
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 395–399
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

UMDSub at SemEval-2018 Task 2: Multilingual Emoji Prediction
Multi-channel Convolutional Neural Network on Subword Embedding

Zhenduo Wang and Ted Pedersen
Department of Computer Science

University of Minnesota
Duluth, MN 55812, USA

{wang7211,tpederse}@d.umn.edu

Abstract

This paper describes the UMDSub system that
participated in Task 2 of SemEval-2018. We
developed a system that predicts an emoji
given the raw text in a English tweet. The
system is a Multi-channel Convolutional Neu-
ral Network based on subword embeddings for
the representation of tweets. This model im-
proves on character or word based methods by
about 2%. Our system placed 21st of 48 par-
ticipating systems in the official evaluation.

1 Introduction

People use emojis on social media with text in or-
der to express their emotions or reveal meanings
hidden by figurative language. However, under-
standing the semantic relationship between texts
and emojis is a challenging task because emojis
often have different interpretations that depend on
the reader. (Barbieri et al., 2018) shows that a
carefully designed machine learning system can
perform better than humans on an emoji prediction
task. The system which gives the best predictions
in that paper is a long short term memory (LSTM)
network with pre-trained character embeddings as
the text representation method.

(Barbieri et al., 2018) provides a new task in the
context of Twitter and describes several powerful
models in text sequence modeling and classifica-
tion. Our work explores other possible configura-
tions for the system, including subword embed-
ding as a text representation method and multi-
channel Convolutional Neural Networks as a fea-
ture extraction method. We conduct experiments
on the Semeval-2018 Task 2 Multilingual Emoji
Prediction data set and compare our results with
other methods. Our results show that subword em-
bedding based Convolutional Neural Network sys-
tem is effective. It improves on character embed-
ding by 2.1% and word embedding by 1.8%.

2 Task Description

SemEval–2018 Task 2 has two subtasks which are
similar but in different languages. Subtask A is
emoji prediction on English tweets, while subtask
B is on Spanish. Both tasks are to predict 1 out of
20 emojis (19 in Spanish subtask) given only the
text of a tweet. There are∼500K tweets in the En-
glish training set and∼100K tweets in the Spanish
training set. The organizers use the macro F-score
to evaluate the performance of the systems.

This is by definition a text classification task.
It is more challenging than tasks such as senti-
ment analysis or authorship identification because
it is on Twitter data which is extremely large and
changes frequently. We build UMDSub for the
English subtask and conduct several experiments
with different settings.

3 System Description

UMDSub is a multi-channel Convolutional Neu-
ral Network based on subword embedding as the
text representation. We use byte-pair-encoding for
subword segmentation.

3.1 Word Segmentation

The goal of the word segmentation step is to break
the words into subwords in order to have better
representations for tweet texts.

Existing text representation methods mostly
work on whole word level (Mikolov et al.,
2013)(Pennington et al., 2014) or character level
(Zhang et al., 2015) (Xiao and Cho, 2016). In
these works, character embedding as the basis for
feature extraction were shown to be more effective
on text classification tasks. Also there are works
such as (Bojanowski et al., 2016) which try to en-
rich word representations with subword informa-
tion and improve upon the original word embed-
ding methods. We believe that subword is a in-

395

triguing level for text representation. However, the
method used to generate subwords in (Bojanowski
et al., 2016) is to divide words into fixed length
n-grams, which fails to use knowledge of word
morphology. We believe that Language is never,
ever, ever, random (Kilgarriff, 2005). Subwords as
character n-grams could be detected by measuring
their frequencies.

We detect subwords with the byte-pair-
encoding (BPE) algorithm (Shibata et al., 1999),
which is a frequency based text compression
algorithm. The original algorithm first splits the
text into bytes (characters). Then it ranks all the
byte pairs (which are simply bigrams) according
to their frequencies. The most frequent byte
pair is then joined together and encoded by a
single byte. By repeating this simple process, the
original text will be compressed. In our system,
we use BPE as a word segmentation algorithm.
We join characters together by frequency but do
not replace them with new symbols. This method
was also shown to be successful in (Sennrich
et al., 2015).

For example, suppose the text to be segmented
is

S0 = workers work in workshop.

First, we split S0 into character sequence.

S1 = w o r k e r s w o r k i n w o r k s h o p.

Then in the first iteration, we choose the most fre-
quent bigram wo and join them together.

S2 = wo r k e r s wo r k i n wo r k s h o p.

In the second iteration, we choose the most fre-
quent bigram wor and join them together.

S3 = wor k e r s wor k i n wor k s h o p.

Similarly, the next bigram should be work.

S4 = work e r s work i n work s h o p.

The text is represented by a subword sequence af-
ter the algorithm finishes in N iterations, and will
look like this :

SN = work er s work in work shop.

3.2 Subword Embedding Layer
Embeddings can be categorized into two types
based on how they are trained, saved (or static)
and reused (or dynamic). Static embeddings are
separately trained from large open corpus (such as
Wikipedia) and saved for reuse. Word2vec and
GloVe models are two such examples. Dynamic
embeddings are jointly trained with other parts of

specific systems. The Twitter corpus is not like a
standard corpus, since it is extremely large and it
changes frequently. We choose to use a dynamic
embedding strategy since it may fit better for our
system.

After word segmentation the text is made up
of subword sequences. In order to use subword
embedding to represent the text, we first represent
each subword type with a one-hot vector. The one-
hot vector for the ith subword in vocabulary is a
sparse binary vector oi which has 1 as the ith el-
ement and 0 for all others. This step results in a
representation similar to a vector space model. We
put all the subwords in the subword one-hot hyper-
space where each unique subword type owns one
dimension. The one-hot embedding is so sparse
and it suffers from the Dimension Disaster. Hence
we project it to a smaller hyperspace by multi-
plying the one-hot embedding with a projection
weighting matrix W ∈ Rd×|V |, where d is the di-
mension for the target embedding hyperspace and
|V | is the subword vocabulary size. Now each sub-
word is represented by a dense vector si = Woi,
and the tweet text T with length of L is repre-
sented by a sequence of subword embedding vec-
tors T = (s1, s2, ..., sL).

3.3 Multi-channel Convolutional Layer

As we mentioned in Section 2, this is a text classi-
fication task. A key step in any classification sys-
tem which uses the feature-classifier scheme is to
choose indicative features. In NLP tasks, n-grams
are commonly used features because they capture
word collocations as found in text. But this may
not be effective if we have no sense of what kind(s)
of n-grams could be useful for a certain problem.
Recently, a trend (Zhang et al., 2015) (Xiao and
Cho, 2016) for solving text classification tasks is
to break the text into the smallest units and build
a representation for them. Then this approach can
use a complex neural network such as Convolu-
tional Neural Network (CNN) or recurrent neural
network (RNN) to find abstract features upon the
representations. This system configuration takes
advantage of the ability of complex neural net-
works to extract features. (Kim et al., 2016) tries
to explain the mechanism of character-entry-CNN
by showing that the features extracted by CNN are
specific n-grams. We believe this scheme could be
very useful for finding features for classification
when we have little knowledge of the corpus, as is

396

often the case for Twitter.
In our system, we use a multi-channel CNN

layer for feature extraction. Since tweets are gen-
erally short, higher-level features for classification
may not exist. Instead of adding depth to our net-
work, we add diversity to the kernel sizes in order
to keep as much n-gram information as possible.
A similar model is used in (Ruder et al., 2016)
(Shrestha et al., 2017).

The multi-channel convolution layer consists
of three parallel convolution units. They have a
similar structure but different convolutional ker-
nel sizes. Each convolution unit consists of two
steps, the convolution and pooling. The convo-
lution step is to calculate the convolutions of the
resulting vector sequence from the subword em-
bedding vector sequence T = (s1, s2, ..., sL) and
convolution kernels k1:M ∈ Rd,M×r, where M is
the kernel number, r is the kernel size. The kernel
size represents the context window of feature ex-
traction and the kernel number represents the num-
ber of patterns.

fm
′

l=1:L = σ(km ∗ [sl−r/2+1, ..., sl, .., sl+r/2])

where σ is the activation function.
Then the pooling step is to trim the resulting se-

quence F ′ by leaving only the maximum in every
r consecutive f ′l s.

fmq=1:L/r = max{fm′
l=(q−1)×r+1, ..., f

m′
l=q×r}

Then the convolution unit outputs features ex-
tracted by each kernel. The output of can be seen
as all the features extracted within a certain size of
context window.

F =
[
f11 , ..., f

M
1

]

Each CNN unit works as above. We concatenate
all the three feature maps and flatten the resulting
matrix to one single vector. This single vector is
later used for classification.

3.4 Classification Layer
We make two assumptions of how texts affect the
usage of emojis, and how emojis are chosen to ex-
press emotions as an auxiliary symbol for the text.

1. Emojis are chosen and used to indicate the
emotion of the whole tweet or the emotion
of the tweeter at the moment, independent of
position.

2. Emojis are tied to its context only, enhanc-
ing or revealing the true underlying meaning.
This can vary depending on the position or
content of the tweet.

In case 2, a “verbose” tweet which contains sev-
eral sentences may map to different emojis at dif-
ferent positions. Given this nature of how emojis
are used in tweets, the task could have been very
different from traditional text classification since
only a part of the text decides the classification
output. Fortunately, most the tweets are chosen so
that they contain only one sentence and the dataset
does not provide the position information of the re-
moved emoji, which makes the task easier. Hence
we assume all the emojis are used as in case 1 and
we will use the whole tweet to do prediction.

From the convolutional layer we get output of
the features extracted from the whole tweet. We
first reshape the features matrix into a single vec-
tor, then we feed it to a logistic regression layer
for the final classification. The layer consists of a
fully connected network layer and a softmax func-
tion as activation function. It takes the the one di-
mensional feature vector generated from convolu-
tional layer as input and outputs a distribution over
the 20 emojis denoting their probabilities of being
used in the original tweet. Hence this layer can be
represented by:

P [y = k| ~X] =
exp(W>k ~X + bk)∑20
i=1 exp(W

>
i
~X + bi)

Figure 1 is a summary of our system.

Figure 1: Diagram of UMDSub.

4 Parameter Settings

We use the training and test tweets collectively
for the byte pair encoding algorithm with 2,000

397

Embedding |V | d M r #param
Word 10K 256

128 3, 4, 5
4.16M

subword 2K 64 0.63M
Character 200 16 0.13M

Table 1: Network parameter settings.

iteration. Each iteration of BPE algorithm gen-
erates a new character n-gram, resulting in a vo-
cabulary size around 2,000. Then we embed each
subword with a vector with dimension d = 64. In
our concatenated Convolutional Neural Network,
each unit has M = 128 filters with filter sizes
and max pooling size r = {3, 4, 5}. For compar-
ison, we also build character based system con-
taining not only the ascii characters with vocab-
ulary size |V | = 200 and embedding dimension
d = 16 and word based system with vocabu-
lary size |V | = 10, 000 and embedding dimension
d = 256. We use the same network structure for
all different text representation methods. We train
the network for 50 epochs. Table 1 summarizes
the parameter settings used.

5 Experimental Results

Table 2 shows our experimental results and reveals
that our methods have a preference towards pre-
cision. In the task evaluation, UMDSub attained
precision of .330 which was 9th of 48 systems,
and recall of .267 which was 20th. The overall
F-score was .260 and placed 21st. This emphasis
on precision can be seen in that our system was
particularly accurate in predicting the most fre-
quent emoji in the training and test data (the red
heart), achieving an accuracy of .854 which was
4th among the 48 participating systems.

Our submission for the evaluation phase (sub-
CNN (E)) was produced by a 4-layer single chan-
nel Convolutional Neural Network. After we
changed it to the post-evaluation version of our
multi-channel network (sub-CNN (P)), we saw a
significant improvement where the F-score rose to
.301 which would have placed 10th in the eval-
uation. The reasons for this success have to do
with the nature of tweets, which are difficult to
represent in a deep network given their very lim-
ited content. A Multi-channel CNN captures more
information using various kernels in a single layer
and so the content of short and somewhat noisy
tweets is well represented.

System config F1 Precision Recall
sub-CNN (E) .260 .330 .267
Word-CNN (P) .283 .355 .285
sub-CNN (P) .301 .352 .302
Char-CNN (P) .289 .382 .291
BOW .29 .32 .34
Word-LSTM .33 .35 .36
Word-LSTM + P .32 .34 .36
Char-LSTM .32 .36 .37
Char-LSTM + P .34 .42 .39

Table 2: Experimental results (both evaluation (E) and
post-evaluation (P) phase). -LSTM refers to the models
used in (Barbieri et al., 2018), with results from this
paper. +P refers to pre-trained embeddings.

6 Conclusion

Our work shows that subword embedding is an ef-
fective method of text representation for the emoji
prediction task. Under the multi-channel CNN
framework, it improves word embedding by 1.8%
and character embedding by 2.1% while maintain-
ing a modest computational cost.

We try to explain the reason of our results with
the success of byte pair encoding (BPE) segmen-
tation. We check the segmented text after byte pair
encoding algorithm and we find a very representa-
tive example:

Before BPE: Playing the drums on RockBand
made it look much easier than it is.

After BPE: Pl ay ing the dr um s on Rock B
and made it look much ea si er than it is.

We observe that some of the segmentations cor-
respond with word morphology, others not. This
is because the segmentation is based on frequency
and not a knowledge of morphology. Based on
these observations, we consider the BPE algorithm
a method that dynamically decides which n-grams
are most frequent in a corpus and thus deserving
of a unique representation that is included in the
vocabulary. The vocabulary generated by BPE
is a mixture of characters, roots, affixes, whole
words and even random n-grams, chosen as such
to make the representation of text statistically ef-
ficient. The advantage of such a system is that it
does not consider Twitter language as a compound
made of characters or atomic words. Therefore it
does not limit text representation on only one sin-
gle level, making the later feature extraction more
efficient.

398

References
Francesco Barbieri, Jose Camacho-Collados,

Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings
of the 12th International Workshop on Semantic
Evaluation (SemEval-2018). Association for Com-
putational Linguistics, New Orleans, LA, United
States.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

Adam Kilgarriff. 2005. Language is never, ever, ever,
random. Corpus linguistics and linguistic theory
1(2):263–276.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In AAAI. pages 2741–2749.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP). pages 1532–1543.

Sebastian Ruder, Parsa Ghaffari, and John G. Bres-
lin. 2016. Character-level and multi-channel
convolutional neural networks for large-scale au-
thorship attribution. CoRR abs/1609.06686.
http://arxiv.org/abs/1609.06686.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909 .

Yusuxke Shibata, Takuya Kida, Shuichi Fukamachi,
Masayuki Takeda, Ayumi Shinohara, Takeshi Shi-
nohara, and Setsuo Arikawa. 1999. Byte pair encod-
ing: A text compression scheme that accelerates pat-
tern matching. Technical report, Technical Report
DOI-TR-161, Department of Informatics, Kyushu
University.

Prasha Shrestha, Sebastian Sierra, Fabio Gonzalez,
Manuel Montes, Paolo Rosso, and Thamar Solorio.
2017. Convolutional neural networks for authorship
attribution of short texts. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers. volume 2, pages 669–674.

Yijun Xiao and Kyunghyun Cho. 2016. Efficient
character-level document classification by combin-
ing convolution and recurrent layers. arXiv preprint
arXiv:1602.00367 .

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems. pages 649–657.

399

