
Compi la t i on of H P S G to TAG*

Robert Kasper
Dept . of Linguis t ics

Ohio S ta t e Univers i ty

222 Oxley Hall

Columbus , OH 43210

U.S.A.

ka spe r~ l i ng .oh io - s t a t e . edu

B e r n d K i e f e r Klaus Net ter
Deutsches Fo r schungszen t rum

ffir Ki ins t l iche Intel l igenz, G m b H

S t u h l s a t z e n h a u s w e g 3

66123 Saarbrf icken

G e r m a n y

(k ie fe r lne t t e r}Qdfk i .un i - sb .de

K. Vijay-Shanker
CIS Dept.

University of Delaware
Newark, DE 19716

U.S.A
vijay@cis.udel.edu

Abstract

We present an implemented compilation
algorithm that translates HPSG into lex-
icalized feature-based TAG, relating con-
cepts of the two theories. While HPSG has
a more elaborated principle-based theory
of possible phrase structures, TAG pro-
vides the means to represent lexicalized
structures more explicitly. Our objectives
are met by giving clear definitions that de-
termine the projection of structures from
the lexicon, and identify "maximal" pro-
jections, auxiliary trees and foot nodes.

1 I n t r o d u c t i o n

Head Driven Phrase Structure Grammar (HPSG)
and Tree Adjoining Grammar (TAG) are two frame-
works which so far have been largely pursued in par-
allel, taking little or no account of each other. In this
paper we will describe an algorithm which will com-
pile HPSG grammars, obeying certain constraints,
into TAGs. However, we are not only interested in
mapping one formalism into another, but also in ex-
ploring the relationship between concepts employed
in the two frameworks.

HPSG is a feature-based grammatical framework
which is characterized by a modular specification
of linguistic generalizations through extensive use of
principles and lexicalization of grammatical informa-
tion. Traditional grammar rules are generalized to
schemata providing an abstract definition of gram-
matical relations, such as head-of, complement-of,
subject-of, adjunct-of, etc. Principles, such as the

*We would like to thank A. Abeill6, D. Flickinger,
A. Joshi, T. Kroch, O. Rambow, I. Sag and H. Uszko-
reit for valuable comments and discussions. The reseaxch
underlying the paper was supported by research grants
from the German Bundesministerium fiir Bildung, Wis-
senschaft, Forschung und Technologie (BMBF) to the
DFKI projects DIsco, FKZ ITW 9002 0, PARADICE,
FKZ ITW 9403 and the VERBMOB1L project, FKZ 01
IV 101 K/l , and by the Center for Cognitive Science at
Ohio State University.

Head-Feature-, Valence-, Non-Local- or Semantics-
Principle, determine the projection of information
from the lexicon and recursively define the flow of
information in a global structure. Through this
modular design, grammatical descriptions are bro-
ken down into minimal structural units referring to
local trees of depth one, jointly constraining the set
of well-formed sentences.

In HPSG, based on the concept of "head-
domains", local relations (such as complement-of,
adjunct-of) are defined as those that are realized
within the domain defined by the syntactic head.
This domain is usually the maximal projection of the
head, but it may be further extended in some cas-
es, such as raising constructions. In contrast, filler-
gap relations are considered non-local. This local
vs. non-local distinction in HPSG cuts across the
relations that are localized in TAG via the domains
defined by elementary trees. Each elementary tree
typically represents all of the arguments that are
dependent on a lexical functor. For example, the
complement-of and filler-gap relations are localized
in TAG, whereas the adjunct-of relation is not.

Thus, there is a fundamental distinction between
the different notions of localization that have been
assumed in the two frameworks. If, at first sight,
these frameworks seem to involve a radically differ-
ent organization of grammatical relations, it is nat-
ural to question whether it is possible to compile
one into the other in a manner faithful to both, and
more importantly, why this compilation is being ex-
plored at all. We believe that by combining the two
approaches both frameworks will profit.

From the HPSG perspective, this compilation of-
fers the potential to improve processing efficiency.
HPSG is a "lexicalist" framework, in the sense that
the lexicon contains the information that determines
which specific categories can be combined. Howev-
er, most HPSG grammars are not lexicalized in the
stronger sense defined by Schabes et.al. (SAJ88),
where lexicaiization means that each elementary
structure in the grammar is anchored by some lex-
ical item. For example, HPSG typically assumes a
rule schema which combines a subject phrase (e.g.

92

NP) with a head phrase (e.g. VP), neither of which
is a lexical item. Consider a sentence involving a
transitive verb which is derived by applying two rule
schemata, reducing first the object and then the sub-
ject. In a s tandard HPSG derivation, once the head
verb has been retrieved, it must be computed that
these two rules (and no other rules) are applicable,
and then information about the complement and
subject constituents is projected from the lexicon
according to the constraints on each rule schema.
On the other hand, in a lexicalized TAG derivation,
a tree structure corresponding to the combined in-
stantiat ion of these two rule schemata is directly
retrieved along with the lexical i tem for the verb.
Therefore, a procedure tha t compiles HPSG to TAG
can be seen as performing significant portions of an
HPSG derivation at compile-time, so tha t the struc-
tures projected from lexical items do not need to
be derived at run-time. The compilation to TAG
provides a way of producing a strongly lexicalized
g rammar which is equivalent to the original HPSG,
and we expect this lexicalization to yield a compu-
tat ional benefit in parsing (cf. (S J90)).

This compilation s t rategy also raises several is-
sues of theoretical interest. While TAG belongs to a
class of mildly context-sensitive g rammar formalisms
(JVW91), the generative capacity of the formal-
ism underlying HPSG (viz., recursive constraints
over typed feature structures) is unconstrained, al-
lowing any recursively enumerable language to be
described. In HPSG the constraints necessary to
characterize the class of natural languages are stat-
ed within a very expressive formalism, rather than
built into the definition of a more restrictive for-
malism, such as TAG. Given the greater expressive
power of the HPSG formalism, it will not be pos-
sible to compile an aribi trary HPSG grammar into
a TAG grammar . However, our compilation algo-
r i thm shows that part icular HPSG grammars may
contain constraints which have the effect of limiting
the generative capacity to tha t of a mildly context-
sensitive language.1 Additionally, our work provides
a new perspective on the different types of con-
stituent combination in HPSG, enabling a classifi-
cation of schemata and principles in terms of more
abst ract functor-argument relations.

From a TAG perspective, using concepts em-
ployed in the HPSG framework, we provide an ex-
plicit method of determining the content of the el-
ementary trees (e.g., what to project from lexical
items and when to stop the projection) from an
HPSG source specification. This also provides a
method for deriving the distinctions between initial
and auxiliary trees, including the identification of

1We are only considering a syntactic fragment of
HPSG here. It is not clear whether the semantic com-
ponents of HPSG can also be compiled into a more con-
strained formalism.

foot nodes in auxiliary trees. Our answers, while
consistent with basic tenets of tradit ional TAG anal-
yses, are general enough to allow an al ternate lin-
guistic theory, such as HPSG, to be used as a basis
for deriving a TAG. In this manner, our work also
serves to investigate the utility of the TAG frame-
work itself as a means of expressing different linguis-
tic theories and intuitions.

In the following we will first briefly describe the
basic constraints we assume for the HPSG input
g rammar and the resulting form of TAG. Next we
describe the essential algorithm tha t determines the
projection of trees from the lexicon, and give formal
definitions of auxiliary tree and foot node. We then
show how the computat ion of "sub-maximal" projec-
tions can be triggered and carried out in a two-phase
compilation.

2 B a c k g r o u n d

As the target of our translation we assume a Lexi-
calized Tree-Adjoining G r a m m a r (LTAG), in which
every elementary tree is anchored by a lexical
i tem (SAJ88).

We do not assume atomic labelling of nodes, un-
like traditional TAG, where the root and foot nodes
of an auxiliary tree are assumed to be labelled iden-
tically. Such trees are said to factor out recursion.
However, this identity itself isn' t sufficient to identi-
fy foot nodes, as more than one frontier node may be
labelled the same as the root. Without such atomic
labels in HPSG, we are forced to address this issue,
and present a solution tha t is still consistent with
the notion of factoring recursion.

Our translation process yields a lexicalized
feature-based TAG (VSJ88) in which feature struc-
tures are associated with nodes in the frontier of
trees and two feature structures (top and bot tom)
with nodes in the interior. Following (VS92), the
relationships between such top and bot tom fea-
ture structures represent underspecified domination
links. Two nodes standing in this domination rela-
tion could become the same, but they are necessarily
distinct if adjoining takes place. Adjoining separates
them by introducing the pa th from the root to the
foot node of an auxiliary tree as a further specifica-
tion of the underspecified domination link.

For illustration of our compilation, we consid-
er an extended HPSG following the specifications
in (PS94)[404ff]. The rule schemata include rules for
complementat ion (including head-subject and head-
complement relations), head-adjunct, and filler-head
relations.

The following rule schemata cover the combina-
tion of heads with subjects and other complements
respectively as well as the adjunct constructions. 2

2We abstract from quite a number of properites
and use the following abbreviations for feature names:
S-----SYI"/SEM, L~LOChL, C~ChT, N-L----NON-LOChL, D-----DTRS,

93

Head-Sub j-Schema

s L lCiS~ ()
L eo~ms I-;-] (>

I I EAD-DTR SILIC/SUBJ >
D LCOMPS
Leo~-DTR[-~ []]

Head- Comps-Schema

L I c |SUBJ
LCOm, s

~AD-D~ slT.le | s ~ J []
D LCa~S union([], E])

c0.~-D=[.~ []]

Head-Adjunct-Schema

Leo~s

~AD-DTRIS [] I C |S~J
D LCOm, S

ADJ-DTRIS [LIm~ADa.OD []]

We assume a slightly modified and constrained
t rea tment of non-local dependencies (SLASH), in
which empty nodes are eliminated and a lexical rule
is used instead. While SLASH introduction is based on
the s tandard filler-head schema, SLASH percolation is
essentially constrained to the HEAD spine.

Head-Filler-Schema

LIC/s~J []<
Lco"Ps ~<

N-L[SLASH < >]

Lie SUBJ []

| L L.-L[~L.S. <~>]JJ|
L~,.~.~.H-D~R[s []] J

SLASH terminat ion is accounted for by a lexical
rule, which removes an element from one of the va-
lence lists (e0MPS or s t s J) and adds it to the SLASH
list.

Lexical Slash- Termination-Rule

IL l (: /S t~J
~/ ke0.P.,

L.-L[sLAs.]

/'-Ic/~B~ []
LEX-DTR S / Lcom's unionqEl,~)

L.-L[sL's" < >]
The percolation of SLASH across head domains is

lexically determined. Most lexical i tems will be spec-
ified as having an empty SLASH list. Bridge verbs
(e.g., equi verbs such as want) or other heads al-
lowing extract ion out of a complement share their
own SLASH value with the SLASH of the respective
complement. 3

Equi and Bridge Verb
"N-L [SL,SH E]]

-~ r ~ , <[]>111

\vpk L,-,-[s,-As,~-l] J]}
Finally, we assume tha t rule schemata and prin-

ciples have been compiled together (automatical ly
or manually) to yield more specific subtypes of the
schemata. This does not involve a loss of general-
ization but simply means a further refinement of the
type hierarchy. LP constraints could be compiled
out beforehand or during the compilation of TAG
structures, since the algorithm is lexicon driven.

3 A l g o r i t h m

3.1 Basic Idea
While in TAG all arguments related to a particu-
lar functor are represented in one elementary tree
structure, the 'functional application' in HPSG is
distr ibuted over the phrasal schemata, each of which
can be viewed as a part ial description of a local tree.
Therefore we have to identify which consti tuents in

aWe choose such a lexicalized approach, because it
will allow us to maintain a restriction that every TAG
tree resulting from the compilation must be rooted in
a non-emtpy lexical item. The approach will account
for extraction of complements out of complements, i.e.,
along paths corresponding to chains of government rela-
tions.

As far as we can see, the only limitation arising from
the percolation of SLASH only along head-projections is
on extraction out of adjuncts, which may be desirable
for some languages like English. On the other hand,
these constructions would have to be treated by multi-
component TAGs, which axe not covered by the intended
interpretation of the compilation algorithm anyway.

9 4

a phrasal schema count as functors and arguments.
In TAG different functor argument relations, such
as head-complement, head-modifier etc., are repre-
sented in the same format as branches of a t runk
projected from a lexical anchor. As mentioned, this
anchor is not always equivalent to the HPSG notion
of a head; in a tree projected from a modifier, for ex-
ample, a non-head (ADJUNCT-DTR) counts as a func-
tor. We therefore have to generalize over different
types of daughters in HPSG and define a general no-
tion of a functor. We compute the functor-argument
structure on the basis of a general selection relation.
Following (Kas92) 4, we adopt the notion of a se-
lector daughter (SD), which contains a selector fea-
ture (SF) whose value constrains the argument (or
non-selector) daughter (non-SD)) For example, in a
head-complement structure, the SD is the HEAD-DTR,
as it contains the list-valued feature coMPs (the SF)
each of whose elements selects a C0m~-DTR, i.e., an el-
ement of the CoMPs list is identified with the SYNSE~4
value of a COMP-DTR.

We assume tha t a reduction takes place along with
selection. Informally, this means that if F is the se-
lector feature for some schema, then the value (or the
element(s) in the list-value) of 1: tha t selects the non-
SD(s) is not contained in the F value of the mother
node. In case F is list-valued, we-assume that the
rest of the elements in the list (those tha t did not
select any daughter) are also contained in the F at
the mother node. Thus we say tha t F has been re-
duced by the schema in question.

The compilation algorithm assumes tha t all
HPSG schemata will satisfy the condition of si-
multaneous selection and reduction, and tha t each
schema reduces at least one SF. For the head-
complement- and head-subject-schema, these con-
ditions follow from the Valence Principle, and the
SFs are coMPs and SUBJ, respectively. For the head-
adjunct-schema, the ADJUNCT-DTR is the SD, because
it selects the HEAD-DTR by its NOD feature. The NOD
feature is reduced, because it is a head feature,
whose value is inherited only from the HEAD-DTR and
not from the ADJUNCT-DTR. Finally, for the filler-head-
schema, the HEAD-DTR is the SD, a s it selects the
FILLER-DTR by its SLASH value, which is bound off,
not inherited by the mother, and therefore reduced.

We now give a general description of the compila-
tion process. Essentially, we begin with a lexical de-

4The algorithm presented here extends and refines the
approach described by (Kas92) by stating more precise
criteria for the projection of features, for the termina-
tion of the algorithm, and for the determination of those
structures which should actually be used as elementary
trees.

5Note that there might be mutual selection (as
in the case of the specifier-head-relations proposed
in (PS94)[44ff]). If there is mutual selection, we have
to stipulate one of the daughters as the SD. The choice
made would not effect the correctness of the compilation.

scription and project phrases by using the schemata
to reduce the selection information specified by the
lexical type.

Basic A l g o r i t h m Take a lexical type L and initial-
ize by creating a node with this type. Add a
node n dominating this node.

For any schema S in which specified SFs of n
are reduced, t ry to instantiate S with n corre-
sponding to the SD of S. Add another node m
dominating the root node of the instantiated
schema. (The domination links are introduced
to allow for the possibility of adjoining.) Re-
peat this step (each t ime with n as the root
node of the tree) until no further reduction is
possible.

We will fill in the details below in the following
order: what information to raise across domination
links (where adjoining may take place), how to de-
termine auxiliary trees (and foot nodes), and when
to terminate the projection.

We note tha t the trees produced have a trunk
leading from the lexical anchor (node for the given
lexical type) to the root. The nodes that are sib-
lings of nodes on the trunk, the selected daughters,
are not elaborated further and serve either as foot
nodes or substi tution nodes.

3.2 Raising Features Across Dominat ion
Links

Quite obviously, we must raise the SFs across dom-
ination links, since they determine the applicability
of a schema and licence the instantiat ion of an SD.
If no SF were raised, we would lose all information
about the saturat ion status of a functor, and the
algorithm would terminate after the first iteration.

There is a danger in raising more than the SFs.
For example, the head-subject-schema in German
would typically constrain a verbal head to be finite.
Raising HEAD features would block its application to
non-finite verbs and we would not produce the trees
required for raising-verb adjunction. This is again
because heads in HPSG are not equivalent to lexi-
cal anchors in TAG, and tha t other local properties
of the top and bo t tom of a domination link could
differ. Therefore HEAD features and other LOCAL fea-
tures cannot, in general, be raised across domination
links, and we assume for now that only the SFs are
raised.

Raising all SFs produces only fully sa turated el-
ementary trees and would require the root and foot
of any auxiliary tree to share all SFs, in order to be
compatible with the SF values across any domina-
tion links where adjoining can take place. This is too
strong a condition and will not allow the resulting
TAG to generate all the trees derivable with the giv-
en HPSG (e.g., it would not allow unsatura ted VP
complements). In § 3.5 we address this concern by

9 5

using a multi-phase compilation. In the first phase,
we raise all the SFs.

3.3 D e t e c t i n g A u x i l i a r y T r e e s and F o o t
N o d e s

Traditionally, in TAG, auxiliary trees are said to be
minimal recursive structures that have a foot node
(at the frontier) labelled identical to the root. As
such category labels (S, NP etc.) determine where
an auxiliary tree can be adjoined, we can informally
think of these labels as providing selection informa-
tion corresponding to the SFs of HPSG. Factoring of
recursion can then be viewed as saying that auxiliary
trees define a path (called the spine) from the root
to the foot where the nodes at extremities have the
same selection information. However, a closer look
at TAG shows that this is an oversimplification. If
we take into account the adjoining constraints (or
the top and bot tom feature structures), then it ap-
pears that the root and foot share only some selec-
tion information.

Although the encoding of selection information by
SFs in HPSG is somewhat different than that tradi-
tionally employed in TAG, we also adopt the notion
that the extremities of the spine in an auxiliary tree
share some part (but not necessarily all) of the se-
lection information. Thus, once we have produced a
tree, we examine the root and the nodes in its fron-
tier. A tree is an auxiliary tree if the root and some
frontier node (which becomes the foot node) have
some non-empty SF value in common. Initial trees
are those that have no such frontier nodes.

[S U B S < >]
T1 COMPS < >

SLASH []

[] ,
D',

J

COMPS < >
SLASH []

D', [] coMPs <>

SLASH [] I

COMPS >
SLASH

want
(equi verb)

In the trees shown, nodes detected as foot nodes
are marked with *. Because of the SUBJ and SLASH
values, the HEAD-DTR is the foot of T2 below (an-
chored by an adverb) and COMP-DTR is the foot of

T3 (anchored by a raising verb). Note that in the
tree T1 anchored by an equi-verb, the foot node
is detected because the SLASH value is shared, al-
though the SUBJ is not. As mentioned, we assume
that bridge verbs, i.e., verbs which allow extraction
out of their complements, share their SLASH value
with their clausal complement.

3.4 Terminat ion

Returning to the basic algorithm, we will now con-
sider the issue of termination, i.e., how much do we
need to reduce as we project a tree from a lexical
item.

Normally, we expect a SF with a specified value
to be reduced fully to an empty list by a series of ap-
plications of rule schemata. However, note that the
SLASH value is unspecified at the root of the trees
T2 and T3. Of course, such nodes would still uni-
fy with the SD of the filler-head-schema (which re-
duces SLASH), but applying this schema could lead
to an infinite recursion. Applying a reduction to an
unspecified SF is also linguistically unmotivated as
it would imply that a functor could be applied to an
argument tha t it never explicitly selected.

However, simply blocking the reduction of a SF
whenever its value is unspecified isn't sufficient. For
example, the root of T2 specifies the subs to be a
non-empty list. Intuitively, it would not be appro-
priate to reduce it further, because the lexical anchor
(adverb) doesn't semantically license the SUBJ argu-
ment itself. It merely constrains the modified head
to have an unsaturated SUBS.

[suBs []]
T2 COMPS < >

SLASH []

, [suBJ []<[1>
I
, D [] COMPS < > L ' SLASH []
J

SUBJ < >] ,
COMPS < >

J SLASH < >
M0D []

VP-adverb

Raising Verb (and Infinitive Marker to)

-N-L [SLASH [~]

COMPS / s LCOMPS[<> J ? \vp [H-L[SLASH []]

9 6

I

D:

COMPS

SLASH

raising verb

[]]
T3 COMPS < >

SLASH []

•[COMPS

SLASH

D]
< >
[]

To motivate our terminat ion criterion, consider
the adverb tree and the asterisked node (whose SLASH
value is shared with SLASH at the root). Being a
non-trunk node, it will either be a foot or a sub-
stitution node. In either case, it will eventually be
unified with some node in another tree. If tha t oth-
er node has a reducible SLASH value, then we know
tha t the reduction takes place in the other tree, be-
cause the SLASH value must have been raised across
the domination link where adjoining takes place. As
the same SLASH (and likewise suB J) value should not
be reduced in both trees, we state our terminat ion
criteria as follows:

Termination C r i t e r i o n The value of an SF F at
the root node of a tree is not reduced further
if it is an empty list, or if it is shared with
the value of F at some non-trunk node in the
frontier.

Note tha t because of this termination criterion,
the adverb tree projection will stop at this point. As
the root shares some selector feature values (SLASH
and SUB J) with a frontier node, this node becomes
the foot node. As observed above, adjoining this
tree will preserve these values across any domination
links where it might be adjoined; and if the values
stated there are reducible then they will be reduced
in the other tree. While auxiliary trees allow argu-
ments selected at the root to be realized elsewhere,
it is never the case for initial trees tha t an argu-
ment selected at the root can be realized elsewhere,
because by our definition of initial trees the selec-
tion of arguments is not passed on to a node in the
frontier.

We also obtain from this criterion a notion of local
completeness. A tree is locally complete as soon as
all arguments which it licenses and which are not
licensed elsewhere are realized. Global completeness
is guaranteed because the notion of "elsewhere" is
only and always defined for auxiliary trees, which
have to adjoin into an initial tree.

3.5 A d d i t i o n a l P h a s e s

Above, we noted tha t the preservation of some SFs
along a pa th (realized as a pa th from the root to
the foot of an auxiliary tree) does not imply tha t all

SFs need to be preserved along tha t path. Tree T1
provides such an example, where a lexical item, an
equi-verb, triggers the reduction of an SF by taking
a complement tha t is unsatura ted for SUBJ but never
shares this value with one of its own SF values.

To allow for adjoining of auxiliary trees whose
root and foot differ in their SFs, we could produce
a number of different trees representing partial pro-
jections from each lexical anchor. Each partial pro-
jection could be produced by raising some subset of
SFs across each domination link, instead of raising
all SFs. However, instead of systematical ly raising
all possible subsets of SFs across domination links,
we can avoid producing a vast number of these par-
tial projections by using auxiliary trees to provide
guidance in determining when we need to raise only
a particular subset of the SFs.

Consider T1 whose root and foot differ in their
SFs. From this we can infer tha t a SUBJ SF should
not always be raised across domination links in the
trees compiled from this grammar . However, it is
only useful to produce a tree in which the susJ value
is not raised when the bo t tom of a domination link
has both a one element list as value for SUBJ and
an empty COMPS list. Having an empty SUBJ list at
the top of the domination link would then allow for
adjunction by trees such as T1.

This leads to the following multi-phase compila-
tion algorithm. In the first phase, all SFs are raised.
I t is determined which trees are auxiliary trees, and
then the relationships between the SFs associated
with the root and foot in these auxiliary trees are
recorded. The second phase begins with lexical types
and considers the application of sequences of rule
schemata as before. However, immediately after ap-
plying a rule schema, the features at the bo t tom of
a domination link are compared with the foot nodes
of auxiliary trees tha t have differing SFs at foot and
root. Whenever the features are compatible with
such a foot node, the SFs are raised according to the
relationship between the root and foot of the auxil-
iary tree in question. This process may need to be
i terated based on any new auxiliary trees produced
in the last phase.

3.6 Example Derivation

In the following we provide a sample derivation for
the sentence

(I know) what Kim wants to give to Sandy.
Most of the relevant HPSG rule schemata and lex-

ical entries necessary to derive this sentence were
already given above. For the noun phrases what,
Kim and Sandy, and the preposition to no special
assumptions are made. We therefore only add the
entry for the ditransitive verb give, which we take
to subcategorize for a subject and two object com-
plements.

97

Ditransitive Verb

L c°MPS imp[]pp[1)
From this lexical entry, we can derive in the

first phase a fully saturated initial tree by apply-
ing first the lexical slash-termination rule, and then
the head-complement-, head-subject and filler-head-
rule. Substitution at the nodes on the frontier would
yield the string what K im gives to Sandy.

T4 COMPS < >
SLASH < >

[]
NP

what

I v:
I

COMPS < >
SLASH < [] >

[] ,
NP D', ' [susJ '<[]>]
Kim COMPS < >

SLASH < [] >

, []
V', p p

I

COMPS < > to Sandy
SLASH < >

COMPS < , >
SLASH < >

gives

The derivations for the trees for the matrix verb
want and for the infinitival marker to (equivalent to
a raising verb) were given above in the examples T1
and T3. Note that the suBJ feature is only reduced
in the former, but not in the latter structure.

In the second phase we derive from the entry for
give another initial tree (Ts) into which the auxiliary
tree T1 for want can be adjoined at the topmost
domination link. We also produce a second tree with
similar properties for the infinitive marker to (T6).

SUBJ <>]
T5 COMPS < >

SLASH < >

NP COMPS < >
SLASH < [] >

what

D:
I

COMPS < >
SLASH < [] >

, []
D', p p

I

COMPS < to Sandy

SLASH <

COMPS < , [] >

SLASH < >
give

T6 COMPS < >
SLASH < [] >

.:

SLASH [] J

D' , [] COMPS < >
SLASH []

COMPS > *

SLASH

to

By first adjoining the tree T6 at the topmost dom-
ination link of T5 we obtain a structure T7 corre-
sponding to the substring what ... to give to Sandy.
Adjunction involves the identification of the foot
node with the bot tom of the domination link and
identification of the root with top of the domina-
tion link. Since the domination link at the root of
the adjoined tree mirrors the properties of the ad-
junction site in the initial tree, the properties of the
domination link are preserved.

98

SUBJ < >]
T7 COMPS <

SLASH < >

NP COMPS < >
SLASH < [] >

what '

D:
I

COMPS < >
SLASH < [] >

[[COMPS < > [] COMPS < >
SLASH < > SLASH < [] >

, []
D: p p

I

COMPS < > to Sandy

SLASH < >

"°1
COMPS < , >

SLASH < >
give

The final derivation step then involves the adjunc-
tion of the tree for the equi verb into this tree, again
at the topmost domination link. This has the effect
of inserting the substring K i m wants into what ... to
give to Sandy.

4 C o n c l u s i o n

We have described how HPSG specifications can be
compiled into TAG, in a manner that is faithful to
both frameworks. This algorithm has been imple-
mented in Lisp and used to compile a significant
fragment of a German HPSG. Work is in progress on
compiling an English grammar developed at CSLI.

This compilation strategy illustrates how linguis-
tic theories other than those previously explored
within the TAG formalism can be instantiated in
TAG, allowing the association of structures with an
enlarged domain of locality with lexical items. We
have generalized the notion of factoring recursion in
TAG, by defining auxiliary trees in a way that is not
only adequate for our purposes, but also provides a
uniform treatment of extraction from both clausal

and non-clausal complements (e.g., VPs) tha t is not
possible in traditional TAG.

It should be noted that the results of our compila-
tion will not always conform to conventional linguis-
tic assumptions often adopted in TAGs, as exempli-
fied by the auxiliary trees produced for equi verbs.
Also, as the algorithm does not currently include any
downward expansion from complement nodes on the
frontier, the resulting trees will sometimes be more
fractioned than if they had been specified directly in
a TAG.

We are currently exploring the possiblity of com-
piling HPSG into an extension of the TAG formal-
ism, such as D-tree grammars (RVW95) or the UVG-
DL formalism (Ram94). These somewhat more pow-
erful formalisms appear to be adequate for some
phenomena, such as extraction out of adjuncts (re-
call §2) and certain kinds of scrambling, which our
current method does not handle. More flexible
methods of combining trees with dominance links
may also lead to a reduction in the number of trees
that must be produced in the second phase of our
compilation.

There are also several techniques that we expect
to lead to improved parsing efficiency of the resulting
TAG. For instance, it is possible to declare specific
non-SFs which can be raised, thereby reducing the
number of useless trees produced during the multi-
phase compilation. We have also developed a scheme
to effectively organize the trees associated with lex-
ical items.

R e f e r e n c e s

Robert Kasper. On Compiling Head Driven Phrase
Structure Grammar into Lexicalized Tree Adjoining
Grammar. In Proceedings of the 2 "a Workshop on
TAGs, Philadelphia, 1992.

A. K. Joshi, K. Vijay-Shanker and D. Weir. The con-
vergence of mildly context-sensitive grammatical for-
malisms. In P. Sells, S. Shieber, and T. Wasow, eds.,
Foundational Issues in Natural Language Processing.
MIT Press, 1991.

Carl Pollard and Ivan Sag. Head Driven Phrase Struc-
ture Grammar. CSLI, Stanford &: University of Chica-
go Press, 1994.

O. Rambow. Formal and Computational Aspects of
Natural Language Syntax. Ph.D. thesis. Univ. of
Philadelphia. Philadelphia, 1994.

O. Rambow, K. Vijay-Shanker and D. Weir. D-Tree
Grammars. In: ACL-95.

Y. Schabes, A. Abeille, and A. K. Joshi. Parsing Strate-
gies with 'Lexicalized' Grammars: Application to
Tree Adjoining Grammars. COLING-88, pp. 578-583.

Y. Schabes, and A. K. Joshi. Parsing with lexicalized
tree adjoining grammar. In M. Tomita, ed., Cur-
rent Issues in Parsing Technologies. Kluwer Academic
Publishers, 1990.

K. Vijay-Shanker. Using Descriptions of Trees in a TAG.
Computational Linguistics, 18(4):481-517, 1992.

K. Vijay-Shanker and A. K. Joshi. Feature Structure
Based Tree Adjoining Grammars. In: COLING-88.

: 9 9

