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Abstract

We study the generalization of maximum span-
ning tree dependency parsing to maximum
acyclic subgraphs. Because the underlying op-
timization problem is intractable even under
an arc-factored model, we consider the restric-
tion to noncrossing dependency graphs. Our
main contribution is a cubic-time exact infer-
ence algorithm for this class. We extend this al-
gorithm into a practical parser and evaluate its
performance on four linguistic data sets used in
semantic dependency parsing. We also explore
a generalization of our parsing framework to
dependency graphs with pagenumber at most k
and show that the resulting optimization prob-
lem is NP-hard for k � 2.

1 Introduction

Dependency parsers provide lightweight represen-
tations for the syntactic and the semantic structure
of natural language. Syntactic dependency parsing
(Kübler et al., 2009) has been an extremely active
research area for the last decade or so, resulting in
accurate and efficient parsers for a wide range of
languages. Semantic dependency parsing has only
recently been addressed in the literature (Oepen et
al., 2014; Oepen et al., 2015; Du et al., 2015a).

Syntactic dependency parsing has been formal-
ized as the search for maximum spanning trees in
weighted digraphs (McDonald et al., 2005b). For
semantic dependency parsing, where target represen-
tations are not necessarily tree-shaped, it is natural to
generalize this view to maximum acyclic subgraphs,
with or without the additional requirement of weak
connectivity (Schluter, 2014).

While a maximum spanning tree of a weighted
digraph can be found in polynomial time (Tarjan,
1977), computing a maximum acyclic subgraph is
intractable, and even good approximate solutions are
hard to find (Guruswami et al., 2011). In this pa-
per we therefore address maximum acyclic subgraph
parsing under the restriction that the subgraph should
be noncrossing, which informally means that its arcs
can be drawn on the half-plane above the sentence in
such a way that no two arcs cross (and without chang-
ing the order of the words). The main contribution
of this paper is an algorithm that finds a maximum
noncrossing acyclic subgraph of a (vertex-ordered)
weighted digraph on n vertices in time O.n3/.

After giving some background (Section 2) we in-
troduce the noncrossing condition, compare it to
other structural constraints from the literature, and
study its empirical coverage (Section 3). We then
present our parsing algorithm (Section 4). To turn
this algorithm into a practical parser, we combine it
with an off-the-shelf feature model and online train-
ing (Section 5); the source code of our system is re-
leased with this paper.1 We evaluate the performance
of our parser on four linguistic data sets: those used
in the recent SemEval task on semantic dependency
parsing (Oepen et al., 2015), and the dependency
graphs extracted from CCGbank (Hockenmaier and
Steedman, 2007). Finally, we explore the limits of
our approach by showing that finding the maximum
acyclic subgraph under a natural generalization of the
noncrossing condition, pagenumber at most k, is NP-
hard for k � 2 (Section 6). We conclude the paper
by discussing related and future work (Section 7).

1https://github.com/liu-nlp/gamma
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Figure 1: A noncrossing dependency graph (Oepen, 2014, DM #20209003). Using the terminology of Sagae and Tsujii
(2008), the vertices the, thus, a and from are roots; of these, thus, a and from are covered by arcs.

2 Background

Dependency parsing is the task of mapping a natural
language sentence into a formal representation of
its syntactic or semantic structure in the form of a
dependency graph.

2.1 Dependency Graphs
A directed graph or digraph is a pair G D .V; A/

where V is a set of vertices and A � V �V is a set of
arcs. We consider an arc .u; v/ to be directed from u

to v and write it as u! v. A (directed) path from u

to v is a sequence of arcs of the form

v0 ! v1; v1 ! v2; : : : ; vm�1 ! vm ; m � 0 ;

where v0 D u and vm D v. Note that m is al-
lowed to be zero; in this case the path is called empty.
A digraph is acyclic if there is no vertex u with a
nonempty path from u to itself. A digraph is a tree
if there exists a vertex r , the root, such that for every
vertex u there is exactly one path from r to u. Every
tree is acyclic, but not every acyclic graph is a tree.

Throughout this paper we write x for the generic
sentence with n words. A dependency graph for x
is an acyclic digraph G D .V; A/ whose vertices
correspond one-to-one to the words in x. This cor-
respondence imposes a total order on the vertices;
we represent this order by equating V with the set of
positions in x, V D f1; : : : ; ng. An example depen-
dency graph is shown in Figure 1.2 A dependency
tree is a dependency graph that forms a tree. The
example graph is not a tree.

2.2 Maximum Spanning Tree Parsing
McDonald et al. (2005b) cast dependency parsing
as the search for a maximum spanning tree of an

2Note that the arcs of the example graph are labeled. To
simplify the presentation we mostly ignore this aspect in this
paper; but our implementation supports parsing to labeled arcs.

arc-weighted digraph. They start from the complete
graph on n vertices where each arc i ! j carries a
real-valued weight wij , defined as a dot product

wij D w � ˚.x; i ! j /

where ˚ is a function that maps the sentence–arc
pair into a feature vector and w is a global weight
vector that is learned from training data. Taking the
feature representation and the weight vector to be
fixed, parsing under this model amounts to finding a
spanning tree of maximum total weight.

2.3 Maximum Subgraph Parsing

For semantic dependency parsing, where the target
representations are not necessarily trees (viz. Fig-
ure 1), we generalize the model of McDonald et al.
(2005b) to other types of subgraphs. In general we
are interested in the following optimization problem:

Maximum Subgraph for Graph Class G

Given an arc-weighted digraph G D .V; A/, find a
subset A0 � A with maximum total weight such that
the induced subgraph G0 D .V; A0/ belongs to G .

The computational complexity of this problem
varies with the choice of G . If G is the set of all
dependency trees, then the problem can be solved in
time O.jV j2/ (Tarjan, 1977). If G is the unrestricted
set of all dependency graphs, then the Maximum
Subgraph problem is equivalent to the following:

Maximum Acyclic Subgraph

Given an arc-weighted digraph G D .V; A/, find a
subset A0 � A with maximum total weight such that
the induced subgraph G0 D .V; A0/ is acyclic.

This problem is known to be NP-hard, and also
hard to approximate (Guruswami et al., 2011).
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3 Noncrossing Dependency Graphs

Because of the NP-hardness of Maximum Acyclic
Subgraph we cannot expect to find a polyno-
mial-time parsing algorithm for general dependency
graphs. In this section we therefore introduce the
restricted class of noncrossing dependency graphs.

3.1 The Noncrossing Condition

Let G D .V; A/ be a dependency graph. Recall that
G is vertex-ordered by the correspondence of vertices
to positions in x. Two arcs a1; a2 2 A cross if either

min.a1/ < min.a2/ < max.a1/ < max.a2/ or

min.a2/ < min.a1/ < max.a2/ < max.a1/

where min.a/ and max.a/ denote the left and right
vertex of the arc a, respectively. The graph G is
called noncrossing if there are no two arcs that cross.
For example, the graph in Figure 1 is noncrossing. Its
picture is an arc diagram, a graph layout where one
places the vertices along a line and draws each arc as
a smooth curve in one of the two half-planes bounded
by that line. Noncrossing dependency graphs can be
characterized as exactly those graphs that permit arc
diagrams where

1. the vertices are lined up in their total order,

2. all arcs are drawn on the upper half-plane only,

3. two curves intersect at most at their endpoints.

Our noncrossing condition is often referred to as
planarity; see e.g. Titov et al. (2009). We propose
to reserve the term “planar” for its standard use in
graph theory.3

The noncrossing condition is well-known in the
area of enumerative combinatorics; see for example
the overview article by Flajolet and Noy (1999). In
this context, one typically thinks of the vertices of
a graph as being laid out on a circle, say in counter-
clockwise order. Then the noncrossing condition
requires that the arcs of the graph can be drawn inside
the circle without two arcs crossing.

3.2 Related Properties

Projectivity In syntactic dependency parsing,
where the target representations are trees, the non-
crossing condition is closely related to projectivity.

3A graph is called planar if it can be drawn on the plane (not
half-plane!) in such a way that no arcs cross each other.

More specifically, a dependency tree is projective
if and only if it is noncrossing and its root is not
“covered”, meaning that there is no arc i ! j such
that the root lies properly between i and j . Sagae
and Tsujii (2008) propose a generalization of this
two-part characterization of projectivity to graphs.
We find that the noncrossing condition alone is more
practical. For example, the dependency graph in Fig-
ure 1 is not projective in the sense of Sagae and Tsujii
(2008); but it is noncrossing.

Schluter (2015) uses the term “projective” with the
same meaning as our term “noncrossing.”

Pagenumber A natural generalization of the non-
crossing condition is to relax property 2 of the arc
diagram characterization and allow arcs to be drawn
also in the lower half-plane bounded by the vertex
line, or in any of some fixed number k of half-planes.
These half-planes may be thought of as the pages
of a book, with the vertex line corresponding to the
book’s spine, and the embedding of a graph into such
a structure is known as a book embedding (Bernhart
and Kainen, 1979). A graph that permits a cross-
ing-free book embedding with k half-planes is said
to have pagenumber at most k. Note that we here
consider book embeddings where the order of the
vertices along the boundary line is known in advance;
it is given by the order of the words in the sentence.

3.3 Coverage on Linguistic Data

To estimate the practical value of a parser for non-
crossing dependency graphs, we look into the cover-
age of these graphs on relevant linguistic data.

3.3.1 Data Sets

We choose four data sets that are generally available
(through the Linguistic Data Consortium) and have
already been used to build data-driven parsers.

SDP Dependencies These data sets (Oepen, 2014)
consist of aligned sets of bi-lexical dependency
graphs over the same Wall Street Journal text in three
different representation types:

1. DM: DELPH-IN MRS-Derived Dependencies

2. PAS: Enju Predicate–Argument Structures

3. PSD: Prague Semantic Dependencies
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property DM PAS PSD CCG

projective G 2.95 1.67 42.04 1.88
A 57.79 51.05 89.70 56.75

noncrossing G 69.21 59.66 64.61 48.23
A 97.66 97.26 96.01 95.76

pagenumber G 99.61 99.73 98.13 98.62
at most two A 99.98 99.99 99.87 99.93

Table 1: Coverage in terms of complete graphs (G) and
individual arcs (A) under various structural restrictions.

These were used in the SemEval 2015 Task on Seman-
tic Dependency Parsing (SDP; Oepen et al., 2015).4

CCG Dependencies This data set (Hockenmaier
and Steedman, 2005) consists of the bi-lexical se-
mantic dependency triples released with CCGbank,
which also is based on the Wall Street Journal text.
These triples were designed to reflect the underlying
predicate–argument structure of the corresponding
CCG derivations (Hockenmaier and Steedman, 2007).
Recent work views the set of all triples for a sentence
as a dependency graph and parses directly into these
target representations (Du et al., 2015a).

3.3.2 Results

For the four data sets, Table 1 shows the percentages
of complete graphs (G) and individual arcs (A) that
can be accounted for under the restriction to noncross-
ing dependency graphs. These percentages provide
upper bounds for the performance of a parser for
these graphs under two standard evaluation metrics,
exact match and arc-based recall. For comparison,
the table also shows results for projective dependency
graphs and graphs with pagenumber at most two.

The percentages of noncrossing graphs, and hence
the maximal possible scores with respect to exact
match, vary between 48.23% for CCG and 64.61%
for PSD. On all data sets, they are considerably
higher than those for projective dependency graphs.
We take this as further evidence that the noncrossing
property is a more practical restriction than projec-
tivity (as discussed in Section 3.2) when it comes to
semantic dependency parsing.

4The task organizers also provided data for other languages
than English, but the English data were the only ones that were
available in all three representation types.

The percentages of arcs that can be accounted for
under the noncrossing condition are computed by
maximizing, for every graph in the data, the cardi-
nality of a subset of arcs that can be selected such
that the subgraph induced by the selected arcs is non-
crossing. These percentages, and hence the maximal
possible scores with respect to arc-based recall, are
close to 96% for PSD and CCG, and exceed 97%
for DM and PAS. This suggests that, while a parser
restricted to noncrossing dependency graphs would
necessarily score low in terms of exact match, it could
in principle still obtain relatively high scores in terms
of arc-based recall.

The class of graphs with pagenumber at most two
has the highest coverage, both with respect to exact
match and arc recall. It can account for more than
98% of the graphs and more than 99% of the arcs in
each of the four data sets. However, we will show
in Section 6 that there is no polynomial-time parsing
algorithm for this class of graphs (unless PD NP).

4 Parsing Algorithm

This section contains the main contribution of this
paper: a cubic-time exact algorithm for solving the
Maximum Subgraph problem for the class of non-
crossing dependency graphs.

Theorem 1 For noncrossing dependency graphs,
Maximum Subgraph can be solved in timeO.jV j3/.

4.1 Deduction System

We specify the parsing algorithm by means of a
weighted deduction system in the sense of Neder-
hof (2003). The heart of such a system is a finite
set of inference rules that specify how to derive so-
lutions to subproblems of the overall problem from
solutions to “simpler” subproblems. These partial so-
lutions are represented by weighted formulas called
items. Derivations start from a finite set of initial
items called axioms, and the objective is to find the
derivation of a goal item with maximal weight. This
search can be carried out using a variant of Viterbi’s
algorithm (Viterbi, 1967).

For the following, we assume that we are given a
digraph G D .V; A/ with vertices V D f1; : : : ; ng
and arc weights as described in Section 2. We use
i; j; k as metavariables for vertices (positions of the
input sentence) where i � k and i < j < k.
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4.1.1 Items
We consider subproblems where we construct a max-
imum noncrossing dependency graph on a given
(closed) interval Œi; k� � V of vertices, using only
arcs in A. Based on the structure of the subgraph, we
distinguish five different types of subproblems:

1. Construct a graph that contains the arc i ! k. We
say that such a graph is min–max-covered.

2. Construct a graph that contains the arc k ! i . We
say that such a graph is max–min-covered. Note
that type 1 and type 2 are mutually exclusive, as
the arcs i ! k and k ! i together would form
a cycle. If a graph is either min–max-covered or
max–min-covered, we say that it is arc-covered.

3. Construct a graph that is not arc-covered but con-
tains a nonempty directed path from i to k. We
say that such a graph is min–max-connected.

4. Construct a graph that is not arc-covered but con-
tains a nonempty directed path from k to i . We say
that such a graph is max–min-connected. Type 3
and type 4 are mutually exclusive, as the two paths
together would form a cycle.

5. Construct a graph that is not arc-covered and does
not contain a nonempty directed path between i
and k. We say that such a graph is bland.

We represent these different types of subproblems by
the following items:

i k i k

!

i k

 

i k i k

We shall set up the weight of an item in such a way
that it corresponds to the sum of the arc weights of
the constructed subgraph.

4.1.2 Axioms
For each vertex i in G, the graph on the one-vertex
interval Œi; i � is a bland graph. Therefore, the items
of type with i D k are sound axioms of the
deduction system. Because one-vertex dependency
graphs have no arcs, we assign zero weight to these.

4.1.3 Goal Items
Our objective is to construct a maximum noncrossing
dependency graph on the full vertex set. Therefore,
the goal items of the deduction system are all items
over the full interval Œ1; n�.

4.1.4 Inference Rules

The inference rules of the deduction system are
shown in Figure 2. For each rule, we let the weight
of the consequent be the sum of the weights of the
antecedents, plus (for R16–R19) the weight of the
arc required by the side condition. Thus, rule R01 for
example states that whenever we have constructed a
min–max-covered graph ( ) on the interval Œi; j �
with some weight w1 and another min–max-covered
graph on the interval Œj; k� with some weight w2, it
is sound to conclude that we can construct a min–
max-connected graph ( ! ) on the interval Œi; k� with
weightw1Cw2. Similarly, rule R19 states that when-
ever we have constructed a bland graph ( ) on the
interval Œi; k� with some weight w, then we may add
the arc k ! i (if it exists in G) and thus construct a
max–min-covered graph ( ) whose weight is the
sum of w and the weight of the new arc.

4.2 Correctness

We have already argued informally that the axioms
and the inference rules of the deduction system are
sound. In order to show completeness, we prove the
following lemma: For each of the five types listed in
Section 4.1.1, whenever the corresponding maximum
noncrossing dependency graph on the interval Œi; k�
has weight w, the appropriate item is derived.

We only sketch the (straightforward) proof of this
lemma. We define the size of a graph as the total
number of its vertices and arcs. The proof is by
induction on the size. If the graph has size one (that
is, consists of a single vertex), then it is bland and has
weight zero; this case is covered by the axioms. For
the inductive step, we consider a graph H with size
m > 1 and assume that the lemma holds true for all
graphs of smaller size. We then show how to derive
the relevant item for H from the previously derived
items for subgraphs of H using the inference rules.

4.3 Implementation and Runtime

In a Viterbi-style search for optimal derivations in
the deduction system, we enumerate items by size
and derive the weights of items with larger sizes from
the weights of items with smaller sizes. Inspecting
the maximal number of variables per rule (which is
three, for R01–R08), we see that such a search can
be implemented to run in time O.n3/.
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Figure 2: Deduction system for noncrossing dependency graphs (1 � i < k � n, i < j < k). We write k� as a
shorthand for k � 1. For each inference rule, the weight of the consequent is the sum of the weights of the antecedents,
plus (for rules R16–R19) the weight of the arc required by the side condition.

DM PAS PSD

LF LP LR LF LP LR LF LP LR LF

Peking 85.33 90.93 87.32 89.09 92.90 89.67 91.26 78.60 72.93 75.66
This work 79.63 86.43 79.17 82.64 88.68 83.94 86.24 74.58 65.96 70.01

CCG

UP UR UF

Auli and Lopez 93.98
This work 93.06 86.65 89.74

Table 2: Parsing results on the SDP data (Oepen, 2014) and on CCG dependencies (Hockenmaier and Steedman,
2005). The metrics reported are precision, recall and F-score on labeled (LP, LR, LF) and unlabeled (UP, UR, UF)
dependencies. LF is the averaged LF score that was used to rank systems in the SemEval-2015 Task on Broad-Coverage
Semantic Dependency Parsing. References are to Du et al. (2015b) (Peking) and Auli and Lopez (2011).
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4.4 Uniqueness of Derivations

Besides being sound and complete, the deduction
system also has the property that it assigns a unique
derivation to every noncrossing dependency graph.
The proof, again, is by induction on the size. To
illustrate the argument, suppose that we want to con-
struct a min–max-connected graph H on some inter-
val Œi; k�. The only rules that can be used to derive the
corresponding item (of type ! ) are R01 and R05.
In both rules, the graph corresponding to the second
antecedent must be a min–max-covered graph ( )
on some interval Œj; k�. This means that the vertex
j is uniquely determined; it must be the left end-
point of the longest arc j ! k in H . With this, the
graph on the remaining interval Œi; j � is uniquely de-
termined as well, and both graphs are smaller thanH ;
hence we may assume that they have unique deriva-
tions. Note that j would not be uniquely determined
if the deduction system included (say) an inference
rule that derives an item ! from two other such
items: Such a rule would be sound, but it would
create derivational ambiguity.

An immediate consequence of the uniqueness of
derivations is that our parsing algorithm can be used
for counting noncrossing dependency graphs, which
is useful for, among other things, testing the correct-
ness of implementations. To count, we change the
system such that the weight of an item gives the num-
ber of its derivations.5 The modified system yields
sequence A246756 in the On-Line Encyclopedia of
Integer Sequences (OEIS Foundation Inc., 2011).

4.5 Enforcing Weak Connectivity

Our deduction system can be modified to parse into
(and count) various other classes of noncrossing
graphs. For example, we can adapt our system to
find a maximum noncrossing acyclic subgraph under
the additional restriction that this subgraph should
be weakly connected (Schluter, 2015). To do so we
distinguish between two types of bland subgraphs,
(a) weakly connected graphs and (b) graphs with ex-
actly two weakly connected components, and adapt
the inference rules and goal items. The change can
be implemented without affecting the asymptotic run-
time of the algorithm.

5Using the parlance of semiring parsing (Goodman, 1999),
we switch from the max–plus semiring to the counting semiring.

Note that when we take the modified deduction sys-
tem and consider undirected edges instead of directed
arcs, we obtain an algorithm for finding maximum
connected noncrossing graphs, which are counted by
sequence A007297 in the OEIS. These graphs are the
target representations of Link Grammar (Sleator and
Temperley, 1993).

5 Practical Parsing

While the main focus of this paper is theoretical, in
this section we extend our parsing algorithm into a
practical parser. In the context of our general model
(Section 2), this requires two additional components:
a feature representation and a training algorithm.

5.1 Features
We use the arc-based features of TurboParser (Mar-
tins et al., 2009), which descend from several other
feature models from the literature on syntactic de-
pendency parsing (McDonald et al., 2005a; Carreras
et al., 2006; Koo and Collins, 2010). In these mod-
els, the feature vector for an arc i ! j represents
information about various combinations of the exact
forms, lemmas and part-of-speech tags of the words
at positions i and j ; the tags of the immediately sur-
rounding words and the words between i and j ; as
well as the length of the arc and its direction. To
support parsing to labeled dependency graphs, we
additionally conjoin some of these features with the
arc label. For details we refer to the source code.

5.2 Training
To learn the feature weights in the weight vector
from data we use online passive–aggressive training
as described by Crammer et al. (2006). For each
gold instance .x;G/ in the training data we let the
parsing algorithm find the maximum noncrossing
dependency graph OG given the current weight vector
w and update the weight vector as

w wC �.˚.x;G/ � ˚.x; OG//

where ˚.x;G/ and ˚.x; OG/ are the sum vectors of
the arc-specific feature vectors for the dependency
graphs G and OG, and the scalar � is computed as

min

0B@C; w � .˚.x; OG/ � ˚.x;G//C

q
`.G; OG/˚.x;G/ � ˚.x; OG/2

1CA :
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In this formula, `.G; OG/ is a user-defined loss func-
tion and C > 0 is a parameter that controls the trade-
off between optimizing the current loss and being
close to the old weight vector. We use Hamming loss,
defined as the number of (labeled) arcs that are exclu-
sive to either G or OG. Following custom practice, we
apply weight vector averaging (Freund and Schapire,
1999; Collins, 2002).

5.3 Parsing Experiments

We report parsing experiments on the four data sets
described in Section 3.3.1 and discuss their results.
We use gold-standard lemmas and part-of-speech
tags, train each parser for 10 epochs, and report re-
sults for the final model on the test data. We use
the splits recommended for the respective data sets.
Following Carreras (2007), prior to training we trans-
form each dependency graph in the training data to
a closest noncrossing dependency graph.6 In a pre-
study using the DM development data we found the
best value for the tradeoff parameter C to be 0:01.

5.3.1 Results and Discussion
The experimental results are shown in Table 2. For
the SDP data, we report standard metrics used in the
SemEval task (Oepen et al., 2015): precision, recall,
and F1 on labeled dependencies. For the CCG data,
we report the same metrics for unlabeled dependen-
cies; these take into account only the two dependent
words but not the lexical category containing the de-
pendency relation or the argument slot.7

Given the low coverage of noncrossing depen-
dency graphs on the four data sets (recall Sec-
tion 3.3.2) and the use of a simple arc-factored model
with its off-the-shelf features originally developed for
syntactic parsing, it is not surprising that the parser
does not achieve state-of-the art results. We still
consider our results to be a useful reference for the
emerging field of semantic dependency parsing. On
the SDP data, the averaged labeled F1 of the parser
is 79.63, which is 5.70 points below the correspond-
ing score for the best-performing system in the task,
Peking (Du et al., 2015b). Labeled F1 is highest
on PAS (86.24) and lowest on PSD (70.01). On the

6This is done by running the parser with an oracle model that
assigns a score ofC1 to correct and �1 to incorrect arcs.

7The high number of different arc labels in the CCG data
exceeds what can be handled by the current version of our parser.

CCG data, the parser achieves an unlabeled F1 of
89.74, 4.24 points below the best reported result for
parsing with gold-standard part-of-speech tags (Auli
and Lopez, 2011). On all four data sets, precision
exceeds recall by a significant margin, more than one
might expect given the relatively high upper bounds
on arc-based recall that we observed in Section 3.3.2.

The speed of the parser is about 0.01 seconds per
sentence or 110 sentences per second on each of the
four test sets. Training for 10 epochs takes around
40 minutes per training set. Experiments were per-
formed on an iMac 3.4 GHz Intel Core i5 CPU with
4 cores and Java 1.8.0.

6 Intractability for Higher Pagenumbers

The parsing algorithm presented in Section 4 has
many attractive theoretical properties, but its practi-
cal usefulness is limited by the relatively low cov-
erage of noncrossing dependency graphs on the lin-
guistic data. It would be desirable to generalize the
algorithm to more expressive classes of graphs. A
natural candidate is the class of dependency graphs
with pagenumber at most k, whose coverage is excel-
lent already for k D 2, as we saw in Section 3.3.2.
However, we shall now prove the following:

Theorem 2 For dependency graphs with pagenum-
ber at most k, Maximum Subgraph is NP-hard
whenever k � 2.

For the proof of this theorem we do not consider
the maximization problem defined in Section 2.3 but
the following decision version:

Maximum Subgraph for Graph Class G ,
Decision Version

Given a digraph G D .V; A/ and an integer m � 0,
is there a subset A0 � A with jA0j � m such that the
induced subgraph G0 D .V; A0/ belongs to G ?

Note that any polynomial-time algorithm for the
maximization problem can be turned into a polyno-
mial-time algorithm for the decision problem: Given
an instance for the decision problem, assign each arc
weight 1 and solve the maximization problem; then,
test whether the solution contains at least m arcs. To
show the NP-hardness of the maximization problem
it therefore suffices to show it for the decision version
of the problem.
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Figure 3: A circle graph (left), a corresponding chord drawing (middle), and a dependency graph as constructed by the
algorithm specified in Section 6.2 (right). The example is adapted from Unger (1992).

6.1 Circle Graphs
To show that (the decision version of) Maximum Sub-
graph for dependency graphs with pagenumber at
most k is NP-hard we present a polynomial reduction
from a decision problem on circle graphs.

A circle graph is an undirected graph that repre-
sents the intersection graph of a set of chords of a
circle. That is, for every circle graph G we can draw
a circle and a set of chords of that circle such that
the chords are in one-to-one correspondence with the
vertices of G and two chords cross each other if and
only if the corresponding vertices are adjacent in G.
An example of a circle graph and a corresponding
chord drawing is given in Figure 3. Note that one
and the same circle graph may have many different
chord drawings. Here, without loss of generality, we
restrict our attention to drawings in which no two
chords have a common endpoint. In these drawings,
there are exactly twice as many points on the circle
as there are vertices in the circle graph G.

6.2 Reduction
The relevant decision problem on circle graphs is
given below. For a graph G D .V;E/ and a subset
V 0 � V , we let GjV 0 denote the subgraph of G
induced by V 0, that is, GjV 0 has vertex set V 0 and
contains each edge in E between vertices in V 0.

k-Colorable Induced Subgraph for Circle
Graphs (k-CIG)
Given a circle graph G D .V;E/ and an integer
m � 0, is there a subset V 0 � V with jV 0j � m such
that the induced graph GjV 0 is k-colorable?

Cong and Liu (1991) show that this problem is NP-
complete if k � 2. For k D 2 and k � 4 their proof
is based on earlier results by Sarrafzadeh and Lee
(1989) and Unger (1988), respectively.

The following procedure transforms an arbitrary
circle graph G into a dependency graph H . For an
illustration, see Figure 3.8

1. Construct a chord drawing for G. Recall that for
this drawing there is a one-to-one correspondence
between the chords and the vertices of G.

2. Cut the circle of the chord drawing and straighten
it out into a line. This yields a total order on
the endpoints of the chords. We identify each
endpoint with its position in that order and denote
the left and the right endpoint of a chord c by cL
and cR, respectively. Because we assume that no
two chords have a common endpoint, there will be
exactly twice as many points on the line as there
are chords and therefore vertices in G.

3. Direct each chord c from cL to cR. This defines
a dependency graph whose arcs are the directed
chords and whose vertices are (the positions of)
the chords’ endpoints.

The crucial property of this construction is that es-
tablishes a one-to-one correspondence between the
vertices of G and the arcs of H . More formally, let
G D .VG ; E/ and H D .VH ; A/. The construction
establishes a bijection

aWVG ! A by a.v/ D c.v/L ! c.v/R

where c is the unique chord corresponding to the
vertex v in the chord drawing of G.

The dependency graphH can be computed in poly-
nomial time in the size of G. The non-obvious part
is step 1; this can be carried out in time quadratic in
the number of vertices of G using the algorithm of
Spinrad (1994).

8The dependency graph obtained by this construction is es-
sentially what Unger (1992) calls the overlap graph model of a
circle graph, except that its edges are directed.
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We now claim that an instance .G;m/ of k-CIG
yields a “yes” answer if and only if the corresponding
instance .H;m/ of Maximum Subgraph for depen-
dency graphs with pagenumber at most k does.

Assume that .G;m/ yields a positive answer. This
means that there exists a subset of vertices V 0G � VG

with jV 0G j � m and such that the vertices in this set
can be colored with at most k colors in such a way
that no two adjacent vertices have the same color.
Without loss of generality we assume that the colors
are numbers between 1 and k. Let f .v/ denote the
color assigned to v. Consider the set of arcs corre-
sponding to V 0G , A0 D f a.v/ j v 2 V 0G g. We claim
that A0 is a solution set for .H;m/. Clearly jA0j � m
andH 0 D .VH ; A

0/ is a dependency graph. We show
that H 0 can be embedded into a k-book. Place every
arc a.v/ 2 A0 on page f .v/. Assume now that two
arcs a1 D a.v1/ and a2 D a.v2/ are placed on the
same page and cross each other. This implies that
f .v1/ D f .v2/ and that there is an edge between
v1 and v2 in G. Because v1; v2 2 V

0
G , we see that

this edge also appears in GjV 0G . This contradicts the
assumption that the set V 0G is k-colorable.

Assume that .H;m/ yields a positive answer. This
means that there exists a set of arcs A0 with jA0j � m
and such that there is an assignment of page numbers
to the arcs in this set such that no two arcs with the
same page number cross each other. Let f .a/ denote
the page number assigned to a. Consider the set
of vertices corresponding to A0, V 0G D f v 2 VG j

a.v/ 2 A0 g. We claim that V 0G is a solution set for
.G;m/. Clearly jV 0j � m. To show that GjV 0G is
k-colorable, we interpret the page assignment f as a
k-coloring of the vertices in V 0G in the obvious way:
We color each vertex v 2 V 0G with the page number
of the corresponding arc a.v/ 2 A0. Now consider
two arbitrary vertices v1 and v2 that are adjacent in
GjV 0. By construction, the arcs a.v1/ and a.v2/

cross in H ; therefore f .a.v1// ¤ f .a.v1// and v1

and v2 are assigned different colors in GjV 0.

This completes the proof of Theorem 2.

7 Conclusion

The goal of this paper was to generalize maximum
spanning tree dependency parsing to target structures
that are not necessarily tree-shaped. Because pars-
ing to unrestricted dependency graphs is intractable,

we studied the problem under the restriction to non-
crossing graphs, which generalize projective depen-
dency trees as they are known from syntactic parsing.
We presented a cubic-time parsing algorithm for this
class of graphs, extended the algorithm into a prac-
tical parser that we evaluated on four linguistic data
sets, and finally proved that the (natural) step beyond
the noncrossing condition to dependency graphs with
pagenumber at most k renders parsing intractable.

The main contributions of this paper are theoret-
ical. To the best of our knowledge, ours is the first
exact-inference algorithm for the full class of non-
crossing dependency graphs. The similar algorithm
by Schluter (2015), which was developed contempo-
raneously but independently of ours, is restricted to
(weakly) connected graphs. This is a severe practi-
cal limitation when semantically vacuous tokens are
analyzed as unconnected nodes, as such an analysis
renders most graphs unconnected.9 Another differ-
ence between our algorithm and the algorithm of
Schluter (2015) is that the latter does not have the
uniqueness property discussed in Section 4.4.

An interesting follow-up question to our result in
Section 6.2 is whether Maximum Subgraph remains
NP-hard when the candidate space is restricted to
trees with pagenumber at most k. This question was
raised by Gómez-Rodríguez and Nivre (2013), who
present a greedy parser for the case k D 2.

We view our algorithm as a canonical generaliza-
tion of the Eisner and Satta (1999) parsing algorithm
for projective dependency trees, and expect it to serve
as a similar point of departure for future extensions
of the paradigm. On the one hand, it seems inter-
esting to explore the use of more expressive feature
models, including the generalization of our arc-fac-
tored model to the grandparent and sibling features of
Carreras (2007) and Koo and Collins (2010). On the
other hand, given the low coverage of noncrossing
dependency graphs, it seems necessary to explore
the generalization to new, “mildly” crossing classes
of graphs, such as a graph version of the 1-endpoint
crossing trees of Pitler et al. (2013). Pitler (2014)
shows that the two directions may also be combined,
which we hope will lead to new, more accurate algo-
rithms for semantic dependency parsing.

9For each of the data sets introduced in Section 3.3.1, less
than 1% of the graphs are both noncrossing and connected.
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