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Abstract 

In this paper we study the performance of 
several text vectorization algorithms on a 
diverse collection of 73 publicly available 
datasets. Traditional sparse vectorizers like 
Tf-Idf and Feature Hashing have been 
systematically compared with the latest 
state of the art neural word embeddings like 
Word2Vec, GloVe, FastText and character 
embeddings like ELMo, Flair. We have 
carried out an extensive analysis of the 
performance of these vectorizers across 
different dimensions like classification 
metrics (.i.e. precision, recall, accuracy), 
dataset-size, and imbalanced data (in terms 
of the distribution of the number of class 
labels).  
Our experiments reveal that the sparse 
vectorizers beat the neural word and 
character embedding models on 61 of the 
73 datasets by an average margin of 3-5% 
(in terms of macro f1 score) and this 
performance is consistent across the 
different dimensions of comparison. 

1 Introduction 

The use of text vectorization for NLP applications 
has its roots in information retrieval and allied 
fields for measuring semantic similarity as 
enshrined by Jones (1972). Traditional methods for 
converting text into a fixed length vector include a 
bag of words representation (Zelling, 1954), where 
each word in the vocabulary is represented by a 
unique index, Tf-Idf builds upon this by weighting 
the frequency of each word by the inverse count of 
its document occurrence thereby mitigating the 
noise induced by Zipfian distribution of words in 
natural language. These vector space models are 
often referred to as sparse discrete representations 
owing to the large number of zeros that pre-
dominate their vector representations. Building on 
this foundation, research direction was aimed at 

generating continuous distributional semantics of 
text using factorization of word co-occurrence 
matrix as evinced in Latent Semantic Analysis 
(Dumais et. al, 1988, 2004). These SVD (Singular 
Value Decomposition) based approaches form the 
precursors of modern topic modeling (Blei et. al, 
2003, 2002). Feature hashing often referred to as 
the hashing trick (analogy to the kernel trick) 
involves using a non-cryptographic hash function 
to convert text (i.e. word tokens) to a 
corresponding numerical representation, these 
representations are made to be uniformly 
distributed by including a secondary hashing 
function which alters the sign bit of the output of 
the first hashing function. These have been shown 
to have provable error bounds (Weinberger et al, 
2009) and have been previously used for 
collaborative spam filtering and large scale multi-
task learning (Attenberg et al, 2009, Weinberger et 
al, 2009). 
The use of the word neural word embeddings was 
first coined by the authors (Bengio et al, 2003) in 
their landmark paper which showed the efficacy of 
using hidden layer representations for measuring 
semantic similarity between words. Building upon 
this, it was further demonstrated by (Collobert et 
al, 2011) that unsupervised pre-training of word 
vectors preserved their syntactic and semantic 
similarities which lead to state of the art results on 
many downstream tasks. But it wasn’t until 
introduction of Word2Vec (Mikolov et. al, 2013) 
that neural word embeddings became mainstream, 
this in a sense opened the flood gates of research 
into these models. GloVe (Pennington et. al, 2014) 
uses a log-bilinear regression model that combines 
the advantages of the two major model families in 
the literature - global matrix factorization and local 
context window methods. Enriching word vectors 
with subword information has proven to be 
effective as can be seen in fastText(Bojanowski 
et.al, 2017). Recent embedding models like ELMo 
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(Peters et. al, 2018) use masked language modeling 
and textual entailment tasks to generate context-
sensitive character-level representations. In the 
same vein, Flair embeddings (Akbik et. al, 2018) 
leverage the internal states of a trained character 
language model to produce a novel type of word 
embedding which the authors allude to as 
contextual string embedding. Moving from 
individual word representations to document and 
phrase level representation, we observe a less 
spectacular retinue of research work. Notable 
among these are Skip-Thought (Kiros et al, 2015) 
and InferSent (Conneau et al, 2017). Recently 
proposed Universal Sentence Encoder (Cer et. al, 
2018) which uses multi-task transfer learning 
based on the transformer architecture (Vaswani et. 
al, 2017) to deliver promising results on several 
natural language inference tasks. 

In light of these prolific advances made in the 
field of text vectorization, it becomes necessary to 
evaluate the different algorithms on downstream 
tasks and juxtapose their performance with the 
traditional non-neural counterparts. Existing 
evaluations (Baroni et. al, 2014) have only focused 
on the semantic aspect of these representations 
while ignoring tasks like text classification. Even 
when comparisons are made on benchmarks 
similar to the GLUE benchmark (Wang et. al, 
2018), they are almost always made with state of 
art deep neural network based classifiers, the non-
neural classifiers like Random Forests, SVMs and 
GradientBoosting are left out. To the best of our 
knowledge there is no existing research which 
comprehensively evaluates the performance of 
modern text vectorizers on text classification tasks, 
it is this research gap which we want to bridge in 
the present study. The main contributions of the 
paper are the following – 1. We have collected, 
curated and standardized a set of 73 different 
datasets which cover all aspects of text 
classification in particular and language modeling 
in general. 2. We have extensively analyzed the 
performance of neural vectorizers like Word2Vec, 
GloVe, FastText, ELMo and Flair on these datasets 
across many dimensions like dataset-size, class 
imbalance, classification metrics and juxtaposed it 
with their count-based non-neural alternatives like 
Feature Hashing and Tf-Idf. 3. We have also 
reported results on the performance of traditional 
ML classifiers, since our main aim is to study the 
efficacy of vectorization algorithms we haven’t 
included any neural network based classifiers in 

the present study. 4. Our benchmark contains 73 
datasets in comparison to GLUE which has only 
10, thereby making it more diverse and 
challenging. Finally, we have made our source 
code++, datasets** (including train and test splits), 
result files and all other necessary information 
publicly available so that, researchers can 
reproduce our results and further the progress in the 
field. While not central to the study we have also 
carried out an interpretation analysis on the 
predictions of these vectorizers by using model 
agnostic, locally interpretable explanations 
(Riberio et. al, 2016), the results are not included 
in the paper, however interested readers are 
encouraged to refer to Appendix A for more details. 

The paper is organized as follows – Section 1 
introduces the paper and gives an overview of the 
prior research work. Section-2 provides details of 
our datasets and the models used. Section-3 
elucidates the approach we have taken for our 
experiments. Section-4 presents the results of our 
experiments, including an extensive analysis. 
Section-5 concludes the paper and provides useful 
future research directions.    

2 Data & Model Details 

We have collected the datasets from a variety of 
online sites like Kaggle, Crowdflower (now known 
as FigureEight), DataTurks, UCI repository and 
others. They have been grouped into 8 categories 
for ease of analysis, these are – emotion, sentiment, 
reviews, medical, general classification, news, 
spam-fake-hate-ironic and other. The general 
classification category set includes things like 
gender classification, website categorization 
weather and disaster detection from tweets etc. The 
other category set includes a set of language tasks 
like natural language inference, duplicate question 
detection, objectivity-subjectivity analysis which 
have been recast in a classification framework to 
promote uniformity. Details about the metadata of 
each category is present in table 1. All the end tasks 
are different text categorizations ranging from 
classification of sentiments, emotions, news 
articles, reviews, gender, hate speech detection etc. 
All the datasets have been standardized in a 
common format, this format contains only two 
fields one for the text data other for the class label. 
Refer to Appendix B for necessary details about the 
data standardization process. As can be inferred 
from table 1, all the categories contain more than a 

++Source Code - https://tinyurl.com/y23j3ygd 
**Datasets - http://tinyurl.com/yyofx77r 

https://tinyurl.com/y4q4dhsl
https://www.kaggle.com/datasets
https://www.figure-eight.com/
https://dataturks.com/
https://archive.ics.uci.edu/ml/index.php
https://tinyurl.com/yxuegfyd
https://tinyurl.com/y23j3ygd
http://tinyurl.com/yyofx77r
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million sentences on an average. Out of the 73 
datasets 17 contain more than 50K data samples, 
39 contain less than 10K data points and 17 contain 
between 10K to 50K rows. On a per category basis 
we observe that the general classification category 
contains the greatest number of datasets whose size 
is greater than 50K, while the sentiment category 
contains the maximum concentration of datasets of 
size less than 10K. To get an insight into the 
distribution of the number of rows per category 
refer to the box and whisker plot in figure 1, the y-
axis contains the number of rows on a logarithmic 
scale (base 10). 
 
 
 
 
 
 
 
 
 
 
 
 
 
The neural embedding models have been pre-
trained** in the following way - the Word2Vec 
model (of dimension 300) and has been trained on 
Google News Corpus (100 billion words). For 
greater ease of comparison both the GloVe and 
fastText models have a dimension of 300 and have 
been trained on the Common Crawl Corpus (640 
billion words). The ELMo embedding has also 
been trained on Google News Corpus and as for the 
Flair embeddings we have used the original model 
provided by the authors which has been trained on 
English Wikipedia text. To provide a level-ground 

of comparison with the neural counterparts both 
the Tf-Idf and Feature Hashing vectorizers have a 
dimension of 300. For the hashing vectorizer, a 
variant of Murmurhash3(Appleby, 2015) has been 
used to project the word tokens in a lower 
dimensional embedding space.  

3 Approach 

A systematic and comprehensive comparison of 
the vectorizers entails evaluating them across 
several dimensions, reporting the results using 
relevant metrics and then interpreting the results. 
The dimensions considered in the present study are 
the following – 1. Dataset-size, we consider 3 
mutually exclusive and exhaustive ranges: less 
than 10K, greater than 50K and between 10K and 
50K, these ranges have been chosen because they 
provide the most coverage across the selected 
datasets. For each of these ranges we analyze the 
performance on a per category basis. 2. Imbalance 
measure as reflected in the distribution of number 
of class labels (using equation 1). 

 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  ∑ |𝑛𝑛1−𝑛𝑛2|

𝑛𝑛1+𝑛𝑛2∀ 𝑛𝑛1,𝑛𝑛2    (1) 
 
In equation 1, n1 and n2 are the number of samples 
belonging to classes Ci and Cj. For a given dataset 
containing N different classes we find the ratio of 
the absolute difference of the number of data-
points in the two classes to the total number of data 
points in the two classes, we calculate this for all 
pairs of classes. For a perfectly balanced dataset 
this value will be zero, higher the value more will 
be the imbalance measure, there is no upper bound 
on the value. For the imbalance measure we 
calculate the terciles and divide the datasets into 
three parts based on the interval of these tercile 
values they are – [0, 1.03), [1.03, 4.46), [4.46, ∞], 
where ∞ denotes the max value across all the 
datasets.  
As mentioned in section 1, we have only 
considered non-neural classifiers as our main aim 
is to study the performance of vectorizers. The 
classifiers included in the present study are 
Random Forests, GradientBoost, AdaBoost, SVM 
(Linear Kernel) and Logistic Regression. These 
have been included because they represent a 
healthy mix of both bagging and boosting 
approaches along with linear models. For each 
dataset we measure its performance across all 
combinations of vectorizers and classifiers. 

Category # Datasets # Avg  
Tokens 

# Avg  
Sentences 

Sentiment 16 1.1 *108 1.2 * 107 
Emotion 2 1.6 * 107 2.1 * 106 
Reviews 7 1.2 * 109 2.8 * 107 

News 8 3.3 * 108 4.2 * 107 
General 

Classification 
17 1.9 * 108 4.8 * 106 

Spam-Fake-
Hate-Ironic 

10 8.6 * 107 2.0 * 106 

Medical 6 2.9 * 108 1.8 * 107 

Other 7 1.8 * 108 1.4 * 107 

Figure 1: Box plot of distribution of rows per category 

** Pre-trained Models Download Link- 
https://tinyurl.com/y2mlnhdf 

Table 1: Details of datasets on a category basis 

https://tinyurl.com/y2mlnhdf
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4 Experiments & Results 

All the experiments have been performed on a 32 
GB Intel i7 processor, with a clock rate of 3.40 
GHz. Since all the embedding models have been 
pre-trained, using a dedicated GPU doesn’t result 
in a significant speedup, as we have noticed an 
increase of only 1.5x - 2x while using a Nvidia 
GTX Geforce 1080 Ti, 11 GB graphics processor. 
The total training time for all combinations of 
datasets, vectorizers and classifiers is more than 3 
weeks. 
We have carried out basic pre-processing of the 
text data like – case normalization, stopword 
removal, punctuation and special character 
removal followed by word tokenization, though it 
will be interesting to see the effects of more 
sophisticated pre-processing like lemmatization on 
the results. The hyperparameter settings of all the 
classifiers have been set to default values as used 
in the scikit-learn library except for number of trees 
in the Random Forest model which has been set to 
51. Figures 2 and 3 provide a global view of the 
macro f1 score of the vectorizers and classifiers 
averaged across all the datasets. For a given 
vectorizer we have calculated the mean 
performance metric (precision, recall, accuracy) 
across all classifiers and datasets. As can be 
inferred from figure 2, tf-idf and feature hashing 
consistently outperform their heavy weight neural 
counterparts, among the neural vectorizers flair 
embeddings demonstrate competitive performance 
on almost all datasets. The violin plots shown in 
figures 4 and 5 elucidate the performance of the 
classifiers and vectorizers (based on accuracy) 
under the same conditions as figures 2 and 3. We 
can observe the same trends in these figures as we 
have previously seen in figures 2, 3. With respect 
to classifiers, Random Forests, Gradient Boost and 
Logistic Regression are always among the top 
performing trio. Apart from this, we have also seen 
that our results* conform to widely established  

 
 
 
 
 
 
 
 
 
 
 
 
trends like the negative correlation between the 
increase in number of classes and classifier 
performance metrics, we will expand upon this 
more in the section on analyzing performance 
metrics based on class imbalance. 

4.1 For Size Less Than 10K 

Tables 2 and 5, illustrate the performance of 
vectorizers and classifiers for all datasets whose 
size is less than 10K. The results have been 
grouped on a per category basis, in the category 
column the number inside the brackets denotes the 
number of datasets which fall into that category for 
the given dataset size range. The mean values of 
Precision Recall and Accuracy have been 
juxtaposed by following the notation Pr./Rec./Acc. 
We notice a wide variance in the performance 
metrics across the categories especially for reviews 
and emotion. The reason for this is that the emotion 
category has a dataset which has 18 classes while 
only containing 2524 samples, same is the case for 
reviews which has a dataset containing 41 classes. 
It is this small sample size and sparse data problem 
which reflects in the suboptimal performance of 
the vectorizers and classifiers. The number of class 
labels for all the other datasets in this size range lies 
between 2-5. Again, we observe that, tf-idf and 
feature hash come out on top consistently beating 
the neural counterparts (except for Flair) by a 
margin of 10% (in terms of accuracy). On the 
classifier front again Random Forests, Gradient 
Boost and Logistic Regression edge out SVMs and 
AdaBoost. In context of the vectorizers we would 
like to make a case for feature hashing, extolling its 
many virtues which include – low computational 
footprint, the absence of a fixed vocabulary, 
theoretical error bounds and competitive 
performance, which serve to make it an ideal 
candidate for establishing strong baselines. 
 

Figure 2: Vectorizer f1-score 
(global)  

Figure 3: Classifier f1-score 
(global)  

Figure 4: Classifier accuracy 
(global)  

Figure 5: Vectorizer accuracy 
(global)  

* All result files can be accessed from - 
https://tinyurl.com/y5e4hftt 

https://tinyurl.com/y5e4hftt
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Category 
Name 

GloVe 
(Pr./Rec./Acc.) 

FastText 
(Pr./Rec./Acc.) 

Word2Vec 
(Pr./Rec./Acc.) 

ELMo 
(Pr./Rec./Acc.) 

Tf-Idf 
(Pr./Rec./Acc.) 

FeatureHash 
(Pr./Rec./Acc.) 

Flair 
(Pr./Rec./Acc.) 

Sentiment 
(10) 

41.6/38.1/59.5 42.9/38.9/59.9 42.9/38.2/59.4 36.1/35.1/57.1 47.0/42.2/63.3 45.0/41.3/61.8 43.3/38.9/60.0 

Emotion (1) 14.3/10.3/21.2 12.5/9.1/20.4 11.7/9.6/20.8 7.9/7.0/19.0 14.2/10.2/19.1 15.0/10.6/18.3 8.6/8.2/18.6 

General 
Classification 

(8) 

 
56.8/49.5/64.8 

 
55.9/49.2/64.6 

 
54.3/48.6/64.0 

 
46.8/44.9/61.5 

 
60.7/55.3/68.3 

 
58.2/51.8/65.1 

 
56.5/52.2/65.0 

Other (5) 59.7/56.8/67.8 59.7/56.4/67.4 59.1/56.6/67.6 52.9/52.1/65.5 61.5/55.6/69.8 57.1/53.3/68.6 59.1/52.8/67.0 

Reviews (2) 52.1/37.6/83.4 44.2/37.5/83.2 52.1/37.6/83.2 45.6/37.7/83.1 57.4/43.9/85.4 50.0/43.6/84.1 55.8/42.2/84.0 

Spam-Fake-
Ironic-Hate 

(5) 

 
75.9/71.0/82.6 

 
78.0/72.4/83.7 

 
77.8/72.4/83.6 

 
70.7/64.8/81.0 

 
84.3/79.3/87.6 

 
80.0/74.9/84.5 

 
79.9/76.3/85.4 

Medical (4) 45.2/40.2/70.3 42.9/40.3/70.1 45.6/40.8/70.3 40.6/36.9/68.7 53.8/45.9/73.8 47.3/42.2/70.6 49.3/42.2/71.3 

News (4) 50.6/49.4/66.6 48.6/48.3/66.2 48.9/48.7/66.1 35.9/36.6/54.3 63.0/60.0/77.6 58.1/55.8/73.2 63.2/60.9/78.4 

Category 
Name 

GloVe 
(Pr./Rec./Acc.) 

FastText 
(Pr./Rec./Acc.) 

Word2Vec 
(Pr./Rec./Acc.) 

ELMo 
(Pr./Rec./Acc.) 

Tf-Idf 
(Pr./Rec./Acc.) 

FeatureHash 
(Pr./Rec./Acc.) 

Flair 
(Pr./Rec./Acc.) 

Sentiment (4) 54.5/45.5/60.8 55.8/46.7/61.7 55.5/46.4/61.5 52.9/42.2/59.2 64.0/57.0/68.6 60.1/52.7/65.2 57.6/49.9/63.0 

Emotion (1) 14.9/11.9/27.5 13.9/12.4/28.3 14.2/12.3/28.0 13.7/10.7/25.7 23.1/16.0/31.5 15.8/13.8/28.4 14.8/12.6/28.6 

General 
Classification 

(6) 

 
47.4/41.9/58.9 

 
48.5/43.1/59.9 

 
48.8/42.9/59.6 

 
41.8/37.6/54.7 

 
60.4/56.7/68.5 

 
57.4/52.0/65.1 

 
52.3/46.1/63.1 

Reviews (1) 35.9/24.3/56.6 33.9/24.3/56.6 34.7/24.4/56.6 30.9/23.1/54.9 44.1/33.2/60.9 43.4/29.6/58.7 36.1/25.2/55.4 

Spam-Fake-
Ironic-
Hate(4) 

 
61.4/51.8/76.7 

 
63.4/53.2/77.6 

 
63.5/53.0/77.4 

 
58.5/47.4/74.8 

 
61.5/54.5/79.0 

 
60.7/51.4/76.9 

 
67.0/54.2/78.3 

News (1) 15.9/9.2/50.5 15.7/9.0/49.8 16.2/9.5/51.7 14.8/9.0/46.6 37.1/29.3/75.4 44.9/36.7/74.6 23.3/16.7/59.2 

Category 
Name 

GloVe 
(Pr./Rec./Acc.) 

FastText 
(Pr./Rec./Acc.) 

Word2Vec 
(Pr./Rec./Acc.) 

ELMo 
(Pr./Rec./Acc.) 

Tf-Idf 
(Pr./Rec./Acc.) 

FeatureHash 
(Pr./Rec./Acc.) 

Flair 
(Pr./Rec./Acc.) 

Sentiment (2) 58.5/52.0/61.7 57.3/50.7/62.2 55.6/50.5/61.9 54.0/46.1/56.6 56.0/48.6/59.3 54.6/49.2/59.3 64.1/55.2/62.0 

General 
Classification 

(3) 

 
34.5/29.3/45.4 

 
34.9/30.6/45.6 

 
34.1/29.0/44.3 

 
29.0/26.7/42.6 

 
34.6/31.7/46.0 

 
35.1/29.7/44.9 

 
34.4/29.8/44.5 

Other (2) 53.7/48.2/59.6 55.2/49.2/60.5 54.9/49.2/60.5 48.3/46.7/57.8 48.3/44.4/54.0 49.7/46.9/55.9 54.3/47.2/57.6 

Reviews (4) 33.7/22.0/44.0 37.0/25.0/48.1 34.8/24.2/45.8 30.6/21.8/46.1 38.0/28.4/54.0 38.5/28.4/54.3 37.2/27.4/52.2 

Spam-Fake-
Ironic-
Hate(1) 

 
89.2/63.4/92.5 

 
90.5/65.9/93.0 

 
90.8/64.8/92.5 

 
76.1/55.2/91.3 

 
82.1/62.6/92.3 

 
80.9/58.4/90.3 

 
83.0/63.5/91.7 

Medical (2) 64.4/61.7/68.5 64.5/62.0/69.7 62.0/59.9/69.5 60.9/56.8/65.0 67.3/65.5/70.1 64.7/62.9/70.2 65.4/63.6/68.5 

News (3) 40.0/35.3/42.8 42.2/38.1/44.4 42.1/38.2/45.3 36.8/29.3/34.0 42.4/40.7/47.7 42.0/39.4/46.1 41.7/37.7/47.6 

Table 2. Mean Performance Metrics on a category basis for all Vectorizers (dataset size less than 10K) 

Table 3. Mean Performance Metrics on a category basis for all Vectorizers (dataset size between 10K and 50K) 

Table 4. Mean Performance Metrics on a category basis for all Vectorizers (dataset size greater than 50K) 
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Category Name RandomForest 
(Pr./Rec./Acc.) 

GradientBoost 
(Pr./Rec./Acc.) 

AdaBoost 
(Pr./Rec./Acc) 

Logit Regression 
(Pr./Rec./Acc.) 

SVM (Linear) 
(Pr./Rec./Acc.) 

Sentiment (10) 46.5/40.2/60.8 44.7/39.3/60.6 38.4/37.4/57.7 41.1/38.4/60.9 42.7/39.4/60.7 

Emotion (1) 15.9/11.2/20.5 13.9/9.9/18.5 5.4/6.2/19.2 11.2/8.0/20.5 14.0/11.3/19.5 

General 
Classification  

(8) 

 
58.7/51.7/66.0 

 
58.2/52.0/66.2 

 
50.2/45.9/59.3 

 
53.8/50.3/66.4 

 
57.1/51.2/65.8 

Other (5) 61.6/57.1/68.6 60.1/55.6/68.0 58.0/54.8/66.2 54.0/51.8/68.2 58.2/55.0/67.6 

Reviews (2) 69.8/51.9/87.1 64.1/47.6/85.8 38.8/33.5/81.1 36.8/30.9/82.3 45.7/36.2/82.7 

Spam-Fake-
Ironic-Hate (5) 

80.6/73.5/84.8 80.8/73.9/85.0 76.1/73.4/82.7 74.0/70.7/83.9 78.2/73.6/84.0 

Medical (4) 49.1/42.3/71.9 46.5/41.7/71.6 42.9/39.8/67.7 46.1/40.1/71.6 47.4/42.0/71.0 

News (4) 53.6/51.6/69.5 56.5/53.1/70.7 47.9/46.8/63.4 51.8/52.4/70.4 53.3/52.7/70.5 

Category Name RandomForest 
(Pr./Rec./Acc.) 

GradientBoost 
(Pr./Rec./Acc.) 

AdaBoost 
(Pr./Rec./Acc) 

Logit Regression 
(Pr./Rec./Acc.) 

SVM (Linear) 
(Pr./Rec./Acc.) 

Sentiment (4) 58.7/48.3/62.8 59.1/47.5/63.0 52.6/46.8/60.5 50.0/46.2/62.1 57.6/48.5/63.1 

Emotion (1) 15.5/12.7/27.3 16.9/13.6/29.1 12.9/10.6/24.9 18.1/13.5/29.8 16.4/13.9/30.2 

General 
Classification  

(6) 

 
54.9/46.3/61.9 

 
51.6/46.8/62.1 

 
43.8/41.7/56.6 

 
49.9/46.2/62.1 

 
53.0/47.5/63.0 

Reviews (1) 39.5/25.8/56.9 36.9/25.7/57.2 35.2/26.8/56.6 35.4/26.7/58.0 38.8/27.4/58.1 

Spam-Fake-
Ironic-Hate (4) 

76.9/60.1/82.9 65.1/52.2/76.6 51.2/48.4/73.9 55.7/48.6/75.8 58.6/50.2/76.2 

News (1) 41.5/22.8/64.9 27.5/21.6/59.8 1.7/2.3/41.5 21.6/17.2/60.8 28.1/21.7/63.6 

Category Name RandomForest 
(Pr./Rec./Acc.) 

GradientBoost 
(Pr./Rec./Acc.) 

AdaBoost 
(Pr./Rec./Acc) 

Logit Regression 
(Pr./Rec./Acc.) 

SVM (Linear) 
(Pr./Rec./Acc.) 

Sentiment (2) 57.1/52.3/61.4 58.0/46.8/60.1 55.9/44.1/61.2 62.4/62.5/62.4 53.3/47.0/58.8 

General 
Classification  

(3) 

 
41.5/34.2/51.3 

 
39.5/32.8/51.9 

 
38.5/31.4/45.9 

 
37.0/33.5/50.9 

 
23.2/22.2/32.5 

Other (2) 55.0/52.0/61.3 53.9/47.4/58.8 48.8/45.2/54.7 46.2/43.7/53.6 48.4/44.4/55.6 

Reviews (4) 47.7/30.4/53.0 45.1/27.7/61.4 28.6/22.4/44.1 36.0/27.1/53.2 25.7/20.2/43.3 

Spam-Fake-
Ironic-Hate (1) 

89.7/62.1/92.3 88.8/63.7/92.5 84.0/64.5/92.0 75.6/56.0/90.7 79.1/62.4/91.4 

Medical (2) 69.3/67.7/73.8 63.1/61.0/70.0 33.7/36.3/46.7 59.7/57.0/65.4 63.1/59.5/65.5 

News (3) 48.8/43.1/50.8 47.8/46.1/52.5 46.2/45.0/51.4 53.3/51.6/55.8 33.0/27.9//34.6 

Table 5. Mean Performance Metrics on a category basis for all Classifiers (dataset size less than 10K) 

Table 6. Mean Performance Metrics on a category basis for all Classifiers (dataset size between 10K and 50K) 

Table 7. Mean Performance Metrics on a category basis for all Classifiers (dataset size greater than 50K) 
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Category 
Name 

GloVe 
(Pr./Rec./Acc.) 

FastText 
(Pr./Rec./Acc.) 

Word2Vec 
(Pr./Rec./Acc.) 

ELMo 
(Pr./Rec./Acc.) 

Tf-Idf 
(Pr./Rec./Acc.) 

FeatureHash 
(Pr./Rec./Acc.) 

Flair 
(Pr./Rec./Acc.) 

Sentiment (4) 69.0/69.0/69.0 69.7/69.7/69.7 69.4/69.3/69.3 62.1/61.7/61.6 74.9/74.1/74.1 71.7/71.4/71.4 69.0/68.2/68.2 

General 
Classification 

(7) 

 
59.4/57.1/65.0 

 
60.5/58.5/66.1 

 
59.6/57.9/65.6 

 
51.4/52.0/60.8 

 
63.4/60.9/67.3 

 
59.2/56.5/63.7 

 
61.2/61.2/67.5 

Other (5) 65.1/61.0/71.7 65.5/61.1/71.7 64.8/61.2/71.8 57.6/56.4/69.8 65.2/58.4/71.8 62.2/57.3/71.5 64.1/57.9/72.6 

Reviews (1) 80.3/54.8/91.9 64.9/54.2/91.4 79.2/54.3/91.6 69.0/54.5/91.7 82.6/58.1/92.0 73.8/63.1/91.5 84.4/59.5/92.1 

Spam-Fake-
Ironic-Hate 

(8) 

 
75.3/69.1/80.2 

 
76.7/70.7/80.9 

 
76.5/70.4/80.8 

 
69.6/63.2/77.7 

 
80.8/75.0/83.9 

 
76.2/70.8/80.9 

 
77.2/72.8/81.7 

Medical (2) 72.2/65.9/84.6 69.1/65.3/87.0 72.5/65.6/86.9 63.4/62.0/85.9 69.4/64.4/83.3 71.1/64.0/85.4 64.5/58.9/93.7 

News (3) 64.4/64.1/64.5 62.9/62.6/63.2 63.5/63.3/63.7 43.3/41.6/42.4 80.9/80.1/80.3 71.7/71.5/71.6 83.8/83.6/83.8 

Category 
Name 

GloVe 
(Pr./Rec./Acc.) 

FastText 
(Pr./Rec./Acc.) 

Word2Vec 
(Pr./Rec./Acc.) 

ELMo 
(Pr./Rec./Acc.) 

Tf-Idf 
(Pr./Rec./Acc.) 

FeatureHash 
(Pr./Rec./Acc.) 

Flair 
(Pr./Rec./Acc.) 

Sentiment (8) 44.8/35.9/58.5 46.9/36.9/59.2 47.2/36.7/58.9 41.5/33.7/58.1 49.7/42.0/62.0 48.5/40.3/60.1 49.4/39.5/60.4 

General 
Classification 

(6) 

 
51.1/42.9/60.9 

 
49.6/42.5/60.6 

 
48.0/41.8/60.1 

 
42.4/38.9/57.7 

 
53.9/48.7/65.6 

 
52.2/45.8/62.2 

 
52.8/47.3/63.2 

Other (2) 40.0/38.0/50.1 39.5/37.7/49.9 39.6/38.1/50.4 36.0/35.6/47.6 39.9/38.2/50.4 37.0/37.1/49.4 44.3/37.5/50.2 

Reviews (2) 36.0/24.2/37.5 36.2/25.9/35.9 37.9/25.7/34.2 29.4/22.2/36.2 35.9/31.6/41.2 37.9/31.7/42.0 36.3/30.2/39.6 

Spam-Fake-
Ironic-Hate 

(1) 

 
62.0/42.6/79.2 

 
61.9/44.6/79.8 

 
63.2/44.1/79.9 

 
63.4/38.5/77.7 

 
70.5/63.8/88.0 

 
67.2/55.0/84.7 

 
67.9/43.4/79.5 

Medical (1) 54.2/54.0/57.8 55.8/55.8/55.7 56.4/56.3/56.4 52.7/48.0/52.6 67.7/64.8/65.8 61.7/61.9/62.0 59.5/59.5/59.6 

News (2) 38.9/37.0/70.8 36.6/36.4/71.4 36.8/36.5/70.7 32.7/34.3/68.7 43.9/39.1/73.9 42.3/37.8/72.6 43.1/38.7/73.5 

Category 
Name 

GloVe 
(Pr./Rec./Acc.) 

FastText 
(Pr./Rec./Acc.) 

Word2Vec 
(Pr./Rec./Acc.) 

ELMo 
(Pr./Rec./Acc.) 

Tf-Idf 
(Pr./Rec./Acc.) 

FeatureHash 
(Pr./Rec./Acc.) 

Flair 
(Pr./Rec./Acc.) 

Sentiment (4) 26.5/24.1/54.1 26.1/25.2/54.3 25.0/23.4/53.8 22.6/23.1/52.6 33.8/27.9/59.2 29.6/27.3/58.1 23.8/22.6/54.0 

Emotion (2) 14.6/11.1/24.4 13.2/10.7/24.3 13.1/11.0/24.4 10.8/8.9/22.3 18.7/13.1/25.3 15.4/12.3/23.3 12.1/10.5/22.9 

General 
Classification 

(3) 

 
32.4/19.4/52.1 

 
32.8/19.7/51.8 

 
35.9/20.6/53.1 

 
27.8/17.8/50.8 

 
55.7/47.5/67.7 

 
52.6/40.4/63.5 

 
40.7/23.4/53.8 

Reviews (4) 30.0/19.3/56.2 29.3/21.0/60.3 27.6/20.8/60.1 24.5/20.3/59.6 36.4/27.8/65.8 33.7/24.7/63.3 31.7/25.0/61.4 

Spam-Fake-
Ironic-Hate 

(1) 

 
47.1/31.7/89.3 

 
53.0/32.5/90.2 

 
52.6/33.4/90.1 

 
41.0/28.0/90.6 

 
32.5/16.5/85.6 

 
41.0/19.8/87.0 

 
58.8/34.9/91.1 

Medical (3) 35.6/31.0/64.5 34.2/31.3/65.4 34.6/30.5/65.4 33.4/28.4/62.7 46.5/38.4/68.5 36.8/33.1/63.9 36.6/25.3/66.0 

News (3) 15.9/8.4/35.8 15.8/8.3/36.3 15.7/8.4/38.2 14.6/7.0/34.6 25.4/20.1/49.5 30.8/24.2/49.8 25.0/17.0/54.8 

Table 8. Mean Performance Metrics on a category basis for all Vectorizers (for imbalance measure between 0.0 and 1.03) 

Table 9. Mean Performance Metrics on a category basis for all Vectorizers (for imbalance measure between 1.03 and 4.46) 

Table 10. Mean Performance Metrics on a category basis for all Vectorizers (for imbalance measure between 4.46 and ∞) 
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4.2    For Size Between 10K – 50K 
Tables 3 and 6 provide an overview of the 
performance metrics of the vectorizers and 
classifiers under the same conditions as tables 2 
and 5 the only difference is that the range of 
datasets is between 10K and 50K, since Medical 
and Other categories have no datasets in this range, 
they haven’t been included in the tables. The trends 
observed here are consistent with the ones we have 
observed in section 4.1. The average number of 
class labels in this range is less than 10 for all 
categories except for news, which has a dataset 
containing 75 classes and emotion where the 
number of class labels is 13 for a given dataset. 
 
4.3    For Size Greater Than 50K 
Tables 4 and 7 illustrate the performance metrics 
for 17 datasets whose size is greater than 50K, the 
emotion category is missing because it has no 
datasets in this range. The presence of a dataset 
with 27995 class labels in the general classification 
category skews the results and leads to the 
observed performance metrics, same is the case for 
news which has a dataset containing 756 classes. 
For all the experiments we have used a train-test 
split of 80-20, the seed used for random split is kept 
same so the results will be consistent while 
reproducing. Again, the trends noticed here are 
faithful to the observed trends in section 4.1 and 
4.2. Here we would briefly like to mention that our 
intention is not to undermine the spectacular 
advances of deep learning and state of the art 
results it has produced in NLP, we are aware of the 
fact that only deep models are capable of scaling in 
performance with the increase in data-size, 
however it might seem like an overkill in situations 
where simpler models do an equally good job. 
Refer to figure 6 (dataset used is of a news 
classification task), for a case where a neural 
embedding (Flair) beats every other non-neural 
and neural counterpart (in terms of accuracy). 
Figure 7 also illustrates an accuracy heatmap 
where the results are more in tune with the general 
trends of the study, the dataset used here is one of 
agreement-disagreement between sentence pairs. 

 
 
 
 
 
 
4.4    Metrics Under Class Imbalance 
Tables 8, 9 and10 demonstrate the performance of 
the vectorizers across the three selected strata of 
imbalance measure. Tf-Idf and Feature Hash 
shines in all three cases. As a general trend we have 
noticed that the accuracy of the vectorizers 
increase when the text is more verbose (i.e. news) 
in comparison to limited character content. (i.e. 
tweets). Flair embeddings show a competitive 
performance (when the imbalance measure is less 
than 4.46), sometimes even outperforming the 
sparse vectorizers, as per the results aggregated it 
is clearly our neural vectorizer of choice. The 
violin plots in figures 8 and 9, illustrate the 
performance of the vectorizers (macro f1 score 
averaged across all datasets and classifiers) under 
different ranges of class imbalance (as calculated 
using equation 1). In all these cases feature hashing 
has the highest median performance as can inferred 
from the greatest density of points in the center. 
The tf-idf vectorizer has the highest variance in its 
performance because of a skew in class 
distribution, which in turn skews the performance 
of this count-based vectorizer. Word2Vec, FastText 
and GloVe have almost similar performance. 
   
5    Conclusion & Future Work 
“Neural Embedding models are not a silver bullet”, 
it is in this spirit that we have carried out the 
present study and reported the results. The analysis 
presented here might serve as a starting point for 
researchers new to this field, who might be 
overwhelmed by the plethora of alternate text 
vectorizers available. It will also serve as a strong 
baseline for future research direction in the domain 
of text classification. In the future we would like to 
use neural classifiers (CNNs and RNNs) in place 
of traditional ones presently used, so that we can 
provide a complete picture of classifier 
performance across the entire spectrum. Fine-
tuning models like ELMo, ULMFit (Howard and 
Ruder, 2018) and observing the change in results 
will be an interesting line of future work. 
Additionally, we would also like to explore other 
embedding models like BERT (Devlin et. al, 2018) 
and CoVe (McCann et.al, 2017). 

Figure 6: Heatmap(accuracy) 
 for a news classification dataset 

Figure 7: Heatmap(accuracy)  
for a inference dataset 

Figure 8: Performance (f1-score)  
for imbalance range [1.03, 4.46)  

Figure 9: Performance (f1-score)  
for imbalance range [4.46, ∞) 

Detailed Interpretation Visualizations - 
https://tinyurl.com/yxgf2vuj 

https://tinyurl.com/yxgf2vuj
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