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Abstract
This paper presents a semi-supervised model
for generating a table-of-contents as an in-
dicative summarization. We mainly focus on
using word cluster-based information derived
from a large amount of unannotated data
by an unsupervised algorithm. We integrate
word cluster-based features into a discrimina-
tive structured learning model, and show that
our approach not only increases the quality
of the resulting table-of-contents, but also re-
duces the number of iterations in the train-
ing process. In the experiments, our model
shows better results than the baseline model
in generating a table-of-contents, about 6.5%
improvement in terms of averaged ROUGE-L
score.
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1 Introduction

In our research, to help people quickly having an
overview of a topic or an event, we automatically col-
lect articles from online newspapers related to that
topic or event, and summarize them. We should be
able to make a summarized document from those ar-
ticles by extracting important sentences. However,
there is a lot of articles with many useful information
which makes the document too long as well as does not
contain the deep comments of the authors of those ar-
ticles about the topic or event. Our aim is to make
a concise summary in the form of table-of-contents,
automatically.

A table-of-contents is a hierarchical structure of
titles and locations of segments in a very long text
such as books or a set of texts such as multiple docu-
ments which describe the same topic [2]. It is a type
of indicative summarization that is especially suited
for locating and accessing information. With a table-
of-contents as a navigation tool, a reader can quickly
get not only an overview of the content of a very long
text or multiple documents via the titles of segments,
but also the location of needed information via the
locations of segments.

The task of automatically generating a table-of-
contents involves two subtasks: (1) separating every
article into a hierarchical structure of segments (a tree
of segments) and merge them to make a unique tree of

segments [6, 11, 12, 15] and (2) generating a title for
each segment in that tree to make a table-of-contents
[1, 2]. In this paper, we focus on subtask two with the
assumption that the tree of segments are easily got
from existing methods such as C99 [6] or TextTiling
[11] with a text structuring method [5].

The subtask two is previously mentioned in [1, 2].
In [1], for each segment, they used the most important
noun phrase based on its frequency to make the title
of that segment. This method made the title too short
and having very low quality. In [2], they made a better
table-of-contents with a supervised learning method
which accounts for a number of features at word level
and word sequence level. However, in their experi-
ments, a large amount of titles in the result table-of-
contents were not related to the content of the corre-
sponding segments. The lack of semantic information
might be a reason. Moreover, their model required a
large number of iterations in the training process.

In this paper, we propose a model that tries to in-
tegrate semantic information into the learning model
which is based on [2]. With the support of semantic
information, the new model could make the meaning-
ful titles with strong relation to the content of the
corresponding segments. Another motivation of our
approach is to reduce the number of iterations in the
training process [13, 16].

Our learning model is a two-stage semi-supervised
learning model [16]. The semantic information used in
our model is derived from word clusters which are, in
turn, built from a large unannotated data by an unsu-
pervised learning algorithm, the Brown algorithm [3].
After that, we use those word cluster-based informa-
tion in a supervised learning model. The key of our
approach is the way of integrating the word cluster-
ing information into the learning model. We encode
word cluster-based information as features in a dis-
criminative learning model. The learning algorithm
used in this research is based on the Perceptron learn-
ing algorithm because of its simplicity, powerful and
high speed. Especially, it is appropriate for structured
learning tasks.

Our experiments show that, by incorporating word
clustering information and using the same corpus, our
model not only produces a better table-of-contents
than baseline model, but also reduces the number of
iterations in the training process. Our model even gen-
erated titles which is the same with original titles in
the test data.

The remainder of this paper is structured as fol-
lows: Section 2 presents our approach on using a
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structured learning model for generating a table-of-
contents. Section 3 describes word clustering and the
reason of using the word clustering information to sup-
port a supervised learning model. Section 4 designs
features for the learning model and the way of in-
corporating word clustering information in our model.
Section 5 presents our experimental results with dis-
cussion about the results. Section 6 gives some con-
clusions and future works.

2 The learning model

In this section, we mainly focus on the subtask of gen-
erating a table-of-contents from a tree of segments. In
this task, automatically generating a table-of-contents
can be seen as a structured learning task, in which the
trained model produces a tree of titles T as the output
from a tree of segments S as the input. T contains Ti

that is the title of a segment Si in S.
We formulate this task as a two-steps structured

learning. First, our algorithm learns a model for gen-
erating a title Ti from a segment Si. Second, our al-
gorithm learns another model for generating a tree of
titles T from a tree of segments S.

A trivial algorithm for the second model is that we
construct T from all Ti generated by the first model,
separately. However, due to our experiments, this triv-
ial algorithm produces a T with many duplicating ti-
tles at the same level in its hierarchical structure and
this makes reader have confused. Therefore, we must
use another learning algorithm to construct T from Ti

which makes T more coherent, for example, without
duplicating titles. In the Section 5, we will show the
experimental results of the both algorithms.

To keep the learning process as simple as possi-
ble and to make the model easier in incorporating
new features, we use an instance of the discrimina-
tive structured learning algorithm with the LaSO tech-
nique [10]. Due to this technique, the process of learn-
ing for generating a table of contents is as follow:

• First, for each text segment Si in the tree of
segments, our model learns to generate a list of
candidate titles which are ranked by the scores
which are the products of the weight vector of
the model and the feature vectors of the Si and
the candidate titles.

• Second, our model learns to generate a table-of-
contents from the candidate titles of segments
which are produced by the above step. The
scores are also computed by using another weight
vector.

In this paper, the model used for the first learning step
is called the local model and the second one is called
the global model. The details of learning algorithm
and decoding algorithm of the above two models are
described in next sections.

2.1 The local model

In the learning step of the local model, a vine-growth
strategy [10] is used to learn a model for generating

a title for a text segment. The learning process sim-
ulates the process of building a title Ti incrementally
from words inside a segment Si as in Algorithm 1. To
reduce the size of searching space, it maintains a beam
B which contains partial titles. This strategy has been
successfully applied in other tasks such as parsing [7],
chunking [10], and machine translation [9].

Algorithm 1 Training algorithm for the local model
Input:

- D = {(s, t)} is a set of (segment, title)
- N is the number of iterations
- k is the beam size

Output:
- wl is the weight vector of the local model

1: for i = 1 → N do
2: foreach (s, t) ∈ D do
3: for j = 1 → |t| do
4: B = GetTop(PartialGen(s,B),k)
5: if t[1..j] /∈ B then
6: wl = wl + f(s, t[1..j])−∑

z∈B f(s, z)
7: B = {t[1..j]}
8: end if
9: end for

10: end for
11: end for
12: wl = wl/(N ∗ |D|)

In Algorithm 1, D contains a list of (segment, title)
pairs (s, t) which is provided as the training data of
the learning process. N is the number of iterations of
the perceptron algorithm. At the line 4, B is a beam
of partial titles. By using PartialGen, B is grown by
appending every word in s into every title in B to make
a list of titles of length j. After that, by using GetTop,
B is pruned to contain top k ranked titles based on
the scores wl · f(s, z), ∀z ∈ B. wl is a weight vector
of the perceptron model and the f is a function which
produces a feature vector of a segment s and a partial
title t[1..j] which is a prefix of the title t with length
of j words.

In the decoding step of the local model, Algo-
rithm 2 will produce a list of candidate titles by in-
crementally generating titles from the words in the
text segment. It uses a same strategy, beam search, in
Algorithm 1 to reduce the size of searching space.

In Algorithm 2, s is the sequence of words wi in
the text segment, l is length of desired title of that
segment. B is a beam containing partial titles which
is similar to B in Algorithm 1. Q is a sorted list of
the titles made by appending every word si into every
title zi of B. The output of this algorithm is a list of k
candidate titles that are the input of the global model.

2.2 The global model

In the learning step of the global model, the input is
a tree of candidate titles, in which each node contains
a list of k candidate titles, and the output is a tree of
titles, in which each node contains a title. The input
and the output of this model are hierarchical structure
(a tree) which are different from the local model, a flat
structure of words (a title).
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Algorithm 2 Generating a list of candidate titles for
a text segment
Input:

- s is the sequence of words in the text segment
- l is the length of desired title
- k is the beam size

Output:
- A list of k candidate titles.

1: B = a set that contains an empty string
2: for i = 1 to l do
3: foreach wi ∈ s do
4: Q = {}
5: foreach zi ∈ B do
6: Q = Q+ {(zi + wi, wl ∗ f(s, zi))}
7: end for
8: B ={top k partial titles of Q}
9: end for

10: end for

In this model, we can still use a learning algorithm
which is similar to the one used in the local model by
traversing the tree of titles in pre-order. With this
technique, we can also incrementally build the tree of
titles.

In the training process, at each node of the tree in
the traversing process, our algorithm create a beam B
containing a list of partial trees ranked by the scores
which are similarly computed as in the local model.
Because the global model use those candidate titles
returned by the local model, therefore, at some nodes,
the true title may not be among the candidate titles.
In this cases, our algorithm chooses the best title in
those candidate titles which is closest to the title of the
corresponding segment in the training data by using
ROUGE-1 score1. The output of this learning step is
a weight vector wg.

In the decoding step, we use the same strategy as
in the local model. We incrementally generate the tree
of titles by traversing the tree in pre-order with beam
search strategy. However, the output of this step is a
tree of titles which is called a table-of-contents.

3 Word Clustering

In this research, we use word clustering information to
make the learning model take into account semantic
information, in terms of the word similarity. With
this information, we can choose better words which are
semantically related for generating titles of segments
in the table-of-contents. For example, normally, “tree”
is no more similar to “graph” than “plant”. However,
by using word clusters derived from a large amount
of text in computer science, “graph” and “tree” may
have semantic relations. This approach is successful on
other natural language processing tasks such as name-
entity recognition [16] and dependency parsing [13].

To get the word clusters, we use the Brown algo-
rithm described in [3]. This is a bottom-up agglom-
erative clustering algorithm which is used to produce

1 ROUGE-1 computes the number of overlapping words of two
word sequences.

Fig. 1: An example of a Brown word cluster tree.
Each word at the leaf is encoded by a binary string with
respect to the path from the root, where 0 indicates a
left branch and 1 indicates a right branch

a hierarchical cluster of words. The input of this al-
gorithm is a large sequence of words and the output
is a binary tree, in which leaves of the tree are words.
Every word in this tree is uniquely identified by a path
from a root. This path is encoded by a binary string,
where 0 indicates a left branch and 1 indicates a right
branch. For example, in Figure 1, “tree” is encoded
by “001”, “node” is encoded by “011” and so on.

In the word cluster tree, by selecting an inner node
of the tree, we have a set of leaves of the correspond-
ing subtree. Therefore, we have a set of words se-
mantically related which forms a word cluster. This
cluster is also identified by a path from the root to
the chosen inner node. For example, in Figure 1, we
might select three clusters {graph, tree} encoded by
“00”, {leaf, node} encoded by “01” and {view, trig-
ger, record, field} encoded by “1”.

4 Feature Design

The features are divided into two sets. The first set is
used for the local model. It contains the features that
capture selection constrains at word level and contex-
tual constrains at word sequence level. The selection
features in the model captures word information of a
text segment, which are:

• The position of the word;

• The TF*IDF value of the word;

• The part-of-speech tag of the word;

• Whether the parent segment contains that word
and its position;

• Whether the sibling segments contain that word
and its position;

• The word cluster information of the word.

To use the word cluster-based information, we en-
coded each word cluster in a unique code with respect
to the binary string described in previous section. A
word cluster-based feature is an indicative function
which has a value 1 if the current word is in the cor-
responding cluster and a value 0 otherwise. It is an
interesting point of our approach.

The contextual features record bi-gram and tri-
gram language model scores, both for words and POS
tags. To eliminate generic phrases from the generated
titles, such as “the following section”, it also captures
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111011011101 microcomputer
111011011101 peripheral
111011011101 minicomputer
111011011101 magnetic
111011011101 PC
111011011101 computer
.........
01101010 Dijkstra
01101010 Clanton
01101010 Rooney
01101010 Nakagama
01101010 Shannon
.........
011001011010 Japan
011001011010 Colombia
011001011010 Austria
011001011010 Russia
011001011010 Brazil
.........

Fig. 2: Examples of word clusters derived from BLLIP
corpus

the collocational properties of noun phrases in the ti-
tle.

In the global model, to avoid duplicating titles of
the segments in the same section and to make them
more coherent, we use some types of features that de-
scribe interaction between different titles. The first
type is for title redundancy that includes title dupli-
cation and title similarity. The second type is for cap-
turing parallel construction of titles of segments in the
same section. For example, in the section describing
sorting algorithms, we may see some titles of subsec-
tions with the same prefix such as “Bubble sort algo-
rithm” and “Quick sort algorithm”. The last type of
features is to take into account the process of selecting
the best title in the list of candidate titles at every
node of the table-of-contents. It helps to choose a bet-
ter title in the list of ranked titles produced by the
local model.

5 Experiments

5.1 Data

In our experiments, we used two dataset. The first
dataset is a large sequence of words used for Brown
algorithm to derive word clusters. The second dataset
is a table-of-contents readily in a books used for learn-
ing model.

To build word clusters, we used the BLLIP cor-
pus [4], which contains a collection of three-year
Wall Street Journal (WSJ) from the ACL/DCI cor-
pus with approximately 30 million words. All the
text is cleaned, separated into sentences and joined
into a large text file. The Brown algorithm ran on
that cleaned text to produce 1000 clusters. Figure 2
shows some result word clusters with their code (bi-
nary string) and some words in those clusters. In
these word clusters, the words related to PC hard-
ware are grouped into a cluster, the countries’ name
are grouped into a cluster and so on.

We used the content and the table-of-contents of
the textbook “Introduction to Algorithm” [8] as the
corpus for the learning model which is the same as
[2]. However, we used Charniak’s tool2 to get part-of-
speech information for words in the book.

We considered the table-of-contents of the above
book as a collection of smaller table-of-contents. In
this book, parts are at level 1, chapters are at level 2,
sections are at level 3 and so on. Level 1 is removed
to make a set of trees of titles which have root at level
2 of the original tree. With this technique, we had
39 trees and 540 titles to used as training and testing
data. The average depth of trees is 4.

We randomly choose 80% of these trees for training
and the rest for testing. In our experiments, we choose
ten different randomizations and get the average score
to make the experiments fairly.

5.2 Evaluation

In our experiments, we used ROUGE scores3 with the
default settings as the measure of performance. It con-
tains ROUGE-1, ROUGE-L and ROUGE-W used to
compute similarity score between candidate title and
original title [14].

• ROUGE-1 is based on 1-gram overlapping be-
tween two titles.

• ROUGE-L is based on longest common subse-
quence of two titles.

• ROUGE-W is based on weighted longest com-
mon subsequence of two titles.

We did two type of experiments. In the first type,
the models generated table-of-contents without hier-
archical constrains described in Section 2. And in the
second type, the models used hierarchical constrains
to generate table-of-contents.

In both two type of experiments, we did three ex-
periments. In the first experiment, the baseline model
was trained and tested with the best configuration
which is published on the web [2]. The local model
was trained in 50 iterations and the global model was
trained in 200 iterations. This experiment is denoted
by BS. The beam size used in the local model and the
global model were 50 and 250, respectively.

In the second experiment, we ran our model on
the same configuration with the baseline model. This
experiment is denoted by EX1.

We ran our model in a series of experiments with
different configurations. The best result was reported
in the third experiment. In this experiment, the lo-
cal model was trained in 10 iterations and the global
model was trained in 40 iterations. The size of beams
used in the local model and the global model were the
same to the baseline model. This experiment is de-
noted by EX2.

Every experiment was done with 10 randomiza-
tions. The experimental results were averaged based
on three ROUGE scores: ROUGE-1, ROUGE-L and
ROUGE-W.
2 http://www.cs.brown.edu/~ec/#software
3 http://berouge.com
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Original: Baseline: Our model:
hash tables many dictionaries dictionary operations
direct address tables direct address dictionary direct address table
hash tables computer address hash function

collision resolution by chaining chaining a same slot chaining all the elements
analysis of hashing with chaining creating an same chaining hash hash table with load factor

open addressing address hash address hash
linear probing hash probing hash function
quadratic probing quadratic hash quadratic probing
double hashing double hash double hashing

Fig. 3: Fragments of the table-of-contents generated by our model and the baseline model

ROUGE-1 ROUGE-L ROUGE-W
BS 0.235 0.215 0.169
EX1 0.236 0.216 0.169

+0.001 +0.001 0.000
EX2 0.292 0.281 0.222

+0.057 +0.066 +0.053

Table 1: In these experiments, the features that cap-
tures hierarchical constrains were not used

ROUGE-1 ROUGE-L ROUGE-W
BS 0.246 0.226 0.178
EX1 0.252 0.231 0.182

+0.006 +0.005 +0.004
EX2 0.301 0.290 0.229

+0.055 +0.064 +0.076

Table 2: In these experiments, we used the features
that help to avoid duplicate titles and make titles more
coherent

The results of the first type of experiments are
shown on Table 1. Table 2 contains the results of the
second type of experiments.

In Figure 3, we show a subtree of table-of-contents
of the original table-of-contents and the table-of-
contents generated by the baseline model to compare
with the table-of-contents generated by our model. In
EX2, the averaged number of exact match titles is 13.

5.3 Discussion

Our experiments show that word clustering informa-
tion is useful in generating a table-of-contents task.
It could be also useful in the title generation task in
general. By using this information as features in a dis-
criminative learning model, we can not only improve
the quality of generated table-of-contents and reduce
the number of iterations in training process.

In terms of quality, by using word clustering in-
formation, it reduces the sparsity of data, thereby, it
makes our model to be better at setting the parame-
ter values. Moreover, word cluster-based features help
the model choose the words that are semantically re-
lated even those words did not occur in the training
data. In our experiments, our model gets higher re-
sults than the baseline model, about 6.5%. A fragment

of the generated table-of-contents in Figure 3 is an ex-
ample of the better quality of our model. For example,
“dictionary operations” is close to “hash tables” than
“many dictionaries”. It also has some generated titles
that match with the original titles.

In terms of speed, with additional semantic infor-
mation derived from word clustering, the model con-
verges faster, therefore, the number of iterations are
reduced in the training process, about 5 times in our
experiments.

The word cluster in our experiments was derived
from the BLLIP corpus that is a general corpus (multi-
domains). Therefore, its could be used without re-
generate word clusters. However, the training data,
which is a book about algorithm, should be replaced by
suitable data. For example, we can use Reuters corpus,
which contains articles and their titles, to generate a
table-of-contents for a set of news articles.

In this research, the Brown word clustering algo-
rithm uses only correlation of words at the sentence
level. However, to generate a title for a document, we
need the correlation of words at the document level.
This problem could be solved by using topic informa-
tion by using topic modeling. This should be an ex-
tension of this research.

6 Conclusion

We presented a two-stage semi-supervised learning ap-
proach for generating a table-of-contents automati-
cally. The main contribution is to use semantic infor-
mation derived from word clusters in a discriminative
learning model to generate titles which have strong
relations to the corresponding segments. It helps our
model not only makes a better table-of-contents but
also reduces the number of iterations in training pro-
cess. This method could be successfully applied in
other NLP tasks which requires semantic information
of the text, such as summarization, machine transla-
tion and so on.
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[9] B. Cowan, I. Kuc̆erová, and M. Collins. A dis-
criminative model for tree-to-tree translation. In
Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processing, pages
232–241, Sydney, Australia, 2006.
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