
International Conference RANLP 2009 - Borovets, Bulgaria, pages 65–70

Prototype-based Active Learning for Lemmatization 
Walter Daelemans 

Centre for Dutch Language and 

Speech (CNTS) 

University of Antwerp 

Antwerp, Belgium 

walter.daelemans@ua.ac.be 

Hendrik J. Groenewald 

Centre for Text Technology 

(CTexT) 

North-West University 

Potchefstroom, South Africa 

handre.groenewald@nwu.ac.za 

Gerhard B. van Huyssteen 

Centre for Text Technology 

(CTexT) 

North-West University 

Potchefstroom, South Africa 

gvhuyssteen@csir.co.za 

 

Abstract 

Annotation of training data for machine learning is often a 

laborious and costly process. In Active Learning (AL), crite-

ria are investigated that allow ordering the unannotated data 

in such a way that those instances potentially contributing 

most to the speed of learning can be annotated first. Within 

this context we explore a new approach that focuses on pro-

totypicality as a criterion for the selection of instances to act 

as training data in order to optimize prediction accuracy. In 

parallel with the prototype-based active classification 

(PBAC) approach of Cebron & Berthold (2009), we investi-

gate whether the basic PBAC assumption rings true for lin-

guistic data. The NLP task we address is lemmatization, the 

reduction of inflected word forms to their base-form. We 

operationalize prototypicality as features (i.e. word frequen-

cy and word length) of the already available training data 

items, and combine this with a measure of uncertainty (en-

tropy). We show that the selection of less prototypical in-

stances first, provides performance that is better than when 

data is randomly selected or when state of the art AL me-

thods are used. We argue that this improvement is possible 

due to the fact that language processing tasks have highly 

disjunctive instance spaces, as there are often few regulari-

ties and many irregularities. 
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1. Introduction 
Supervised machine learning techniques are still superior 

to unsupervised machine learning techniques for many 

NLP tasks. However, annotation of training data is often a 

laborious and costly process. In Active Learning (AL) 

[1,2] criteria are investigated that allow ordering the un-

annotated data in such a way that those instances poten-

tially contributing most to the speed of learning can be 

annotated first. Rather than relying on random samples to 

act as instances in training data, AL entails the selection 

of instances to act as training data in order to optimize 

prediction accuracy. Ideally, AL leads to the creation of a 

supervised learning classifier at a fraction of the annota-

tion effort needed when selecting new training items to be 

annotated randomly, and without loss in accuracy. Also in 

domain adaptation, AL has been proposed [3] as a feasible 

approach. Research on AL centers around the develop-

ment and comparison of different approaches that could 

be used to order the available unannotated examples in 

such a way that those selected first are the ones most in-

formative for learning. Another research area is the design 

of suitable stopping criteria. 

In this paper, we explore a new approach that focuses 

on prototypicality (i.e. the degree to which some examples 

are better, more representative examples of a category 

than others) as a criterion for ordering the data. In parallel 

with the prototype-based active classification (PBAC) 

approach of Cebron & Berthold [4], we investigate 

whether the basic PBAC assumption rings true for linguis-

tic data. We operationalize prototypicality on the basis of 

different features of the already available training data 

items and show that the selection of less prototypical 

instances first provides performance that is better than 

when data is randomly selected or when state of the art 

AL methods are used (i.e. a committee-based entropy 

method). The NLP task we address is lemmatization, the 

reduction of inflected word forms to their base-form. 

In Section 2 work related to Prototype Theory, Active 

Learning, and lemmatization is discussed. Section 3 out-

lines our approach, Section 4 describes our experiments 

on Afrikaans lemmatization and the remainder of the 

paper discusses these results. 

2. Related work 

2.1 Prototype Theory 
In studies on human cognition, prototypes have been stu-

died for many years [5]. Prototype effects are especially 

prevalent in language structure and language usage, and 

have been a central topic in the Cognitive Linguistics 

paradigm [6,7]. It is widely accepted that language struc-

tures (including lexical items) show prototype effects: 

some instances are better examples than others. For ex-

ample, with regard to plural formation the {s} morpheme 

(like in tables) could be considered more prototypical than 

the {en} morpheme (as in oxen); likewise, the lexical item 

chair would probably be considered to be a more proto-
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typical English lexical item than, say, cache. In both these 

cases frequency plays a central role in determining which 

example is more prototypical than the other (e.g. chair is 

more frequently used than cache). When working with 

linguistic data for natural language processing (NLP) 

purposes, we can therefore safely assume that some ex-

amples in a data set (of unknown examples) are better 

examples, or more representative, than others. 

Various interdependent physiological, referential, sta-

tistical and/or psychological factors determine prototypi-

cality [7]; in our current research we focus on frequency 

(i.e. most commonly or productively used; cf. the statis-

tical hypothesis in Prototype Theory), and size/length (i.e. 

prototypical concepts are often represented by shorter 

words; cf. insights on basic-level effects in Prototype 

Theory [6]). Other factors include membership function 

(i.e. centrality and salience within a family resemblance 

model), activation time (i.e. time to process/classify/iden-

tify), association/chaining (i.e. the link between form, 

function, and meaning), conventionalization (i.e. how 

well-known a word is), acquisition (i.e. more prototypical 

items are learned first), etc. [6]). These factors are not 

considered in our current research, but could also be ope-

rationalized in future work. 

2.2 Active Learning 
Predominant approaches to AL include uncertainty-based 

sampling [8], Support Vector Machine methods [9], and 

query-by-committee [2]. The latter is a popular method in 

Active Learning, where entropy computed on the basis of 

a committee of classifiers is used as a criterion for sample 

selection.  

Recently, Cebron & Berthold [4] presented a novel 

approach to AL, which they call prototype-based active 

classification (PBAC). In their algorithm a new, labeled 

prototype is added in each learning iteration to fine-tune 

the classification of the datasets; prototypical (i.e. repre-

sentative) examples are selected first, and examples at the 

classification boundary (i.e. less prototypical examples) 

are only selected/focused on automatically when it be-

comes necessary. In all their experiments, they only use 

non-linguistic data. 

In the PBAC algorithm the relative importance of 

each data point is calculated as a combination of (a) its 

representativeness of the data set as a whole (i.e. based on 

density estimates on the unannotated data), and (b) the 

uncertainty of a classifier to assign a class to it (i.e. meas-

ured as entropy – based on the annotated data – that is 

inversely related to the voting confidence of the classifi-

er). These two measures are then combined as a new data 

selection criterion (i.e. the uncertainty distribution), which 

is calculated as the weighted sum of the representativeness 

(called potentials) and the classification uncertainty, to the 

extent that “the remaining potential on the data point still 

prevents unrepresentative samples from being chosen”, 

which “helps to prevent selection of rare or borderline 

cases”; see Mazzoni et al. [10] for the detrimental effects 

of choosing irrelevant data points in AL). Thus, the uncer-

tainty distribution is being used to choose prototypical 

examples for classification, an approach which promises, 

with regard to non-linguistic data, to outperform AL with 

random initialization and closest-to-boundary selection; 

the algorithm also proved to be stable, and reaches levels 

of accuracy close to the final one after only a few itera-

tions. 

One central aspect of Prototype Theory that is impor-

tant for the PBAC algorithm is the radial model of catego-

rization. Lakoff [6] makes it clear that “the center, or 

prototype, of the category is predictable. And while the 

non-central members are not predictable from the central 

members, they are „motivated‟ by it, in the sense that they 

bear family resemblances to it.” Hence, in the PBAC 

algorithm, the value of the radius of the neighborhood (i.e. 

a positive constant defining a neighborhood) is one of the 

parameters that determine the performance of the algo-

rithm. Cebron & Berthold [4] found that a “...larger radius 

seems to be beneficial in the first iterations, whereas a 

small radius leads to more regions with high potential. 

This causes more exploration and leads to a more detailed 

(but slower) exploration of the datasets, which proves 

beneficial in later iterations”. 

In their conclusion, Cebron & Berthold [4] indicate 

that future work could include tuning the parameters of 

the PBAC algorithm to a specific problem; in this re-

search, we look at a specific linguistic problem, viz. lem-

matization.  

2.3 Lemmatization 
AL has been applied to a large range of natural language 

processing (NLP) tasks, including document classification 

([9], Part-of-Speech tagging [11], and parse selection [12]. 

To our knowledge, no literature has been published on 

using AL in the development of lemmatizers. 

Lemmatization is a common NLP task for most lan-

guages, and can simply be defined as “a normalisation 

step on textual data, where all inflected forms of a lexical 

word are reduced to its common headword-form, i.e. 

lemma” [13]. For example, the grouping of the inflected 

forms swim, swimming and swam under the base-form 

swim is seen as an instance of lemmatization. The last part 

of this definition applies to this project, as the emphasis is 

on recovering the base-form from the inflected form of the 

word. The base-form or lemma is the simplest form of a 

word as it would appear as headword in a dictionary. 

Our experiments in this paper deal specifically with 

lemmatization for Afrikaans. Inflection is a productive, 

but rather simple (in comparison to languages like Spanish 

or Finnish) morphological process in Afrikaans, with nine 

basic categories of inflection, viz. plural, diminutive, 

comparative, superlative, partitive genitive, infinitive, past 

tense, participle, and attributive. The -e suffix is by far the 

most frequent affix, occurring across many of these inflec-
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tional categories [14]. We could therefore predict that 

words ending on -e would be prototypical examples of 

inflected words in Afrikaans.  

3. Using prototypes in AL 

3.1 Assumptions 
The broad aim of our research is to investigate whether 

the basic PBAC assumption rings true for linguistic data. 

Note that we don‟t implement the PBAC algorithm direct-

ly; our implementation was developed in parallel with the 

research of Cebron & Berthold [4], and is merely related 

to and compatible with the broad approach taken in the 

PBAC algorithm. As such, our research can be seen as a 

contribution towards a better understanding of the repre-

sentativeness parameter in the PBAC approach.  

A central assumption of the PBAC approach is that 

less prototypical cases (i.e. peripheral cases or exceptions) 

are not important for machine classification, since they do 

not contribute much information to the construction of a 

global model. This contrasts directly with our view that, 

with regard to linguistic data, less prototypical instances 

are in actual fact important for learning. Our view is based 

on two grounds: firstly, it is generally accepted in Cogni-

tive Linguistics [6] that outliers contribute as much to the 

construction of cognitive models as central members (see 

Section 2.2); hence the interest that Cognitive Linguistics 

takes in studying not only prototypical instances, but also 

those peripheral, less prototypical instances of language 

usage [15]. Secondly, in memory-based language 

processing [16] it has been argued, on the basis of com-

parative machine learning experiments on natural lan-

guage processing data, that exceptions are crucial for 

obtaining high generalization accuracy. It therefore seems 

as if the assumption of the PBAC approach is at odds with 

what is widely believed about natural language data.  

For purposes of this paper, our assumption is that 

long words (e.g. manifestations) are less prototypical than 

short words (e.g. chair); likewise, we assume that low 

frequency words (e.g. cache) are less prototypical than 

high frequency words (e.g. chair). (See 2.1 above for a 

motivation of these assumptions.)  

3.2 Hypothesis 
Based on our above stated point of view, we hypothesize 

that less prototypical linguistic examples should provide 

better results quicker in AL; this is in contrast with the 

PBAC approach that would predict that more prototypical 

instances should provide better results quicker.  

Our basic hypothesis is that, contrary to what is ex-

pected from the PBAC approach, adding less prototypical 

instances to a baseline classifier (seeded with randomly 

selected data) at the start of the learning process has a 

bigger impact than adding prototypical instances (specifi-

cally with regard to linguistic data). The reason for this is 

that less prototypical instances (in our case long, low 

frequency words, such as manifestations) contribute new 

information to the classifier, and are therefore more in-

formative for learning than prototypical instances (i.e. 

short, high frequency words, such as chair). 

Similarly, words with high entropy should provide 

more information to the construction of a classification 

model than words with low entropy. Hence, using long, 

low frequency words with high entropy should provide 

better results in AL.  

3.3 Approach 
Recall that in the PBAC approach the criterion for data 

selection is calculated as the weighted sum of (1) the re-

presentativeness, and (2) the classification uncertainty.  

With regard to (1), we must determine for a certain 

dataset and/or a certain task what factors determine the 

representativeness (i.e. prototypicality) of category mem-

bers. These factors must then be operationalized as densi-

ty estimates on the unannotated data so that it could be 

used to select the data point with the highest estimate as 

prototype. Such operationalizations could be implemented 

as features of the training instances, or otherwise as orga-

nizational principles of the data set. In our current re-

search, our experiments are geared towards the 

exploration of word frequency and word length as density 

estimates in the task of lemmatization (see Section 3).  

With regard to (2), we follow the PBAC approach by 

using entropy as an indicator of the degree of uncertainty 

or disagreement among different classifiers to assign a 

class to it, where entropy is inversely related to the voting 

confidence of the classifier. High entropy therefore indi-

cates higher levels of uncertainty. Words with high entro-

py are believed to be less prototypical and should 

therefore be beneficial at the start of the learning process. 

Entropy correlates with exploitation in the PBAC ap-

proach. 

Our criterion for data selection, called the combina-

tion distribution (CD), is calculated as a weighted combi-

nation of word frequency, word length and entropy. The 

formula for the combination distribution is as follows: 

)()()( 321 WFwWLwEntropywCD   (1) 

where w1,  w2 and  w3 indicate the different weights. 

4. Experiments  

4.1 Setup 
For purposes of our experiments, we want to construct a 

model of the data where we can (a) distinguish between 

more or less prototypical instances; and (b) select different 

subsets of the data for AL purposes. In this way, we want 

to explore, for the task of lemmatization, word frequency 

and word length as parameters of representativeness, and 

entropy as an indication of classifier uncertainty. In our 

experiments, we operationalize these three factors in the 

following way.  

Concerning word frequency, the data set (see 4.2) is or-

dered based on frequency counts for the words in the data 
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set, which were calculated on the basis of frequency 

counts (on types) obtained from an Afrikaans corpus con-

taining more than 160 million tokens [17]. It should be 

noted that, if frequency is viewed as a density estimate of 

the distribution of instances in memory, it means that such 

a distribution will have a high density with regard to low 

frequency words, which could be viewed as a large group 

of similar training instances (i.e. in the core of a radial 

representation). High frequency words (which are less 

frequent in the data set) will appear, on the other hand, 

outside the boundaries of this core. Since words appearing 

inside the boundaries are deemed to be more prototypical 

than words that fall outside of the boundaries, this repre-

sentation of the word frequency is so to speak the inverse 

of a commonsense representation; if viewed as a density 

estimate, low frequency words are therefore actually more 

prototypical than high frequency words. 

The same argument is also valid when considering 

word length as a feature. Longer words are less prototypi-

cal than shorter words, since the data set contains larger 

numbers of short words grouped together, than longer 

words. Short words will appear inside the boundaries and 

are therefore viewed as more prototypical than longer 

words. Word length was calculated by counting the num-

ber of characters comprising each word in the data set. 

 Entropy is calculated on the basis of a class distribu-

tion obtained from a committee of three different classifi-

ers, each using a different machine learning algorithm.  

The algorithms that were used are the default TiMBL 

implementations of IB1, IGTree and IB2 [18], where k=1. 

k refers to the k-nearest distances, rather than the k-nearest 

neighbors. This means the class distribution may contain 

several instances, despite k having a value of 1. The class 

distribution therefore consists of all the classes of the 

instances contained within a distance of 1 from the classi-

fied instance, as indicated by the committee of classifiers. 

The formula used for the calculation of the entropy of a 

word is shown in Equation 1: 

)(log)()(
1

i

n

i

i wpwpwEntropy 


   (2) 

where n is the number of classes in the distribution and 

p(wi) is the proportional number of a particular class rela-

tive to the total number of classes in the class distribution 

output by the committee.  

4.2 Data 
Data for the Afrikaans lemmatiser was constructed by 

extracting word-forms that contain substrings that corres-

pond to inflectional affixes (at the surface level) from an 

Afrikaans lexicon, together with an equal number of in-

stances where lemma and word-form are equal. The ex-

traction yielded 72,226 instances, which were manually 

lemmatized as training data. Each instance consisted of 20 

features (letters of the word-form as separate features). 

271 classes were automatically derived by means of a 

comparison based on the longest common substring of the 

extracted word-forms and their manually provided lem-

mas.  The classes indicate the transformation that a word-

form must undergo in order to obtain its linguistically 

correct lemma, specifying the character string to be re-

moved, the relative position of the operation (i.e. L (left), 

R (right) and M (middle)), and the replacement string.  If 

a word-form and its lemma are identical, the class 

awarded will be "0", denoting the word should be left in 

the same form.  This annotation scheme yields classes like 

those in the third column of Table 1. The classifiers are 

not prohibited from predicting impossible classes (e.g. 

“Lge>” is not a valid class for the word bote, since the 

word does not containing the string “ge”). 

 
Table 1. Inflected words with their lemmas and classes as 

found in the Afrikaans training data 

Word-form  Lemma  Class  

"geel" 'yellow' "geel" 'yellow' 0 

"geslaap" 'slept' "slaap" 'sleep" Lge> 

"hondjie" 'puppy' "hond" 'dog' Rjie> 

"bote" 'ships' "boot" 'ship' Rte>ot 

 

4.3 Implementation  
In all our experiments, we use a k-Nearest Neighbor (k-

NN) approach as learner (i.e. memory-based learning). In 

this approach, classification of a new instance is based on 

local extrapolation from memorized similar instances. We 

employed the standard k-NN algorithm, IB1, with default 

algorithmic parameter settings as implemented in the 

TiMBL software package [18].This package also contains 

implementations of IGTree (a decision tree based approx-

imation of k-NN, and IB2 (a variation of IB1 in which 

only instances misclassified with the current contents of 

memory are added to that memory). These variations were 

used in computing the entropy measure (see 4.1 above). 

Experiments were performed by using the entire data 

set, consisting of 72,226 words, where every word is a 

single instance in the training data. 10-fold cross valida-

tion was used throughout the evaluation process.  

We started by training the system with a seed memo-

ry (10% of the data set) containing randomly-selected 

instances. We then arranged the remaining instances in the 

training data set according to the parameters to be eva-

luated (i.e. word frequency (WF), word length (WL), and 

entropy, as well as using the combination distribution 

(CD) described in 3.3 above). In each case the instances 

were added both in a high-to-low and in a low-to-high 

order to the learner in sets of 6,500 instances.  

We are interested in obtaining a learning curve with a 

steeper gradient than that of the baseline experiment (indi-

cated as “Random” in Figure 1) in order to show that our 
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Figure 1. Learning curves 

 
data selection method performs better than a random se-

lection. We also want to compare our method with a stan-

dard state of the art approach in AL, which we consider to 

be the committee-based entropy method (indicated as 

“Entropy (HL)” in Figure 1). 

5. Results  
The learning curves for the various parameters, the com-

bination distribution, as well as a random distribution (the 

base-line experiment) are indicated in Figure 1. Using the 

same set of randomly selected instances for computing the 

accuracy obtained in the first fold of every 10-fold cross-

validation experiment results in the learning curves of all 

experiments starting at the same point on the graph. For 

the calculation of the combination distribution (see Equa-

tion 1), we also experimented with different weight val-

ues, but found that the best combination distribution curve 

was obtained with equal weight values. 

Figure 1 shows that adding unprototypical words to 

the seed memory at the start of the learning process clear-

ly outperforms the experiments where prototypical words 

were added first. This is true for both the evaluated para-

meters and can be observed by comparing the unprototyp-

ical learning curves (e.g. Word Frequency [Low to High] 

and Word Length [Long to Short] with the prototypical 

curves (e.g. Word Frequency [High to Low] and [Word 

Length Short to Long]). (With regard to the learning 

curves representing word frequency, refer to 4.1 for an 

explanation of why [High to Low] is indicated as better 

than [Low to High] in Figure 1.) Another finding from 

Figure 1 is that the combination distribution (CD) with 

equal weights yields a steeper learning curve than any of 

the other individual parameters, including that of the 

committee-based entropy method.  

Even though the gains of this approach seem small at 

first, the significance of our results is appreciated when 

considering the difference in the number of training in-

stances required by each of the distributions to reach a 

certain accuracy figure. The combination distribution, for 

example, requires 19,864 instances to achieve an accuracy 

of 0.89, compared to the 24,656 instances required by the 

random distribution to achieve the same accuracy. In this 

case it means that 4,792 less instances are needed when 

using the combination distribution, representing a signifi-

cant saving in terms of the annotation effort.  

6. Discussion 
Entropy computed on the basis of a committee of classifi-

ers is a popular method for selecting instances in AL (see 

2.2 above). Our results indicate that the performance of 

this method can be improved by combining entropy with 

other parameters of representativeness, selected on the 

basis of Prototype Theory. This approach also improves 

notably upon the random baseline. However, contrary to 

intuition and to results for AL in other areas than language 

processing, it is the selection of less prototypical instances 

first that provides the best improvement, both for word 

frequency and word length. A possible explanation for 

this is that language processing tasks have highly disjunc-
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tive instance spaces, as there are often few regularities and 

many irregularities, and pockets of exceptions [16]. Start-

ing from a random seeding may already provide sufficient 

structure (as there is little structure of the instance space), 

and in such a case, finding the boundary cases is as least 

as important as finding the central cases of classes. A 

meta-learning analysis in which the prototype-based selec-

tion approach is investigated for a larger range of lan-

guage processing tasks with class systems of different 

complexities could shed more light on this issue.  

Our research shows in any case that a prototype-

based selection approach indeed improves upon a commit-

tee-based and random baseline approach, but not necessar-

ily the way expected in the PBAC approach.  

7. Conclusion 
In this paper we have shown that a prototype-based selec-

tion strategy for AL improves upon both random baseline 

and entropy-based committee approaches. Interestingly, 

for our language processing problem, prototypicality 

works not in the way expected and documented in other 

research (more prototypical instances first is better than 

less prototypical first), but exactly the other way round. A 

possible explanation for this is the lack of structure found 

in instance spaces of language processing problems, 

which typically show large disjunctivity.  

Future work includes the investigation of more natu-

ral language processing tasks with more operationaliza-

tions of prototypicality to investigate whether our findings 

indeed point to a different superior selection strategy for 

language processing tasks than for other types of prob-

lems. Another aspect to be investigated is the interaction 

of this approach with possible stopping criteria for AL.  
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