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Abstract

This paper discusses SemEval-2018 Task 5:
a referential quantification task of counting
events and participants in local, long-tail news
documents with high ambiguity. The com-
plexity of this task challenges systems to es-
tablish the meaning, reference and identity
across documents. The task consists of three
subtasks and spans across three domains. We
detail the design of this referential quantifica-
tion task, describe the participating systems,
and present additional analysis to gain deeper
insight into their performance.

1 Introduction

We present a “referential quantification” task that
requires systems to establish the meaning, refer-
ence and identity of events1 and participants in
news articles. By “referential quantification”, we
mean questions concerning the number of inci-
dents of an event type (e.g. How many killing in-
cidents happened in 2016 in Columbus, MS?) or
participants in roles (e.g. How many people were
killed in 2016 in Columbus, MS?), as opposed to
factoid questions for specific properties of indi-
vidual events and entities (e.g. When was 2pac
murdered?). The questions are given with cer-
tain constraints on the location, time, participants,
and event types, which requires understanding of
the meaning of words mentioning these properties
(e.g. Word Sense Disambiguation), but also ad-
equately establishing the identity (e.g. reference
and coreference) across mentions. The task thus
represents both an intrinsic and application-based
evaluation, as systems are forced to resolve ambi-
guity of meaning and reference, as well as varia-
tion in reference in order to answer the questions.

1By event, we denote a specific instance of an event, e.g.
a killing incident happening at a specific location, time, and
involving certain participants.

Figure 1 shows an overview of our quantifica-
tion task. We provide the participants with a set
of questions and their corresponding news docu-
ments.2 Systems are asked to distill event- and
participant-based knowledge from the documents
to answer the question. Systems submit both a nu-
meric answer (3 events in Figure 1), and the corre-
sponding events with their mentions found in the
provided texts (e.g., the leftmost incident in Fig-
ure 1 is referred to by the coreferring mentions
“killed” and “assault” found in two separate doc-
uments). Systems are evaluated on both the nu-
meric answers as well as on the sets of coreferring
mentions. Mentions are represented by tokens and
offsets provided by the organizers.

The incidents and their corresponding news arti-
cles are obtained from structured databases, which
greatly reduces the need for annotation and mainly
requires validation instead. Given this data and
using a metric-driven strategy, we created a task
that further maximizes ambiguity and variation of
the data in relation to the questions. This ambigu-
ity and variation includes a substantial amount of
low-frequent, local events and entities, reflecting
a large variety of long-tail phenomena. As such,
the task is not only highly ambiguous but can also
not be tackled by relying on the most frequent and
popular (head) interpretations.

We see the following contributions of our task:
1. To the best of our knowledge, we propose the
first task that is deliberately designed to address
large ambiguity of meaning and reference over a
high number of infrequent instances.
2. We introduce a methodology for creating large
event-based tasks while avoiding a lot of anno-
tation, since we base the task on structured data.
The remaining annotation concerns targeted men-
tions given the structured data rather than full doc-

2Question parsing is unnecessary, as questions are pro-
vided in a structured format.

70



Answer: 3

Question: How many killing incidents happened in 2016 in Columbus, Mississippi?

Mississippi 
boy killed 

in gun 
accident

Shooting suspect 
charged with 

domestic 
aggravated assault

NEWLYWED 
ACCUSED OF 

SHOOTING NEW 
BRIDE

Columbus Police 
investigating early 
morning shooting

High Winds Play 
Role in 2-Alarm 
District Heights 
Apartment Fire

input 
documents

(1 killed, 
Columbus MS, 2016)

Answer

(1 killed, 
Columbus MS, 2017)

Confusion

(1 injured, 
Columbus GA, 2016)

Confusion

(6 killed, 
Columbus MS, 2016)

Answer

candidate 
incidents

(0 killed,
Columbus MS, 2016)

Confusion

6 killed in 
Columbus 

night 
shooting

Suspect 
arrested in 

fatal 
shooting

(3 killed, 
 Columbus MS, 2016)

Answer

Figure 1: Task overview. Systems are provided with a question and a set of input documents. Their goal is then to find the
documents that fit the question constraints and reason over them to provide an answer.

uments with open-ended interpretations.
3. We made all of our code to create the task avail-
able,3 which may stimulate others to create more
tasks and datasets that tackle long-tail phenomena
for other aspects of language processing, either
within or outside of the SemEval competition.
4. This task provides insights into the strengths
and weaknesses of semantic processing systems
with respect to various long-tail phenomena. We
expect that systems need to innovate by adjusting
(deep) learning techniques to capture the referen-
tial complexity and knowledge sparseness, or by
explicitly modeling aspects of events and entities
to establish identity and reference.

2 Motivation & Target Communities

Expressions can have many different meanings
and possibly an infinite number of references. At
the same time, variation in language is also large,
as we can make reference to the same things
in many ways. This makes the tasks of Word
Sense Disambiguation, Entity Linking, and Event
and Nominal Coreference extremely hard. It also
makes it very difficult to create a task that repre-
sents the problem at its full scale. Any sample
of text will reduce the problem to a small set of
meanings and references, but also to meanings that
are popular at that time excluding many unpopular
ones from the distributional long tail. Given this
Zipfian distribution, a task that is challenging with
respect to ambiguity, reference, and variation, and
that is representative for the long tail as well, needs
to fit certain constraints.

3https://github.com/cltl/
LongTailQATask

Our task directly relates to the following com-
munities in semantic processing: 1. disambigua-
tion and reference; 2. reading comprehension and
question answering.

2.1 Disambiguation & Reference
Semantic NLP tasks are often limited in terms of
the range of concepts and meanings that are cov-
ered. This is a necessary consequence of the an-
notation effort that is needed to create such tasks.
Likewise, in Ilievski et al. (2016), we observed
that most well-known datasets for semantic tasks
have an extremely low ambiguity and variation.
Even in datasets that tried to increase the ambigu-
ity and temporal diversity for the disambiguation
and reference tasks, we still measured a notable
bias with respect to ambiguity, variance, domi-
nance, and time. Overall, tasks and their datasets
show a strong semantic overfitting to the head
of the distribution (the most popular part of the
world) and are not representative for the diversity
of the long tail.

Our task differs from existing ones in that: 1. we
deliberately created a task with a high number of
event instances per event, many of which with
similar properties, leading to high confusability
2. we present an application-based task which
requires to perform on a combination of intrin-
sic tasks such as reference, disambiguation, and
spatial-temporal reasoning, that are usually tested
separately in existing tasks.

2.2 Reading Comprehension & Question
Answering

In several recent tasks, systems are asked to an-
swer entity-based questions, typically by point-
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ing to the correct segment or coreference chain
in text, or by composing an answer by abstract-
ing over multiple paragraphs/text pieces. These
tasks are based on Wikipedia (SQuAD (Ra-
jpurkar et al., 2016), WikiQA (Yang et al., 2015),
QASent (Wang et al., 2007), WIKIREADING
(Hewlett et al., 2016)) or on annotated individual
documents (MARCO (Nguyen et al., 2016), CNN
and DailyMail datasets (Hermann et al., 2015)).

Weston et al. (2015) outlined 20 skill sets,
such as causality, resolving time and loca-
tion, and reasoning over world knowledge, that
are needed to build an intelligent QA sys-
tem. These have been partially captured by the
datasets MCTest (Richardson et al., 2013) and
QuizBowl (Iyyer et al., 2014)), as well as the Se-
mEval task on Answer Selection in Community
Question Answering (Nakov et al., 2015, 2016).4

However, all these datasets avoid representing
real-world referential ambiguity to its full extent
by mainly asking questions that require knowledge
about popular Wikipedia entities and/or text un-
derstanding of a single document.5 Unlike exist-
ing work, our task deliberately addresses the ref-
erential ambiguity of the world beyond Wikipedia,
by asking questions about long-tail events de-
scribed in multiple documents. By doing so, we
require deep processing of text and establishing
identity and reference across single documents.

3 Task Requirements

Our quantification task consists of questions like
How many killing incidents happened in 2016 in
Columbus, MS? on a dataset that maximizes con-
fusability of meaning, reference and identity. To
guide the creation of such task, we defined five re-
quirements that apply to the data for a single event
type, e.g. killing (Postma et al., 2016).

Each event type should contain:
R1 Multiple event instances per event type, e.g.
the killing of Joe Doe and the killing of Joe Roe.
R2 Multiple event mentions per event instance
within the same document.
R3 Multiple documents with varying creation
times that describe the same event.
R4 Event confusability by combining one or mul-
tiple confusion factors:

4The 2017 run can be found at http://alt.qcri.
org/semeval2017/task3/.

5e.g. the Quiz Bowl dataset deliberately focuses on do-
mains with much training data and frequent answers, thus
avoiding the long tail problem in reference.

a) ambiguity of event mentions, e.g. John Doe
fires a gun, and John Doe fires a worker.

b) variance of event mentions, e.g. John Doe
kills Joe Roe, and John Doe murders Joe Roe.

c) time, e.g. killing A that happened in January
2013, and killing B in October 2016.

d) participants, e.g. killing A committed by John
Doe, and killing B committed by Joe Roe.

e) location, e.g. killing A that happened in
Columbus, MS, and killing B in Houston, TX.
R5 Representation of non-dominant events and
entities, i.e. instances that receive little media cov-
erage. Hence, the entities would not be restricted
to celebrities and the events are not widely dis-
cussed such as general elections.

4 Data & Resources

In this Section, we present our data sources and
an example document. We also discuss considera-
tions of licensing and availability.

4.1 Structured data
The majority of the source texts in this task are
sampled from structured databases that contain
supportive news sources about gun violence inci-
dents. While these texts already contain enough
confusability with respect to the aspects defined
in Section 3, we add confusion through leverag-
ing structured data from two other domains: fire
incidents and business.

As a direct consequence of using these
databases and our exploitation strategy, we are
able to satisfy all requirements we set in Section 3.
These databases contain many event instances per
event type (R1), multiple event mentions in the
same document per event instance (R2), cover a
wide spread of publishing times per event instance
(R3), represent non-dominant events and entities
(R5), and contain rich annotation of event proper-
ties that allows us to create high confusability (R4,
see Section 5.3 for our methodology).

For a large portion of the information in the
structured databases, we manually validated that
this information could be found in the support-
ive news sources, and excluded the documents for
which this was not the case. For the remaining
documents, we performed automatic tests to filter
out low-quality entries.

4.1.1 Gun Violence
The gun violence data is collected from the stan-
dard reports provided by the Gun Violence Archive

72



(GVA) website.6 Each incident contains informa-
tion about: 1. its location 2. its time 3. how many
people were killed 4. how many people were in-
jured 5. its participants. Participant information
includes: (a) the role, i.e. victim or suspect (b) the
name (c) the age 6. the news articles describing
this incident. Table 1 provides a more detailed
overview of the information available in the GVA.

Event Property Granularity Example value
Address Central Avenue

Location City Waynesboro
State Mississippi

Day 14-3-2017
Incident time Month 3-2017

Year 2017

First name John
Participant Last name Smith

Full name John Smith

Table 1: Overview of the GVA incident properties of loca-
tion, time, and participant.

To prevent systems from cheating (by using the
structured data directly), the set of incidents and
news articles is extended with news articles from
the Signal-1M Dataset (Corney et al., 2016) and
from the Web, that also stem from the gun violence
domain, but are not found in the GVA.

4.1.2 Other domains

For the fire incidents domain, we make use of the
FireRescue1 reports,7 which describe the follow-
ing information about 417 incidents: 1. their lo-
cation as a surface form 2. their reporting time
3. one free text summary describing the inci-
dents. 4. no information about participants.
Based on this information, we manually annotated
the incident time and mapped the location to its
representation in Wikipedia.

We further carefully selected a small amount
of news articles from the business domain from
The Signal-1M Dataset. Since these documents
were not semantically annotated with respect to
event information, we manually annotated this
data with the same kind of information as the other
databases: incident location, time, and informa-
tion on the affected participants.

6http://gunviolencearchive.org/
reports/

7https://www.firerescue1.com/
incident-reports/

4.2 Example document

For each document, we provide its title, content
(tokenized), and creation time, e.g.:
Title: $70K reward in deadly shooting near N.
Philadelphia school
Content: A $70,000 reward is being offered for in-
formation in a quadruple shooting near a Roman
Catholic school ...
DCT: 2017-4-5

4.3 Licensing & Availability

The news documents in our task are published on a
very diverse set of (commercial) websites. Due to
this diversity, there is no easy mechanism to check
their licenses individually. Instead, we overcome
potential licensing issues by distributing the data
under the Fair Use policy.8 9

During the SemEval-2018 period, but also af-
terwards, systems can easily test their submissions
via our competition on Codalab.10

5 Task Design

For every incident in the task, we have fine-
grained structured data with respect to its event
type, location, time, and participants, and unstruc-
tured data in the form of the news sources that re-
port on it. In this Section, we explain how we ex-
ploited this data in order to create the task. We
present our three subtasks and the question tem-
plate after which we outline the question creation.
Finally, we explain how we divided the data into
trial and test sets and provide some statistics about
the data. For detailed information about the task,
e.g. about the question and answer representation,
we refer to the CodaLab website of the task.

5.1 Subtasks

The task contains two event-based subtasks and
one entity-based subtask.

Subtask 1 (S1): Find the single event that an-
swers the question e.g. Which killing incident
happened in Wilmington, CA in June 2014? The
main challenge is not to determine how many in-
cidents satisfy the question, but to identify the doc-
uments that describe the single answer incident.

Subtask 2 (S2): Find all events (if any) that
answer the question. This subtask differs from

8Fair use policy in USA: https://goo.gl/hXiEKL
9Fair use policy in EU: https://goo.gl/s8V5Zs

10https://competitions.codalab.org/
competitions/17285
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S1 in that the system now also has to determine
the number of answer incidents, which makes this
subtask harder. To make it more realistic, we also
include questions with zero as an answer.

Subtask 3 (S3): Find all participant-role re-
lations that answer the question e.g. How many
people were killed in Wilmington, CA with the last
name Smith? The goal is to determine the number
of entities that satisfy the question. The system
not only needs to identify the relevant incidents,
but also to reason over the participant roles.

5.2 Question Template

Questions in each subtask consist of an event type
and two event properties.

Event type We consider four event types
in this task described through their representa-
tion in WordNet (Fellbaum, 1998) and FrameNet
(F. Baker et al., 1998). Each question is con-
strained by exactly one event type.

event type description meanings
killing at least wn30:killing.n.02

one person wn30:kill.v.01
is killed fn17:Killing

injuring at least wn30:injure.v.01
one person wn30:injured.a.01
is injured fn17:Cause harm

fn17:Experience-
bodily harm

fire burning the event of wn30:fire.n.01
something fn17:Fire burning
burning

job firing terminated wn30:displace.v.03
employment fn17:Firing

Table 2: Description of the event types. The meanings col-
umn lists meanings that best describe the event type. It con-
tains both FrameNet 1.7 frames (prefixed by fn17) and Word-
Net 3.0 synsets (prefixed by wn30).

Event properties For each event property in
our task (time, location, participants), we distin-
guish between three levels of granularity (see Ta-
ble 1). In addition, we make a distinction between
the surface form and the meaning of an event prop-
erty value. For example, the surface form Wilm-
ington can denote several meanings: the Wilming-
ton cities in the states of California, North Car-
olina, and Delaware. When composing questions,
for time and location we take the semantic (mean-
ing) level, while for participants we use the surface
form of their names. This is because the vast ma-
jority of the participants in our task are long tail
instances which have no semantic representation

in a structured knowledge base.

5.3 Question Creation

Our question creation strategy consists of three
consecutive phases: question composition, gener-
ation of answer and confusion sets, and question
scoring. These steps are common for both the
event-based subtasks (S1 and S2) and the entity-
based subtask S3.
1. Question composition We compose questions
based on the template described in Section 5.2.
This entails: 1. choice of a subtask 2. choice of
an event type, e.g. killing 3. choice of two event
properties (e.g. time and location) with their cor-
responding granularities (e.g. month and city) and
concrete values (e.g. June 2014 and Wilmington,
CA). This step generates a vast amount of potential
questions (hundreds of thousands) in a data-driven
way, i.e. we select the event type and properties
per question purely based on the combinations we
find in our data. Example questions are:

Which killing event happened in June 2014 in
Wilmington, CA? (subtask S1)

How many killing events happened in
June 2014 in Wilmington, CA? (subtask S2)

How many people were killed in June 2014 in
Wilmington, CA? (subtask S3)
2. Answer and confusion sets generation For
each generated question, we define a set of answer
and confusion incidents with their corresponding
documents. Answer incidents are the ones which
entirely fit the question parameters, e.g. all killing
incidents that occur in June 2014 and in the city
of Wilmington, CA. Confusion incidents fit some,
but not all, values of the question parameters , i.e.
they differ with respect to an event type or prop-
erty (e.g. all fire incidents in June 2014 in Wilm-
ington, CA; or all killings in June 2014, but not in
Wilmington, CA; or all killings in Wilmington, CA,
but not in June 2014).
3. Question scoring The generated questions
with their corresponding answers and confusion
are next scored with respect to several metrics that
measure their complexity. The per-question scores
allow us to detect and remove the “easy” ones, and
keep those that: 1. have a high number of answer
incidents (only applicable to S2 and S3) 2. have a
high number of confusion incidents 3. have a high
average number of answer and confusion docu-
ments, i.e. news sources describing the answer and
the confusion incidents correspondingly 4. have a

74



high temporal spread with respect to the publish-
ing dates reporting on each incident from the an-
swer and confusion incidents 5. have a high am-
biguity with respect to the surface forms of an
event property value in a granularity level (e.g. we
would favor Wilmington, since it is a city in at least
three US states in our task data).

5.4 Data Partitioning

We divided the overall task data into two parti-
tions: trial and test data. In practice, we separated
these two data partitions by reserving one year of
news documents (2017) from our task for the trial
data, while using all the other data as test data.

The trial data stems from the gun violence do-
main, whereas the test data also contains data from
the fire incidents and business domain. A subset of
the trial and test data has been annotated for event
coreference. Table 3 presents the most important
statistics of the trial and test data.

S #Qs Avg Avg #
answer answer docs

trial 1 424 1.00 1.68
2 469 4.22 7.68
3 585 5.48 5.47

test 1 1032 1.00 1.60
2 997 3.79 6.64
3 2456 3.66 3.74

Table 3: General statistics about trial and test data. For each
subtask (S), we show the number of questions (#Qs), the aver-
age answer (Avg answer), and the average number of answer
documents (Avg # answer docs).

We made an effort to make the trial data repre-
sentative for the test data with respect to the main
aspects of our task: its referential complexity, high
confusability, and long-tail instances. Despite the
fact that the trial data contains less questions than
the test data, Table 3 shows that it is similar to the
test data with respect to the core properties, mean-
ing that the trial data can be used as training data.

6 Evaluation

This Section describes the evaluation criteria in
this task and the baselines we compare against.

6.1 Criteria

Evaluation is performed on three levels: incident-
level, document-level, and mention-level.
The incident-level evaluation compares the nu-
meric answer provided by the system to the gold

answer for each of the questions. The compari-
son is done twofold: by exact matching and by
Root Mean Square Error (RMSE) for difference
scoring. The scores per subtask are then averaged
over all questions to compute a single incident-
level evaluation score.
The document-level evaluation compares the set
of answer documents between the system and the
gold standard, resulting in a value for the custom-
ary metrics of Precision, Recall, and F1 per ques-
tion. The scores per subtask are then averaged
over all questions to compute a single document-
level evaluation score.
The mention-level evaluation is a cross-
document event coreference evaluation. Mention-
level evaluation is only done for questions with
the event types killing or injuring. We apply
the customary metrics to score the event coref-
erence: BCUB (Bagga and Baldwin, 1998),
BLANC (Recasens and Hovy, 2011), entity-based
CEAF (CEAF E) and mention-based CEAF
(CEAF M) (Luo, 2005), and MUC (Vilain et al.,
1995). The final F1-score is the average of
the F1-scores of the individual metrics. The
set of mentions to annotate should conform
to the schema defined in the task annotation
guidelines.11

6.2 Baselines
To stimulate participation in general and to stim-
ulate approaches beyond surface form or major-
ity class strategies, we implemented one baseline
to infer incidents per subtask and one baseline for
mention annotation.12

Incident inference baseline This baseline uses
surface forms based on the question components
to find the answer documents. We only consider
documents that contain the label of the event type
or at least one of its WordNet synonyms. The la-
bels of locations and participants are queried di-
rectly in the document (e.g. if the location re-
quested is the US state of Texas, then we only
consider documents that contain the surface form
Texas, and similarly for participants such as John).
The temporal constraint is handled differently: we
only consider documents whose publishing date
falls within the time requested in the question.

For subtask 1, this baseline assumes that all doc-
uments that fit the created constraints are referring

11Link to the guidelines: https://goo.gl/8JpwCE.
12The code of the baselines can be found here: https:

//goo.gl/MwSqBj.
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to the same incident. If there is no such document,
then the baseline does not answer the question (be-
cause S1 always has at least one supporting doc-
ument). For subtask 2, we assume that none of
the documents are coreferential. Hence, if 10 doc-
uments match the constraints, we infer that there
are also 10 corresponding incidents. No baseline
was implemented for subtask 3.
Mention annotation baseline We annotate men-
tions of events of type killing and injuring, when
these surface forms or their synonyms in WordNet
are found as tokens in a document. We assume
that all mentions of the same event type within a
document are coreferential, whereas all mentions
found in different documents are not.

7 Participants

In this Section, we describe the systems that took
part in SemEval-2018 task 5. We refer to the indi-
vidual system papers for further information.

NewsReader (Vossen, 2018) consists of three
steps: 1. the event mentions in the input doc-
uments are represented as Event-Centric Knowl-
edge Graphs (ECKGs). 2. the ECKGs of all docu-
ments are compared to each other to decide which
documents refer to the same incident, resulting in
an incident-document index. 3. the constraints
of each question (its event type, time, participant
names, and location) are matched with the stored
ECKGs, resulting in a number of incidents and
source documents for each question.

NAI-SEA (Liu and Li, 2018) consists of three
components: 1. extraction of basic information
on time, location, and participants with regular
expressions, named entity recognition, and term
matching; 2. event classification with an SVM
classifier; 3. document similarity by applying a
classifier to detect similar documents. In terms
of resources, NAI-SEA combines the training data
with data on American cities, counties, and states.

Team FEUP (Abreu and Oliveira, 2018) devel-
oped an experimental system to extract entities
from news articles for the sake of Question & An-
swering. For this main task, the team proposed a
supervised learning approach to enable the recog-
nition of two different types of entities: Locations
(e.g. Birmingham) and Participants (e.g. John
List). They have also studied the use of distance-
based algorithms (using Levenshtein distance and
Q-grams) for the detection of documents’ close-
ness based on entities extracted.

Team ID-DE (Mirza et al., 2018) created KOI
(Knowledge of Incidents), a system that builds
a knowledge graph of incidents, given news ar-
ticles as input. The required steps include: 1.
Document preprocessing using various semantic
NLP tasks such as Word Sense Disambiguation,
Named-Entity Recognition, Temporal expression
recognition, and Semantic Role Labeling. 2. In-
cident extraction and document clustering based
on the output of step 1. 3. Ontology construc-
tion to capture the knowledge model from inci-
dents and documents which makes it possible to
run SPARQL queries on the ontology to answer
the questions.

8 Results

R Team s2 inc acc s2 inc acc s2 inc
norm (% of Qs answered) rmse

1 FEUP 26.38 26.38 (100.0%) 6.13
2 *NewsReader 21.87 21.87 (100.0%) 43.96
3 Baseline 18.25 18.25 (100.0%) 8.50
4 NAI-SEA 17.35 17.35 (100.0%) 20.59
5 ID-DE 13.74 20.36 (67.5%) 6.15

Table 4: For subtask 2, we report the normalized
incident-level accuracy (s2 inc acc norm), the accuracy on
the answered questions only (s2 inc acc), and the RMSE

value (s2 inc rmse). Systems are ordered by their rank (R).

R Team s3 inc acc s3 inc acc s3 inc
norm (% of Qs answered) rmse

1 FEUP 30.42 30.42 (100.0%) 478.71
2 *NewsReader 21.05 21.05 (100.0%) 296.45
3 NAI-SEA 20.20 20.2 (100.0%) 13.45
4 ID-DE 12.87 19.32 (66.61%) 7.87

Table 5: For subtask 3, we report the normalized
incident-level accuracy (s3 inc acc norm), the accuracy on
the answered questions only (s3 inc acc), and the RMSE

value (s3 inc rmse). Systems are ordered by their rank (R).

Before we report the system results, we introduce
a few clarifications regarding the result tables:
1. For the incident- and document-level evalua-
tion, we report both the performance with respect
to the subset of questions answered and a normal-
ized score, which indicates the performance on all
questions of a subtask. If a submission provides
answers for all questions, the normalized score
will be the same as the non-normalized score.
2. Contrary to the other metrics, a lower RMSE
value indicates better system performance. In ad-
dition, the RMSE scores have not been normalized
since it is not reasonable to set a default value for
non-answered questions.
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3. The mention-level evaluation was the same
across all three subtasks. For this reason, results
are only reported once (see Section 8.3).
4. The teams whose member co-organized
SemEval-2018 task 5 are marked explicitly with
an asterisk in the results.

8.1 Incident-level evaluation
The incident-level evaluation assesses whether the
system provided the right numeric answer to a
question. The results of this evaluation are given
in the Tables 4 and 5, for the subtasks 2 and 3 cor-
respondingly.13 On both subtasks, the order of the
participating systems is identical, team FEUP hav-
ing the highest score.

These tables also show the RMSE values, which
measure the proximity between the system and the
gold answer, punishing cases where the absolute
difference between them is large. While for sub-
task 2 the system with the lowest error rate cor-
responds to the system with the highest accuracy,
this is different for subtask 3. NAI-SEA, ranked
third in terms of accuracy, has the lowest RMSE.
This means that although their answers were not
exactly correct, they were on average much closer
to the correct answer than those of the other sys-
tems. This is more notable in subtask 3 since here
the range of answers is larger than in subtask 2 (the
maximum answer in subtask 3 is 171).

We performed additional analysis to compare
the performance of systems per subtype and per
numeric answer class. Table 6 shows that the
system FEUP is not only superior in terms of
incident-level accuracy overall, but this is also
mirrored for most of the event types, especially
those corresponding to the gun violence domain.
On the other hand, Figure 2 shows the accuracy
distribution of each system per answer class. No-
tably, for most systems the accuracy is highest for
the questions with answer 0 or 1, and gradually de-
clines for higher answers, forming a Zipfian-like
distribution. The exception here is the team ID-
DE, whose accuracy is almost uniformly spread
across the various answer classes.

8.2 Document-level evaluation
The intent behind document-level evaluation is to
assess the ability of systems to distinguish be-
tween answer and non-answer documents. The ta-
bles 9, 10, and 11 present the F1-scores for the

13Incident-level evaluation was not performed for subtask
1, because per definition, its answer is always 1.

subtasks 1, 2, and 3, respectively. Curiously, the
system ranking is very different and almost oppo-
site compared to the incident-level rankings, with
the system NAI-SEA being the one with the high-
est F1-score. This can be explained by the multi-
faceted nature of this task, in which different sys-
tems may optimize for different goals.

Next, we investigated the F1-scores of systems
per event property pair. As shown in Table 7, the
best-performing system consistently has the high-
est performance over all pairs of event properties.

R Team s1 doc f1 s1 doc f1
norm (% of Qs answered)

1 NAI-SEA 78.33 78.33 (100.0%)
2 ID-DE 36.67 82.99 (44.19%)
3 FEUP 24.65 24.65 (100.0%)
4 *NewsReader 23.82 46.2 (51.55%)
5 Baseline 11.09 67.33 (16.47%)

Table 9: For subtask 1, we report the normalized
document-level F1 (s1 doc f1 norm) and the accuracy on the

answered questions only (s1 doc f1). Systems are ordered
by their rank (R).

R Team s2 doc f1 s2 doc f1
norm (% of Qs answered)

1 NAI-SEA 50.52 50.52 (100.0%)
2 ID-DE 37.24 55.16 (67.5%)
3 *NewsReader 36.91 36.91 (100.0%)
4 FEUP 30.51 30.51 (100.0%)
5 Baseline 26.38 26.38 (100.0%)

Table 10: For subtask 2, we report the normalized
document-level F1 (s2 doc f1 norm) and the accuracy on the

answered questions only (s2 doc f1). Systems are ordered
by their rank (R).

R Team s3 doc f1 s3 doc f1
norm (% of Qs answered)

1 NAI-SEA 63.59 63.59 (100.0%)
2 ID-DE 46.33 69.56 (66.61%)
3 *NewsReader 26.84 26.84 (100.0%)
4 FEUP 26.79 26.79 (100.0%)

Table 11: For subtask 3, we report the normalized
document-level F1 (s3 doc f1 norm) and the accuracy on the

answered questions only (s3 doc f1). Systems are ordered
by their rank (R).

8.3 Mention-level evaluation

Table 8 shows the event coreference results for the
participating systems: ID-DE and NewsReader, as
well as our baseline. The columns present the F1-
score for the metrics BCUB, BLANC, CEAF E.
CEAF M, and MUC. The final column indicates
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Event type Subtask #Qs FEUP ID-DE NAI-SEA *NewsReader Baseline

fire burning S2 79 40.51 - 31.65 39.24 49.37
S3 0 - - - - -

injuring S2 543 21.92 ˆ13.44 14.36 21.73 17.68
S3 1502 30.49 ˆ8.39 16.78 23.17 -

job firing S2 4 0.0 - 25.0 25.0 50.0
S3 26 30.77 - 26.92 15.38 -

killing S2 371 30.19 ˆ17.25 18.6 18.33 12.13
S3 928 30.28 ˆ20.47 25.54 17.78 -

Table 6: For subtask 2 (S2) and subtask 3 (S3), we report the incident-level accuracy and the number of questions (#Qs) per
event type. The best result per event type for a subtask is marked in bold. ‘ˆ’ indicates that the accuracy is normalized for the

number of answered questions, in cases where a system answered a subset of all questions.
.
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Figure 2: Incident-level accuracy of all systems per numeric answer class for subtask 2. The class 10 represents all answers
of 10 or higher.

Event properties Subtask #Qs FEUP ID-DE NAI-SEA *NewsReader Baseline

location&time S1 594 23.06 ˆ26.64 82.91 ˆ26.22 ˆ8.71
S2 680 30.95 ˆ41.81 49.99 39.22 28.61
S3 1335 26.4 ˆ41.55 63.27 36.15 -

participant&location S1 140 13.48 ˆ43.86 70.22 ˆ11.83 ˆ9.76
S2 49 14.66 ˆ21.26 50.41 13.53 10.02
S3 301 14.2 ˆ44.28 62.38 6.65 -

participant&time S1 298 33.06 ˆ53.28 73.01 ˆ24.65 ˆ16.47
S2 268 32.27 ˆ28.55 51.87 35.34 23.71
S3 820 32.06 ˆ54.88 64.56 19.09 -

Table 7: Document-level F1-score and number of questions (#Qs) for each subtask (S1, S2, and S3) and event property pair as
given in the task questions. The best result per property pair for a subtask is marked in bold. ‘ˆ’ indicates that the F1-score is

normalized for the number of answered questions, in cases where a system answered a subset of all questions.

R Team BCUB BLANC CEAF E CEAF M MUC AVG

1 ID-DE 44.61% 31.59% 37.45% 47.23% 53.12% 42.8%
2 *NewsReader 37.28% 28.11% 42.15% 46.16% 46.29% 40.0%
3 Baseline 6.14% 0.89% 13.3% 8.45% 3.59% 6.47%

Table 8: Results for mention-level evaluation, scored with the customary event coreference metrics: BCUB (Bagga and
Baldwin, 1998), BLANC (Recasens and Hovy, 2011), entity-based CEAF (CEAF E) and mention-based CEAF

(CEAF M) (Luo, 2005), and MUC (Vilain et al., 1995). The individual scores are averaged in a single number (AVG), which is
used to rank (R) the systems.

the mean F1-score over these five metrics, which
is used to rank the participants. The Table shows
that the system ID-DE has a slightly better event

coreference score on average over all metrics than
the second-ranked system, NewsReader.
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9 Conclusions

In this paper we have introduced SemEval-2018
Task 5, a referential quantification task of count-
ing events and participants in local news articles
with high ambiguity. The complexity of this task
challenges systems to establish the meaning, ref-
erence, and identity across documents. SemEval-
2018 Task 5 consists of two subtasks of counting
events, and one subtask of counting event partic-
ipants in their corresponding roles. We evaluated
system performance with a set of metrics, on three
levels: incident-, document-, and mention-level.

We described the approaches and presented the
results of four participating systems, as well as two
baseline algorithms. All four teams submitted a
result for all three subtasks, and two teams par-
ticipated in the mention-level evaluation. We ob-
served that the ranking of systems differs dramat-
ically per evaluation level. Given the multifaceted
nature of this task, it is not surprising that different
systems optimized for different goals. Although
the systems are able to retrieve many of the an-
swer documents, the highest accuracy of counting
events or participants is 30%. This suggests that
further research is necessary in order to develop
complete and robust models that can natively deal
with the challenge of counting referential units
within sparse and ambiguous textual data.

Out-of-competition participation is enabled by
the Codalab platform, where this task was hosted.
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