
Proceedings of Recent Advances in Natural Language Processing, pages 188–197,
Varna, Bulgaria, Sep 2–4, 2019.

https://doi.org/10.26615/978-954-452-056-4_022

188

Abstract

In this paper we study the performance of
several text vectorization algorithms on a
diverse collection of 73 publicly available
datasets. Traditional sparse vectorizers like
Tf-Idf and Feature Hashing have been
systematically compared with the latest
state of the art neural word embeddings like
Word2Vec, GloVe, FastText and character
embeddings like ELMo, Flair. We have
carried out an extensive analysis of the
performance of these vectorizers across
different dimensions like classification
metrics (.i.e. precision, recall, accuracy),
dataset-size, and imbalanced data (in terms
of the distribution of the number of class
labels).
Our experiments reveal that the sparse
vectorizers beat the neural word and
character embedding models on 61 of the
73 datasets by an average margin of 3-5%
(in terms of macro f1 score) and this
performance is consistent across the
different dimensions of comparison.

1 Introduction

The use of text vectorization for NLP applications
has its roots in information retrieval and allied
fields for measuring semantic similarity as
enshrined by Jones (1972). Traditional methods for
converting text into a fixed length vector include a
bag of words representation (Zelling, 1954), where
each word in the vocabulary is represented by a
unique index, Tf-Idf builds upon this by weighting
the frequency of each word by the inverse count of
its document occurrence thereby mitigating the
noise induced by Zipfian distribution of words in
natural language. These vector space models are
often referred to as sparse discrete representations
owing to the large number of zeros that pre-
dominate their vector representations. Building on
this foundation, research direction was aimed at

generating continuous distributional semantics of
text using factorization of word co-occurrence
matrix as evinced in Latent Semantic Analysis
(Dumais et. al, 1988, 2004). These SVD (Singular
Value Decomposition) based approaches form the
precursors of modern topic modeling (Blei et. al,
2003, 2002). Feature hashing often referred to as
the hashing trick (analogy to the kernel trick)
involves using a non-cryptographic hash function
to convert text (i.e. word tokens) to a
corresponding numerical representation, these
representations are made to be uniformly
distributed by including a secondary hashing
function which alters the sign bit of the output of
the first hashing function. These have been shown
to have provable error bounds (Weinberger et al,
2009) and have been previously used for
collaborative spam filtering and large scale multi-
task learning (Attenberg et al, 2009, Weinberger et
al, 2009).
The use of the word neural word embeddings was
first coined by the authors (Bengio et al, 2003) in
their landmark paper which showed the efficacy of
using hidden layer representations for measuring
semantic similarity between words. Building upon
this, it was further demonstrated by (Collobert et
al, 2011) that unsupervised pre-training of word
vectors preserved their syntactic and semantic
similarities which lead to state of the art results on
many downstream tasks. But it wasn’t until
introduction of Word2Vec (Mikolov et. al, 2013)
that neural word embeddings became mainstream,
this in a sense opened the flood gates of research
into these models. GloVe (Pennington et. al, 2014)
uses a log-bilinear regression model that combines
the advantages of the two major model families in
the literature - global matrix factorization and local
context window methods. Enriching word vectors
with subword information has proven to be
effective as can be seen in fastText(Bojanowski
et.al, 2017). Recent embedding models like ELMo

Sparse Victory – A Large Scale Systematic Comparison of
 Count-Based and Prediction-Based Vectorizers for Text Classification

Rupak Chakraborty
Adobe Inc, India

rupak97.4@gmail.com

Kapil Arora
Adobe Inc, India

karora@adobe.com

Ashima Elhence
Adobe Inc, India

elhenceashima@gmail.com

189

(Peters et. al, 2018) use masked language modeling
and textual entailment tasks to generate context-
sensitive character-level representations. In the
same vein, Flair embeddings (Akbik et. al, 2018)
leverage the internal states of a trained character
language model to produce a novel type of word
embedding which the authors allude to as
contextual string embedding. Moving from
individual word representations to document and
phrase level representation, we observe a less
spectacular retinue of research work. Notable
among these are Skip-Thought (Kiros et al, 2015)
and InferSent (Conneau et al, 2017). Recently
proposed Universal Sentence Encoder (Cer et. al,
2018) which uses multi-task transfer learning
based on the transformer architecture (Vaswani et.
al, 2017) to deliver promising results on several
natural language inference tasks.

In light of these prolific advances made in the
field of text vectorization, it becomes necessary to
evaluate the different algorithms on downstream
tasks and juxtapose their performance with the
traditional non-neural counterparts. Existing
evaluations (Baroni et. al, 2014) have only focused
on the semantic aspect of these representations
while ignoring tasks like text classification. Even
when comparisons are made on benchmarks
similar to the GLUE benchmark (Wang et. al,
2018), they are almost always made with state of
art deep neural network based classifiers, the non-
neural classifiers like Random Forests, SVMs and
GradientBoosting are left out. To the best of our
knowledge there is no existing research which
comprehensively evaluates the performance of
modern text vectorizers on text classification tasks,
it is this research gap which we want to bridge in
the present study. The main contributions of the
paper are the following – 1. We have collected,
curated and standardized a set of 73 different
datasets which cover all aspects of text
classification in particular and language modeling
in general. 2. We have extensively analyzed the
performance of neural vectorizers like Word2Vec,
GloVe, FastText, ELMo and Flair on these datasets
across many dimensions like dataset-size, class
imbalance, classification metrics and juxtaposed it
with their count-based non-neural alternatives like
Feature Hashing and Tf-Idf. 3. We have also
reported results on the performance of traditional
ML classifiers, since our main aim is to study the
efficacy of vectorization algorithms we haven’t
included any neural network based classifiers in

the present study. 4. Our benchmark contains 73
datasets in comparison to GLUE which has only
10, thereby making it more diverse and
challenging. Finally, we have made our source
code++, datasets** (including train and test splits),
result files and all other necessary information
publicly available so that, researchers can
reproduce our results and further the progress in the
field. While not central to the study we have also
carried out an interpretation analysis on the
predictions of these vectorizers by using model
agnostic, locally interpretable explanations
(Riberio et. al, 2016), the results are not included
in the paper, however interested readers are
encouraged to refer to Appendix A for more details.

The paper is organized as follows – Section 1
introduces the paper and gives an overview of the
prior research work. Section-2 provides details of
our datasets and the models used. Section-3
elucidates the approach we have taken for our
experiments. Section-4 presents the results of our
experiments, including an extensive analysis.
Section-5 concludes the paper and provides useful
future research directions.

2 Data & Model Details

We have collected the datasets from a variety of
online sites like Kaggle, Crowdflower (now known
as FigureEight), DataTurks, UCI repository and
others. They have been grouped into 8 categories
for ease of analysis, these are – emotion, sentiment,
reviews, medical, general classification, news,
spam-fake-hate-ironic and other. The general
classification category set includes things like
gender classification, website categorization
weather and disaster detection from tweets etc. The
other category set includes a set of language tasks
like natural language inference, duplicate question
detection, objectivity-subjectivity analysis which
have been recast in a classification framework to
promote uniformity. Details about the metadata of
each category is present in table 1. All the end tasks
are different text categorizations ranging from
classification of sentiments, emotions, news
articles, reviews, gender, hate speech detection etc.
All the datasets have been standardized in a
common format, this format contains only two
fields one for the text data other for the class label.
Refer to Appendix B for necessary details about the
data standardization process. As can be inferred
from table 1, all the categories contain more than a

++Source Code - https://tinyurl.com/y23j3ygd
**Datasets - http://tinyurl.com/yyofx77r

https://tinyurl.com/y4q4dhsl
https://www.kaggle.com/datasets
https://www.figure-eight.com/
https://dataturks.com/
https://archive.ics.uci.edu/ml/index.php
https://tinyurl.com/yxuegfyd
https://tinyurl.com/y23j3ygd
http://tinyurl.com/yyofx77r

190

million sentences on an average. Out of the 73
datasets 17 contain more than 50K data samples,
39 contain less than 10K data points and 17 contain
between 10K to 50K rows. On a per category basis
we observe that the general classification category
contains the greatest number of datasets whose size
is greater than 50K, while the sentiment category
contains the maximum concentration of datasets of
size less than 10K. To get an insight into the
distribution of the number of rows per category
refer to the box and whisker plot in figure 1, the y-
axis contains the number of rows on a logarithmic
scale (base 10).

The neural embedding models have been pre-
trained** in the following way - the Word2Vec
model (of dimension 300) and has been trained on
Google News Corpus (100 billion words). For
greater ease of comparison both the GloVe and
fastText models have a dimension of 300 and have
been trained on the Common Crawl Corpus (640
billion words). The ELMo embedding has also
been trained on Google News Corpus and as for the
Flair embeddings we have used the original model
provided by the authors which has been trained on
English Wikipedia text. To provide a level-ground

of comparison with the neural counterparts both
the Tf-Idf and Feature Hashing vectorizers have a
dimension of 300. For the hashing vectorizer, a
variant of Murmurhash3(Appleby, 2015) has been
used to project the word tokens in a lower
dimensional embedding space.

3 Approach

A systematic and comprehensive comparison of
the vectorizers entails evaluating them across
several dimensions, reporting the results using
relevant metrics and then interpreting the results.
The dimensions considered in the present study are
the following – 1. Dataset-size, we consider 3
mutually exclusive and exhaustive ranges: less
than 10K, greater than 50K and between 10K and
50K, these ranges have been chosen because they
provide the most coverage across the selected
datasets. For each of these ranges we analyze the
performance on a per category basis. 2. Imbalance
measure as reflected in the distribution of number
of class labels (using equation 1).

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = ∑ |𝑛𝑛1−𝑛𝑛2|

𝑛𝑛1+𝑛𝑛2∀ 𝑛𝑛1,𝑛𝑛2 (1)

In equation 1, n1 and n2 are the number of samples
belonging to classes Ci and Cj. For a given dataset
containing N different classes we find the ratio of
the absolute difference of the number of data-
points in the two classes to the total number of data
points in the two classes, we calculate this for all
pairs of classes. For a perfectly balanced dataset
this value will be zero, higher the value more will
be the imbalance measure, there is no upper bound
on the value. For the imbalance measure we
calculate the terciles and divide the datasets into
three parts based on the interval of these tercile
values they are – [0, 1.03), [1.03, 4.46), [4.46, ∞],
where ∞ denotes the max value across all the
datasets.
As mentioned in section 1, we have only
considered non-neural classifiers as our main aim
is to study the performance of vectorizers. The
classifiers included in the present study are
Random Forests, GradientBoost, AdaBoost, SVM
(Linear Kernel) and Logistic Regression. These
have been included because they represent a
healthy mix of both bagging and boosting
approaches along with linear models. For each
dataset we measure its performance across all
combinations of vectorizers and classifiers.

Category # Datasets # Avg
Tokens

Avg
Sentences

Sentiment 16 1.1 *108 1.2 * 107
Emotion 2 1.6 * 107 2.1 * 106
Reviews 7 1.2 * 109 2.8 * 107

News 8 3.3 * 108 4.2 * 107
General

Classification
17 1.9 * 108 4.8 * 106

Spam-Fake-
Hate-Ironic

10 8.6 * 107 2.0 * 106

Medical 6 2.9 * 108 1.8 * 107

Other 7 1.8 * 108 1.4 * 107

Figure 1: Box plot of distribution of rows per category

** Pre-trained Models Download Link-
https://tinyurl.com/y2mlnhdf

Table 1: Details of datasets on a category basis

https://tinyurl.com/y2mlnhdf

191

4 Experiments & Results

All the experiments have been performed on a 32
GB Intel i7 processor, with a clock rate of 3.40
GHz. Since all the embedding models have been
pre-trained, using a dedicated GPU doesn’t result
in a significant speedup, as we have noticed an
increase of only 1.5x - 2x while using a Nvidia
GTX Geforce 1080 Ti, 11 GB graphics processor.
The total training time for all combinations of
datasets, vectorizers and classifiers is more than 3
weeks.
We have carried out basic pre-processing of the
text data like – case normalization, stopword
removal, punctuation and special character
removal followed by word tokenization, though it
will be interesting to see the effects of more
sophisticated pre-processing like lemmatization on
the results. The hyperparameter settings of all the
classifiers have been set to default values as used
in the scikit-learn library except for number of trees
in the Random Forest model which has been set to
51. Figures 2 and 3 provide a global view of the
macro f1 score of the vectorizers and classifiers
averaged across all the datasets. For a given
vectorizer we have calculated the mean
performance metric (precision, recall, accuracy)
across all classifiers and datasets. As can be
inferred from figure 2, tf-idf and feature hashing
consistently outperform their heavy weight neural
counterparts, among the neural vectorizers flair
embeddings demonstrate competitive performance
on almost all datasets. The violin plots shown in
figures 4 and 5 elucidate the performance of the
classifiers and vectorizers (based on accuracy)
under the same conditions as figures 2 and 3. We
can observe the same trends in these figures as we
have previously seen in figures 2, 3. With respect
to classifiers, Random Forests, Gradient Boost and
Logistic Regression are always among the top
performing trio. Apart from this, we have also seen
that our results* conform to widely established

trends like the negative correlation between the
increase in number of classes and classifier
performance metrics, we will expand upon this
more in the section on analyzing performance
metrics based on class imbalance.

4.1 For Size Less Than 10K

Tables 2 and 5, illustrate the performance of
vectorizers and classifiers for all datasets whose
size is less than 10K. The results have been
grouped on a per category basis, in the category
column the number inside the brackets denotes the
number of datasets which fall into that category for
the given dataset size range. The mean values of
Precision Recall and Accuracy have been
juxtaposed by following the notation Pr./Rec./Acc.
We notice a wide variance in the performance
metrics across the categories especially for reviews
and emotion. The reason for this is that the emotion
category has a dataset which has 18 classes while
only containing 2524 samples, same is the case for
reviews which has a dataset containing 41 classes.
It is this small sample size and sparse data problem
which reflects in the suboptimal performance of
the vectorizers and classifiers. The number of class
labels for all the other datasets in this size range lies
between 2-5. Again, we observe that, tf-idf and
feature hash come out on top consistently beating
the neural counterparts (except for Flair) by a
margin of 10% (in terms of accuracy). On the
classifier front again Random Forests, Gradient
Boost and Logistic Regression edge out SVMs and
AdaBoost. In context of the vectorizers we would
like to make a case for feature hashing, extolling its
many virtues which include – low computational
footprint, the absence of a fixed vocabulary,
theoretical error bounds and competitive
performance, which serve to make it an ideal
candidate for establishing strong baselines.

Figure 2: Vectorizer f1-score
(global)

Figure 3: Classifier f1-score
(global)

Figure 4: Classifier accuracy
(global)

Figure 5: Vectorizer accuracy
(global)

* All result files can be accessed from -
https://tinyurl.com/y5e4hftt

https://tinyurl.com/y5e4hftt

192

Category
Name

GloVe
(Pr./Rec./Acc.)

FastText
(Pr./Rec./Acc.)

Word2Vec
(Pr./Rec./Acc.)

ELMo
(Pr./Rec./Acc.)

Tf-Idf
(Pr./Rec./Acc.)

FeatureHash
(Pr./Rec./Acc.)

Flair
(Pr./Rec./Acc.)

Sentiment
(10)

41.6/38.1/59.5 42.9/38.9/59.9 42.9/38.2/59.4 36.1/35.1/57.1 47.0/42.2/63.3 45.0/41.3/61.8 43.3/38.9/60.0

Emotion (1) 14.3/10.3/21.2 12.5/9.1/20.4 11.7/9.6/20.8 7.9/7.0/19.0 14.2/10.2/19.1 15.0/10.6/18.3 8.6/8.2/18.6

General
Classification

(8)

56.8/49.5/64.8

55.9/49.2/64.6

54.3/48.6/64.0

46.8/44.9/61.5

60.7/55.3/68.3

58.2/51.8/65.1

56.5/52.2/65.0

Other (5) 59.7/56.8/67.8 59.7/56.4/67.4 59.1/56.6/67.6 52.9/52.1/65.5 61.5/55.6/69.8 57.1/53.3/68.6 59.1/52.8/67.0

Reviews (2) 52.1/37.6/83.4 44.2/37.5/83.2 52.1/37.6/83.2 45.6/37.7/83.1 57.4/43.9/85.4 50.0/43.6/84.1 55.8/42.2/84.0

Spam-Fake-
Ironic-Hate

(5)

75.9/71.0/82.6

78.0/72.4/83.7

77.8/72.4/83.6

70.7/64.8/81.0

84.3/79.3/87.6

80.0/74.9/84.5

79.9/76.3/85.4

Medical (4) 45.2/40.2/70.3 42.9/40.3/70.1 45.6/40.8/70.3 40.6/36.9/68.7 53.8/45.9/73.8 47.3/42.2/70.6 49.3/42.2/71.3

News (4) 50.6/49.4/66.6 48.6/48.3/66.2 48.9/48.7/66.1 35.9/36.6/54.3 63.0/60.0/77.6 58.1/55.8/73.2 63.2/60.9/78.4

Category
Name

GloVe
(Pr./Rec./Acc.)

FastText
(Pr./Rec./Acc.)

Word2Vec
(Pr./Rec./Acc.)

ELMo
(Pr./Rec./Acc.)

Tf-Idf
(Pr./Rec./Acc.)

FeatureHash
(Pr./Rec./Acc.)

Flair
(Pr./Rec./Acc.)

Sentiment (4) 54.5/45.5/60.8 55.8/46.7/61.7 55.5/46.4/61.5 52.9/42.2/59.2 64.0/57.0/68.6 60.1/52.7/65.2 57.6/49.9/63.0

Emotion (1) 14.9/11.9/27.5 13.9/12.4/28.3 14.2/12.3/28.0 13.7/10.7/25.7 23.1/16.0/31.5 15.8/13.8/28.4 14.8/12.6/28.6

General
Classification

(6)

47.4/41.9/58.9

48.5/43.1/59.9

48.8/42.9/59.6

41.8/37.6/54.7

60.4/56.7/68.5

57.4/52.0/65.1

52.3/46.1/63.1

Reviews (1) 35.9/24.3/56.6 33.9/24.3/56.6 34.7/24.4/56.6 30.9/23.1/54.9 44.1/33.2/60.9 43.4/29.6/58.7 36.1/25.2/55.4

Spam-Fake-
Ironic-
Hate(4)

61.4/51.8/76.7

63.4/53.2/77.6

63.5/53.0/77.4

58.5/47.4/74.8

61.5/54.5/79.0

60.7/51.4/76.9

67.0/54.2/78.3

News (1) 15.9/9.2/50.5 15.7/9.0/49.8 16.2/9.5/51.7 14.8/9.0/46.6 37.1/29.3/75.4 44.9/36.7/74.6 23.3/16.7/59.2

Category
Name

GloVe
(Pr./Rec./Acc.)

FastText
(Pr./Rec./Acc.)

Word2Vec
(Pr./Rec./Acc.)

ELMo
(Pr./Rec./Acc.)

Tf-Idf
(Pr./Rec./Acc.)

FeatureHash
(Pr./Rec./Acc.)

Flair
(Pr./Rec./Acc.)

Sentiment (2) 58.5/52.0/61.7 57.3/50.7/62.2 55.6/50.5/61.9 54.0/46.1/56.6 56.0/48.6/59.3 54.6/49.2/59.3 64.1/55.2/62.0

General
Classification

(3)

34.5/29.3/45.4

34.9/30.6/45.6

34.1/29.0/44.3

29.0/26.7/42.6

34.6/31.7/46.0

35.1/29.7/44.9

34.4/29.8/44.5

Other (2) 53.7/48.2/59.6 55.2/49.2/60.5 54.9/49.2/60.5 48.3/46.7/57.8 48.3/44.4/54.0 49.7/46.9/55.9 54.3/47.2/57.6

Reviews (4) 33.7/22.0/44.0 37.0/25.0/48.1 34.8/24.2/45.8 30.6/21.8/46.1 38.0/28.4/54.0 38.5/28.4/54.3 37.2/27.4/52.2

Spam-Fake-
Ironic-
Hate(1)

89.2/63.4/92.5

90.5/65.9/93.0

90.8/64.8/92.5

76.1/55.2/91.3

82.1/62.6/92.3

80.9/58.4/90.3

83.0/63.5/91.7

Medical (2) 64.4/61.7/68.5 64.5/62.0/69.7 62.0/59.9/69.5 60.9/56.8/65.0 67.3/65.5/70.1 64.7/62.9/70.2 65.4/63.6/68.5

News (3) 40.0/35.3/42.8 42.2/38.1/44.4 42.1/38.2/45.3 36.8/29.3/34.0 42.4/40.7/47.7 42.0/39.4/46.1 41.7/37.7/47.6

Table 2. Mean Performance Metrics on a category basis for all Vectorizers (dataset size less than 10K)

Table 3. Mean Performance Metrics on a category basis for all Vectorizers (dataset size between 10K and 50K)

Table 4. Mean Performance Metrics on a category basis for all Vectorizers (dataset size greater than 50K)

193

Category Name RandomForest
(Pr./Rec./Acc.)

GradientBoost
(Pr./Rec./Acc.)

AdaBoost
(Pr./Rec./Acc)

Logit Regression
(Pr./Rec./Acc.)

SVM (Linear)
(Pr./Rec./Acc.)

Sentiment (10) 46.5/40.2/60.8 44.7/39.3/60.6 38.4/37.4/57.7 41.1/38.4/60.9 42.7/39.4/60.7

Emotion (1) 15.9/11.2/20.5 13.9/9.9/18.5 5.4/6.2/19.2 11.2/8.0/20.5 14.0/11.3/19.5

General
Classification

(8)

58.7/51.7/66.0

58.2/52.0/66.2

50.2/45.9/59.3

53.8/50.3/66.4

57.1/51.2/65.8

Other (5) 61.6/57.1/68.6 60.1/55.6/68.0 58.0/54.8/66.2 54.0/51.8/68.2 58.2/55.0/67.6

Reviews (2) 69.8/51.9/87.1 64.1/47.6/85.8 38.8/33.5/81.1 36.8/30.9/82.3 45.7/36.2/82.7

Spam-Fake-
Ironic-Hate (5)

80.6/73.5/84.8 80.8/73.9/85.0 76.1/73.4/82.7 74.0/70.7/83.9 78.2/73.6/84.0

Medical (4) 49.1/42.3/71.9 46.5/41.7/71.6 42.9/39.8/67.7 46.1/40.1/71.6 47.4/42.0/71.0

News (4) 53.6/51.6/69.5 56.5/53.1/70.7 47.9/46.8/63.4 51.8/52.4/70.4 53.3/52.7/70.5

Category Name RandomForest
(Pr./Rec./Acc.)

GradientBoost
(Pr./Rec./Acc.)

AdaBoost
(Pr./Rec./Acc)

Logit Regression
(Pr./Rec./Acc.)

SVM (Linear)
(Pr./Rec./Acc.)

Sentiment (4) 58.7/48.3/62.8 59.1/47.5/63.0 52.6/46.8/60.5 50.0/46.2/62.1 57.6/48.5/63.1

Emotion (1) 15.5/12.7/27.3 16.9/13.6/29.1 12.9/10.6/24.9 18.1/13.5/29.8 16.4/13.9/30.2

General
Classification

(6)

54.9/46.3/61.9

51.6/46.8/62.1

43.8/41.7/56.6

49.9/46.2/62.1

53.0/47.5/63.0

Reviews (1) 39.5/25.8/56.9 36.9/25.7/57.2 35.2/26.8/56.6 35.4/26.7/58.0 38.8/27.4/58.1

Spam-Fake-
Ironic-Hate (4)

76.9/60.1/82.9 65.1/52.2/76.6 51.2/48.4/73.9 55.7/48.6/75.8 58.6/50.2/76.2

News (1) 41.5/22.8/64.9 27.5/21.6/59.8 1.7/2.3/41.5 21.6/17.2/60.8 28.1/21.7/63.6

Category Name RandomForest
(Pr./Rec./Acc.)

GradientBoost
(Pr./Rec./Acc.)

AdaBoost
(Pr./Rec./Acc)

Logit Regression
(Pr./Rec./Acc.)

SVM (Linear)
(Pr./Rec./Acc.)

Sentiment (2) 57.1/52.3/61.4 58.0/46.8/60.1 55.9/44.1/61.2 62.4/62.5/62.4 53.3/47.0/58.8

General
Classification

(3)

41.5/34.2/51.3

39.5/32.8/51.9

38.5/31.4/45.9

37.0/33.5/50.9

23.2/22.2/32.5

Other (2) 55.0/52.0/61.3 53.9/47.4/58.8 48.8/45.2/54.7 46.2/43.7/53.6 48.4/44.4/55.6

Reviews (4) 47.7/30.4/53.0 45.1/27.7/61.4 28.6/22.4/44.1 36.0/27.1/53.2 25.7/20.2/43.3

Spam-Fake-
Ironic-Hate (1)

89.7/62.1/92.3 88.8/63.7/92.5 84.0/64.5/92.0 75.6/56.0/90.7 79.1/62.4/91.4

Medical (2) 69.3/67.7/73.8 63.1/61.0/70.0 33.7/36.3/46.7 59.7/57.0/65.4 63.1/59.5/65.5

News (3) 48.8/43.1/50.8 47.8/46.1/52.5 46.2/45.0/51.4 53.3/51.6/55.8 33.0/27.9//34.6

Table 5. Mean Performance Metrics on a category basis for all Classifiers (dataset size less than 10K)

Table 6. Mean Performance Metrics on a category basis for all Classifiers (dataset size between 10K and 50K)

Table 7. Mean Performance Metrics on a category basis for all Classifiers (dataset size greater than 50K)

194

Category
Name

GloVe
(Pr./Rec./Acc.)

FastText
(Pr./Rec./Acc.)

Word2Vec
(Pr./Rec./Acc.)

ELMo
(Pr./Rec./Acc.)

Tf-Idf
(Pr./Rec./Acc.)

FeatureHash
(Pr./Rec./Acc.)

Flair
(Pr./Rec./Acc.)

Sentiment (4) 69.0/69.0/69.0 69.7/69.7/69.7 69.4/69.3/69.3 62.1/61.7/61.6 74.9/74.1/74.1 71.7/71.4/71.4 69.0/68.2/68.2

General
Classification

(7)

59.4/57.1/65.0

60.5/58.5/66.1

59.6/57.9/65.6

51.4/52.0/60.8

63.4/60.9/67.3

59.2/56.5/63.7

61.2/61.2/67.5

Other (5) 65.1/61.0/71.7 65.5/61.1/71.7 64.8/61.2/71.8 57.6/56.4/69.8 65.2/58.4/71.8 62.2/57.3/71.5 64.1/57.9/72.6

Reviews (1) 80.3/54.8/91.9 64.9/54.2/91.4 79.2/54.3/91.6 69.0/54.5/91.7 82.6/58.1/92.0 73.8/63.1/91.5 84.4/59.5/92.1

Spam-Fake-
Ironic-Hate

(8)

75.3/69.1/80.2

76.7/70.7/80.9

76.5/70.4/80.8

69.6/63.2/77.7

80.8/75.0/83.9

76.2/70.8/80.9

77.2/72.8/81.7

Medical (2) 72.2/65.9/84.6 69.1/65.3/87.0 72.5/65.6/86.9 63.4/62.0/85.9 69.4/64.4/83.3 71.1/64.0/85.4 64.5/58.9/93.7

News (3) 64.4/64.1/64.5 62.9/62.6/63.2 63.5/63.3/63.7 43.3/41.6/42.4 80.9/80.1/80.3 71.7/71.5/71.6 83.8/83.6/83.8

Category
Name

GloVe
(Pr./Rec./Acc.)

FastText
(Pr./Rec./Acc.)

Word2Vec
(Pr./Rec./Acc.)

ELMo
(Pr./Rec./Acc.)

Tf-Idf
(Pr./Rec./Acc.)

FeatureHash
(Pr./Rec./Acc.)

Flair
(Pr./Rec./Acc.)

Sentiment (8) 44.8/35.9/58.5 46.9/36.9/59.2 47.2/36.7/58.9 41.5/33.7/58.1 49.7/42.0/62.0 48.5/40.3/60.1 49.4/39.5/60.4

General
Classification

(6)

51.1/42.9/60.9

49.6/42.5/60.6

48.0/41.8/60.1

42.4/38.9/57.7

53.9/48.7/65.6

52.2/45.8/62.2

52.8/47.3/63.2

Other (2) 40.0/38.0/50.1 39.5/37.7/49.9 39.6/38.1/50.4 36.0/35.6/47.6 39.9/38.2/50.4 37.0/37.1/49.4 44.3/37.5/50.2

Reviews (2) 36.0/24.2/37.5 36.2/25.9/35.9 37.9/25.7/34.2 29.4/22.2/36.2 35.9/31.6/41.2 37.9/31.7/42.0 36.3/30.2/39.6

Spam-Fake-
Ironic-Hate

(1)

62.0/42.6/79.2

61.9/44.6/79.8

63.2/44.1/79.9

63.4/38.5/77.7

70.5/63.8/88.0

67.2/55.0/84.7

67.9/43.4/79.5

Medical (1) 54.2/54.0/57.8 55.8/55.8/55.7 56.4/56.3/56.4 52.7/48.0/52.6 67.7/64.8/65.8 61.7/61.9/62.0 59.5/59.5/59.6

News (2) 38.9/37.0/70.8 36.6/36.4/71.4 36.8/36.5/70.7 32.7/34.3/68.7 43.9/39.1/73.9 42.3/37.8/72.6 43.1/38.7/73.5

Category
Name

GloVe
(Pr./Rec./Acc.)

FastText
(Pr./Rec./Acc.)

Word2Vec
(Pr./Rec./Acc.)

ELMo
(Pr./Rec./Acc.)

Tf-Idf
(Pr./Rec./Acc.)

FeatureHash
(Pr./Rec./Acc.)

Flair
(Pr./Rec./Acc.)

Sentiment (4) 26.5/24.1/54.1 26.1/25.2/54.3 25.0/23.4/53.8 22.6/23.1/52.6 33.8/27.9/59.2 29.6/27.3/58.1 23.8/22.6/54.0

Emotion (2) 14.6/11.1/24.4 13.2/10.7/24.3 13.1/11.0/24.4 10.8/8.9/22.3 18.7/13.1/25.3 15.4/12.3/23.3 12.1/10.5/22.9

General
Classification

(3)

32.4/19.4/52.1

32.8/19.7/51.8

35.9/20.6/53.1

27.8/17.8/50.8

55.7/47.5/67.7

52.6/40.4/63.5

40.7/23.4/53.8

Reviews (4) 30.0/19.3/56.2 29.3/21.0/60.3 27.6/20.8/60.1 24.5/20.3/59.6 36.4/27.8/65.8 33.7/24.7/63.3 31.7/25.0/61.4

Spam-Fake-
Ironic-Hate

(1)

47.1/31.7/89.3

53.0/32.5/90.2

52.6/33.4/90.1

41.0/28.0/90.6

32.5/16.5/85.6

41.0/19.8/87.0

58.8/34.9/91.1

Medical (3) 35.6/31.0/64.5 34.2/31.3/65.4 34.6/30.5/65.4 33.4/28.4/62.7 46.5/38.4/68.5 36.8/33.1/63.9 36.6/25.3/66.0

News (3) 15.9/8.4/35.8 15.8/8.3/36.3 15.7/8.4/38.2 14.6/7.0/34.6 25.4/20.1/49.5 30.8/24.2/49.8 25.0/17.0/54.8

Table 8. Mean Performance Metrics on a category basis for all Vectorizers (for imbalance measure between 0.0 and 1.03)

Table 9. Mean Performance Metrics on a category basis for all Vectorizers (for imbalance measure between 1.03 and 4.46)

Table 10. Mean Performance Metrics on a category basis for all Vectorizers (for imbalance measure between 4.46 and ∞)

195

4.2 For Size Between 10K – 50K
Tables 3 and 6 provide an overview of the
performance metrics of the vectorizers and
classifiers under the same conditions as tables 2
and 5 the only difference is that the range of
datasets is between 10K and 50K, since Medical
and Other categories have no datasets in this range,
they haven’t been included in the tables. The trends
observed here are consistent with the ones we have
observed in section 4.1. The average number of
class labels in this range is less than 10 for all
categories except for news, which has a dataset
containing 75 classes and emotion where the
number of class labels is 13 for a given dataset.

4.3 For Size Greater Than 50K
Tables 4 and 7 illustrate the performance metrics
for 17 datasets whose size is greater than 50K, the
emotion category is missing because it has no
datasets in this range. The presence of a dataset
with 27995 class labels in the general classification
category skews the results and leads to the
observed performance metrics, same is the case for
news which has a dataset containing 756 classes.
For all the experiments we have used a train-test
split of 80-20, the seed used for random split is kept
same so the results will be consistent while
reproducing. Again, the trends noticed here are
faithful to the observed trends in section 4.1 and
4.2. Here we would briefly like to mention that our
intention is not to undermine the spectacular
advances of deep learning and state of the art
results it has produced in NLP, we are aware of the
fact that only deep models are capable of scaling in
performance with the increase in data-size,
however it might seem like an overkill in situations
where simpler models do an equally good job.
Refer to figure 6 (dataset used is of a news
classification task), for a case where a neural
embedding (Flair) beats every other non-neural
and neural counterpart (in terms of accuracy).
Figure 7 also illustrates an accuracy heatmap
where the results are more in tune with the general
trends of the study, the dataset used here is one of
agreement-disagreement between sentence pairs.

4.4 Metrics Under Class Imbalance
Tables 8, 9 and10 demonstrate the performance of
the vectorizers across the three selected strata of
imbalance measure. Tf-Idf and Feature Hash
shines in all three cases. As a general trend we have
noticed that the accuracy of the vectorizers
increase when the text is more verbose (i.e. news)
in comparison to limited character content. (i.e.
tweets). Flair embeddings show a competitive
performance (when the imbalance measure is less
than 4.46), sometimes even outperforming the
sparse vectorizers, as per the results aggregated it
is clearly our neural vectorizer of choice. The
violin plots in figures 8 and 9, illustrate the
performance of the vectorizers (macro f1 score
averaged across all datasets and classifiers) under
different ranges of class imbalance (as calculated
using equation 1). In all these cases feature hashing
has the highest median performance as can inferred
from the greatest density of points in the center.
The tf-idf vectorizer has the highest variance in its
performance because of a skew in class
distribution, which in turn skews the performance
of this count-based vectorizer. Word2Vec, FastText
and GloVe have almost similar performance.

5 Conclusion & Future Work
“Neural Embedding models are not a silver bullet”,
it is in this spirit that we have carried out the
present study and reported the results. The analysis
presented here might serve as a starting point for
researchers new to this field, who might be
overwhelmed by the plethora of alternate text
vectorizers available. It will also serve as a strong
baseline for future research direction in the domain
of text classification. In the future we would like to
use neural classifiers (CNNs and RNNs) in place
of traditional ones presently used, so that we can
provide a complete picture of classifier
performance across the entire spectrum. Fine-
tuning models like ELMo, ULMFit (Howard and
Ruder, 2018) and observing the change in results
will be an interesting line of future work.
Additionally, we would also like to explore other
embedding models like BERT (Devlin et. al, 2018)
and CoVe (McCann et.al, 2017).

Figure 6: Heatmap(accuracy)
 for a news classification dataset

Figure 7: Heatmap(accuracy)
for a inference dataset

Figure 8: Performance (f1-score)
for imbalance range [1.03, 4.46)

Figure 9: Performance (f1-score)
for imbalance range [4.46, ∞)

Detailed Interpretation Visualizations -
https://tinyurl.com/yxgf2vuj

https://tinyurl.com/yxgf2vuj

196

References
Karen Sparck Jones. 1972. A statistical interpretation

of term specificity and its application in retrieval.
Journal of documentation 28(1):11–2.

Zellig S Harris. "Distributional structure. Word, 10 (2-
3): 146–162. Reprinted in Fodor, J. A and Katz,
JJ." Readings in the Philosophy of
Language (1954): 33-49.

Susan T Dumais. "Latent semantic analysis." Annual
review of information science and technology 38,
no. 1 (2004): 188-230.

Susan T Dumais, George W. Furnas, Thomas K.
Landauer, Scott Deerwester, and Richard
Harshman. "Using latent semantic analysis to
improve access to textual information."
In Proceedings of the SIGCHI conference on
Human factors in computing systems, pp. 281-285.
Acm, 1988.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
"Latent dirichlet allocation." Journal of machine
Learning research 3, no. Jan (2003): 993-1022.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
"Latent dirichlet allocation." In Advances in neural
information processing systems, pp. 601-608. 2002.

Josh Attenberg, Kilian Weinberger, Anirban Dasgupta,
Alex Smola, and Martin Zinkevich. "Collaborative
email-spam filtering with the hashing trick."
In Proceedings of the Sixth Conference on Email
and Anti-Spam. 2009.

Kilian Weinberger, Anirban Dasgupta, Josh Attenberg,
John Langford, and Alex Smola. "Feature hashing
for large scale multitask learning." arXiv preprint
arXiv:0902.2206 (2009).

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
"Natural language processing (almost) from
scratch." Journal of machine learning research 12,
no. Aug (2011): 2493-2537.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent,
and Christian Jauvin. "A neural probabilistic
language model." Journal of machine learning
research 3, no. Feb (2003): 1137-1155.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S.
Corrado, and Jeff Dean. "Distributed
representations of words and phrases and their
compositionality." In Advances in neural
information processing systems, pp. 3111-3119.
2013.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. "Glove: Global vectors for word
representation." In Proceedings of the 2014
conference on empirical methods in natural

language processing (EMNLP), pp. 1532-1543.
2014.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. "Enriching word vectors with
subword information." Transactions of the
Association for Computational Linguistics5 (2017):
135-146.

Ryan Kiros, Yukun Zhu, Ruslan R. Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. "Skip-thought vectors." In
Advances in neural information processing systems,
pp. 3294-3302. 2015.

 Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. "Supervised learning
of universal sentence representations from natural
language inference data." arXiv preprint
arXiv:1705.02364 (2017).

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant et
al. "Universal sentence encoder." arXiv preprint
arXiv:1803.11175 (2018).

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. "Deep contextualized word
representations." arXiv preprint
arXiv:1802.05365 (2018).

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
"Contextual string embeddings for sequence
labeling." In Proceedings of the 27th International
Conference on Computational Linguistics, pp.
1638-1649. 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. "Attention is all you
need." In Advances in Neural Information
Processing Systems, pp. 5998-6008. 2017.

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. "Dont count, predict! A systematic
comparison of context-counting vs. context-
predicting semantic vectors." In Proceedings of the
52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers), vol. 1, pp. 238-247. 2014.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. "Glue: A
multi-task benchmark and analysis platform for
natural language understanding." arXiv preprint
arXiv:1804.07461 (2018).

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. "Why should i trust you?: Explaining the
predictions of any classifier." In Proceedings of the
22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pp. 1135-
1144. ACM, 2016.

https://tinyurl.com/yxgf2vuj

197

 Austin Appleby. Murmurhash3 64-bit finalizer.
Version 19/02/15. https://code. google.
com/p/smhasher/wiki/MurmurHash3.

Jeremy Howard and Sebastian Ruder. "Universal
Language Model Fine-tuning for Text
Classification." In Proceedings of the 56th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), vol. 1, pp.
328-339. 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. "Bert: Pre-training of deep
bidirectional transformers for language
understanding." arXivpreprint
arXiv:1810.04805 (2018).

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. "Learned in translation:
Contextualized word vectors." In Advances in
Neural Information Processing Systems, pp. 6294-
6305. 2017.

Ajay Patel, Alexander Sands, Chris Callison-Burch,
and Marianna Apidianaki. "Magnitude: A Fast,
Efficient Universal Vector Embedding Utility
Package." In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 120-126.
2018.

	1 Introduction
	2 Data & Model Details
	3 Approach
	4 Experiments & Results
	4.1 For Size Less Than 10K
	References

