram and neural language models, and
character-level neural language models — to
the problem of detecting hate speech and of-
fensive language. Our findings indicate that
language models are able to capture knowl-
edge of whether text is hateful or offensive.
However, our findings also indicate that more-
conventional approaches to text classification
often perform similarly or better.

1 Introduction

SemEval 2019 Task 5 focuses on detecting hate
speech in social media text, while Task 6 considers
identifying offensive language. Despite the dif-
ferences between hate speech and offensive lan-
guage, each of these tasks can be viewed as a bi-
nary classification problem. In each case, gold-
standard training data is provided on which super-
vised approaches can be trained.

In this paper we consider whether approaches
to classification based on language models — in-
cluding word- and character-level neural language
models, as well as more-conventional (word-level)
n-gram language models — are able to distinguish
between hateful and not hateful, and offensive and
not offensive, language. We find that these ap-
proaches outperform a most-frequent class base-
line, indicating that language models can capture
some knowledge of whether text is hateful or of-
fensive. However, for task 5 — for which the
testing data was made available for follow up ex-
periments — we also find that more-conventional
approaches to supervised classification, such as
naive Bayes and fastText (Joulin et al., 2017), of-
ten give similar or better results.

2 Related Work

Social media such as Twitter and Facebook are
widely used, and hate speech has become preva-
lent in these platforms. In response to this, a sub-
stantial amount of research has recently focused
on detecting such disturbing comments.

Prior work on hate speech and offensive lan-
guage detection has mostly focused on supervised
machine learning techniques (Mathur et al., 2018;
Davidson et al., 2017). A recent shared task
on identifying aggression in social media (Kumar
et al., 2018) observed there is no significant differ-
ence between the performance of neural networks
and linear classifiers. Furthermore, this shared
task received just one lexicon-based approach, and
its performance was not promising. Moreover, all
of these approaches required expensive feature en-
gineering and pre-processing.

Instead of engineering specific features to use
in supervised classifiers, we can instead employ
language models to model the type of text we
want to detect. Language models have previously
been applied for the purpose of text classification
(e.g., Bai et al., 2004; Howard and Ruder, 2018).
Among different types of language models,
recurrent neural network (RNN) language models
with LSTM and GRU units have shown promising
results for sequence modeling (Mikolov et al.,
2012). To the best of our knowledge, RNN
language models have not been widely used for
detecting hate speech or offensive language. The
most closely related work is that of Mehdad and
Tetreault (2016), which used both word-level and
character-level RNNs to detect abusive language.
In their experiments, Mehdad and Tetreault found
that character-level language models outper-
formed word-level language models. A further
advantage of character-level language models is
that they are able to model out-of-vocabulary



515

words (Mikolov et al., 2012).

3 Task 5: HatEval

SemEval 2019 Task 5 includes two sub-tasks:
(A) detecting hate speech in English and Spanish
tweets, and (B) classifying hate speech tweets as
aggressive or not, and as targeting an individual or
group. We only consider sub-task A. In Section
3.1, we describe the approaches we considered for
this task, and in Section 3.2 we present our results.

3.1 Approaches

3.1.1 Word-level LMs: n-gram and LSTM
For each language, we grouped the training in-
stances based on their gold standard labels — giv-
ing us two corpora per language — with one con-
sisting entirely of hateful tweets, and the other
consisting of not hateful tweets. For each lan-
guage, we then trained two language models
(LMs), one on the hateful instances, and the other
on the non-hateful instances. Given a test instance,
we calculate the probability of the tweet under
each LM. If the LM that was trained on the hate-
ful text gave a higher probability then we labeled
the instance as hateful, otherwise we labeled it as
non-hateful. The two word-level LMs that we con-
sidered are an n-gram LM and a long short-term
memory (LSTM) LM. The n-gram model was a
3-gram model with Kneser-Ney smoothing trained
using Kenlm (Heafield et al., 2013) with its default
settings. We tuned the parameters for the LSTM
model on the English development dataset using
grid search. Specifically we considered the fol-
lowing settings for the embedding size (256, 512,
1024), number of hidden units (128, 256, 512),
and number of epochs (1,2,3,4,5). The final pa-
rameters for the LSTMs used on the test datasets
were 1 hidden layer, an embedding size of 1024,
128 hidden units, and they were trained using a
batch size of 2 and 1 epoch.

3.1.2 Character-level LM
This approach is the same as the previous word-
level LM approach, except that character-level, as
opposed to word-level, LMs are trained. We use a
publicly available TensorFlow implementation of
a character-level RNN language model.1 The fol-
lowing parameters are used: a two-layer GRU with
one-hot character embeddings and a hidden layer

1https://github.com/crazydonkey200/
tensorflow-char-rnn

size of 64 dimensions. The batch size, learning
rate, and dropout are set to 20, 0.002, and 0, re-
spectively. The hidden layer size and unit were
tuned on the development data. Specifically we
considered hidden layer sizes of 64, 128, and 256,
and an LSTM and GRU for the unit. The other
parameters are their default settings.

3.1.3 Neural LMs with Class Token

In the previous approaches, two separate LMs are
trained — one on the hateful tweets, the other on
the non-hateful ones. In contrast, in this approach
a single LM is trained.

We append a special token to the end of each
tweet in the training data representing its gold
standard class. We randomly shuffle the order of
the tweets in the training data, and then train a
LM model on them. At test time, we feed a tweet
(which has not been augmented with a special to-
ken indicating its class) to the LM. We then query
the LM for the probability of the special tokens
representing the hateful and non-hateful classes,
and classify the tweet as the class corresponding
to the special token with higher probability.

We consider both word-level and character-
level neural LMs for this approach. For the word-
level LM we again use an LSTM. We performed
a grid search to tune its parameters using the En-
glish development dataset. Specifically we consid-
ered the following settings for the number of lay-
ers (1,2), embedding size (128, 256, 512), number
of hidden units (128, 256, 512), and number of
training epochs (1,2,3). The final model consisted
of two hidden layers, an embedding size of 512,
128 hidden units, and was trained using a batch
size of two for three epochs. For the character-
level LM we use the same model as in Section
3.1.2, with the same parameter settings.

3.1.4 Baselines

In addition to the most-frequent class and SVC
baselines provided by the shared task (Basile et al.,
2019), we also compare our approaches against
multinomial naive Bayes2 and fastText (Joulin
et al., 2017). We use the default settings for fast-
Text, and do not attempt to tune it to this task.

2Note that the likelihood term in multinomial naive Bayes
corresponds to a unigram LM for each class. As such it is
similar to the LM-based approaches we consider, but also in-
corporates a class prior.

https://github.com/crazydonkey200/tensorflow-char-rnn
https://github.com/crazydonkey200/tensorflow-char-rnn


516

English Spanish
Dev Test Dev Test

Method F P R A F P R A F P R A F P R A
n-gram 0.70 0.71 0.71 0.70 0.45 0.60 0.55 0.49 0.71 0.72 0.72 0.71 0.66 0.67 0.68 0.66
LSTM 0.60 0.61 0.61 0.60 0.48 0.53 0.52 0.49 0.68 0.68 0.68 0.69 0.64 0.64 0.64 0.65
Char 0.70 0.71 0.71 0.70 0.45 0.57 0.54 0.49 0.67 0.68 0.67 0.68 0.66 0.66 0.66 0.67
LSTM+CT 0.50 0.54 0.54 0.51 0.49 0.53 0.53 0.50 0.55 0.56 0.56 0.56 0.52 0.57 0.56 0.53
Char+CT 0.52 0.53 0.53 0.53 0.47 0.47 0.47 0.49 0.53 0.54 0.53 0.55 0.48 0.48 0.48 0.51
NB 0.70 0.73 0.72 0.70 0.41 0.60 0.54 0.47 0.74 0.77 0.73 0.75 0.69 0.70 0.69 0.71
fastText 0.64 0.66 0.64 0.66 0.47 0.59 0.55 0.50 0.70 0.72 0.70 0.71 0.70 0.69 0.70 0.70
SVC - - - - 0.45 0.60 0.55 0.49 - - - - 0.70 0.70 0.71 0.71
MFC 0.36 0.29 0.50 0.57 0.37 0.29 0.50 0.58 0.36 0.28 0.50 0.56 0.37 0.29 0.50 0.59

Table 1: Macro average F1-score (F), macro average precision (P), macro average recall (R), and accuracy (A)
on Task 5 subtask A using word-level n-gram and LSTM LMs, a character-level LM (Char), a word-level LSTM
and character-level LM augmented with a special class token (LSTM+CT and Char+CT), multinomial naive Bayes
(NB), and fastText on the development and test sets. The SVC and most-frequent class (MFC) baselines provided
by the shared task are also shown. The best result for each language, dataset, and evaluation measure is shown in
boldface.

3.2 Results

The English and Spanish training sets contain
9,000 and 4,500 tweets, respectively, labelled as
being hateful or non-hateful. The development
and test sets contain 1,000 and 2,971 tweets, re-
spectively, for English, and 500 and 1,600 tweets,
respectively, for Spanish. Further details of the
datasets are provided in Basile et al. (2019).

Results are shown in Table 1.3 The character-
level LM, which performed best on the devel-
opment data, corresponds to our official submis-
sion for the shared task. In terms of F-score,
for both languages, all LM-based approaches out-
perform the most-frequent class baseline. This
indicates that LMs are able to capture informa-
tion about whether a tweet is hate speech or not.
However, more-conventional approaches to clas-
sification perform similarly to, or better than, the
LM-based approaches. Focusing on the test data,
for English, although the LSTM with class to-
ken approach achieves the best F-score of 0.49,
fastText achieves only a slightly lower F-score of
0.47. For Spanish, fastText and SVC achieve the
best F-score of 0.70, while the best LM-based ap-
proaches, the n-gram and character LMs, obtain
an F-score of 0.66.

4 Task 6: OffensEval

SemEval 2019 Task 6 includes 3 sub-tasks. In con-
trast to Task 5, we participated in all subtasks of

3The SVC baseline was only provided for the test data.

Task 6. Sub-task A is a binary classification task to
determine if a tweet is offensive or non-offensive.
Sub-task B is to classify tweets that are offensive
into two groups of targeted — a post containing
an insult or threat to an individual, a group, or
others — or untargeted — a post containing non-
targeted profanity and swearing. Finally, sub-task
C is a three-way classification task in which tar-
geted tweets (from sub-task B) are classified as
targeting an individual, group of people, or other.

Because of the similarities between hate speech
and offensive language, we apply approaches that
we used for Task 5 to Task 6. We used the de-
velopment data for Task 5 for model tuning and
selection, and only considered the three best mod-
els for Task 6: the word-level n-gram and LSTM
language models and the character-level language
model. We describe these approaches in Section
4.1 and report results over the test data in Section
4.2.4

4.1 Approaches
4.1.1 Word-level LMs: n-gram and LSTM
Similar to Task 5, for each sub-task of Task 6, we
group the training instances based on their gold-
standard classes. We then train one LM on the
documents from each class. I.e., in the case of
sub-task A we train one LM on tweets labeled of-
fensive, and another LM on tweets labelled non-
offensive. At test time we measure the probability

4We do not report results for the development data be-
cause we used Task 5 data for model tuning and selection.



517

Sub-task A Sub-task B Sub-task C
Method F A F A F A
n-gram 0.62 0.66 0.45 0.50 0.43 0.44
LSTM 0.55 0.59 0.54 0.73 0.40 0.48
Char 0.59 0.63 0.61 0.88 - -
MFC 0.42 0.72 0.47 0.89 0.21 0.47

Table 2: Macro-average F1-score (F) and accuracy (A) for each sub-task of Task 6 using word-level n-gram and
LSTM LMs, a character-level LM (Char), and a most-frequent class baseline (MFC). The best result for each
sub-task and evaluation measure is shown in boldface.

of a test tweet under each LM, and then classify
it as the class corresponding to the LM giving the
highest probability. Note that sub-task C is a three-
way, as opposed to binary, classification task, and
so we therefore train three LMs for this sub-task.

We consider the same word-level LMs as for
Task 5 — an n-gram LM and an LSTM LM. We
tuned the parameters for the LSTM on the English
development dataset of Task 5, sub-task A, using
grid search as described in Section 3.1.1. We did
not further tune this model to Task 6. For the n-
gram model we again use a 3-gram model as de-
scribed in Section 3.1.1.

4.1.2 Character-level LM
We apply character-level LMs to each sub-task of
Task 6 in the same manner as we use the word-
level LMs described above. We use the same
character-level LM as for Task 5, described in Sec-
tion 3.1.2, with the same parameter settings. We
do not attempt to further tune the parameters to
Task 6.

4.2 Results

Details of the training and test data can be found
in Zampieri et al. (2019). Results for the LM-
based approaches described above, as well as a
most-frequent class baseline, are presented in Ta-
ble 2. In terms of F1-score, for each sub-task,
each LM-based approach outperforms the most-
frequent class baseline, with the exception of the
n-gram LM on sub-task B.5 These results, and in
particular those on sub-task A, demonstrate that
LMs can capture knowledge about whether text is
offensive.

On sub-task A the n-gram LM achieved the best
F1-score, while on sub-task B the character-level
LM did. One reason for his could be differences

5Due to an error in our submission for the character-level
model for sub-task C, we did not receive results for this ap-
proach on this sub-task.

in the size of the training data. For sub-task A,
we use all of the training data (13,240 instances)
to train our models. However, for sub-task B, we
are limited to just those tweets that were labeled
as offensive. There are only 4,400 such tweets.
Although this reduction in the amount of train-
ing data caused the F1-score of the word-level
LM-based approaches to decrease, the amount of
training data seems to still be sufficient to train a
character-level LM. The F1-scores on sub-task C
are lower than for the other sub-tasks. One pos-
sible explanation for this relatively poor perfor-
mance is that the training data for sub-task C is
smaller than that for the other sub-tasks (3,876 in-
stances), because the sub-task C training data is a
subset of that for sub-task B.

5 Conclusions

In this paper we employed language models to
the problems of detecting hate speech and offen-
sive language in social media text. We consid-
ered a range of approaches to language model-
ing including word-level n-gram and neural lan-
guage models, and a character-level neural lan-
guage model. Our results indicated that lan-
guage model-based approaches are able to cap-
ture knowledge of whether text is hateful or offen-
sive. However, further experiments on identifying
hate speech indicated that more-conventional ap-
proaches to text classification often perform com-
parably or better.

In this paper we only considered language mod-
els trained on the training data provided for the
shared tasks. In future work, we intend to con-
sider pre-training language models on other cor-
pora (e.g., Twitter corpora) in an effort to im-
prove the performance of language model-based
approaches to detecting hate speech and offensive
language.



518

References
Jing Bai, Jian-Yun Nie, and François Paradis. 2004.

Using language models for text classification. In
Proceedings of the Asia Information Retrieval Sym-
posium (AIRS).

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language. In
InProceedings of ICWSM, pages 512–515.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable modi-
fied Kneser-Ney language model estimation. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics, pages 690–696,
Sofia, Bulgaria.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339. Association for Com-
putational Linguistics.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431, Valencia, Spain. Association
for Computational Linguistics.

Ritesh Kumar, Atul Kr Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking aggression
identification in social media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bullying (TRAC-2018), pages 1–11.

Puneet Mathur, Rajiv Shah, Ramit Sawhney, and De-
banjan Mahata. 2018. Detecting offensive tweets in
hindi-english code-switched language. In Proceed-
ings of the Sixth International Workshop on Natural
Language Processing for Social Media, pages 18–
26.

Yashar Mehdad and Joel Tetreault. 2016. Do charac-
ters abuse more than words? In Proceedings of the
17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 299–303.

Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-
Son Le, Stefan Kombrink, and Jan Cernocky.
2012. Subword language modeling with neu-
ral networks. preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf), 8.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. A Hierarchical Annotation of Offensive Posts
in Social Media: The Offensive Language Identifi-
cation Dataset. In arxiv preprint.

https://kheafield.com/papers/edinburgh/estimate_paper.pdf
https://kheafield.com/papers/edinburgh/estimate_paper.pdf
http://aclweb.org/anthology/P18-1031
http://aclweb.org/anthology/P18-1031
http://www.aclweb.org/anthology/E17-2068
http://www.aclweb.org/anthology/E17-2068

