
Approximating Context-Free Grammars  
with  a Finite-State  Calculus 

E d m u n d  G R I M L E Y  E V A N S  

C o m p u t e r  L a b o r a t o r y  
U n i v e r s i t y  of  C a m b r i d g e  

C a m b r i d g e ,  CB2  3 Q G ,  G B  

Edmund. G r i m l e y - E v a n s O c l .  cam. a c .  uk  

A b s t r a c t  

Although adequate models of human lan- 
guage for syntactic analysis and seman- 
tic interpretation are of at least context- 
free complexity, for applications such as 
speech processing in which speed is impor- 
tant finite-state models are often preferred. 
These requirements may be reconciled by 
using the more complex grammar to auto- 
matically derive a finite-state approxima- 
tion which can then be used as a filter to 
guide speech recognition or to reject many 
hypotheses at an early stage of processing. 
A method is presented here for calculat- 
ing such finite-state approximations from 
context-free grammars. It is essentially dif- 
ferent from the algorithm introduced by 
Pereira and Wright (1991; 1996), is faster 
in some cases, and has the advantage of be- 
ing open-ended and adaptable. 

1 F i n i t e - s t a t e  a p p r o x i m a t i o n s  

Adequate models of human language for syntac- 
tic analysis and semantic interpretation are typi- 
cally of context-free complexity or beyond. Indeed, 
Prolog-style definite clause grammars (DCGs) and 
formalisms such as PATR with feature-structures 
and unification have the power of Turing machines 
to recognise arbitrary recursively enumerable sets. 
Since recognition and analysis using such models 
may be computationally expensive, for applications 
such as speech processing in which speed is impor- 
tant finite-state models are often preferred. 

When natural language processing and speech 
recognition are integrated into a single system one 
may have the situation of a finite-state language 
model being used to guide speech recognition while 
a unification-based formalism is used for subsequent 
processing of the same sentences. Rather than 

write these two grammars separately, which is likely 
to lead to problems in maintaining consistency, it 
would be preferable to derive the finite-state gram- 
mar automatically from the (unification-based) anal- 
ysis grammar. 

The finite-state grammar derived in this way can 
not in general recognise the same language as the 
more powerful grammar used for analysis, but, since 
it is being used as a front-end or filter, one would 
like it not to reject any string that is accepted by 
the analysis grammar, so we are primarily interested 
in 'sound approximations' or 'approximations from 
above'. 

Attention is restricted here to approximations 
of context-free grammars because context-free lan- 
guages are the smallest class of formal language that 
can realistically be applied to the analysis of natural 
language. Techniques such as restriction (Shieber, 
1985) can be used to construct context-free approx- 
imations of many unification-based formalisms, so 
techniques for constructing finite-state approxima- 
tions of context-free grammars can then be applied 
to these formalisms too. 

2 F i n i t e - s t a t e  c a l c u l u s  

A 'finite-state calculus' or 'finite automata toolkit' 
is a set of programs for manipulating finite-state 
automata and the regular languages and transduc- 
ers that they describe. Standard operations in- 
clude intersection, union, difference, determinisation 
and minimisation. Recently a number of automata 
toolkits have been made publicly available, such as 
FIRE Lite (Watson, 1996), Grail (Raymond and 
Wood, 1996), and FSA Utilities (van Noord, 1996). 

Finite-state calculus has been successfully applied 
both to morphology (Kaplan and Kay, 1994; Kempe 
and Karttunen, 1996) and to syntax (constraint 
grammar, finite-state syntax). 

The work described here used a finite-state calcu- 
lus implemented by the author in SICStus Prolog. 

452 



The use of Prolog rather than C or C + +  causes large 
overheads in the memory and time required. How- 
ever, careful account has been taken of the way Pro- 
log operates, its indexing in particular, in order to 
ensure that the asymptotic complexity is as good as 
that of the best published algorithms, with the result 
that for large problems the Prolog implementation 
outperforms some of the publicly available imple- 
mentations in C + + .  Some versions of the calculus 
allow transitions to be labelled with arbitrary Prolog 
terms, including variables, a feature that proved to 
be very convenient for prototyping although it does 
not essentially alter the power of the machinery. (It 
is assumed that the string being tested consists of 
ground terms so no unification is performed, just 
matching.) 

3 An approximation algorithm 
There are two main ideas behind this algorithm. The 
first is to describe the finite-state approximation us- 
ing formulae with regular languages and finite-state 
operations and to evaluate the formulae directly us- 
ing the finite-state calculus. The second is to use, 
in intermediate stages of the calculation, additional, 
auxiliary symbols which do not appear in the final 
result. A similar approach has been used for compil- 
ing a two-level formalism for morphology (Grimley 
Evans et al., 1996). 

In this case the auxiliary symbols are dotted rules 
from the given context-free grammar. A dotted rule 
is a grammar rule with a dot inserted somewhere on 
the right-hand side, e.g. 

S -+ - NP VP 
S -+ NP • VP 
S --~ NP VP • 

However, since these dotted rules are to be used 
as terminal symbols of a regular language, it is con- 
venient to use a more compact notation: they can 
be replaced by a triple made out of the nonterminal 
symbol on the left-hand side, an integer to determine 
one of the productions for that nonterminal, and an 
integer to denote the position of the dot on the right- 
hand side by counting the number of symbols to the 
left of the dot. So, if 'S ~ NP VP' is the fourth 
production for S, the dotted rules given above may 
be denoted by (S, 4, 0}, (S, 4, 1) and (S, 4, 2}, respec- 
tively. 

It will turn out to be convenient to use a slightly 
more complicated notation: when the dot is located 
after the last symbol on the right-hand side we use z 
as the third element of the triple instead of the corre- 
sponding integer, so the last triple is (S, 4, z) instead 
of (S, 4,2). (Note that z is an additional symbol, 

not a variable.) Moreover, for epsilon-rules, where 
there are no symbols on the right-hand side, we treat 
the e as it were a real symbol and consider there to 
be two corresponding dotted rules, e.g. (MOD, 1, O) 
and (MOD, 1, z) corresponding to 'MOD --~ • e' and 
'MOD --~ e -' for the rule 'MOD -+ e'. 

Using these dotted rules as auxiliary symbols we 
can work with regular languages over the alphabet 

E =  T U {  (X ,m ,n )  ] X  E V A m =  I , . . . , m x A  

n = O, . . . ,max{nx,m - 1,O},z} 

where T is the set of terminal symbols, V is the set of 
nonterminals, m x  is the number of productions for 
nonterminal X, and nx,m is the number of symbols 
on the right-hand side of the ruth production for X. 

It will be convenient to use the symbol * as a 
'wildcard', so (s,*, O) means { (X,m,n} E E I X  = 
s , n = O }  and (*,*,z) means { ( X , m , n )  E E l n =  
z }. (This last example explains why we use z rather 
than nx,rn; it would otherwise not be possible to use 
the 'wildcard' notation to denote concisely the set 
{ (X, m, n) I n = nx,m }.) 

We can now attempt to derive an expression for 
the set of strings over E that represent a valid parse 
tree for the given grammar: the tree is traversed in a 
top-down left-to-right fashion and the daughters of a 
node X expanded with the ruth production for X are 
separated by the symbols (X, m, .). (Equivalently, 
one can imagine the auxiliary symbols inserted in 
the appropriate places in the right-hand side of each 
production so that the grammar is then unambigu- 
ous.) Consider, for example, the following grammar: 

S--+ a S b  
S--+e 

Then the following is one of the strings over E that 
we would like to accept, corresponding to the string 
aabb accepted by the grammar: 

(s, 1, O)a(s, 1, 1}(s, 1, O}a(s, 1, 1)(s, 2, 0)(s, 2, z) 

(s, 1, 2)b(s, 1, z)(s, 1, 2)b(s, 1, z) 

Our first approximation to the set of acceptable 
strings is (S, *, 0)N*(S,*, z), i.e. strings that start 
with beginning to parse an S and end with having 
parsed an S. From this initial approximation we sub- 
tract (that is, we intersect with the complement of) 
a series of expressions representing restrictions on 
the set of acceptable strings: 1 

1In these expressions over regular languages set union 
and set difference are denoted by + and - ,  respectively, 
while juxtaposition denotes concatenation and the bar 
denotes complementation (5 - E* - x). 

453 



(z*(( , ,  , ,  ,)  - ( , , , ,  z))) + (1) 

Formula 1 expresses the restriction that  a dotted 
rule of the form (%. ,  0), which represents starting to 
parse the right-hand side of a rule, may be preceded 
only by nothing (the start  of the string) or by a 
dotted rule that  is not of the form (*, *, z) (which 
would represent the end of parsing the right-hand 
side of a rule). 

+ ( ( , , , , , )  - ( , , , , 0 ) ) z *  (2) 

Formula 2 similarly expresses the restriction that  
a dotted rule of the form (*, *, z) may be followed 
only by nothing or by a dotted rule that  is not of 
the form (*, *, 0). 

For each non-epsilon-rule with dotted rules 
( X , m , n ) ,  n = O , . . . , n x , m  - 1,z, for each n = 
0 , . . . , n x , m -  1: 

E * ( X , m , n ) n e x t ( X , m , n  + 1)E* (3) 

where 

next(X, m, n) = 

a ( X , m , n )  (rhs(X, m, n) = a, a C T ,  n < n x , m )  

a ( X , m , z )  (rhs(X, m, n) = a, a e T ,  n = n x , m )  

(A, *, 0) (rhs(X, m, n) = A, A e V) 

where rhs(X, m, n) is the nth symbol on the right- 
hand side of the ruth production for X. 

Formula 3 states that  the dotted rule (X, m, n) 
must be followed by a(X,  m, n + 1) (or a(X,  m, z) 
when n +  1 = nx,m) when the next item to be parsed 
is the terminal a, or by C A, *, 0) (starting to parse 
an A) when the next item is the nonterminal A. 

For each non-epsilon-rule with dotted rules 
( X , m , n ) ,  n = O, . . . , nx , ,~  - 1,z, for each n = 
1 , . . . ,  n x , m  - 1, z: 

E*prev(X, m, n)(X,  m, n)E* (4) 

where 

prev(X, m, n) = 
iX, re, n -  1)a (rhs(X, m, n) = a, a C T, n ~ z) 
(X, m, nx ,m - 1)a (rhs(X, m, n) = a, a • T, n = z) 
(A, *, z) (rhs(X, m, n) = A, A • V) 

Formula 4 similarly states that  the dotted rule 
(X, m, n) must be preceded by i X, m, n - 1)a (or 
( X , m ,  nx ,m - 1) when n = z) when the previous 
item was the terminal a, or by (A ,* , z )  when the 
previous item was the nonterminal A. 

For each epsilon-rule corresponding to dotted 
rules (X ,m,O)  and ( X , m , z ) :  

E * ( X , m , O ) ( X , m , z ) E * ,  and (5) 

(x ,  m, 0) (x ,  m, (6) 

Formulae 5 and 6 state that  the dotted rule 
(X, ra,0) must be followed by ( X , m , z ) ,  and 
(X, m, z) must be preceded by iX, m, 0). 

For each non-epsilon rule with dotted rules 
iX,  re, n), n : O , . . . , n x , m  - 1,z,  for each n : 
O , . . . , n x , m -  1: 

m,*))*(iX, m , 0 ) + ( X , m , n ' ) ) Z *  
(r) 

and 

m, z )+  (x ,  m, - (X, m, *))* iX, m, 
(S) 

where 

n'  = ~ n + 1, if n < nx,ra - -  1; 
[ z, if n = nx,m - 1. 

Formula 7 states that  the next instance of 
( X , m , * )  that  follows ( X , m , n )  must be either 
(X, m, 0) (a recursive application of the same rule) 
or ( X , m , n ' )  (the next stage in parsing the same 
rule), and there must be such an instance. Formula 8 
states similarly that  the closest instance of (X, m, *) 
that  precedes (X, m, n') must be either (X, m, z) (a 
recursive application of the same rule) or (X, m, n) 
(the previous stage in parsing the same rule), and 
there must be such an instance. 

When each of these sets has been subtracted from 
the initial approximation we can remove the auxil- 
iary symbols (by applying the regular operator that  
replaces them with e) to give the final finite-state 
approximation to the context-free grammar.  

4 A s m a l l  e x a m p l e  

It  may be admitted that  the notation used for the 
dotted rules was part ly motivated by the possibil- 
ity of immediately testing the algorithm using the 
finite-state calculus in Prolog: the regular expres- 
sions listed above can be evaluated directly using the 
'wildcard' capabilities of the finite-state calculus. 

Figure 2 shows the sequence of calculations that  
corresponds to applying the algorithm to the follow- 
ing grammar: 

S - ~ a S b  
S - ~ e  

With the following notational explanations it should 
be possible to understand the code and compare it 
with the description of the algorithm. 

• The procedure r(RE,X) evaluates the regu- 
lar expression RE and puts the resulting (min- 
imised) automaton into a register with the name 
X. 

454 



• l i s t _ f s a ( X ) p r i n t s  out the transition table for 
the automaton in register X. 

• Terminal symbols may be any Prolog terms, so 
the terminal alphabet is implicit. Here atoms 
are used for the terminal symbols of the gram- 
mar (a and b) and terms of the form _/_ /_  are 
used for the triples representing dotted rules. 
The terms need not be ground, so the Prolog 
variable symbol _ is used instead of the 'wild- 
card' symbol • in the description of the algo- 
rithm. 

• In a regular expression: 

- #X refers to the contents of register X; 

- $ represents E, any single terminal symbol; 
- s represents a string of terminals with 

length equal to the number of arguments; 
so s with no arguments represents the 
empty string e, s (a)  represents the single 
terminal a, and s ( s / _ / 0 )  represents the 
dotted rules (s, *, 0); 

- Kleene star is * (redefined as a postfix op- 
erator), and concatenation and union are ^ 
and +, respectively; 

- other operators provided include ~ (inter- 
section) and - (difference); there is no oper- 
ator for complementation; instead subtrac- 
tion from E* may be used, e.g. ($ *) - (#1)  
instead of L; 

- rein(RE,L) denotes the result of removing 
from the language RE all terminals that 
match one of the expressions in the list L. 

The context-free language recognised by the origi- 
nal context-free grammar is { anb n [ n > 0 }. The re- 
sult of applying the approximation algorithm is a 3- 
state automaton recognising the language e + a+b +. 

5 C o m p u t a t i o n a l  c o m p l e x i t y  

Applying the restrictions expressed by formulae 1-6 
gives an automaton whose size is at most a small 
constant multiple of the size of the input grammar. 
This is because these restrictions apply locally: the 
state that the automaton is in after reading a dotted 
rule is a function of that dotted rule• 

When restrictions 7-8 are applied the final au- 
tomaton may have size exponential in the size of the 
input grammar. For example, exponential behaviour 
is exhibited by the following class of grammars: 

S --+ al S al 

S -+ an S an 
S - + e  

Here the final automaton has 3 n states. (It records, 
in effect, one of three possibilities for each terminal 
symbol: whether it has not yet appeared, has ap- 
peared and must appear again, or has appeared and 
need not appear again.) 

There is an important computational improve- 
ment that can be made to the algorithm as described 
above: instead of removing all the auxiliary symbols 
right at the end they can be removed progressively 
as soon as they are no longer required; after formulae 
7-8 have been applied for each non-epsilon rule with 
dotted rules ( X , m , * ) ,  those dotted rules may be 
removed from the finite-state language (which typi- 
cally makes the automaton smaller); and the dotted 
rules corresponding to an epsilon production may 
be removed before formulae 7-8 are applied. (To 
'remove' a symbol means to substitute it by e: a 
regular operation.) 

With this important improvement the algorithm 
gives exact approximations for the left-linear gram- 
mars 

S-~ Sal 

S ~ S a n  
S--+e 

and the right-linear grammars 

S --+ al S 

S --+ an S 
S--+e 

in space bounded by n and time bounded by n 2. (It 
is easiest to test this empirically with an implemen- 
tation, though it is also possible to check the cal- 
culations by hand.) Pereira and Wright's algorithm 
gives an intermediate unfolded recogniser of size ex- 
ponential in n for these right-linear grammars. 

There are, however, both left-linear and right- 
linear grammars for which the number of states in 
the final automaton is not bounded by any polyno- 
mial function of the size of the grammar. An exam- 
ples is: 

S --~ al S S ~ a l  A1 

S-+anS S-+anAn 
A~ -+ a~ X 
A2 ---+ al A2 

An -~ al An 
X - + e  

A1 -+ a2 Az . . .  A1 ~ an A1 
A2 -+ a2 X .. .  A2 --~ an A2 

An -+ a2 A,~ . . .  An --~ an X 

Here the grammar has size O(n 2) and the final ap- 
proximation has 2 n + l  - -  1 states. 

455 



MOD --+ 
MOD --+ p NP 

NOM --+ a NOM 
NOM --+ n 
NOM --+ NOM MOD 
NOM --+ NOM S 

NP --+ 
NP ~ d NOM 

VP --+ v NP 
V P - ~  v S  
VP -~ v VP 
VP --+v 
VP --+ VP c VP 
VP ~ VP MOD 
S ~ MOD S 
S - + N P  S 
S ~ S c S  
S ~ v NP VP 

Figure 1: An 18-rule CFG derived from a unification 
grammar. 

Pereira and Wright (1996) point out in the context 
of their algorithm that a grammar may be decom- 
posed into 'strongly connected' subgrammars, each 
of which may be approximated separately and the 
results composed. The same method can be used 
with the finite-state calculus approach: Define the 
relation 7~ over nonterminals of the grammar s.t. 
ATC.B iff B appears on the right-hand side of a pro- 
duction for A. Then the relation $ = 7~* A (7~*) -1, 
the reflexive transitive closure of 7~ intersected with 
its inverse, is an equivalence relation. A subgram- 
mar consists of all the productions for nonterminals 
in one of the equivalence classes of S. Calculate 
the approximations for each nonterminal by treating 
the nonterminals that belong to other equivalence 
classes as if they were terminals. Finally, combine 
the results from each subgrammar by starting with 
the approximation for the start symbol S and substi- 
tuting the approximations from the other subgram- 
mars in an order consistent with the partial ordering 
that is induced by 7~ on the subgrammars. 

6 R e s u l t s  w i t h  a l a r g e r  g r a m m a r  

When the algorithm was applied to the 18-rule gram- 
mar shown in figure 1 it was not possible to com- 
plete the calculations for any ordering of the rules, 
even with the improvement mentioned in the previ- 
ous section, as the automata became too large for 
the finite-state calculus on the computer that was 
being used. (Note that the grammar forms a single 
strongly connected component.) 

However, it was found possible to simplify the cal- 
culation by omitting the application of formulae 7-8 
for some of the rules. (The auxiliary symbols not 
involved in those rules could then be removed be- 
fore the application of 7-8.) In particular, when re- 
strictions 7-8 were applied only for the S and VP 

rules the calculations could be completed relatively 
quickly, as the largest intermediate automaton had 
only 406 states. Yet the final result was still a useful 
approximation with 16 states. 

Pereira and Wright's algorithm applied to the 
same problem gave an intermediate automaton (the 
'unfolded recogniser') with 56272 states, and the fi- 
nal result (after flattening and minimisation) was a 
finite-state approximation with 13 states. 

The two approximations are shown for comparison 
in figure 3. Each has the property that the symbols 
d, a and n occur only in the combination d a* n. This 
fact has been used to simplify the state diagrams by 
treating this combination as a single terminal symbol 
dan; hence the approximations are drawn with 10 
and 9 states, respectively. 

Neither of the approximations is better than the 
other; their intersection (with 31 states) is a bet- 
ter approximation than either. The two approxima- 
tions have therefore captured different aspects of the 
context-free language. 

In general it appears that the approximations pro- 
duced by the present algorithm tend to respect the 
necessity for certain constituents to be present, at 
whatever point in the string the symbols that 'trig- 
ger' them appear, without necessarily insisting on 
their order, while Pereira and Wright's approxima- 
tion tends to take greater account of the constituents 
whose appearance is triggered early on in the string: 
most of the complexity in Pereira and Wright's ap- 
proximation of the 18-rule grammar is concerned 
with what is possible before the first accepting state 
is encountered. 

7 C o m p a r i s o n  w i t h  p r e v i o u s  w o r k  

Rimon and Herz (1991; 1991) approximate the 
recognition capacity of a context-free grammar by 
extracting 'local syntactic constraints' in the form of 
the Left or Right Short Context of length n of a ter- 
minal. When n = 1 this reduces to next(t), the set of 
terminals that may follow the terminal t. The effect 
of filtering with Rimon and Herz's next(t) is similar 
to applying conditions 1-6 from section 3, but the 
use of auxiliary symbols causes two differences which 
can both be illustrated with the following grammar: 

S ~ a X a [ b X b  
X--+e  

On the one hand, Rimon and Herz's 'next '  does not 
distinguish between different instances of the same 
terminal symbol, so any a, and not just the first one, 
may be followed by another a. On the other hand, 
Rimon and Herz's 'next '  looks beyond the empty 
constituent in a way that conditions 1-6 do not, so 

456 



initial approximation: 

r( s(s/_/O)^($ * ) ' s ( s / _ / Z )  , a ) .  
f o r m u l a e  ( 1 ) - ( 2 ) :  

r ( ( # a )  - ( ($  * ) - ( ( $  *) ' (s(_/_/_)-s(_/_/z))+s)) ' s (_/_/O) ' ($  *) , a ) .  
r ( ( # a )  - ($ * ) ^ s ( _ / _ / z ) ^ ( ( $  * ) - ( s + ( s ( _ / _ / _ ) - s ( _ / _ / O ) ) ^ ( $  * ) ) )  , a ) .  

f o r m u l a  (3) f o r  "S -> a S b " :  

r((#a) - ($ *)^s(s/i/O)'(($ *)-s(a)'s(s/I/l)^($ *)) , a). 
r ( ( # a )  - ($ * ) ^ s ( s / 1 / 1 ) ' ( ( $  * ) - s ( s / _ / 0 ) ^ ( $  * ) )  , a ) .  

r ( ( # a )  - ($ * ) ' s ( s / 1 / 2 ) ^ ( ( $  * ) - s ( b ) ^ s ( s / 1 / z ) ^ ( $  * ) )  , a ) .  
formula (4) for "S -> a S b": 

r ( ( # a )  - ( ($  * ) - ( $  * ) ' s ( s / 1 / 0 ) ^ s ( a ) ) ^ s ( s / 1 / 1 ) ^ ( $  , )  , a ) .  
r ( ( # a )  - ( ($  * ) - ( $  * ) ^ s ( s / _ / z ) ) ' s ( v p / 2 / 1 ) ' ( $  *) , a ) .  

r((#a) - (($ *)-($ *)^s(s/i/2)^s(b))^s(s/i/z)^($ *) , a). 
formulae (5)-(6) for "S -> "" 

r ( ( # a )  - ($ *)'s(s/2/O)^(($ *)-s(s /2/z)^($ *))  , a ) .  

r ( ( # a )  - ( ($  * ) - ( $  *)^s(s /2/O))^s(s /2/z) ' ($  *) , a ) .  
f o r m u l a  (7) f o r  "S -> a S b " :  

r ( ( # a ) - ( $  * ) ^ s ( s / 1 / 0 ) ^ ( ( $  * ) - ( ( $  -s(s/1/_))*)^(s(s/1/O)+s(s/1/1))^($ * ) ) , a ) .  
r ( ( # a ) - ( $  * ) ' s ( s / 1 / 1 ) ^ ( ( $  * ) - ( ( $  -s(s/1/_))*)^(s(s/1/O)+s(s/1/2))^($ * ) ) , a ) .  

r ( ( # a ) - ( $  *)'sCs/1/2)^(($ * ) - ( ( $  -sCs/1/_))*)^(s(s/1/O)+s(s/1/z))^($ * ) ) , a ) .  
f o r m u l a  (8) f o r  "S -> a S b " :  

r ( ( # a ) - ( ( $  * ) - ( $  * ) ^ ( s ( s / 1 / z ) + s ( s / 1 / O ) ) ^ ( ( $  - s ( s / 1 / _ ) ) . ) ) ^ s ( s / 1 / 1 ) ' ( $  * ) , a ) .  
r((#a)-(($ *)-($ *)'(s(s/i/z)+s(s/i/l))^(($ -s(s/i/_))*))'s(s/i/2)^($ *),a). 
r((#a)-(($ *)-($ *)^(s(s/i/z)+s(s/I/2))^(($ -s(s/i/_)).))^s(s/i/z)^($ *),a). 

define the terminal alphabet: 

r(s(s/i/O)+s(s/i/l)+s(s/i/2)+s(s/i/z)+s(s/2/O)+s(s/2/z)+s(a)+s(b), sigma). 
remove the auxiliary symbols to give final result: 

r(rem((#a)a((#sigma) *),[_/_/_]) , f). 
list_fsa(f). 

Figure 2: The sequence of calculations for approximating S -+ a S b I e, coded for the finite-state calculus. 

v C  p v dan p I c v / / .  I' 

v , d a n ~ ~  

Figure 3: Finite-state approximations for the grammar in figure 1 calculated with the finite-state calculus 
(left) and by Pereira and Wright's algorithm (right). 

457 



ab is disallowed. Thus an approximation based on 
Rimon and Herz's 'next '  would be aa* + bb*, and 
an approximation based on conditions 1-6 would be 
(a + b) (a + b). (However, the approximation becomes 
exact when conditions 7-8 are added.) 

Both Pereira and Wright (1991; 1996) and Rood 
(1996) start  with the LR(0) characteristic machine, 
which they first 'unfold' (with respect to 'stacks' or 
'paths ' ,  respectively) and then 'flatten'. The char- 
acteristic machine is defined in terms of dotted rules 
with transitions between them that  are analagous 
to the conditions implied by formula 3 of section 
3. When the machine is flattened, e-transitions are 
added in a way that  is in effect simulated by condi- 
tions 2 and 4. (Condition 1 turns out to be implied 
by conditions 2-4.) It  can be shown that  the approx- 
imation L0 obtained by flattening the characteristic 
machine (without unfolding it) is as good as the ap- 
proximation L1-6 obtained by applying conditions 
1-6 (L0 c L1-6). Moreover, if no nonterminal for 
which there is an e-production is used more than 
once in the grammar,  then L0 = L1-6. (The gram- 
mar in figure 1 is an example for which Lo # L1-6; 
the approximation found in section 6 includes strings 
such as vvccvv  which are not accepted by L0 for 
this grammar.)  It  can also be shown that  LI-~  is 
the same as the result of flattening the character- 
istic machine for the same grammar  modifed so as 
to fulfil the afore-mentioned condition by replacing 
the right-hand side of every e-production with a new 
nonterminal for which there is a single e-production. 

However, there does not seem to be a simple corre- 
spondence between conditions 7-8 and the 'unfold- 
ing' used by Pereira and Wright or Rood: even some 
simple grammars  such as 'S ~ a S a [ b S b I e' are 
approximated differently by 1-8 than by Pereira and 
Wright's and Rood's methods. 

8 D i s c u s s i o n  a n d  c o n c l u s i o n s  

In the case of some simple examples (such as the 
grammar  'S --~ a S b I e' used earlier) the approxi- 
mation algorithm presented in this paper gives the 
same result as Pereira and Wright's algorithm. How- 
ever, in many other cases (such as the grammar 'S 

a S a I b S b I e' or the 18-rule grammar  in the 
previous section) the results are essentially different 
and neither of the approximations is better than the 
other. 

The new algorithm does not share the problem of 
Pereira and Wright's algorithm that  certain right- 
linear grammars  give an intermediate automaton of 
exponential size, and it was possible to calculate a 
useful approximation fairly rapidly in the case of the 
18-rule grammar  in the previous section. However, it 

is not yet possible to draw general conclusions about 
the relative efficiency of the two procedures. Never- 
theless, the new algorithm seems to have the advan- 
tage of being open-ended and adaptable: in the pre- 
vious section it was possible to complete a difficult 
calculation by relaxing the conditions of formulae 7- 
8, and it is easy to see how those conditions might 
also be strengthened. For example, a more compli- 
cated version of formulae 7-8 might check two levels 
of recursive application of the same rule rather than 
just one level and it might be useful to generalise 
this to n levels of recursion in a manner analagous to 
Rood's (1996) generalisation of Pereira and Wright's 
algorithm. 

The algorithm also demonstrates how the general 
machinery of a finite-state calculus can be usefully 
applied as a framework for expressing and solving 
problems in natural language processing. 

R e f e r e n c e s  

Grimley Evans, Edmund, George Kiraz, and 
Stephen Pulman. 1996. Compiling a Partition- 
Based Two-Level Formalism~ COLING-96, 454- 
459. 

Herz, Jacky, and Mori Rimon. 1991. Local Syntac- 
tic Constraints. Second International Workshop 
on Parsing Technology (IWPT-2).  

Kaplan, Ronald, and Martin Kay. 1994. Regular 
models of phonological rule systems. Computa- 
tional Linguistics, 20(3): 331-78. 

Kempe, AndS, and Lauri Karttunen. 1996. Parallel 
Replacement in Finite State Calculus. COLING- 
96, 622. 

Pereira, Fernando, and Rebecca Wright. 1991. 
Finite-state approximation of phrase structure 
grammars.  Proceedings of the 29th Annual Meet- 
ing of the Association for Computational Linguis- 
tics, 246-255. 

Pereira, Fernando, and Rebecca Wright. 1996. 
Finite-State Approximation of Phrase-Structure 
Grammars.  cmp-lg/9603002. 

Raymond, Darrell, and Derick Wood. March 1996. 
The Grail Papers. University of Western Ontario, 
Department of Computer  Science, Technical Re- 
port TR-491. 

Rimon, Mori, and Jacky Herz. 1991. The recogni- 
tion capacity of local syntactic constraints. ACL 
Proceedings, 5th European Meeting. 

Rood, Cathy. 1996. Efficient Finite-State Approxi- 
mation of Context Pree Grammars .  Proceedings 
of ECAI 96. 

458 



Shieber, Stuart. 1985. Using restriction to extend 
parsing algorithms for complex-feature-based for- 
malisms. Proceedings of the 23nd Annual Meeting 
of the Association for Computational Linguistics, 
145-152. 

Van Noord, Gertjan. 1996. FSA Utilities: Manipu- 
lation of Finite-State Automata implemented in 
Prolog. First International Workshop on Imple- 
menting Automata, University of Western On- 
tario, London Ontario, 29-31 August 1996. 

Watson, Bruce. 1996. Implementing and using finite 
automata tcolkits. Procccdings of ECAI 96. 

459 


