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Abstract 

The ability to accurately determine 
temporal relations between events is an 
important task for several natural language 
processing applications such as Question 
Answering, Summarization, and 
Information Extraction. Since current 
supervised methods require large corpora, 
which for many languages do not exist, 
we have focused our attention on 
approaches with less supervision as much 
as possible. This paper presents a fully 
generative model for temporal relation 
extraction based on the expectation 
maximization (EM) algorithm. Our 
experiments show that the performance of 
the proposed algorithm, regarding its little 
supervision, is considerable in temporal 
relation learning. 

1 Introduction 

Lately, the increasing attention to the practical 
NLP applications such as question answering, 
information extraction, and summarization have 
resulted in a growing demand of temporal 
information processing (Tatu and Srikanth, 
2008). In question answering, one may expect 
the system to answer questions such as “when an 
event occurred”, or “what is the chronological 
order of some desired events”. In text 
summarization, especially in the multi-document 
type, knowing the order of events is a useful 
source of correctly merging related information. 

Unlike problems such as part-of-speech 
tagging, morphological analysis, parsing, and 
named entity recognition which have been 
recently addressed with satisfactory results by 
combining statistical and symbolic methods 
(Mani et al., 2006), temporal relation extraction 
that requires deeper semantic analysis are yet to 
be worked on. One of recent efforts has disclosed 

that this task is a complicated task, even for 
human annotators (Mani et al., 2006). 

Based on the type of corpora that different 
temporal relation learning methods use, these 
methods are divided into three major categories: 
supervised, semi-supervised, and unsupervised. 
Supervised methods normally rely on the correct 
temporal relations of training sentences of a 
manually tagged corpus. Semi-supervised 
methods often rely on a partially tagged corpus 
and need less supervision. Finally, unsupervised 
methods rely only on raw sentences without any 
temporal relation annotation. It is obvious that 
producing the necessary training data (corpora) 
of supervised and to a less extent semi-
supervised methods is a time consuming, hard, 
and expensive work. Besides, it is very difficult 
to adapt such methods for new tasks, languages, 
and/or domains. Consequently, it is in fact the 
corpus availability that directs the research in 
this area. For mentioned reasons, we have 
focused on unsupervised and weakly supervised 
temporal relation learning. 

This paper presents a novel usage of 
expectation maximization (EM) algorithm for 
temporal relation learning. The algorithm also 
employs Allen's interval algebra (Allen, 1984). 
Our experiments show that the performance of 
the proposed algorithm is acceptable with respect 
to little usage of tagged corpora which is used. 

The remainder of the paper is organized as 
follows: section 2 is about previous works on 
temporal relation extraction. Section 3 explains 
our proposed method. Section 4 briefly presents 
the characteristic of the corpora that we have 
used. Section 5 demonstrates the evaluation of 
the proposed algorithm. Finally, section 6 
includes our conclusions and some possible 
future works. 

2 Temporal Relation Extraction 

For a given ordered pair of components (x1, x2), 
where x1 and x2 are times and/or events, a 
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temporal information processing system 
identifies the type of relation that temporally 
links x1 to x2. The relation type can for instance 
be one of the 14 types proposed in TimeML 
(Pustejovsky et al., 2003). For example, in “If all 
the debt is converted (e7) to common, Automatic 
Data will issue (e8) about 3.6 million shares; last 
Monday (t24), the company had (e25) nearly 73 
million shares outstanding.”, taken from 
document wsj_0541 of TimeBank (Pustejovsky 
et al., 2003), there are two temporal relations 
between pairs (e7, e8) and (t24, e25). The task of 
temporal relation extraction is to automatically 
tag these pairs respectively with the BEFORE 
and INCLUDES relations. 

2.1 Related Work 

There are numerous ongoing researches focused 
on temporal relation extraction. Existing methods 
of temporal relation learning, which are mainly 
fully supervised, can be divided into three 
categories: 1) Pattern based; 2) Rule based, and 
3) Anchor based. These categories are 
respectively discussed in the next three sub-
sections. 

Pattern Based Methods 

Pattern based methods extract some generic 
lexico-syntactic patterns for events co-
occurrence. Extracting such patterns can be done 
manually or automatically. 

Perhaps the simplest pattern based method is 
the one that was developed using a knowledge 
resource called VerbOcean (Chklovski and 
Pantel, 2005). VerbOcean has a small number of 
manually selected generic patterns. The style of 
patterns is in the form of <Verb-X> and then 
<Verb-Y>. Similar to other manual methods, a 
major drawback of this method is its tendency to 
have a high recall but a low precision. Several 
heuristics have been proposed to resolve the low 
precision problem (Chklovski and Pantel, 2005; 
Torisawa, 2006). 

On the other hand, automatic methods try to 
learn a classifier from an annotated corpus, and 
attempt to improve classification accuracy by 
feature engineering. MaxEnt classifier is an 
example of this group (Mani et al., 2006). The 
state of the art of supervised methods in this 
group is very similar to the MaxEnt classifier 
(Chambers et al., 2007). This classifier tries to 
learn event attributes and event-event features in 
two consecutive stages. It also uses WordNet to 
find words' synsets. 

Some of researches on pattern based temporal 

relation classification only work on corpora with 
specific characteristics, rather than general 
corpora such as TimeBank (Bethard and Martin, 
2008; Bethard et al, 2007a; Lapata and 
Lascarides 2006; Bethard et al, 2007b; Bethard, 
2007). There are also algorithms that work on 
only limited types of relations (Lapata and 
Lascarides 2006; Bethard, 2007; Bethard and 
Martin, 2007; Chambers and Jurafsky, 2008). 

In another work, a weakly-supervised 
algorithm was proposed to classify temporal 
relation between events (Mirroshandel and 
Ghassem-Sani, 2010). In that work, it was shown 
that by applying a bootstrapping technique to 
some unlabeled documents that were related to 
the test documents and without any additional 
annotated data, temporal relations can be 
classified with satisfactory results. 

Rule Based Methods 

The common idea behind rule based methods is 
to design a number of rules for classifying 
temporal relations. In most existing works, these 
rules, which are manually defined, are based on 
Allen's interval algebra (Allen, 1984). One usage 
of these rules is enlarging the training set (Mani 
et al., 2006). Reasoning about the certainty of 
predicted temporal relations is the other 
utilization of these rules. 

Anchor Based Methods 

Anchor based methods use information of 
argument fillers (called anchors) of every event 
expression as a valuable clue for recognizing 
temporal relations. These methods rely on the 
distributional hypothesis (Harris, 1968), and by 
looking at a set of event expressions whose 
argument fillers have a similar distribution, try to 
recognize synonymous event expressions. 
Algorithms such as DIRT (Lin and Pantel, 2001), 
TE/ASE (Szpektor et al., 2004), and that of 
Pekar's system (Pekar, 2006) are examples of 
anchor based methods. 

3 Using EM for Temporal Relation 
Learning 

Due to appropriate results of the expectation 
maximization (EM) algorithm in some 
unsupervised tasks of natural language 
processing such as unsupervised grammar 
induction (Klein, 2005), unsupervised anaphora 
resolution (Cherry and Bergsma, 2005; Charniak 
and Elsner, 2009), and unsupervised coreference 
resolution (Ng, 2008), we decided to apply EM 
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to temporal relation extraction. Currently, there 
is no reported work in temporal relation 
extraction based on EM. Here, we explain how 
EM can be successfully applied to the task of 
temporal relation extraction and show that the 
results are notable in this task. Before that, we 
first introduce definitions and notations that will 
be later used in subsequent sections. 

3.1 Definitions 

In temporal relation learning, system must be 
able to determine temporal relation r between 
two events e1 and e2. Here, we assume that 
events are annotated and the learner must find 
out the relation type r. In general, the relation 
type can be one of the 14 types proposed in 
TimeML (Pustejovsky et al., 2003) plus relation 
NONE (which indicates there is no temporal 
relation between respected pair of events). In this 
paper, context means the sentence (or sentences) 
containing pairs of examined events. 

3.2 The Model 

The proposed algorithm operates at the corpus 
level, inducing valid temporal clustering for all 
event pairs of a given corpus. More specifically, 
our algorithm, over a corpus, works in two steps: 
first, according to some temporal clustering 
distribution P(TC), a temporal clustering TC is 
applied to the event pairs of the corpus, and then 
given that temporal clustering, the corpus is 
generated by using equation (1): 

( ) ( ) ( )TCcorpusPTCPTCcorpusP |, =  (1)

To easily incorporate linguistic constraints 
defined on event pairs, corpus is represented by 
its event pairs, EventPairs(corpus). Now we can 
assume event pairs are independent and 
generated by using the following equation: 

( ) ( )
( )

∏
∈

=
corpusEventPairsee

ijji
ji

TCeePTCcorpusP ||  (2)

 
where eiej are event pairs, and TCij are the 
specified temporal relation type of eiej. The 
marginal probability of corpus is computed as 
follows: 

( ) ( ) ( )∑=
TCclusteringtemporalpossileAll

TCcorpusPTCPcorpusP | (3)

 
For inducing temporal relations, algorithm runs 
the EM algorithm on this model. We used a 
uniform distribution over P(TC). 
If we expand the equations, each eiej can be 

represented by its features, which can potentially 
be used for determining temporal relation type 
between events ei and ej. Therefore,        
P(corpus | TC) is rewritten using equation (4). 
Where eiej

l is the value of the lth feature of eiej. 
These features, which are similar to those 
mentioned in (Chambers and Jurafsky, 2008), are 
shown in table 1.  

 

 ( )
( )

∏
∈ corpusEventPairsee

ij
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Feature  Description 

Word1 & Word2 
The text of first and second 
events

Lemma1 & Lemma2 
The lemmatized first and second 
events heads

Synset1 & Synset2 
The WordNet synset for first and 
second events heads

POS1 & POS2 
The POS of the first and second 
events

Event Government 
Verb1 & Verb2 

The verbs that govern the first 
and second events

Event Government 
Verb1 & Verb2 POS

The verbs' POS that govern the 
first and second events

Auxiliary Any auxiliary adverbs and verbs 
that modifies the governing verbs

Class1 & Class2 
The Class of the first and second 
events

Tense1 & Tense2 
The tense of the first and second 
events

Aspect1 & Aspect2  
The aspect of the first and second 
events

Modality1 & 
Modality2 

The modality of the first and 
second events

Polarity1 & 
Polarity2 

The polarity of the first and 
second events

Tense Match If two events have the same tense 

Aspect Match If two events have the same 
aspect 

Class Match If two events have the same class 
Tense Pair Pair of two events' tense
Aspect Pair Pair of two events' aspect
Class Pair Pair of two events' class
POS pair Pair of two events' POS

Preposition1 
If first event is in a prepositional 
phrase or not

Preposition2 If second event is in a 
prepositional phrase or not

Text order If the first event occurs first in 
the document or not

Dominates If the first event syntactically 
dominates second event or not

Entity Match If an entity as an argument is 
shared between two events

Table 1: The features of events which are used in our 
algorithm for temporal relation learning 
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To reduce data sparseness and improve 
probability estimation, conditional independence 
assumption is made on these features' value 
generation. We only assume that tense and 
aspect are not independent (i.e., tensei and 
aspecti are dependent), because tense and aspect 
define temporal location and event structure, and 
considering these features together is a powerful 
source of information in any temporal relation 
extraction system. By conditional independence 
assumption, the value of P(corpus | TC) can be 
rewritten as 

( )
( )

∏ ∏
∈ corpusEventPairsee lfeaturesAll

ij
l

ji
ji

TCeeP |  (5)

 

3.3 The Induction Algorithm 

To induce a temporal clustering TC on a corpus, 
EM was applied to our proposed model. In the 
EM algorithm, corpus (its event pairs) and 
temporal clustering TC are respectively the 
observed and unobserved (the hidden) random 
variables. The EM algorithm includes the 
following two steps to iteratively estimate the 
parameters of the model, θ: 
 

E-step: Fix current θ and obtain the conditional 
temporal clustering likelihoods P(TC.| corpus, θ). 
As a result, for each event pair candidate, a 
temporal relation type will be selected based on 
current θ. 

Due to inability to consider other relations in 
pairwise relation learning, some contradictions 
will be introduced in this step. For example, 
figure 1 shows an inconsistency in the relations 
between following events: 

 

 
 

Figure 1: A contradiction in temporal relations between 
three events A, B, and C. 

 

There are several ways for eliminating such 
inconsistencies (Mani et al., 2007; Tatu and 
Srikanth, 2008; Chambers and Jurafsky; 2008). 
In this paper, we propose a best-first greedy 
search strategy for temporal reasoning and 
removing inconsistencies among predicted 

relations. 
First the contradictions in the connected 

graphs of the text will be discovered with 
applying a set of rules (e.g., Before(x, y) ^ 
Before(y, z) → Before(x, z)), which are based on 
Allen's interval algebra (1984). Then the 
inconsistent relations of each connected graph 
will be sorted in a list named SL based on 
computed confidence score (P(TC | corpus, θ)). 
In SL, the first and the last elements are the most 
and the least confident relations, respectively. 

Now, the algorithm starts from the first 
relation of SL, and pops off this relation and adds 
it to another list named FL. In adding a new 
relation (rnew) to FL, the algorithm verifies the 
consistency between relations of FL. If rnew is a 
relation between events ei and ej, which 
introduces an inconsistency into the graph, it will 
be replaced by the next confident relation 
between ei and ej. These replacements are 
repeated until FL relations will be consistent. 
When there are no more contradictions in FL, 
algorithm will try to move the next element of SL 
to FL. These operations are iterated until there 
will be no more relations in SL. Then the 
resultant consistent relations in FL can be used in 
the next stages of EM.  
 

M-step: Find θ new that maximizes the equation   
∑TC P(TC | corpus, θ old) log P(corpus, TC | θ new) 
with fixed θ old. In order to predict θ new, different 
optimization algorithms such as conjugate 
gradient can be used. However, these methods 
are slow and costly. In addition, it is difficult to 
smooth these methods in a desired manner. 
Therefore, we used smoothed relative frequency 
estimates. 
 

Now, the EM algorithm can either begin at the E-
Step or the M-step, which we start the induction 
algorithm at the M-step. It is clear that          
P(TC | corpus, θ old) is not available in the first 
iteration of EM. Instead, an initial distribution 
over temporal clustering, P(TC | Corpus), can be 
used. Now, there is an important question: how 
should we initialize P(TC | Corpus)? 

Initialization is an important task in EM, 
because EM only guarantees to find a local 
maximum of the likelihood. The quality of such 
a local maximum is highly dependent on the 
initial start point. We tested three different ways 
of initialization: first, we used a uniform 
distribution over all temporal clustering. Second, 
we used a small part of a labeled corpus for 
setting P(TC | Corpus). Third, we used some 
rules for initial estimation of temporal relation 

Event A  

Event B  

Event C  

 A  After  B  

 A  Before C  

 B After C  
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types and then used those types for the initial 
estimation to compute P(TC | Corpus). The 
detailed accounts of the second and the third 
methods are discussed in subsection 5.1. 

Like many statistical NLP tasks in which 
smoothing is required to alleviate the problem of 
data sparseness, smoothing is vital here, too. In 
particular, in the first few iterations, much more 
smoothing is required than in later iterations. In 
our experiments, we used an additive smoothing 
technique. 

4 Corpus Description 

In our experiments, we used two standard 
corpora which had been utilized in evaluation of 
most previous works: TimeBank (v. 1.2) and 
Opinion Corpus (Mani et al., 2006). TimeBank 
includes 183 newswire documents and 64077 
words, and Opinion Corpus comprises 73 
documents with 38709 words. These two 
datasets have been annotated based on TimeML 
(Pustejovsky et al., 2003). There are 14 temporal 
relations (Event-Event and Event-Time relations) 
in the TLink class of TimeML. Relation NONE, 
which indicates there is no temporal relation 

between respected event pairs, must also be 
considered. For the sake of alleviating the data 
sparseness problem, we used a converted version 
of these temporal relations, which contains only 
four following temporal relations: 
 

BEFORE  ,  AFTER  ,  OVERLAP  ,  NONE 
 

As it was shown in (Bethard et al, 2007a), it is 
easy to convert 14 TimeML relations into just 
BEFORE, AFTER, and OVERLAP relations. 
Here, we merged BEFORE and IBEFORE 
relations into only BEFORE relations. Similarly 
AFTER and IAFTER relations were also merged 
into AFTER relations. All the remaining 10 
relation types were collapsed in OVERLAP 
relations. 
In our experiments, like several previous works, 
we merged Opinion and TimeBank to generate a 
single corpus, which is called OTC. Table 2 
shows the converted TLink class distribution 
over TimeBank and OTC corpora for intra-
sentential and general (intra- and inter-sentential) 
event pairs which are situated in the same 
document. 

 
 

TimeBank Corpus OTC Corpus 
Relation Type 

Intra-Sentential General Intra-Sentential General 
BEFORE 593 706 1944 2369 
AFTER 549 692 810 1073 

OVERLAP 1225 2083 1623 2792 
NONE 11309 353401 16768 543918 
Total 13676 356882 21145 550152 

 
Table 2: The converted TLink class distribution in TimeBank and OTC for intra-sentential and general event 

pairs. 
 

5 Evaluation 

5.1 Experimental Setup 

We applied our algorithm to both TimeBank and 
OTC corpora, using the five-fold cross validation 
method. The results were evaluated by 
measuring accuracy. One important point that we 
should mention is the parameter initialization of 
EM.  
As it was mentioned in section 3.3, we used three 
different initializations: first, a uniform 
distribution over all temporal clustering was 
used; therefore, all temporal clustering in the first 
step had equal probability. Second, we used a 
small part of labeled corpora (10% of each 

relation type) for setting P(TC | Corpus). 
Relations were selected randomly. Third, we 
used some rules for initial estimation of temporal 
relation types and used this initial estimation for 
computing P(TC | Corpus). The rules were the 
combination of GTag rules (Mani et al., 2006), 
VerbOcean (Chklovski and Pantel, 2005), and 
some rules derived from certain signal words 
(e.g., “on”, “during”, “when”, and “if”) of the 
text.  

5.2 Results and Discussions 

As it is shown in table 2 (in General columns), 
NONE relations dwarf all other relations. As a 
result, temporal relation learning, because of 
heavy bias of learner to NONE relations, will be 
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very hard (even useless). Regarding this 
problem, we set up two different types of 
experiments:  
1) Algorithms were applied only for intra-
sentential event pairs, considering all relation 
types (including NONE). The results of these 
experiments are shown in table 3. 

 

2) The NONE relations were removed, and 
algorithms were applied to both intra-sentential 
and general (intra- and inter-sentential) event 
pairs. Table 4 shows the results of experiments 
without considering NONE relations. 

 

One important issue in the results of table 3 is 
that in our experiments, all four mentioned 
relation types (BEFORE, AFTER, OVERLAP, 
and NONE) have been considered, but in 
reporting the results, we have reported the 
aggregated accuracy of only BEFORE, AFTER, 
and OVERLAP relations, and excluded the 
accuracy results of NONE relations. That is 
because by considering NONE, one could design 
a simple system which tags all relations to 
NONE, and would get a very high accuracy. But, 
in that case the comparison would be 
inappropriate. 

In our evaluations, both table 3 and 4, the 
baselines have been the majority classes for 
event pair relations ignoring NONE relations of 
the evaluated corpora (i.e., BEFORE and 

OVERLAP relations as it is depicted in table 2). 
The Mani's method is in fact a supervised 
method which exclusively uses gold-standard 
features (Mani et al., 2007). The Chambers' 
method is similar to Mani's, except that it uses 
some external resources such as WordNet 
(Chambers et al., 2007). The Mani and Chambers 
results are different from (or even lower than) 
their reported results, because of two differences: 
first, we considered only three temporal relation 
types while in their experiments, there were six 
relation types. Second, the results of table 3 are 
reported by considering NONE relations, but in 
their original works, there was not any NONE 
relation. 

 

Method Type TimeBank OTC Corpus 

Baseline 51.75 44.41 

Mani 31.77 47.24 

Chambers  36.03 48.86 

EM1 23.76 (22.10) 32.48 (32.21) 

EM2 28.65 (26.31) 38.68 (36.45) 

EM3 29.81 (27.13) 39.92 (39.28) 
Table 3: The results of proposed method for intra-

sentential event pairs on all mentioned relation types 
including NONE relations 

 

 

TimeBank Corpus OTC Corpus 
Method Type 

Intra-Sentential General Intra-Sentential General 

Baseline 51.75 59.83 44.41 44.79 

Mani 54.80 61.55 60.86 60.58 

Chambers  62.31 66.79 63.57 62.94 

EM1 41.67 (39.02) 42.09 (40.92) 43.86 (43.75) 42.94 (43.02) 

EM2 46.11 (45.28) 49.54 (48.31) 49.34 (48.35) 50.52 (49.34) 

EM3 48.03 (46.53) 50.88 (47.86) 50.27 (48.23) 49.98 (48.78) 
 

Table 4: The results of different methods for intra-sentential and general event pairs by ignoring NONE relations. 
 
EM1, EM2, and EM3 are the results of our 

proposed method with three different 
initializations. The initializations of EM1, EM2, 
and EM3 were random, with little supervision 
(10%), and by using a number of rules, 
respectively. For EM1, one question is how this 
method can determine the label of different 
classes. In our experiments, EM1, depending on 
the type of experiment, only determines three or 
four different classes (Class1, Class2, Class3, 

and/or Class4). To label these unlabeled classes, 
using annotated data, we assigned the labels in 
such a way that resulted in maximum similarity 
between predicted and annotated temporal 
relation types for each event pair. 

In tables 3 and 4, the numbers inside 
parentheses show the results of our proposed 
algorithm without applying temporal reasoning. 

As it is shown in tables 3, all mentioned 
methods generally demonstrate a weak 
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performance. That is due to the problem's nature. 
As distribution of different columns of table 2 
shows, the number of NONE relations, even in 
the intra-sentential case, is about 7 to 10 times 
greater than other relations. Therefore, it is very 
hard for a learning algorithm to precisely 
determine the relation types. On the other hand, 
results of table 4, which ignores NONE relations, 
are satisfactory. Comparing proposed method 
with the baseline, shows that in the cases that 
supervised methods can beat the baseline 
method, our weakly supervised method can also 
work better than the baseline or close to it. 

It should be noted that the Chambers' method, 
which is the most successful method of tables 3 
and 4, is in fact the state of the art supervised 
method, while our proposed method is, based on 
the initialization approaches, unsupervised or 
weakly supervised. Among different settings of 
the proposed method, EM3 achieved the best 
results except for the general case of OTC in 
table 4, where EM2 achieved better results. 

The results show that EM1 is not very efficient 
in either first or second type of experiments. It 
seems that randomized initialization in this hard 
problem, may cause some divergence in the 
probability distribution. On the other hand, both 
EM2 and EM3 showed satisfactory results in 
these problems. Therefore, initialization is a 
critical factor in our EM method, and some little 
source of supervision seems crucial for achieving 
better results.  

Comparison of the results of proposed EM 
algorithm with and without utilization of 
temporal reasoning shows that using temporal 
reasoning can be effective on the accuracy of the 
algorithm. By using temporal reasoning, some 
inconsistencies are removed in step E of the 
algorithm and the predicted relations will be 
more reliable. Then in step M, the update of 
parameters will be performed more accurately 
and thus the accuracy of the algorithm iteratively 
will increase. 

Another important point in the comparison of 
accuracy results is the existence of NONE 
relations. As it is shown in tables 3 and 4, the 
accuracies in table 3 is much lower than that of 
in table 4. These differences are all due to the 
existence of NONE relations, which makes 
problem hard. Figure 2 demonstrates the effects 
of NONE relations on the accuracy of our 
proposed algorithm. All the experiments have 
been performed using OTC. We repeated our 
experiments for different percentage of NONE 
relations. As it is shown, NONE relations have 

had a great impact on the accuracy of the system. 
The larger gap between the accuracy of 

ignoring and consideration of NONE relations on 
TimeBank (in contrast that of OTC) implies that 
NONE relations would have an even greater 
impact on the accuracy of the algorithm if 
applied to TimeBank. 
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Figure 2: The effect of NONE relations on the accuracy 

 

Figure 2 shows the impact of NONE relations 
on the accuracy (or recall) of the algorithm. Our 
experiments showed that this impact is even 
more substantial on the precision of the proposed 
algorithm. That is because although the 
algorithm can determine BEFORE, AFTER, and 
OVERLAP relations with an acceptable rate, but 
a lot of NONE relations will also be recognized. 
As a result, the precision will substantially 
decrease. Due to lack of space, we have not 
reported the precision of the algorithm. 

6 Conclusion 

In this paper, we have addressed the problem 
of learning temporal relations between event 
pairs, which is an interesting topic in natural 
language processing. Building a suitable corpus 
is a hard, expensive, and time consuming task. 
Therefore, we focused on unsupervised and 
weakly supervised types of learning. We 
proposed a novel generative model that uses the 
EM algorithm with some interval algebra 
reasoning for temporal relation learning. We 
compared our work with some of successful 
supervised methods. Our experiments showed 
that the result of the proposed algorithm, 
considering its little supervision, is satisfactory. 

We think but have not yet verified that using 
other source of information like narrative 
information, global relationship between events 
and times, time expressions, and/or some other 
useful features of related documents might even 
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further improve the accuracy of the new 
algorithm. 
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