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Abstract

This paper presents the two systems submitted
by the meaning space team in Task 10 of the
SemEval competition 2018 entitled Capturing
discriminative attributes. The systems consist
of combinations of approaches exploiting ex-
plicitly encoded knowledge about concepts in
WordNet and information encoded in distri-
butional semantic vectors. Rather than aim-
ing for high performance, we explore which
kind of semantic knowledge is best captured
by different methods. The results indicate that
WordNet glosses on different levels of the hier-
archy capture many attributes relevant for this
task. In combination with exploiting word em-
bedding similarities, this source of information
yielded our best results. Our best performing
system ranked 5th out of 13 final ranks. Our
analysis yields insights into the different kinds
of attributes represented by different sources
of knowledge.

1 Introduction

SemEval Task 10 “Capturing Discriminative At-
tributes” (Krebs et al., 2018) provides participants
with triples of words consisting of two concepts
and an attribute. The task is to determine whether
the attribute is a distinguishing property of the first
concept compared to the second concept. This
is the case in triple shrimp, spinach, pink, for
instance, because shrimp can be pink whereas
spinach is usually of a different color. When the
first concept does not have a semantic relation with
the attribute or both the concepts have the same se-
mantic relation with it, the attribute is considered
not to be discriminative.

In general, Task 10 can be understood as de-
tecting whether there is a semantic relation be-
tween the concepts and the attribute. The dataset
includes a wide range of variation. For instance,
the attribute may be a part of the concept (e.g.

tortoise, snail, legs) or category membership (e.g.
polyurethane, polyester, material), relations be-
tween entities and activities they engage in (e.g.
cheetah, lion, runs) as well as rather specific rela-
tions, for instance the relation between a specialist
and the phenomenon they are specialized in (e.g.
optician, dentist, eyes).

Rather than finding specific solutions for each
kind of relation, we investigate different ap-
proaches exploiting different sources of knowl-
edge. Both of our systems comprise a component
exploiting the glosses and hierarchical structure of
WordNet (Fellbaum, 1998) in order to determine
whether an attribute applies to a concept. Our un-
derlying assumption is that definitions should pro-
vide the most important distinctive attributes of a
concept. Since concepts are not necessarily al-
ways distinguished on the same level of concrete-
ness, but might also be distinguished on a more ab-
stract level (e.g. herbs, root, green v.s. apse, night-
gown, royal) we exploit the entire WordNet hier-
archy.

In both of our systems, the second component
exploits information encoded in distributional vec-
tor representations of words. Word vectors have
not only been shown to capture information about
semantic similarity and relatedness but, beyond
that, seem to encode information about individ-
ual components of word meaning that are neces-
sary to solve analogy tasks such as in the famous
example man is to woman as king is to queen
(Mikolov et al., 2013b). This indicates that the
dimensions of the distributional vector representa-
tions encode information about specific attributes
of words. We experiment with two approaches: a
basic approach comparing cosine similarities and
an exploratory approach that deducts word vectors
from one another to detect meaning differences.
Best performance was obtained by the system us-
ing cosine similarity. The second approach per-
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forms lower in isolation, but performance is com-
parable to the first system in combination with the
WordNet component.

The main insights gained from our experiments
are the following. First, despite the limited cover-
age of information on attributes in WordNet (as
pointed out by Poesio and Almuhareb (2005)),
the contribution of the WordNet component to the
overall results indicates that definitions yield a
valuable source of knowledge with respect to dis-
criminative attributes. Second, we analyze how in-
dividual systems perform across different types of
attributes. Our analysis shows that similarity per-
forms best on general descriptive properties and
WordNet definitions help most for finding specific
properties. These observations indicate that more
sophisticated methods of combining these compo-
nents could lead to superior results in future work.

The remainder of this paper is structured as
follows: After presenting background and re-
lated work (Section 2), our system designs are
introduced in Section 3. Section 4 provides an
overview of the results achieved by different sys-
tems and system components, including our anal-
ysis across attribution types. This is followed by a
conclusion (Section 5).

2 Background and related work

Solving the task at hand requires both knowledge
about lexical relations and the world. We assume
that this knowledge cannot be found in one re-
source alone. Rather, different approaches of rep-
resenting word meaning may comprise comple-
mentary information. In this exploratory work, we
exploit explicitly encoded knowledge in a lexical
resource and information encoded in the distribu-
tion of words in large corpora. While attributes of
concepts have been studied before from a cogni-
tive (e.g. McRae et al. (2005)) and computational
(e.g. Poesio and Almuhareb (2005)) perspective,
this task is, to our knowledge, the first task aiming
at detecting discriminative features.

We use WordNet (Fellbaum, 1998) as a source
of explicitly represented knowledge. Whereas the
WordNet structure contains a vast amount of in-
formation about lexical relations (hyponymy, syn-
onymy, meronymy), its definitions constitute a
resource of world knowledge. WordNet defini-
tions have been used successfully in approaches to
word sense disambiguation (Lesk, 1986) and in-
ferring verb frames (Green et al., 2004). The only

study requiring knowledge and reasoning about at-
tributes we are aware of is an exploratory study ex-
amining what knowledge in definitions contributes
to question-answering tasks (Clark et al., 2008).

Vector representations of word meaning based
on the distribution of words in large corpora do
not yield explicit information about specific re-
lations, but implicitly encode all kinds of asso-
ciations between concepts. In contrast to manu-
ally constructed resources, their coverage is much
larger. More specifically, they have been shown
to encode information relevant in solving analogy
tasks (Mikolov et al., 2013a; Levy and Goldberg,
2014b; Gladkova et al., 2016; Gábor et al., 2017;
Linzen, 2016) and inferring semantic hierarchies
(Fu et al., 2014; Pocostales, 2016). This indicates
that the dimensions of distributional representa-
tions encode information about attributes of con-
cepts (Levy and Goldberg, 2014b, p.177). For in-
stance, in order to find the fourth component in
the analogy man is to woman as king is to queen,
a model has to detect the relation holding between
the pairs in the analogy. In this example, the rela-
tions are formed by the two features of royalty and
gender. One way of solving this is to use the vector
offsets resulting from woman - man + king. The
result should be closest to the fourth component
(queen). Thus, the first component for this calcu-
lation, B - A, should capture information about the
distinguishing features between A and B, as the
subtraction eliminates the identical (or very simi-
lar) dimensions in both representations, but keeps
the features associated with B.

Our first system follows the basic assumption
that if there is some kind of association between
a concept and an attribute, this should be reflected
by the vector representations. We assume that at-
tributes occur in the linguistic contexts of the con-
cepts they apply to and thus appear in proximity
to them. In a comparative set-up such as in this
task, the attribute should be closer to the concept
it applies to. In our second system, we attempt to
exploit the operations used for solving analogies
in order to determine whether an attribute distin-
guishes two concepts.

3 System description

Each of our systems1 consists of a WordNet com-
ponent and a component exploiting word embed-

1Code can be found at https://github.com/
cltl/meaning_space
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ding vectors. If the WordNet component is un-
able to classify an example, it is passed on to
the word embedding component. After present-
ing the WordNet component, we describe the two
embedding-based systems. The word vectors used
in all approaches are taken from the Word2Vec
Google News model (Mikolov et al., 2013a).2 The
systems are developed using training and valida-
tion data and evaluated using test data.3

3.1 WordNet glosses and hierarchical
structure

We design rules to exploit explicitly encoded
knowledge in synset glosses and the hierarchical
structure. We assume that (1) the most important
discriminative attributes are mentioned in defini-
tions and (2) concepts can be distinguished on dif-
ferent levels of abstraction. Essentially, we check
whether the attribute is in any of the definitions of
the concepts. We employ two variants of the sys-
tem. The first variant simply relies on string match
(definition string match), whereas the second one
employs cosine similarity between the attribute
and the words in the glosses (definition similar-
ity). For both variants, we retrieve the glosses of
all WordNet synsets containing the concepts and
the glosses of all their hypernyms. We prepro-
cess the definitions by tokenizing them and ex-
cluding stopwords using NLTK (Bird et al., 2009).
In the two best-performing full systems, we used
the definition-similarity variant.

3.1.1 Definition string match
This variant employs one rule to detect positive
cases and two rules to detect negative cases:

POS The attribute matches a word in the glosses
of concept 1 and no word in the glosses of
concept 2.

NEG The attribute matches a word in the glosses
of both concepts.

NEG The attribute matches a word in the glosses
of concept 2 and no word in the glosses of
concept 1.

We could also count all cases in which the at-
tribute matches no word as negative cases, but

2Downloaded from https://drive.google.com/
file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit,
Nov. 1, 2017.

3https://github.com/dpaperno/
DiscriminAtt/

since only a selection of attributes is mentioned
in the glosses, this would yield a high number of
false negative decisions. Instead, we fall back on
one of two distributional approaches in case none
of the above-mentioned cases applies. If run in
isolation, we label all instances for which none of
the conditions apply as negative.

3.1.2 Definition similarity
In the second variant, we replace words by their
vectors and measure the cosine similarity between
the attribute and the words in the glosses in order
to determine positive and negative cases. As a first
step, we search for the word in the glosses with
the highest cosine similarity to the attribute. Next,
we employ an upper and a lower threshold in or-
der to determine whether the attribute is similar or
dissimilar enough to the word in the glosses. We
assume this strategy allows us to extend the scope
from exact pattern match to highly similar words,
such as synonyms or hypernyms. The transformed
rules are shown below:

POS The similarity between concept 1 and the at-
tribute is above the upper threshold and the
similarity between concept 2 and the attribute
is below the lower threshold.

NEG The similarity between concept 2 and the
attribute is above the upper threshold and the
similarity between concept 1 and the attribute
is below the lower threshold.

NEG The similarity between concept 1 and the
attribute and the similarity between concept 2
and the attribute are above the upper thresh-
old.

NEG The similarity between concept 1 and the
attribute and the similarity between concept 2
and the attribute are below the lower thresh-
old.

Here, we do include a condition for cases in
which both similarities are below the threshold,
as we assume a wider coverage due to the vec-
tor representations. The best performing similar-
ity thresholds (0.75 for upper and 0.23 for lower
threshold) were determined by testing several con-
figurations on the validation data.

In addition to glosses, several other kinds of se-
mantic relations encoded in the WordNet hierar-
chy can be expected to increase the performance
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on this task. We experimented with meronymy re-
lations, synonymy as well as the hypernyms them-
selves. Whereas these additions increased the per-
formance in a set-up consisting of only the Word-
Net component, they harmed the performance in
our overall system set-ups where we also use word
embeddings.

3.2 Word embeddings

As a second component, we employ two different
ways of extracting semantic knowledge from word
embeddings.

3.2.1 Vector similarity
This component compares the similarities between
the attribute and the concept and counts all cases
in which the similarity between concept 1 and the
attribute is higher than the similarity between con-
cept 2 and the attribute as positive cases. All other
cases are counted as negative. Setting even low
thresholds harmed performance.

3.2.2 Vector subtraction
We subtract the vector of concept 2 from the vec-
tor of concept 1 and assume that the resulting
vector representation is close to the kind of at-
tribute that distinguishes the concepts. If this vec-
tor is close to the attribute, we assume it is dis-
criminative. The subtraction should eliminate the
shared aspects leaving information about the dif-
ferences. The vector resulting from for instance
man - woman cannot be seen as a representation
of the specific word male, but rather reflects some-
thing like for instance ‘maleness’.

Rather than setting a definitive similarity thresh-
old, we employ a supervised classification ap-
proach in which we use the similarity between
the calculated vector and the attribute vector as a
sole feature. For reasons of time constraints, we
only experimented with a Multi-Layer Perceptron,
implemented in the SciKit learn toolkit (Buitinck
et al., 2013).4

4 Results

Table 1 provides an overview of our different im-
plementations on the test set. The highest perfor-
mance was reached by the combination of Word-
Net gloss information and embedding similar-
ity. In the overall SemEval ranking, performance

4http://scikit-learn.org/stable/index.
html, best configuration on the validation set: layer size:
(1,1) activation function: logistic.

Figure 1: System overview.
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System P-pos P-neg R-pos R-neg F1-av
def-emb-sim 0.63 0.75 0.73 0.65 0.69
def-emb-sub 0.69 0.68 0.52 0.82 0.67
sim 0.58 0.73 0.75 0.56 0.64
def-sim 0.65 0.59 0.22 0.90 0.52
def 0.65 0.59 0.22 0.90 0.52
sub 0.45 0.55 0.19 0.82 0.46

Table 1: Performance overview of systems and sys-
tem components on the test set.

ranges from 0.47 to 0.75. Our similarity-centered
systems rank in the upper mid range (performing
between 0.69 and 0.64), with the best run achiev-
ing 5th rank among 13 ranks (and 21 submitted
system).

The combination of WordNet gloss informa-
tion and information from subtracting word vec-
tors performs 2 points lower than our best per-
forming system. When comparing the two word
embedding approaches in isolation, we see that
the system based on subtraction performs almost
18 points lower than the system using embed-
ding similarity. This indicates that the over-
lap of correct answers between the Wordnet sys-
tem and the subtraction system is lower than be-
tween the WordNet system and the embedding
similarity system. The following sections pro-
vide insights into the level at which properties are
found in WordNet definitions and the kinds of at-
tributes successfully recognized by the different
approaches.

System P-pos P-neg R-pos R-neg F1-av
def-emb-sim 0.66 0.69 0.71 0.63 0.67
def-emb-sub 0.74 0.62 0.51 0.82 0.65
sim 0.60 0.64 0.72 0.51 0.61
sub 0.70 0.58 0.39 0.83 0.59
def-sim 0.70 0.54 0.24 0.90 0.52
def 0.70 0.54 0.24 0.90 0.52

Table 2: Performance of the systems and system
components on the validation set.
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Figure 2: Comparison of f1-scores reached by the
three main system components on the 10 most fre-
quent attribute categories.

4.1 Level of distinction in the WordNet
hierarchy

We hypothesized that concepts might not always
be distinguished on the same level of concrete-
ness, but could also be distinguished on a more
abstract level. In order to test this, we counted how
many properties are found in glosses of synsets
containing the concept and how many are found in
glosses of their hypernyms. Out of the total 1,098
attributes found in WordNet glosses, 699 are found
on the same level as the concept (i.e. in the defini-
tions of one of the synsets containing the concept)
and 366 are found in gloss of one of the hyper-
nyms of the synsets containing the concept.5 In
total, the definition system is able to classify 799
(out of 2,340) concept-concept-attribute triples.

4.2 Comparison of systems across attribute
categories.

In this section, we aim at giving some insights into
the kinds of attributes systems can detect and iden-
tify as discriminative. The attributes in the vali-
dation set were categorized by one annotator. The
categories are not based on an existing framework,
but were chosen intuitively. In most cases, multi-
ple labels are used as the attributes are ambiguous.
As there is no overlap between attributes from the
validation set and the test set, we present the per-
formance of the systems across the different at-
tribute categories on the validation set. The over-

5Note that attributes can be found in glosses of both con-
cepts, meaning that these counts do not add up to the number
of triples in the test set.

(a) Embedding systems compared.

(b) WordNet definition match system compared to embed-
ding similarity system.

Figure 3: Comparison f1-scores reached by the
system components showing the categories with
the highest performance differences (frequency
>10).

all performance on the validation set (presented in
Table 2) is similar to the test set with the excep-
tion that on the validation set, the system based on
vector subtraction performed several points higher
than on the test set (0.59) and ranked higher than
the WordNet definition systems.

Figure 2 shows the performance of the three in-
dividual systems across the 10 most frequent cat-
egories. Overall, the vector similarity system out-
performs the other system in almost all categories.
Of these 10 most frequent categories, there is no
category in which the subtraction system outper-
forms the similarity system.

One of the most striking differences between
the embedding-based systems and the WordNet
definition system can be seen in the ‘activity’ cat-
egory, in which both embedding systems perform
almost seven times higher than the WordNet sys-
tem. This could be explained by the fact that ac-
tivities associated with concepts can be expected
to occur in large corpora, whereas they might not
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be specific or relevant enough to be mentioned in
a definition. In contrast, WordNet outperforms
both embedding systems in the categories ‘object-
part’ and ‘animate-object-gender-person’ (usually
referring to a person of a specific gender), which
could be expected to consist of more specific at-
tributes.

We expected rather generic descriptions that are
not specific to a concept, but mostly relevant in
comparison to the other concept to be the most
difficult for any system. These kinds of attributes
are not relevant enough to be included in defini-
tions nor do we expect them to frequently co-occur
with concepts in texts and thus be apparent from
a distributional model. It turned out, however,
that these kinds of attributes (‘appearance-color’,
‘magnitude-size’) were accurately detected as dis-
criminative by the embedding similarity system.
A possible explanation might be that they can co-
occur with a wide number of concepts, leading to
proximity in the vector space.

When considering the categories with the
biggest performance differences and a frequency
of at least 10 (presented in Figure 3) the follow-
ing observations can be made: Whereas the em-
bedding similarity system outperforms the sub-
traction system in most categories, the subtraction
system captures about twice as many attributes
that indicate a category (usually meaning that the
attribute is a hypernym of one of the concepts)
and performs higher on ‘building-location-object-
organization’ attributes (Figure 3a). It could be the
case that despite their polysemy, these attributes
apply to a more limited range of concepts than
general descriptions on which the system performs
poorly. The subtraction system also correctly de-
tects attributes that are ambiguous between ‘ac-
tivity’, ‘object’ and ‘part’ (e.g. attributes such as
sail and bark) category, which is not detected by
the similarity system. Finally, we observe that
a number of attribute categories that are handled
correctly by the embedding-based systems are not
captured by WordNet definitions at all (Figure 3b).

Overall, the differences between the approaches
seem to indicate that distributional models are
stronger in capturing attributes expressing related
concepts than attributes expressing similar con-
cepts (e.g. hypernyms). This is in line with the
general trend observed in large-scale evaluations
(Levy et al., 2015; Baroni et al., 2014) of embed-
ding models using a bag-of-words approach (such

as the Google News model). Gamallo (2017) and
Levy and Goldberg (2014a) show that embedding
models using dependency structures perform bet-
ter on similarity than relatedness and could thus
improve the results for the attributes that are simi-
lar rather than related to the concepts.

5 Conclusion

For this SemEval task, we submitted systems con-
sisting of combinations of exploratory approaches.
Our best performing systems consisted of a com-
ponent exploiting knowledge in WordNet defini-
tions and a component extracting knowledge from
distributional representations. In our best perform-
ing system, the latter component consisted of com-
paring cosine similarities between concepts and
attributes. The vector component in our second
full system employs a different strategy of extract-
ing information from vector representations than
our highest ranked system. Despite its limitations,
its performance is comparable to our best perform-
ing system.

As expected, WordNet definitions encode rather
specific attributes that are probably most informa-
tive for distinguishing one concept from another,
while they give less importance to rather general
descriptions. In contrast, embedding approaches
seem to perform highly on attributes that are re-
lated rather than similar to the concepts, also en-
compassing rather general descriptions.

The main contribution of this paper is an explo-
ration of the different types of attributes that can be
recognized by different systems. These strengths
and weaknesses of the methods could be further
exploited by using the information obtained by
vector similarity and subtraction as input of a clas-
sifier. We plan to investigate the representation of
attribute categories in the semantic space in future
work.
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