
General-to-Specific Model  Selection 
for Subcategorization Preference* 

T a k e h i t o  U t s u r o  and T a k a s h i  M i y a t a  and  Y u j i  M a t s u m o t o  
G r a d u a t e  School  o f  I n f o r m a t i o n  Science,  N a r a  I n s t i t u t e  o f  Sc ience  a n d  T e c h n o l o g y  

8916-5, Takayama-cho, Ikoma-shi, Nara, 630-0101, J A P A N  
E-mail: utsuro@is, a i s t - na r a ,  ac. jp, URL: h t t p : / / c l ,  a i s t - na r a ,  ac. j p / - u t s u r o /  

A b s t r a c t  

This paper proposes a novel method for learning 
probability models of subcategorization preference of 
verbs. We consider the issues of case dependencies 
and noun class generalization in a uniform way by em- 
ploying the maximum entropy modeling method. We 
also propose a new model selection algorithm which 
starts from the most general model and gradually ex- 
amines more specific models. In the experimental 
evaluation, it is shown that both of the case depen- 
dencies and specific sense restriction selected by the 
proposed method contribute to improving the perfor- 
mance in subcategorization preference resolution. 

1 I n t r o d u c t i o n  

In empirical approaches to parsing, lexi- 
cal/semantic collocation extracted from corpus 
has been proved to be quite useful for ranking 
parses in syntactic analysis. For example, Mager- 
man (1995), Collins (1996), and Charniak (1997) 
proposed statistical parsing models which incor- 
porated lexical/semantic information. In their 
models, syntactic and lexical/semantic features 
are dependent on each other and are combined 
together. This paper also proposes a method 
of utilizing lexical/semantic features for the pur- 
pose of applying them to ranking parses in syn- 
tactic analysis. However, unlike the models of 
Magerman (1995), Collins (1996), and Char- 
niak (1997), we assume that  syntactic and lex- 
ical/semantic features are independent. Then, 
we focus on extracting lexical/semantic colloca- 
tional knowledge of verbs which is useful in syn- 
tactic analysis. 

More specifically, we propose a novel method 
for learning a probability model of subcategoriza- 
tion preference of verbs. In general, when learn- 
ing lexical/semantic collocational knowledge of 
verbs from corpus, it is necessary to consider 
the two issues of 1) case dependencies, and 2) 
noun class generalization. When considering 1), 
we have to decide which cases are dependent on 
each other and which cases are optional and in- 
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dependent of other cases. When considering 2), 
we have to decide which superordinate class gen- 
erates each observed leaf class in the verb-noun 
collocation. So far, there exist several works 
which worked on these two issues in learning col- 
locational knowledge of verbs and also evaluated 
the results in terms of syntactic disambiguation. 
Resnik (1993) and Li and Abe (1995) studied how 
to find an optimal abstraction level of an argu- 
ment noun in a tree-structured thesaurus. Their 
works are limited to only one argument. Li and 
Abe (1996) also studied a method for learning de- 
pendencies between case slots and reported that  
dependencies were discovered only at the slot- 
level and not at the class-level. 

Compared with these previous works, this pa- 
per proposes to consider the above two issues 
in a uniform way. First, we introduce a model 
of generating a collocation of a verb and argu- 
ment /adjunct  nouns (section 2) and then view 
the model as a probability model (section 3). As 
a model learning method, we adopt the max- 
imum entropy model learning method (Della 
Pietra et al., 1997; Berger et al., 1996). Case 
dependencies and noun class generalization are 
represented as features in the maximum entropy 
approach. Features are allowed to have overlap 
and this is quite advantageous when we consider 
case dependencies and noun class generalization 
in parameter estimation. An optimal model is se- 
lected by searching for an optimal set of features, 
i.e, optimal case dependencies and optimal noun 
class generalization levels. As the feature selec- 
tion process, this paper proposes a new feature 
selection algorithm which starts from the most 
general model and gradually examines more spe- 
cific models (section 4). As the model evalua- 
tion criterion during the model search from gen- 
eral to specific ones, we employ the description 
length of the model and guide the search process 
so as to minimize the description length (Ris- 
sanen, 1984). Then, after obtaining a sequence 
of subcategorization preference models which are 
totally ordered from general to specific, we se- 
lect an approximately optimal subcategorization 
preference model according to the accuracy of 
subcategorization preference test. In the exper- 
imental evaluation of performance of subcatego- 
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r izat ion preference,  it is shown tha t  b o t h  of  the 
case dependencies  and  specific sense res t r ic t ion 
selected by the  p roposed  m e t h o d  con t r ibu te  to 
improving  the  pe r fo rmance  in subca tegor iza t ion  
preference resolut ion (section 5). 

2 A M o d e l  o f  G e n e r a t i n g  a V e r b - N o u n  
C o l l o c a t i o n  f r o m  S u b c a t e g o r i z a t i o n  
F r a m e ( s )  

This  section in t roduces  a model  of  genera t ing  
a ve rb -noun  col locat ion f rom subca tegor iza t ion  
f rame(s) .  

2.1 D a t a  S t r u c t u r e  

V e r b - N o u n  C o l l o c a t i o n  V e r b - n o u n  col loca-  
t i o n  is a d a t a  s t ruc tu re  for the  col locat ion of a 
verb  and  all of  its a r g u m e n t / a d j u n c t  nouns.  A 
verb-noun  collocat ion e is represen ted  by a fea- 
ture  s t ruc tu re  which consists  of  the verb  v and  
all the  pairs  of  co-occurr ing case -marke r s  p and  
thesaurus  classes e of  case -marked  nouns:  

Fred : v 
Pl : cx 

e = . ( 1 )  

Pk : Ck 

We assume tha t  a t h e s a u r u s  is a t r ee - s t ruc tu red  
type  hierarchy in which each node represents  
a semant ic  class, and  each thesaurus  class 
0 , . . . ,  Ck in a ve rb -noun  col locat ion is a leaf class 
in the  thesaurus .  We also in t roduce  ~c  as the 
supe ro rd ina t e - subo rd ina t e  re la t ion of classes in 
a thesaurus :  cl ___e c2 means  t h a t  cl is subordi -  

1 na te  to c2. 

S u b c a t e g o r i z a t i o n  F r a m e  A s u b c a t e g o r i z a -  
t i o n  f r a m e  s is represented  by a fea ture  s t ruc tu re  
which consists  of  a ve rb  v and  the pairs  of  case- 
markers  p and  sense res t r ic t ion c of  case -marked  
a r g u m e n t / a d j u n c t  nouns:  

Fred  : v 
pl  : cl 

s = . (2) 

Pl : cl 

Sense res t r ic t ion cl, • • •, ct of  case -marked  argu-  
m e n t / a d j u n c t  nouns  are represen ted  by classes 
at  a r b i t r a r y  levels of the  thesaurus .  

S u b s u m p t i o n  R e l a t i o n  We in t roduce  the  
s u b s u m p t i o n  r e l a t i o n  "~s$ of a v e r b - n o u n  col lo-  

1Although we ignore sense ambiguities of case-marked 
nouns in the definitions of this section, in the current 
implementation, we deal with sense ambiguities of case- 
marked nouns by deciding that a class c is superordinate 
to an ambiguous leaf class Cl if c is superordinate to at 
least one of the possible unambiguous classes of Ct. 

c a t i o n  e and a s u b c a t e g o r i z a t i o n  f r a m e  s: 

e --sl s iff. for each case-marker Pi in s and its 
noun class csi, there exists the same 
case-marker pi in e and its noun 
class cei is subordinate to c~i, i.e. 
Cei  "<c Csi  

The  s u b s u m p t i o n  re la t ion "~s$ is appl icable  also 
as a s u b s u m p t i o n  re la t ion of two subca tegor iza -  
t ion frames.  

2.2 G e n e r a t i n g  a V e r b - N o u n  C o l l o c a t i o n  
f r o m  S u b c a t e g o r i z a t i o n  F r a m e ( s )  

Suppose  a ve rb -noun  col locat ion e is given as: 

Fred  : v 
Pl : Cel 

e = . (3) 

Pk : Cek 

Then ,  let us consider  a tuple  (s l ,  . . . , s n )  of  
p a r t i a l  s u b c a t e g o r i z a t i o n  f r a m e s  which satisfies 
the  following requi rements :  i) the  unif icat ion 
s l  A . . .  A s n  of all the  par t ia l  subca tegor i za t ion  
f rames  has exac t ly  the  same  case -marke r s  as e 
has as in (4), ii) each semant ic  class Csi of a 
case -marked  noun of the  par t ia l  subca tegor iza -  
t ion f rames  is supe ro rd ina t e  to the cor respond-  
ing leaf semant ic  class eei of e as in (5), and  iii) 
any  pair  si  and si, (i  7£ i I) do not have c o m m o n  
case -markers  as in (6): 

S 1 A • " " A S n ~ -  

w e d  : v 
P l  : C s l  

Pk : Csk 

cs i  ( i = l , . . . , k )  

(4) 

pred  : v ] 

J v j v j '  p i j  # pi , j ,  
si = ' ( i , i ' = l , . . , n ,  i # i ' )  (6) P i j  : C i j  

W h e n  a tuple  (Sl, . . . , s n )  satisfies the  above  
three  requi rements ,  we assume tha t  the  tuple  (Sl, 
. . . ,  sn )  can g e n e r a t e  the  ve rb -noun  col locat ion e 
and  denote  as below: 

(~, . . . ,  ~.) , e ( 7 )  

As we will descr ibe  in sect ion 3.2, we assume tha t  
the par t ia l  subca tegor i za t ion  f rames  Sl, . . . ,  Sn 
are regarded  as events  occurr ing  i n d e p e n d e n t l y  
of each o the r  and  each of t h e m  is assigned an 
independen t  p a r a m e t e r .  

2 .3 E x a m p l e  

This  sect ion shows how we can incorpora te  case  
d e p e n d e n c i e s  and  n o u n  c lass  g e n e r a l i z a t i o n  into 
the model  of  genera t ing  a ve rb -noun  collocat ion 
f rom a tuple  of  par t i a l  subca tegor iza t ion  frames• 
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The A m b i g u i t y  o f  Case  Dependencies 
The problem of the ambiguity of case dependen- 
cies is caused by the fact that,  only by observing 
each verb-noun collocation in corpus, it is not de- 
cidable which cases are dependent on each other 
and which cases are optional and independent of 
other cases. Consider the following example: 
Example 1 

Kodomo-ga kouen-de juusu-wo nomu. 
child-NOM park-at juice-A CC drink 
(A child drinks juice at the park.) 
The verb-noun collocation is represented as a 

feature structure e below: 
pred : nomu ] 
ga : Cc ] e = wo : cj (8) 
de : cp 

where co, cp, and cj represent the leaf classes 
(in the thesaurus) of the nouns "kodomo(child)",  
"kouen(park)",  and '~uusu(juice) ' .  

Next, we assume that  the concepts "hu- 
man",  "place", and "beverage" are superordi- 
hate to "kodomo(child)",  "kouen(park)",  and 
'~uusu(juice)",  respectively, and introduce the 
corresponding classes Chum, Cplc, and Cbe v as sense 
restriction in subcategorization frames. Then, 
according to the dependencies of cases, we can 
consider several patterns of subcategorization 
frames each of which can generate the verb-noun 
collocation e. 

If the three cases "ga(NOM)" ,  "wo(ACC)" ,  
and "de(at)"  are dependent on each other and 
it is not possible to find any division into several 
independent subcategorization frames, e can be 
regarded as generated from a subcategorization 
frame containing all of the three cases: 

ga : C h u m  :' e (9) 
W O  : C b e v  

de : Cptc 
Otherwise, if only the two cases " g a ( N O M ) "  

and "wo(A CC)"  are dependent on each other and 
the "de(at)"  case is independent of those two 
cases, e can be regarded as generated from the 
following two subcategorization frames indepen- 
dently: 

g a  : C h u  m ' de : Cpl  c ~ e 
W O  : Cbe v 

T h e  A m b i g u i t y  of  N o u n  Class  G e n e r a l i z a -  
t i o n  The problem of the ambiguity of noun 
class generalization is caused by the fact that,  
only by observing each verb-noun collocation in 
corpus, it is not decidable which superordinate 
class generates each observed leaf class in the 
verb-noun collocation. Let us again consider Ex- 
ample 1. We assume that  the concepts "mam- 
mal"  and "liquid" are superordinate to "human" 

and "beverage", respectively, and introduce the 
corresponding classes Cma m and Ctiq. If we addi- 
tionally allow these superordinate classes as sense 
restriction in subcategorization frames, we can 
consider several additional patterns of subcate- 
gorization frames which can generate the verb- 
noun collocation e. 

Suppose that  only the two cases " g a ( N O M ) "  
and " w o ( A C C ) "  are dependent on each other 
and the "de(at)"  case is independent of those two 
cases as in the formula (10). Since the leaf class 
cc ("child") can be generated from either Chum 
or cream, and also the leaf class cj ( '~uice ' )  can 
be generated from either Cbe v o r  Cliq, e can be 
regarded as generated according to either of the 
four formulas (10) and (11),~(13): 

ga : C m a  m ~ de : Cpl  c ) e 
W O  : Cbe v 

ga : C h u m  ' de : Cpl  c > 
W O  : Cliq 

ga : c . . . .  de : %to , e (13) 
W O  : Cliq 

3 M a x i m u m  E n t r o p y  M o d e l i n g  o f  
S u b c a t e g o r i z a t i o n  P r e f e r e n c e  

This section describes how we apply the maxi- 
mum entropy modeling approach of Della Pietra 
et al. (1997) and Berger et al. (1996) to model 
learning of subcategorization preference. 
3.1 M a x i m u m  E n t r o p y  M o d e l i n g  
Given the training sample C of the events (x, y), 
our task is to estimate the conditional probabil- 
ity p(y  I x)  that,  given a context x, the process 
will output y. In order to express certain features 
of the whole event (x, y), a binary-valued indica- 
tor function is introduced and called a feature 
function.  Usually, we suppose that  there exists a 
large collection F of candidate features, and in- 
clude in the model only a subset S of the full set 
of candidate features .T. We call S the set of ac- 
tive features. Now, we assume that  S contains n 
feature functions. For each feature f i (E  S) ,  the 
sets Vzi and Vyi indicate the sets of the values 
of x and y for that  feature. According to those 
sets, each feature function f i  will be defined as 
follows: 

1 i f x E  V ~ i a n d y E V y i  
f i (x ,y )  = 0 otherwise 

Then, in the maximum entropy modeling ap- 
proach, the model with the maximum entropy 
is selected among the possible models. With this 
constraint, the conditional probability of the out- 
put y given the context x can be estimated as the 
following p~(y [ x)  of the form of the exponen- 
tial family, where a parameter  Ai is introduced 
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for each feature fi. exp(~-'~ )qfi(x,y)) 

p Cy I x) = ~ (14) 

y i 

The parameter values )¢i are estimated by an 
algorithm called Improved Iterative Scaling (IIS) 
algorithm. 
F e a t u r e  Se lec t ion  by  O n e - b y - o n e  F e a t u r e  
A d d i n g  The feature selection process pre- 
sented in Della Pietra et al. (1997) and Berger 
et al. (1996) is an incremental procedure that  
builds up S by successively adding features one- 
by-one. It starts with S as empty, and, at each 
step, selects the candidate feature which, when 
adjoined to the set of active features S, pro- 
duces the greatest increase in log-likelihood of 
the training sample. 
3.2 M o d e l i n g  S u b c a t e g o r i z a t i o n  P re f e r -  

ence  
E v e n t s  In our task of model learning of sub- 
categorization preference, each event (x,y)  in 
the training sample is a verb-noun collocation e, 
which is defined in the formula (1). A verb-noun 
collocation e can be divided into two parts: one 
is the verbal part ev containing the verb v while 
the other is the nominal part ep containing all the 
pairs of case-markers p and thesaurus leaf classes 
c of case-marked nouns: 

Pk Ck 
Then, we define the context x of an event (x, y) 

as the verb v and the output y as the nominal part 
& of e, and each event in the training sample is 
denoted as (v, %): 

x = v, y -~ ep 
F e a t u r e s  We represent each partial subcatego- 
rization frame as a feature in the maximum en- 
tropy modeling. According to the possible vari- 
ations of case dependencies and noun class gen- 
eralization, we consider every possible patterns 
of subcategorization frames which can generate 
a verb-noun collocation, and then construct the 
full set ~- of candidate features. Next, for the 
given verb-noun collocation e, tuples of partial 
subcategorization frames which can generate e 
are collected into the set SF(e)  as below: 

Then, for each partial subcategorization frame 
s, a binary-valued feature function fs(V, ep) is de- 
fined to be true if and only if at least one element 
of the set SF(e)  is a tuple ( s l , . . . , s , . . . , s n )  that  
contains s: 

1 if 3 ( s l , . . . , s , . . . , s n )  
f ,(v, ep) = • SF(e=([pred : v] A %)) 

0 otherwise 
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In the maximum entropy modeling approach, 
each feature is assigned an independent param- 
eter, i.e., each (partial) subcategorization frame 
is assigned an independent parameter. 

P a r a m e t e r  E s t i m a t i o n  Suppose that  the set 
S(C_ ~') of active features is found by the pro- 
cedure of the next section. Then, the param- 
eters of subcategorization frames are estimated 
according to IIS Algorithm and the conditional 
probability distribution p s ( &  [ v) is given as: 

:,~s (15) 

% f~ E S 

4 G e n e r a l - t o - S p e c i f i c  F e a t u r e  Selec-  
t i o n  

This section describes the new feature selection 
algorithm which utilizes the subsumption rela- 
tion of subcategorization frames. It starts from 
the most general model, i.e., a model with no 
case dependency as well as the most general 
sense restrictions which correspond to the high- 
est classes in the thesaurus. This starting model 
has high coverage of the test data. Then, the al- 
gorithm gradually examines more specific mod- 
els with case dependencies as well as more spe- 
cific sense restrictions which correspond to lower 
classes in the thesaurus. The model search pro- 
cess is guided by a model evaluation criterion. 

4.1 P a r t i a l l y - O r d e r e d  F e a t u r e  Space  
In section 2.1, we introduced subsumption rela- 
tion ~sl  of two subcategorization frames. All the 
subcategorization frames are partially ordered 
according to this subsumption relation, and el- 
ements of the set .T of candidate features consti- 
tute a partially ordered feature space. 
C o n s t r a i n t  on  Ac t i ve  F e a t u r e  S e t  
Throughout the feature selection process, 
we put the following constraint on the active 
feature set S: 

Case Covering Constraint: for each verb-noun 
collocation in the training set C, each case p (and 
the leaf class marked by p) of e has to be covered 
by at least one feature in S. 

In i t i a l  A c t i v e  F e a t u r e  Set  Initial set So of 
active features is constructed by collecting fea- 
tures which are not subsumed by any other can- 
didate features in ~-: 

So = ( f s l V f s , ( •  f s )  E ~ , s  7~sf S t } (16)  

This constraint on the initial active feature set 
means that  each feature in So has only one case 
and the sense restriction of the case is (one of) 
the most general class(es). 



Candidate Non-active F e a t u r e s  f o r  R e -  
p l a c e m e n t  At each step of feature  selection, 
one of the active features is replaced wi th  sev- 
eral non-act ive features.  Let  G be a set of non- 
active features which have never been active unti l  
tha t  step. Then ,  for each active feature  fs(E S), 
the  set DI, (C ~) of candida te  non-act ive features  
with which fs is replaced has to satisfy the fol- 
lowing two requi rements  2 3. 

1. Subsumption with s: for each element fs' of DI. , 
s' has to be subsumed by s. 

2. Upper Bound of ~: for each element fs, of DI, , 
and for each element ft of G, t does not subsume 
s', i.e., DI, is a subset of the upper bound of 
with respect to the subsumption relation ~sI- 

Among  all the possible replacements ,  the most  
appropr ia te  one is selected according to a model  
evaluat ion cri terion.  
4 .2  M o d e l  E v a l u a t i o n  Criterion 
As the model  evaluat ion cri ter ion during feature  
selection, we consider the following two types.  
4 .2 .1  M D L  Principle 
The  MDL (Min imum Descr ipt ion Length)  prin- 
ciple (Rissanen, 1984) is a model  selection crite- 
rion. It  is designed so as to "select the model  t ha t  
has as much fit to a given da ta  as possible and 
tha t  is as simple as possible." The  MDL princi- 
ple selects the model  t ha t  minimizes the follow- 
ing description length l( M, D) of the probabi l i ty  
model  M for the da t a  D: 1N 

l(M,D) = -logLM(D) + ~ MloglO I (17) 

where logLM(D) is the log-likelihood of  the 
model  M to the da t a  D, NM is the  nu m b er  of 
the pa ramete r s  in the model  21I, and IDI is the 
size of the da t a  D. 
Description L e n g t h  o f  Subcategorization 
P r e f e r e n c e  M o d e l  The  descr ipt ion length 
l(ps, £) of the probabi l i ty  model  Ps (of (15)) for 
the t ra ining da t a  set C is given as below: 4 
l(ps,C) = - ~ logps(% I v ) +  llsIloglCI (18) 

(v,e,.)~ 
2The general-to-specific feature selection considers only 

a small portion of the non-active features as the next can- 
didate for the active feature, while the feature selection by 
one-by-one feature adding considers all the non-active fea- 
tures as the next candidate. Thus, in terms of efficiency, 
the general-to-specific feature selection has an advantage 
over the one-by-one feature adding algorithm, especially 
when the number of the candidate features is large. 

3As long as the case covering constraint is satisfied, the 
set Df, of candidate non-active features with which f,  is 
replaced could be an empty set 0. 

4More precisely, we slightly modify the probability 
model ps by multiplying the probability of generating the 
verb-noun collocation e from the (partial) subcategoriza- 
tion frames that correspond to active features evaluating 
to true for e, and then apply the MDL principle to this 
modified model. The probability of generating a verb- 
noun collocation from (partial) subcategorization frames 
is simply estimated as the product of the probabilities 

4 .2 .2  Subcategorization Preference T e s t  
using Posit ive/Negative  Examples 

The  o ther  type  of the model  evaluat ion cr i ter ion 
is the per formance  in the subca tegor iza t ion  pref- 
erence test  presented in Utsuro  and M a t s u m o t o  
(1997), in which the goodness  of the model  is 
measured  according to how m a n y  of the  posi- 
t ive examples  can be judged  as more  appropr ia te  
than  the negative examples.  This  subcategor iza-  
t ion preference test  can be regarded  as model ing 
the subcategor iza t ion  ambigui ty  of an a rgument  
noun in a Japanese  sentence wi th  more  t han  one 
verbs like the one in Example  2. 

Example 2 
TV-de mouketa shounin-wo mita 

TV-by/on earn money merchant-A CC see 
(If the phrase "TV-de'(by/on TV) modifies the verb 
"mouketa'(earn money), the sentence means that 
"(Somebody) saw a merchant who earned money by 
(selling) TV." On the other hand, if the phrase "TV- 
de"(by/on TV) modifies the verb "mita'(see), the 
sentence means that "On TV, (somebody) saw a mer- 
chant who earned money.") 

Negat ive examples  are artificially genera ted  from 
the posi t ive examples  by choosing a case e lement  
in a posit ive example  of one verb  at  r an d om and 
moving it to a posit ive example  of ano the r  verb. 

Compared  wi th  the calculat ion of the  descrip- 
t ion length l(ps, C) in (18), the calculat ion of the 
accuracy  of subca tegor iza t ion  preference tes t  re- 
quires compar ison  of probabi l i ty  values for suffi- 
cient number  of posit ive and negat ive d a t a  and 
its computa t iona l  cost is much higher  t h an  tha t  
of calculat ing the descr ipt ion length.  There-  
fore, at  present ,  we employ the descr ipt ion length 
l(ps,C) in (18) as the model  evaluat ion crite- 
rion dur ing the general-to-specific feature  selec- 
t ion procedure ,  which we will describe in the  next  
section in detail.  After  obta in ing  a sequence of 
active feature  sets (i.e., subca tegor iza t ion  pref- 
erence models)  which are to ta l ly  ordered  from 
general  to specific, we select an op t imal  subcate-  
gorizat ion preference model  according to the ac- 
curacy  of subcategor iza t ion  preference test ,  as we 
will describe in section 4.4. 

4 .3  Feature Selection A l g o r i t h m  
The  following gives the details  of the  general-to- 
specific feature  selection a lgor i thm,  where the de- 

of generating each leaf-class in the verb-noun collocation 
from the corresponding superordinate class in the subcat- 
egorization frame. With this generation probability, the 
more general the sense restriction of the subcategoriza- 
tion frames is, the less fit the model has to the data, and 
the greater the data description length (the first term of 
(18)) of the model is. Thus, this modification causes the 
feature selection process to be more sensitive to the sense 
restriction of the model. 
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scription length l (ps ,  g) in (18) is employed as 
the model evaluation criterion: 5 

General-to-Specific Feature Selection 

Input: Training data set E; 
collection ~- of candidate features 

Output: Set `S of active features; 
model Ps incorporating these features 

1. Start with ,S = ,So of the definition (16) and with 
g =~'-& 

2. Do for each active feature f E `S and every pos- 
sible replacement D I C G: 

Compute the model PSuD/-U} using 
IIS Algorithm. 

Compute the decrease in the descrip- 
tion length of (18). 

3. Check the termination condition s 
4. Select the feature j and its replacement D] with 

maximum decrease in the description length 

5. S , - - - - S u D ] - { ] } ,  G ~ - - - G - D ]  
6. Compute ps using IIS Algorithm 
7. Go to step 2 

4.4 Se lec t ing  a M o d e l  w i t h  A p p r o x -  
i m a t e l y  O p t i m a l  S u b c a t e g o r i z a t i o n  
P r e f e r e n c e  A c c u r a c y  

Suppose that  we are constructing subcategoriza- 
tion preference models for the verbs Vl, . . . ,Vm. 
By the general-to-specific feature selection algo- 
rithm in the previous section, for each verb vi, 
a totally ordered sequence of ni active feature 
sets Si0, . . .  ,'-"¢ini (i.e., subcategorization prefer- 
ence models) are obtained from the training sam- 
ple g. Then, using another training sample C ~ 
which is different from C and consists of positive 
as well as negative data, a model with optimal 
subcategorization preference accuracy is approx- 
imately selected by the following procedure. Let 
~ , . . . ,  7-m denote the current sets of active fea- 
tures for verbs Vl , . . . ,  Vm, respectively: 

1. Initially, for each verb vi, set ~ as the most gen- 
eral one `sis of the sequence `sio,. . . ,  `sire. 

2. For each verb vi, from the sequence ` sn , . . . ,  `sire, 
search for an active feature set which gives a 
maximum subcategorization preference accuracy 
for g~, then set Ti as it. 

3. Repeat the same procedure as 2. 
4. Return the current sets ~ , . . . ,  7-m as the approx- 

imately optimal active feature sets 'S1,.--,'~r~ 
for verbs Vl, . . . ,  vm, respectively. 

5Note that this feature selection algorithm is a hill- 
climbing one and the model selected here may have a de- 
scription length greater than the global minimum. 

6In the present implementation, the feature selection 
process is terminated after the description length of the 
model stops decreasing and then certain number of active 
features are replaced. 

5 E x p e r i m e n t  a n d  E v a l u a t i o n  
5.1 C o r p u s  a n d  T h e s a u r u s  
As the training and test corpus, we used the 
EDR Japanese bracketed corpus (EDR, 1995), 
which contains about 210,000 sentences collected 
from newspaper and magazine articles. We 
used 'Bunrui Goi Hyou'(BGH) (NLRI, 1993) 
as the Japanese thesaurus. BGH has a seven- 
layered abstraction hierarchy and more than 
60,000 words are assigned at the leaves and its 
nominal part contains about 45,000 words. 

5.2 T r a i n i n g / T e s t  E v e n t s  a n d  F e a t u r e s  
We conduct the model learning experiment under 
the following conditions: i) the noun class gener- 
alization level of each feature is limited to above 
the level 5 from the root node in the thesaurus, 
ii) since verbs are independent of each other in 
our model learning framework, we collect verb- 
noun collocations of one verb into a training data 
set and conduct the model learning procedure for 
each verb separately. 

For the experiment, seven Japanese verbs 7 are 
selected so that  the difficulty of the subcatego- 
rization preference test is balanced among verb 
pairs. The number of training events for each 
verb varies from about 300 to 400, while the 
number of candidate features for each verb varies 
from 200 to 1,350. From this data, we construct 
the following three types of data set, each pair 
of which has no common element: i) the training 
data ~: which consists of positive data only, and 
is used for selecting a sequence of active feature 
sets by the general-to-specific feature selection 
algorithm in section 4.3, ii) the training data g '  
which consists of positive and negative data  and 
is used in the procedure of section 4.4, and iii) the 
test data C ts which consists of positive and neg- 
ative data and is used for evaluating the selected 
models in terms of the performance of subcate- 
gorization preference test. The sizes of the data 
sets g, g', and g ts are 2,333, 2,100, and 2,100. 
5.3 Results 
Table 1 shows the performance of subcategoriza- 
tion preference test described in section 4.2.2, for 
the approximately optimal models selected by the 
procedure in section 4.4 (the "Optimal" mode] 
of "General-to-Specific" method), as well as for 
several other models including baseline models. 
Coverage is the rate of test instances which sat- 
isfy the case covering constraint  of section 4.1. 
Accuracy is measured with the following heuris- 
tics: i) verb-noun collocations which satisfy the 

r"Agaru (rise)", "kau (buy)", "motoduku (base)", 
"oujiru (respond)", "sumu (live)", "tigau (differ)", and 
"tsunagaru (connect)". 
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Table 1: Comparison of Coverage and Accuracy 
of Optimal  and Other Models (%) 

General-to-Specific 
(Initial) 

(Independent Cases) 
(General Classes) 

(Optimal) 
(MDL) 

One-by-one Feature Adding 
(Optimal) 

Coverage 

84.8 
84.8 
77.5 
75.4 
15.9 

60.8 

Accuracy 

81.3 
82.2 
79.5 
87.1 
70.5 

79.0 

case covering constraint  are preferred, it) even 
those verb-noun collocations which do not satisfy 
the case covering constraint  are assigned the con- 
ditional probabilities in (15) by neglecting cases 
which are not covered by the model. With these 
heuristics, subcategorization preference can be 
judged for all the test instances, and test set cov- 
erage becomes 100%. 

In Table 1, the "Initial" model is the one 
constructed according to the description in sec- 
tion 4.1, in which cases are independent of each 
other and the sense restriction of each case is 
(one of) the most general class(es). The "Inde- 
pendent Cases" model is the one obtained by re- 
moving all the case dependencies from the "Op- 
timal" model, while the "General Classes" model 
is the one obtained by generalizing all the sense 
restriction of the "Optimal" model to the most 
general classes. The "MDL" model is the one 
with the minimum description length. This is 
for evaluating the effect of the MDL principle in 
the task of subcategorization preference model 
learning. The "Optimal" model of "One-by-one 
Feature Adding" method is the one selected from 
the sequence of one-by-one feature adding in sec- 
tion 3.1 by the procedure in section 4.4. 

The "Optimal" model of 'General-to-Specific" 
method performs best among all the models in 
Table 1. Especially, it outperforms the "Op- 
timal" model of "One-by-one Feature Adding" 
method both in coverage and accuracy. As for 
the size of the optimal model, the average num- 
ber of the active feature set is 126 for "General- 
to-Specific" method and 800 for "One-by-one 
Feature Adding" method. Therefore, general-to- 
specific feature selection algorithm achieves sig- 
nificant improvements over the one-by-one fea- 
ture adding algorithm with much smaller num- 
ber of active features. The "Optimal" model of 
"General-to-Specific" method outperforms both 
the "Independent Cases" and "General Classes" 
models, and thus both of the case dependencies 
and specific sense restriction selected by the pro- 
posed method have much contribution to improv- 
ing the performance in subcategorization prefer- 
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ence test. The "MDL" model performs worse 
than the "Optimal" model, because the features 
of the "MDL" model have much more specific 
sense restriction than those of the "Optimal" 
model, and the coverage of the "MDL" model 
is much lower than that  of the "Optimal" model. 

6 C o n c l u s i o n  
This paper proposed a novel method for learn- 
ing probability models of subcategorization pref- 
erence of verbs. Especially, we proposed a new 
model selection algorithm which starts from the 
most general model and gradually examines more 
specific models. In the experimental evaluation, 
it is shown that  both of the case dependencies 
and specific sense restriction selected by the pro- 
posed method contribute to improving the per- 
formance in subcategorization preference resolu- 
tion. As for future works, it is important to eval- 
uate the performance of the learned subcatego- 
rization preference model in the real parsing task. 
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