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Abstract

Most recent studies on coreference resolu-
tion advocate accurate yet relatively com-
plex models, relying on, for example, entity-
mention or graph-based representations. As
it has been convincingly demonstrated at the
recent CoNLL 2012 shared task, such algo-
rithms considerably outperform popular basic
approaches, in particular mention-pair mod-
els. This study advocates a novel approach
that keeps the simplicity of a mention-pair
framework, while showing state-of-the-art re-
sults. Apart from being very efficient and
straightforward to implement, our model fa-
cilitates experimental work on the pairwise
classifier, in particular on feature engineering.
The proposed model achieves the performance
level of up to 61.82% (MELA F, v4 scorer)
on the CoNLL test data, on par with complex
state-of-the-art systems.

1 Introduction

The mention-pair model, as proposed by Soon et
al. (2001) has been used for over a decade now.
It combines a simple classifier trained to discrimi-
nate between coreferent and not-coreferent pairs of
mentions (“links”) with fast heuristic procedures for
merging the classifier’s decisions at the decoding
stage. Several decoding heuristics have been advo-
cated in the literature, the most commonly used ones
including first-link (Soon et al., 2001) and best-link
(Ng and Cardie, 2002).

Most state-of-the-art algorithms for coreference
resolution, on the contrary, rely on complex mod-
eling, ranging from entity-ranking to structural per-
ceptron and other graph-based approaches (for an

overview of state-of-the-art coreference resolvers,
see (Ng, 2010; Pradhan et al., 2012)). Such algo-
rithms show a clearly superior performance: thus, at
the CoNLL-2012 shared task, the best-performing
(Soon et al., 2001)-style system loses around 8% to
the winning algorithm.

However, more traditional mention-pair ap-
proaches still have some important advantages.
Thus, a mention-pair model is easy to implement
and allows for fast prototyping. It relies on a sim-
ple binary classifier making it very fast to train com-
pared to state-of-the-art models that are based on
complex structural representations (Fernandes et al.,
2012; Björkelund and Kuhn, 2014). This efficiency
at the training step allows for straightforward au-
tomatic parameter optimization. Most importantly,
mention-pair models can be useful for understand-
ing low-level system behavior, and, in particular, for
feature engineering. This can in turn help improve
more complex models, since many of them rely on
mention-pairs as their basic building blocks.

In this paper, we advocate a new easy-first
mention-pair algorithm (EFMP): while it is based
solely on pairs of mentions and does not attempt
any global inference, it benefits from the decision
propagation strategy to create a coreference parti-
tion. Augmented with the sieve-style prefiltering,
the system achieves a performance level comparable
to the state of the art.

The contribution of this paper is two-fold. First,
we propose a novel decoding approach that com-
bines predictions of the mention-pair classifier based
on its confidence score, taking into account—in con-
trast to the previous studies, e.g. (Ng and Cardie,
2002; Stoyanov and Eisner, 2012; Björkelund and
Kuhn, 2014)—both positive and negative links. We
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thus propose a procedure for propagating positive
and negative links to create the final coreference
partition: we start from the most confident among
all the classifier’s decisions and iteratively con-
struct coreference partitions by merging coreference
chains (positive links) or blacklisting future merges
(negative links). This decoding strategy is slower
than the commonly used best-link model, but con-
siderably faster than ILP-based decoding (Finkel
and Manning, 2008; Denis and Baldridge, 2009).

Second, we show that our approach, being very
fast and easy to implement, can be used for a variety
of low-level experiments on coreference resolution,
in particular, for studies on feature engineering or
selection. Thus, we augment our system with two
feature combination techniques, Jaccard Item Min-
ing (Segond and Borgelt, 2011) and Entropy Guided
Feature Inductions (Fernandes et al., 2012). While
the latter has been used for coreference resolution
before, Jaccard Item Mining (JIM), to our knowl-
edge, has never been applied to any NLP task. The
JIM algorithm has been developed within the data
mining community and aims at finding combina-
tions that tend to occur in a particular set of un-
labeled transactions. In this paper, we introduce a
post-filtering technique to re-score JIM output w.r.t.
the class labels (±coreferent). We show empirically
that JIM is more suitable for coreference: it provides
smaller and more meaningful feature combinations
leading to a better performance level.

The combination of our decoding approach with
the JIM feature induction technique allows us to
achieve a performance level of 61.82% on the
CoNLL-2012 test data, just 1.5% percent below the
(much more complex) winning system and above all
the other submissions (cf. Table 4).

2 Related work

An improvement over the original mention-pair
model (Soon et al., 2001) has been proposed by
Ng and Cardie (2002). Their “best-link” algo-
rithm picks the most confident antecedent for each
anaphor. Unlike Ng and Cardie (2002), we do not
process the input text from left to right incremen-
tally, instead, we assess the confidence of all the pro-
posed links at the same time (“easy-first”) and keep
track of negative assignments.

Our work has been motivated by more complex
algorithms using the easy-first strategy, most im-
portantly, by Stoyanov and Eisner (2012), Nico-
lae and Nicolae (2006) and Björkelund and Farkas
(2012). There are two important differences be-
tween these studies and the Easy-First Mention-Pair
model (EFMP): (i) EFMP does not evaluate links be-
tween entities or clusters, always operating on men-
tion pairs instead; (ii) EFMP integrates both positive
and negative assignments in its hierarchy of easy-to-
hard decisions.

Being conceptually very simple, our algorithm al-
lows for a straightforward integration of other tech-
niques proposed in the literature, in particular, sieve-
style prefiltering (Lee et al., 2011) and feature in-
duction. Several recent studies have attempted ex-
haustive analysis of features and their impact on
the overall performance (Recasens and Hovy, 2009;
Uryupina, 2006; Bengtson and Roth, 2008; Dur-
rett and Klein, 2013). We refer the reader to (Ng,
2010) for an overview of different features. Kob-
dani et al. (2010) create a framework that facilitates
the engineering process for complex features. This
approach, however, still relies on the human exper-
tise for creating meaningful combinations. Versley
et al. (2008) use kernel-based similarity as an im-
plicit feature induction technique.

The only study we are aware of that investigates
an explicit feature combination technique has been
conducted by Fernandes et al. (2012). Their al-
gorithm for Entropy-based feature induction (EFI),
shows substantial improvement on the OntoNotes
dataset. In the present work, we propose an al-
ternative to EFI, based on the recent advances in
Data Mining. We believe that Fernandes et al.
(2012) have opened a very important research di-
rection with their feature induction approach. We
want therefore to evaluate EFI in a simpler and more
straightforward mention-pair model—and compare
it to our approach.

3 Easy-First Mention-Pair Model

In what follows, we describe our Easy-First
Mention-Pair (EFMP) approach and then propose
a solution for combining our model with manu-
ally engineered filters, inspired by Stanford “sieves”
(Lee et al., 2011). EFMP is a decoding algorithm.
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Algorithm 1 Easy-first decoding (EFMP)
Require: L = {< anal, antel, labell, confidencel >}: list

of classified mention pairs
1: sort L according to confidence
2: for all l ∈ L do
3: /* don’t override prev. decisions */
4: if chain(anal) == chain(antel) then
5: continue
6: if unlinked(chain(anal), chain(antel)) then
7: continue
8: /* update chains and unlink info */
9: if labell==not-coreferent then

10: unlink(chain(anal), chain(antel))

11: if labell==coreferent then
12: UpdateUnlinkInfo({chain(anal), chain(antel))
13: MergeChains({chain(anal), chain(antel))
14: function UPDATEUNLINKINFO(chain1, chain2)
15: for all c such as unlinked(c, chain2) do
16: unlink(c, chain1)

17: function MERGECHAINS(chain1, chain2)
18: for all m ∈ chain2 do
19: chain(m) = chain1

At the encoding step, we generate mention-pairs in
a straightforward exhaustive way: each candidate
anaphor is paired with all the preceding candidate
antecedents. Following the state-of-the-art, we fil-
ter out mention pairs using the same sieve-style ap-
proach at both the encoding and the decoding steps
(cf. Section 3.2 below).

3.1 Plain EFMP

Our EFMP approach addresses the clustering step of
a coreference resolution process: as its input, it as-
sumes a set of mention pairs for a given document,
labeled as positive (two mentions corefer) or neg-
ative (two mentions do not corefer) by an external
classifier. We also assume the classifier to output the
confidence of its decisions.

The key idea behind EFMP is the processing of
all the decisions, both positive and negative ones,
in a specific order, according to the classifier’s con-
fidence. We start by sorting all the mention pairs
by the confidence of the assigned label. We in-
stantiate our clustering assigning each mention to
its own cluster (“all singletons”), however, we do
not prohibit potential links between any of them.
Our EFMP module processes all the (sorted) men-
tion pairs one-by-one, at each step performing one
of the following operations, whenever possible:

• link: merge two clusters (includes propagating
unlink information, cf. below)
• unlink: mark two given clusters to prohibit po-

tential merge at any future step

These operations, however, are only performed if the
system has no information about the possibility of
(un)linking the two mentions at the given step.

Let us illustrate the approach with the following
example:

(1) [Alice]1 is showing [Zoe]2 [her]3 papers on
coreference.

In this snippet, we collect three mentions (“Al-
ice” (M1), “Zoe” (M2) and “her” (M3)), form-
ing three mention pairs.1 A state-of-the-art pair-
wise coreference classifier would confidently label
< Alice, Zoe > as negative; and less confidently—
< Alice, her > and < Zoe, her > as positive.
The score for < Alice, her > would be slightly
higher: “Alice” is a subject and a first mention in
the sentence. The EFMP module starts from three
clusters: C1 = {M1}, C2 = {M2}, C3 = {M3}.
At the first step, it registers the information, that
C1 and C2 should never be merged (“unlink”). At
the second step, it links M1 and M3, merging C1

and C3, thus producing a partition with two clus-
ters: C ′1 = {M1, M3}, C2 = {M2}. It also prop-
agates the previously collected unlinking informa-
tion, registering the fact that C ′1 and C2 should never
be merged. At the next step, it tries to link M2 and
M3. This, however, doesn’t work, since the system
has already collected some more reliable evidence
that the corresponding clusters shouldn’t be merged.
As there are no more mention-pairs left, the system
stops and outputs the last partition (C ′1, C2).

3.2 EFMP with Sieves
The plain EFMP approach, as described above, as-
sumes that all the mention pairs are labeled by the
pairwise classifier. This has several potential issues.
First, it requires sorting all the links: when mention-
pairs are generated exhaustively, it amounts to the
running time of O(n2 log(n)), where n is the total
number of mentions. Second, the pairwise classifier
has to be trained on a very biased dataset, containing

1We omit other mentions (“her papers” and “coreference”)
to simplify the presentation.
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too many negative or irrelevant examples; this might
decrease the performance and also requires substan-
tial tuning of learning parameters.

To alleviate the problem, we pre-filter mention
pairs aggressively, heuristically eliminating links
that are either definitely positive (for example, pairs
of same named entities), definitely negative (pairs
with incompatible gender values) or “uninforma-
tive”. The latter are pairs that we cannot realisti-
cally expect to be analyzed by our system, due to the
limits of our feature representation. For example, a
pair of two noun phrases sharing no common tokens
and appearing far apart from each other might be
either positive or negative, with the particular deci-
sion depending on a lot of factors, starting from the
semantic compatibility of the two mentions (“car”
and “relativity” can hardly be coreferent), but also
including discourse-related factors and some suit-
ably represented knowledge of other entities (“car”
and “Ferrari” in different parts of a document talking
about Formula 1 may refer to different entities). We
believe that forcing our pairwise classifier to learn
a labeling for such “uninformative” examples with-
out providing adequate features might lead to infe-
rior performance.

Our pre-filtering approach was inspired by the
Stanford sieves algorithm (Lee et al., 2011), where
several high-precision rules are applied in a spe-
cific order to filter out candidates. This approach
has since then been used in several systems, most
successfully by Fernandes et al. (2012) to filter out
training data for coreference resolution classifiers.
The idea of distinguishing between “informative”
and “uninformative” instances has been implicitly
adopted by many systems, restricting their search to
a specific window. This approach is very common
for pronominal anaphora, but it’s also used by sev-
eral general-purpose coreference resolvers (Fernan-
des et al., 2012; Stoyanov and Eisner, 2012).

All these rule-based decisions can be integrated
into EFMP in a straightforward way. Thus, the un-
informative pairs are simply excluded from the fur-
ther processing. They do not produce training mate-
rial and they are not processed by EFMP at the test
time (consequently, mentions from such a pair may
end up in the same cluster, as well as in two differ-
ent ones, depending on other (un)links established
by the system). This allows for a substantial reduc-

tion of the pairs to be processed at the decoding step
(for example, in our setting described in Section 5.1
below, around 90% of all the pairs are eliminated
as “uninformative”). The pairs, deemed positive or
negative by the rule-based pre-filtering, do not con-
tribute to the training data. At the test step, they are
considered to be very confidently positive/negative
instances, outscoring any test pairs, originating from
the classifier output. Such pairs do not contribute to
speeding up the EFMP part, however, they help im-
prove the quality of our pairwise classifier, decreas-
ing the bias towards negative instances in the data.

4 Techniques for generating feature
combinations

Most state-of-the-art coreference resolution systems
combine complex modeling with rich feature sets.
While early data-driven approaches were essentially
knowledge-poor (for example, the famous system of
Soon et al. (2001) is based on 12 shallow features),
modern algorithms rely on dozens of carefully engi-
neered features, encoding various clues relevant for
the task: from different measures of surface similar-
ity, to morphological, syntactic, semantic and dis-
course properties, and world knowledge.

This study focuses on the automatic feature engi-
neering task. We start from atomic features that are
already encoded in a state-of-the-art toolkit (BART)
and use a data mining technique, Jaccard item min-
ing, to boost the system performance through auto-
matic induction of complex features.

The features used by most coreference resolu-
tion systems are very heterogeneous. Some of them
(for example, different measures of salience) encode
insights from the linguistic theory, whereas others
are purely data-driven (tokens). Some features are
direct indicators for or against coreference (string
matching vs. contra-indexing constraints), whereas
others are supposed to provide more general infor-
mation (individual properties of mentions). Some
features are very frequent (mention types), whereas
others are relatively rare (apposition). Finally,
some features encode basic properties (“anaphor is
a pronoun”), whereas others are combinations of
such properties (“both anaphor and antecedent are
pronouns and they have the same surface form”).
Therefore, we specifically aim at designing an algo-
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rithm that is able to overcome these idiosyncrasies
and provide meaningful combinations for such a het-
erogeneous set of atomic features.

4.1 Jaccard Item Mining
In this study, we adapt the Jaccard Item Mining
(JIM) technique (Segond and Borgelt, 2011) to the
coreference resolution task. Below we describe the
JIM algorithm and our adjustment of JIM to the task
of selecting meaningful features.

The Data Mining community has invested sub-
stantial efforts into Frequent Item Mining algo-
rithms: techniques for finding frequent combina-
tions of “items” in a “transaction database”. We as-
sume that a database is a set of item sets with some
items often appearing together. Several approaches
have been proposed to solve the task of enumerat-
ing all such frequently occurring combinations in a
fast and efficient way, the most popular ones being
Eclat and FP-growth. A typical application would
be, for example, the task of finding similarities in
shopping lists for different customers. We refer the
reader to (Borgelt, 2012) for an overview of relevant
approaches.

Frequent Item Mining algorithms output all the
combinations with a frequency (“support”) higher
than a predefined threshold. If the original items are
very heterogeneous, the output might get very noisy:
for example, if there are some very frequent items,
they will pollute most combinations and the interest-
ing item sets will be difficult to find. To overcome
this problem, Segond and Borgelt (2011) propose to
use the Jaccard index as a measure of the item set
quality. For a given set of items I , the Jaccard in-
dex JT (I) is defined as a ratio of the set’s support
over the number of transactions containing at least
one item from the set:

JT (I) =
| ∩i∈I KT ({i})|
| ∪i∈I KT ({i})| ,

where KT ({i}) is a set of transactions, containing
the item i.

It is straightforward to see that JT (I) is an anti-
monotone function. Therefore, standard frequent
item mining algorithms can be easily adapted to
cover the Jaccard index. In our experiments, we use
a publicly available JIM implementation.2

2http://www.borgelt.net/jim.html

We recast the feature induction problem as a fre-
quent item mining task. We start from atomic fea-
tures (string, nominal and binary) and convert them
into binary features that represent our items. Since
our feature set is very heterogeneous, some items
are very rare or, conversely, very frequent. We fil-
ter out all the items with the support below or above
predefined thresholds. The frequent item mining ap-
proaches assume that all the transactions are equal.
In our case, however, transactions correspond to
training instances—and they come with the class la-
bels. Since we are interested in the feature combi-
nations that help distinguish between positive and
negative examples, we perform two JIM runs, split-
ting the training data into the positive and negative
parts. For each part, we induce all the combinations
with the high Jaccard index (J+

T (I) and J−T (I)). Af-
ter this step, we have two lists of items, each cor-
responding to feature combinations showing a good
association strength for positive and negative exam-
ples respectively.

Both lists are then reranked, dividing the positive
index over the negative one and vice versa:

score+(I) =
J+

T (I)
J−T (I)

, score−(I) =
J−T (I)
J+

T (I)
.

This reranking step helps us to filter out fea-
ture combinations that are either redundant or
not indicative of coreference. For example, our
atomic features already contain some combina-
tions (e.g., NEStringMatch is a combination of
MentionType Coarse and StringED). With-
out the reranking step, we are getting numerous
combinations reflecting peculiarities in the feature
design. As the final JIM output, we take all the sets
I with the scores exceeding some predefined thresh-
olds (score+(I) > thr+ or score−(I) > thr−).
Note that our score measures are not monotone and
cannot therefore be used in a fast Eclat-style al-
gorithm (Borgelt, 2012) to directly provide score-
optimal combinations.

To better align our approach with the Entropy
Guided Feature Induction framework presented be-
low, we convert our item sets back to the sets of
atomic features, abstracting away from the partic-
ular values used for binarization.

The JIM-based feature induction algorithm relies
on several parameters: the feature filtering thresh-
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olds (for removing too rare or too common features),
the minimal Jaccard index for the JIM algorithm and
the thresholds thr+ and thr− for selecting good
item sets after the reranking step. We fit these pa-
rameters on the development set.

4.2 Entropy Guided Feature Induction

Fernandes et al. (2012) have proposed using Entropy
Guided Feature Induction (EFI) for coreference res-
olution and have shown that it significantly improves
the performance of their system. Below we provide
a brief overview of the EFI approach, referring the
reader to the original paper for further details.

The system works at two stages, using two differ-
ent machine learning techniques. At the first stage,
the EFI algorithm relies on a decision tree, generated
from the training data, to obtain meaningful feature
combinations. In particular, the algorithm extracts
all the paths leading from the root of the induced
tree to any node. Each node in a tree corresponds to
a specific value assigned to some atomic feature and
therefore each path corresponds to a conjunction of
atomic features with assigned values. Fernandes et
al. (2012) abstract over the values, thus, converting
each path to a conjunction of atomic features. These
conjunctions, or combinations, are then used to gen-
erate numerous binary features to be used by a linear
classifier at the second stage.

Since the induced tree might get very large, the
EFI algorithm might lead to conjunctions of too
many atomic features, generating, in turn, too many
binary features. To address the issue, Fernandes et
al. (2012) prune their tree at the depth 5. In our im-
plementation, we follow the algorithm of Fernandes
et al. (2012) with no adjustments or alterations.

5 Experiments

Our first group of experiments assesses the quality
of the baseline setting, with no feature combina-
tion techniques. We compare against the CoNLL
submission of the BART group to make sure that
our (Soon et al., 2001)-style mention-pair baseline
shows an acceptable performance. We then evalu-
ate the EFMP approach to confirm that it provides
much higher performance figures and is on par with
the state of the art. In our second experiment, we use
EFMP to assess the impact of the feature combina-

tion techniques on the performance of a coreference
resolution system.

5.1 Experimental Setup

We evaluate our approach on the English portion of
the CoNLL-2012 dataset (Pradhan et al., 2012). To
asses the system’s performance, we use the official
scorer, provided by the CoNLL organizers. How-
ever, the version used at the competition time (v4)
was later found to contain errors and replaced with
another implementation (v7). This procedure re-
sulted in a performance drop for all the systems, but
didn’t affect their ranking. To facilitate comparison
against previous and future studies, we report both
v4 and v7 MELA scores. All the experiments are
performed on automatically extracted mentions and
use no gold information.

For our study, we use the publicly available
BART toolkit (Uryupina et al., 2012). We have
made several adjustments, starting from the con-
figuration, suggested in the BART distribution for
the OntoNotes/CoNLL data. Thus, we have mod-
ified the mention detection module, improving the
treatment of coordinations and eliminating numeric
named entities (PERCENT, MONEY etc). We
have replaced the original split architecture with
a single-classifier approach to be able to estimate
the impact of our feature combination techniques
in a more principled way. We have also re-
placed Decision Trees (Weka J48) with the Lib-
Linear SVM package, to get a classifier outputting
reliable confidence values, as needed by EFMP.
We have considerably expanded the feature set,
mainly reimplementing features from the winning
system of CoNLL-2012 (Fernandes et al., 2012).
Altogether, we have around 170 individual fea-
tures (string, nominal or binary values), correspond-
ing to around 20k features after the binarization
step. The full list of our feature templates can be
found at http://bart-coref.eu/papers/
sem15-suppl.pdf.

Finally, we have augmented BART with a rule-
based prefiltering module, motivated by Stanford
Sieves (Lee et al., 2011), the winning approach of
the CoNLL-2011 shared task. Our sieve-style pre-
filtering algorithm splits all the training instances
into confidently positive, confidently negative, irrel-
evant and relevant. To implement the prefiltering
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development test
v4 v4 v7

BART CoNLL-2012 submission
- 56.12 50.02

simplified reimplemented BART submission
WEKA (j48) 56.02 55.84 49.83
SVM (Liblinear) 48.31 47.29 39.17

-*-, all features
WEKA (j48) 56.53 55.98 49.84
SVM (Liblinear) 49.83 48.11 40.04

best-link, all features
SVM (Liblinear) 59.71 59.03 55.21

EFMP, features from BART submission
SVM (Liblinear) 57.40 56.16 50.65

EFMP, all features
SVM (Liblinear) 60.02 59.12 55.38

Table 2: Baseline performance vs. plain EFMP: MELA
score, different versions of the CoNLL scorer.

module, we have started with the original sieves and
the version used by Fernandes et al. (2012). We have
changed some sieves and introduced several addi-
tional filters (cf. Table 1).

5.2 Baselines vs. EFMP

Table 2 shows the performance levels for different
baseline algorithms, learners and features on both
CoNLL-2012 development and test sets. Note that
the development set was used for parameter tuning
and does not therefore provide an accurate estima-
tion of the system’s performance.

The results suggest that our simplified version of
the BART CONLL-2012 system can be considered
an adequate starting point: it only shows a very mi-
nor performance drop, compared to the original sub-
mission (we believe that this drop can be attributed
to the simpler no-split architecture that we are
adopting in this study). The (Soon et al., 2001)-style
mention-pair model, however, suffers from several
problems. First of all, its performance is simply
not good enough: thus, the winners of the CoNLL-
2012 shared task reported a v4 score of 63.37 on
the test data. With a v4 score of 55.84, our sys-
tem would have achieved the 12th place in the com-
petition (out of 15+1). Second, this approach only
works with the decision tree-based classifier: with

SVMs, the performance gets much lower. We be-
lieve that this can be caused by several factors: (a)
decision trees perform some sort of feature combina-
tions, whereas Liblinear only relies on a sum of indi-
vidual features for its classification and (b) the (Soon
et al., 2001)-style model employs different sampling
strategies for training and testing data (in fact, test-
ing instance are sampled dynamically, based on the
decisions made by the classifier so far), leading to a
misfit between the two sets that is more problematic
for Liblinear. Third, even with the decision trees,
the system performance does not improve substan-
tially when we add a lot of manually engineered
high-quality features.

The EFMP model, on the contrary, shows promis-
ing performance figures. With an F-score of 59.12,
the system would have achieved the 8th place in the
CoNLL-2012 competition, within the cluster of very
similarly performing systems on places 2–8(9). It
must be stressed that EFMP is a very simple and fast
algorithm, much less complex than any of the high-
performing CoNLL systems.

We have also evaluated EFMP against a mention-
pair model with the same sieve-style prefiltering and
a best-link decoder (Table 2, row 6). As the results
suggest, the best-link decoder shows a better perfor-
mance level compared to (Soon et al., 2001), since
it relies on the most confident positive links. The
EFMP decoder, however, brings a further improve-
ment, by incorporating and propagating information
on confident negative links as well.

5.3 Feature combinations

In our second experiment, we investigate the appli-
cability of JIM to coreference resolution, comparing
it against EFI. The latter has been proven to yield a
performance gain of up to 10%, leading to a system,
significantly outperforming all the other competitors
at the CoNLL-2012 shared task. While the impact of
EFI on the system of Fernandes et al. (2012) cannot
be underestimated, the following points need further
clarifications: (a) the algorithm of Fernandes et al.
(2012) shows only very moderate performance with-
out EFI—it is not yet clear if EFI is equally benefi-
cial for more competitive approaches; and (b) the
system of Fernandes et al. (2012) relies on a rela-
tively complex model—it is not clear how model-
specific the benefits of EFI are.
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Confidently negative
Expletive Mi or Mj is an expletive pronoun
Span one mention spans over the other
Agreement Mi and Mj disagree in number, gender or semantic class
Syntax Mi and Mj violate contra indexing constraints (c-command etc)
SpeakerAliasProFalse heuristics for 1/2 person pronouns, based on the speaker value
Pronouns Mi is a pronoun, Mi and Mj disagree in person (respecting the speaker)

Confidently positive
SpeakerAliasPro heuristics for 1/2 person pronouns, based on the speaker value
SpeakerAliasNE heuristics for 1 person pronouns (Mj) and NE (Mi), based on the speaker
SameNE Mi and Mj are exactly matching NEs

Irrelevant
ProNonpro Mj is a pronoun, Mi is not a pronoun
DistantPro Mj is a pronoun, Mi is more than thr1 sentences away (dist(Mj , Mi) > thr1)
DistantNP Mj is a common NP, dist(Mj , Mi) > thr2, head nouns of Mi and Mj differ
DistantNE Mj is an NE, dist(Mj , Mi) > thr2, Mi and Mj do not match

Table 1: Sieves for pre-filtering of mention pairs: each sieve is applied to a pair of mentions {Mi, Mj}, i < j, where
Mi is a candidate antecedent and Mj is a candidate anaphor.

EFI and JIM use very different intuitions for com-
bining atomic features. It is therefore not surprising,
that the outputs of these two algorithms are different.
Figure 1 summarizes the distribution of EFI vs. JIM-
induced combinations of different lengths, normal-
ized by the total number of combinations extracted
by each method. EFI outputs around 20 times more
sets than JIM (2k vs. 90). Most of them, however,
are too long and do not provide good features. By
definition, EFI cannot produce a lot of short combi-
nations, since all the EFI paths must start from the
root. JIM, on the contrary, tends to produce com-
binations of smaller lengths that are more likely to
yield high-quality features.

Table 3 shows the performance of EFMP, aug-
mented with EFI or JIM-induced features. We see
that both techniques bring an improvement over the
plain EFMP (significant, per-document t-test, p <
0.05). Even though JIM produces much fewer com-
binations, it still outperforms EFI (p < 0.05).

5.4 EFMP and State of the art

Table 4 compares the performance level of the
EFMP approach, plain and enhanced with the JIM-
based feature induction module, against the top 5
CoNLL-2012 systems on the CoNLL-2012 test set.

As the results show, the EFMP approach achieves

Figure 1: Normalized combination length for JIM and
EFI: number of induced sets of size 1..9, 10+ divided by
the total number of induced sets

results comparable to the state-of-the-art. At the
same time, it’s much faster than more complex ap-
proaches. The vast majority of high-performance
coreference resolution systems (in particular, the
CoNLL-2012 winning algorithm by Fernandes et al.
(2012)) rely on complex structural representations
and are therefore slow at the training stage. Our sys-
tem only needs a simple binary mention-pair classi-
fier that can be trained very efficiently. Some high-
performance approaches rely on the same classifier,
postponing a heavy global inference step to the de-
coding stage, for example, through Integer Linear
Programming (Denis and Baldridge, 2009; Finkel
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development test
v4 v4 v7

EFMP, all features, SVM
none 60.02 59.12 55.38
EFI 61.66 60.75 57.56
JIM 62.53 61.82 59.14

Table 3: Feature combinations, JIM vs. EFI: MELA
score, different versions of the CoNLL scorer.

test
v4 v7

1 fernandes 63.37 60.65
EFMP+JIM 61.82 59.14
2 martschat 61.31 57.68
3 bjorkelund 61.24 57.42
EFMP 59.12 55.38
4 chang 60.18 56.10
5 chen 59.69 54.52

Table 4: EFMP and top-5 CoNLL-2012 systems: MELA
score, systems ranked by the v7 score on the test set.

and Manning, 2008). While these systems have the
same training requirements as EFMP, their decod-
ing (ILP with binary variables) is known to be NP-
complete. In practice, ILP-based approaches incor-
porating any forms of global modeling via transitiv-
ity constraints (Denis and Baldridge, 2009; Finkel
and Manning, 2008) are known to be particularly
slow. Our simple decoding algorithm runs in O(p ∗
log(p)), where p is the total number of mention
pairs: for the plain EFMP, p = n ∗ (n − 1)/2, for
the EFMP with sieves, p = const∗n, where n is the
number of mentions in the document.

6 Conclusion

In this study, we advocate an easy-first mention-pair
model (EFMP). This approach combines the sim-
plicity of mention-pair models with the high perfor-
mance level of state-of-the-art systems. We believe
that several research lines are open in the field of
coreference resolution, ours being simple and allow-
ing to focus more on low-level linguistic phenom-
ena. Nevertheless, the approach shows a high per-
formance level, despite the lack of any global infer-
ence (augmented with a feature induction module,

our system would have achieved the second place at
the CoNLL-2012 shared task, outperforming more
complex algorithms). This suggests that there is still
a lot of potential improvement that can be achieved
within more complex frameworks, e.g., structural
approaches that attempt at modeling links interde-
pendence explicitly. One of our directions for future
work involves comparing EFMP against other algo-
rithms effectively combining positive and negative
links, in particular, ILP-based approaches.

The proposed EFMP model allows for a straight-
forward investigation of possibilities for automatic
feature induction. We have adapted the Jaccard Item
Mining algorithm (JIM) to our task and compared
its output against the Entropy-based Feature Induc-
tion (EFI) methodology proposed in the literature,
showing that both techniques yield meaningful fea-
ture combinations and improve the system’s perfor-
mance. Yet, the JIM approach outputs smaller com-
binations, leading to a larger performance increase.

In our future work, we plan to focus further on the
feature induction task, following several research di-
rections. First, we want to apply automatic feature
induction in a multilingual setting. Second, we plan
to investigate other feature induction techniques: (i)
comparing various similarity measures alternative to
the Jaccard index in a JIM-style setting, (ii) trying to
run EFI on different samples of the training set to ob-
tain different decision trees and (iii) combining JIM
and EFI-induced features. Finally, we want to ver-
ify our hypothesis that complex features represent
meaningful linguistic combinations and as such can
be used to enhance the performance level of more
complex algorithms. This again would bridge the
work on mention-pair and more advanced models.
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