
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 909–913,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

UIT-DANGNT-CLNLP at SemEval-2017 Task 9: Building Scientific
Concept Fixing Patterns for Improving CAMR

Khoa Dang Nguyen
Faculty of Computer Science

University of Information Technology
VNU-HCM

ndkhoa@nlke-group.net

Dang Tuan Nguyen
Faculty of Computer Science

University of Information Technology
VNU-HCM

dangnt@uit.edu.vn

Abstract

This paper describes the improvements
that we have applied on CAMR baseline
parser (Wang et al., 2016) at Task 8 of
SemEval-2016. Our objective is to in-
crease the performance of CAMR when
parsing sentences from scientific articles,
especially articles of biology domain more
accurately. To achieve this goal, we built
two wrapper layers for CAMR. The first
layer, which covers the input data, will
normalize, add necessary information to
the input sentences to make the input de-
pendency parser and the aligner better
handle reference citations, scientific fig-
ures, formulas, etc. The second layer,
which covers the output data, will mod-
ify and standardize output data based on
a list of scientific concept fixing patterns.
This will help CAMR better handle bio-
logical concepts which are not in the train-
ing dataset. Finally, after applying our ap-
proach, CAMR has scored 0.65 F-score1

on the test set of Biomedical training data2

and 0.61 F-score on the official blind test
dataset.

1 Introduction

Since Abstract Meaning Representation (AMR)
was published by Banarescu et al. (2013) for the
first time in 2013, it has been considered by many
researchers in Natural Language Processing do-
main. In this trend, the task of AMR has been
held continuously for two years in SemEval-2016
and SemEval-2017. There have been many parsers

1Currently, the datasource for constructing the list of con-
cept fixing patterns are the training, develop and test set of
Biomedical training data

2This data is all freely available to download at
http://amr.isi.edu/download.html

shown its outstanding performance for high F-
score points like RIGA (Barzdins and Gosko,
2016), CAMR, CU-NLP (Foland and Martin,
2016), etc.

Inspired by the performance of CAMR in
SemEval-2016 Task 8, we selected it as our base-
line parser for SemEval-2017 Task 9 - Subtask
1: Parsing Biomedical Data. The parsing task of
2017 has a particular domain but there are many
scientific terms, formulas, reference quotations,
numbers, etc. That makes the task of 2017 very
challenging.

According to Wang et al. (2015a,b), the accu-
racy of CAMR depends greatly on the accuracy of
input dependency parser. When we conduct train-
ing and testing on Biomedical training data used
for SemEval-2017, we have found that CAMR is
not good in handling the reference citations, sci-
entific figures, formulas, etc which are commonly
used in scientific papers. This is partly due to the
dependency parser not correctly handling this kind
of information. And also, the aligner can not ful-
fill its mission. We have built the first wrapper to
support solving the problem related to these infor-
mation in input data.

At the same time, we found CAMR can mem-
orize very well AMR structure of concepts which
have appeared in the training data. However, when
parsing testing sentences which have unknown
concepts (concepts which are not in training cor-
pus), the parser will not be able to parse and return
a single node to indicate the unknown concept (the
first error form described in Subsection 3.1). An-
other weakness of CAMR is the terminal condi-
tion. The parser will finish parsing the sentence
when the number of elements in the queue has run
out. In the output result, we found that many AMR
structures of concepts are not in good form (the
second error form described in Subsection 3.1).
Therefore, we proposed to build a second wrap-

909



per to fix the parsing error on output data, which
will help CAMR deal with these issues better.

2 The first wrapper layer

Unlike the corpus used for Task 8 of SemEval-
2016, the Biomedical training data corpus used for
Task 9 of SemEval-2017 are sentences from sci-
entific articles related to the topic cancer pathway
discovery. Generally, the sentences from scientific
papers contain a lot of reference citations, scien-
tific figures, formulas, etc.

In the gold AMR structure, the reference ci-
tations are represented by node describe-01.
This node appeared 2,756 times in the training
set and the develop set of Biomedical training
data. Similarly, in the test set, describe-01
node appeared 263 times. The number of nodes
describe-01 accounted for a big amount in the
corpus. Better handling of these reference cita-
tions will increase the accuracy of the parser sig-
nificantly. However, with the following reference
citation formats, input dependency parser is al-
most impossible to handle and consider the refer-
ence citations as meaningless symbols:

1. “[1]”

2. “(1), (2), (3)”

3. “(Wang. et al, 2016)”

Obviously, with the reference citation formats
of 1, 2 above, dependency parser will handle these
citations as usual numbers. With the reference
citation format of 3, it is also not easy for de-
pendency parser because “(Wang. et al, 2016)”
does not have the structure of a normal sentence
or a clause. Since dependency parser did not han-
dle these quotation formats properly, the aligning
and the training process would not achieve good
results. For example with the reference citation
format of 3, the word “et” can not be aligned to
node other in the gold AMR. And in the train-
ing stage, CAMR won’t be able to know that the
word “et” is related to node other.

And there are also other difficulties such as:
the reference citation formats in the corpus have
more complex forms than the above examples like
“(Wang. et al, 2016a; Wang. et al, 2016b)”, there
are XML annotations in the input sentences,...

To support solving this problem, we write a tool
to remove all XML annotations in the input data,

Node Wrapper OFF Wrapper ON
describe-01 49 835

publication-91 2 497
person 871 993
other 406 501
and 4731 5180

Table 1: Number of successfully aligned node be-
fore and after the application of the first wrapper

then the tool updates these citation formats to the
following patterns:

1. “[1]”→ “(described in publication 1)”

2. “(1), (2), (3)”→ “(described in publication 1
and 2 and 3)”

3. “(Wang. et al, 2016)” → “(described in
publication of Wang and other members in
2016)”

For more complex forms of the reference cita-
tion formats, the tool also follows the above pat-
terns. For example, “(Wang. et al, 2016a; Wang.
et al, 2016b)” should be updated to “(described in
publication of Wang and other members in 2016;
described in publication of Wang and other mem-
bers in 2016)”.

These modifications not only help dependency
parser can operate more accurately but also help
the aligner (Flanigan et al., 2014) align more accu-
rately, especially with node describe-01 and
its sub-nodes (publication-91, person,
other, and) in the AMR structure.

In addition, we also have a few other modifi-
cations with the abbreviations of measuring unit
and the abbreviations of scientific term on the first
wrapper. The abbreviations of measuring unit can
be find out easily by grepping out all :unit edges
in the traning data. With the abbreviations of sci-
entific term, we have to find them manually. These
modifications include:

• Replace the abbreviations of measuring unit
with its full form (for example “kDa” →
“kilodalton”, “pg/ml” → “picogram per
milliliter”, etc.)

• Replace the abbreviations of scientific term
to its full form (for example “UM”→ “uveal
melanoma”)

910



Selumetinib in combination with TMZ enhances
DNA damage.
(a) CAMR parse
(x6 / enhance-01

:ARG0 (x1 / selumetinib)
:condition (x3 / combine-01

:ARG2 (x5 / tmz))
:ARG1 (x8 / damage-01

:ARG1 (x7 / enzyme
:name (n / name
:op1 "DNA"))))

(b) CAMR parse + our addition
(x6 / enhance-01

:ARG0 (x1 / small-molecule
:name (n1 / name
:op1 "selumetinib"))

:condition (x3 / combine-01
:ARG2 (x5 / small-molecule
:name (n3 / name

:op1 "TMZ")))
:ARG1 (x8 / damage-01

:ARG1 (x7 / nucleic-acid
:name (n / name

:op1 "DNA")
:wiki "DNA")))

Figure 1: An example of CAMR parsing result and
our addition

Table 1 represents the number of aligned nodes
before and after the application of our first wrap-
per. Obviously the number of aligned nodes is in-
creased substantially. Especially with nodes often
appear in AMR structure describe the reference ci-
tations. The more successfully aligned nodes, the
easier for CAMR in the traning stage.

3 The second wrapper layer

3.1 Parsing error detecting method

We classify parsing errors of CAMR into two main
types. First, we propose methods to identify all the
errors of the two types of the returned output of
CAMR. Figure 1 represents the results of CAMR’s
original parsing result and the parsing result after
being updated by our system.

The first error type usually happens with the
unknown concept, which does not appear in the
training set. When processing an unknown con-
cept, CAMR will return an individual node such
as (x1 / selumetinib) or (x5 / tmz).
To be able to identify the errors of this type
in the returned results, we will collect a list
of all of node labels in gold AMR of training
set. From this list, we will traverse through
all nodes on AMR results, if any node label is

not on this list, it’s likely that node is a presen-
tation for an unknown concept. For example,
with the AMR in Figure 1b, then this list is:
{enhance-01, small-molecule, name,
"selumetinib", combine-01, "TMZ",
damage-01 , nucleic-acid, "DNA"}.
Node selumetinib and tmz (without quotes)
are not in the list above, so these may be unknown
concepts.

Second error form is related to the structure of
the AMR node such as wrong concept type, miss-
ing important sub-node or having wrong sub-node,
null node, null edge, etc. As in Figure 1a, the
"DNA" node is identified as an enzyme. But in
the training set, there is no enzyme node which
has the :name edge connected to a "DNA" node.
"DNA" is always a nucleic-acid in the train-
ing set. The method to identify this error type is
the same as above, but instead just collect a list
of node labels, we will collect a list of all concept
nodes in the training set. A node is called con-
cept node when it has a direct :name edge. We
call this list is the list of the AMR structure con-
cept. When traversing through all nodes in the re-
sult AMR, if there is a :name edge appeared in a
node of the AMR structure, we will compare that
node with these nodes in the list of the AMR struc-
ture concept. If the list doesn’t contain that node,
that mean this is a new node created by CAMR.
And there is a probability that the node contains
some errors. We just stop at identifying concept
node in AMR structure which has the probability
of containing errors. It still needs the help of a
human expert to give out a final judgment that the
concept node of AMR structure is correct or not.

3.2 Parsing error fixing method

From the two error lists above, we will build a new
list with each element has the form “Label-Error
AMR-Fixed AMR”. We call this the list of con-
cept fixing patterns. Two ingredients Label and
Error AMR are taken directly from the two error
lists above. Filling the Fixed AMR would require
the support of human experts. Particularly for
Biomedical training data, we refer the gold AMR
in the test set of training data to fill out the Fixed
AMR.

Table 2 represents the list of concept fixing pat-
terns for the example in Figure 1.

After having the parsing result of CAMR
as in Figure 1a. We will traverse all the

911



Label selumetinib
Error AMR (x1 / selumetinib)

Fixed AMR
(x1 / small-molecule
:name (n1 / name
:op1 "selumetinib"))

Label tmz
Error AMR (x5 / tmz)

Fixed AMR
(x5 / small-molecule
:name (n3 / name
:op1 "TMZ"))

Label enzyme

Error AMR
(x7 / enzyme
:name (n / name
:op1 "DNA"))

Fixed AMR
(x7 / nucleic-acid
:name (n / name
:op1 "DNA")

:wiki "DNA")

Table 2: The list of concept fixing patterns for the
example in Figure 1

nodes in the result AMR. When traversing node
(x1 / selumetinib), we will find out these
elements in the list of concept fixing patterns
which have Label is selumetinib. We will
compare the structure of traversing node with
the structure in Error AMR part of these ele-
ments. If there are a structural matching, we
will replace the traversing node structure with
the structure in the Fixed AMR part of the
corresponding element. Similarly, the structure
(x5 / tmz) and (x7 / enzyme :name
(n / name :op1 "DNA")) will also be up-
dated to the Fixed AMR structure in the list of con-
cept fixing patterns. The final output will the the
same as the AMR structure in 1b.

4 Experiment

We used the Biomedical training data which have
been split into training, develop and test set for ex-
periments. About CAMR, we used the version
which was described in (Wang et al., 2016) as
a baseline parser with its default configurations.
But, we have not used named entity tags and se-
mantic role labels in the experiment stage. To
evaluate the output result, we used the Smatch tool
(Cai and Knight, 2013) at version 16.11.14.

Firstly, we implemented the first wrapper layer
as the proposed method in Section 2. Then, we
started training on two systems. The training data
is the collection of all sentences in training set and
develop set of Biomedical training data. On the

System Precision Recall F-score
Baseline parser 0.67 0.50 0.57
OurSystem(W1) 0.70 0.53 0.60
OurSystem(W12) 0.73 0.58 0.65

Table 3: Comparison with the baseline parser

first system, CAMR was trained with the origi-
nal training data, which had not been updated by
our first wrapper layer. On the other system, the
training data had been updated by our first wrap-
per layer. Both of two systems were trained in 10
iterations.

After that, two systems were tested with all sen-
tences from the test set of Biomedical training
data. In order to fix the parsing error of CAMR,
we need to build the list of concept fixing patterns.
We implemented a tool to detect the concept pars-
ing errors. This tool will traverse all the nodes in
the output result of CAMR when parsing test set of
training data to collect a list of AMR node which
has the probability of containing errors as the pro-
posed method in Subsection 3.1. After finished de-
tecting error, the tool will return the list of concept
fixing patterns. Each element of the list will have
form of “Label-Error AMR-Fixed AMR”. We then
refer the gold AMR in the training data to fill out
the “Fixed AMR” part. We have to do this manu-
ally to guarantee that the detected error node actu-
ally contains error.

After having the list of concept fixing patterns,
we will have another tool to update the parsing re-
sult based on the list. We only run this tool on
the second system. The output result of the first
system is keep original. Table 3 shows our experi-
ment results. The first row is the evaluated score of
the baseline parser. The second row is the score of
our system when only used the first wrapper layer.
The last row is the score of our system when have
both two wrappers activated. There is a special
note about wrapper 2: currently, we have to ex-
tract the data from the training, develop and test set
of the Biology training data to fill out the “Fixed
AMR” part.

With the official blind test set, our system used
the first wrapper layer to normalize and update
input sentences. Then, our system automatically
used the above pre-built list of concept fixing pat-
terns to fix the parsing error of CAMR before re-
turn the final output result. We achieved 0.61 F-
score on the official blind test set.

912



5 Conclusion

The main contribution of this paper is the second
wrapper layer which can be used very effective
in finding concept parsing errors of AMR parsers.
Although the improvements have been developed
in CAMR, but both of these two wrappers can eas-
ily be applied to other AMR parsers.

However, currently, our approach requires man-
ual processing to create the concept fixing pat-
terns. In further work, we will focus on re-
searching about automatically create the fixing
patterns for a few particular domains. We intend to
use open knowledge databases of these domains,
the combination with supervised machine learning
methods and pre-built corpus to create the concept
fixing patterns automatically.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and
Nathan Schneider. 2013. Abstract meaning
representation for sembanking. In Proceed-
ings of the 7th Linguistic Annotation Workshop
and Interoperability with Discourse. Association
for Computational Linguistics, pages 178–186.
http://www.aclweb.org/anthology/W13-2322.

Guntis Barzdins and Didzis Gosko. 2016. Riga at
semeval-2016 task 8: Impact of smatch extensions
and character-level neural translation on amr pars-
ing accuracy. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016). Association for Computational Linguistics,
pages 1143–1147. https://doi.org/10.18653/v1/S16-
1176.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers). Association for Computational Linguistics,
pages 748–752. http://aclweb.org/anthology/P13-
2131.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and A. Noah Smith. 2014. A discrim-
inative graph-based parser for the abstract mean-
ing representation. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1426–1436.
https://doi.org/10.3115/v1/P14-1134.

William Foland and H. James Martin. 2016. Cu-
nlp at semeval-2016 task 8: Amr parsing using
lstm-based recurrent neural networks. In Pro-
ceedings of the 10th International Workshop on

Semantic Evaluation (SemEval-2016). Association
for Computational Linguistics, pages 1197–1201.
https://doi.org/10.18653/v1/S16-1185.

Chuan Wang, Sameer Pradhan, Xiaoman Pan, Heng
Ji, and Nianwen Xue. 2016. Camr at semeval-
2016 task 8: An extended transition-based amr
parser. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016). Association for Computational Linguis-
tics, San Diego, California, pages 1173–1178.
http://www.aclweb.org/anthology/S16-1181.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015a. Boosting transition-based amr parsing with
refined actions and auxiliary analyzers. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers). Association for
Computational Linguistics, Beijing, China, pages
857–862. http://www.aclweb.org/anthology/P15-
2141.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015b. A transition-based algorithm for amr
parsing. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Denver, Colorado, pages 366–
375. http://www.aclweb.org/anthology/N15-1040.

913


