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A b s t r a c t  

This paper introduces to the calculus of 
regular expressions a replace operator and 
defines a set of replacement expressions 
that concisely encode alternate variations 
of the operation. Replace expressions de- 
note regular relations, defined in terms of 
other regular expression operators. The 
basic case is unconditional obligatory re- 
placement. We develop several versions of 
conditional replacement that allow the op- 
eration to be constrained by context 

O. Introduction 

Linguistic descriptions in phonology, morphology, 
and syntax typically make use of an operation that 
replaces some symbol or sequence of symbols by 
another sequence or symbol. We consider here the 
replacement operation in the context of finite-state 
grammars. 

Our purpose in this paper is twofold. One is to 
define replacement in a very general way, explicitly 
allowing replacement to be constrained by input 
and ou tpu t  contexts, as in two-level rules 
(Koskenniemi 1983), but without the restriction of 
only single-symbol replacements. The second ob- 
jective is to define replacement within a general 
calculus of regular expressions so that replace- 
ments can be conveniently combined with other 
kinds of operations, such as composition and un- 
ion, to form complex expressions. 

Our replacement operators are close relatives of the 
rewrite-operator defined in Kaplan and Kay 1994, 
but they are not identical to it. We discuss their 
relationship in a section at the end of the paper. 

0. 1. Simple regular expressions 

The replacement operators are defined by means of 
regular expressions. Some of the operators we use 

to define them are specific to Xerox implementa- 
tions of the finite-state calculus, but  equivalent 
formulations could easily be found in other nota- 
tions. 

The table below describes the types of expressions 
and special symbols that are used to define the 
replacement operators. 

[1] 
(A) option (union of A with the 

empty string) 
~A complement (negation) 
\A term complement (any symbol 

other than A) 
$A contains (all strings containing at 

least one A) 
A* Kleene star 
A+ Kleene plus 
A/B ignore (A interspersed with 

strings from B) 
A B concatenation 
A [ B union 
A & B intersection 
A - B relative complement (minus) 
A . x .  B crossproduct (Cartesian product) 
A . o.  B composition 

Square brackets, [ l ,  are used for grouping expres- 
sions. Thus [AI is equivalent to A while (A) is not. 
The order in the above table corresponds to the 
precedence of the operations. The prefix operators 
( - ,  \ ,  and $) bind more tightly than the postfix 
operators (*, +, a n d / ) ,  which in turn rank above 
concatenation. Union, intersection, and relative 
complement are considered weaker than concate- 
nation but stronger than crossproduct and compo- 
sition. Operators sharing the same precedence are 
interpreted left-to-right. Our new replacement 
operator goes in a class between the Boolean op- 
erators and composition. Taking advantage of all 
these conventions, the fully bracketed expression 

[2] 
[[[~[all* [[b]/x]] I el .x. d ; 
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can be rewritten more concisely as 

~a* b/x I c .x. d 

[31 

Expressions that contain the crossproduct (. x . )  or 
the composition (. o . )  operator describe regular 
relations rather than regular languages. A regular 
relation is a mapping from one regular language to 
another  one. Regular languages correspond to 
simple finite-state automata; regular relations are 
modeled by finite-state transducers. In the relation 
a . x .  B, we call the first member, A, the uppe r  
language and the second member, B, the lower lan- 
guage. 

To make the notation less cumbersome, we sys- 
tematically ignore the distinction between the lan- 
guage A and the identity relation that maps every 
string of A to itself. Correspondingly, a simple au- 
tomaton may be thought of as representing a lan- 
guage or as a transducer for its identity relation. 
For the sake of convenience, we also equate a lan- 
guage consisting of a single string with the string 
itself. Thus the expression a b c  may denote, de- 
pending on the context, (i) the string abc ,  (ii) the 
language consisting of the string abc,  and (iii) the 
identity relation on that language. 

We recognize two kinds of symbols: simple sym- 
bols (a, b, c, etc.) and fst pairs (a : b, y : z, etc.). An 
fst pair a : b can be thought of as the crossproduct 
of a and b, the minimal relation consisting of a (the 
upper symbol) and b (the lower symbol). Because 
we regard the identity relation on A as equivalent 
to A, we write a : a as just a. There are two special 
symbols 

[4] 
0 epsilon (the empty string). 
? any symbol in the known alphabet and its 

extensions. 

The escape character, %, allows letters that have a 
special meaning in the calculus to be used as ordi- 
nary symbols. Thus %& denotes a literal ampersand 
as opposed to &, the intersection operator; %0 is the 
ordinary zero symbol. 

The following simple expressions appear fre- 
quently in our formulas: 

[5] 
[ ] the empty string language. 
~ $ [ ] the null set. 

?* the universal ("sigma-star") language: all 
possible strings of any length including the 
empty string. 

1. Unconditional replacement 

To the regular-expression language  described 
above, we add the new replacement operator. The 
unconditional replacement of UPPER by LOWER is 
written 

[6] 
UPPER -> LOWER 

Here UPPER and LOWER are any regular expres- 
sions that describe simple regular languages. We 
define this replacement expression as 

[71 
[ NO UPPER [UPPER .x. LOWER] ] * 

NO UPPER ; 

where NO UPPER abbreviates ~$ [UPPER - [] ]. 
The d e f i ~ i o n  describes a regular relation whose 
members contain any number  (including zero) of 
iterations of [UPPER . x .  LOWER], possibly alter- 
nating with strings not containing UPPER that are 
mapped to themselves. 

1.1. Examples 

We illustrate the meaning of the replacement op- 
erator with a few simple examples. The regular 
expression 

[8] 
a b I c -> x ; 

(same as [[a b] [ c] -> x) 

describes a relation consisting of an infinite set of 
pairs such as 

[9] 
a b a c a  

x a x a 

where all occurrences of ab and c are mapped to x 
interspersed with unchanging pairings. It also in- 
dudes  all possible pairs like 

[101 
x a x a 

x a x a  

that do not contain either ab or c anywhere. 

Figure 1 shows the state diagram of a transducer 
that encodes this relation. The transducer consists 
of states and arcs that indicate a transition from 
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state to state over a given pair of symbols. For con- 
venience we represent identity pairs by a single 
symbol; for example, we write a : a as a. The sym- 
bol ? represents here the identity pairs of symbols 
that are not explicitly present in the network. In 
this case, ? stands for any identity pair other than 
a : a, b : b, c : c, and x : x. Transitions that differ 
only with respect to the label are collapsed into a 
single multiply labelled arc. The state labeled 0 is 
the start state. Final states are distinguished by a 
double circle. 

? C : ~  a 

C:X - -  

Figure 1: a b I c -> x 

Every pair of strings in the relation corresponds to 
a path from the initial 0 state of the transducer to a 
final state. The a b a c a  to x a x a  path is 0 - 1 - 0 - 2 -  
0-2,  where the 2 -0  transition is over a c : x arc. 

In case a given input string matches the replace- 
ment relation in two ways, two outputs  are pro- 
duced. For example, 

[111 
a b ] b c -> x ; 

c ? 

Figure 2: a b [ b c - >  x 

maps abc  to both ax and xc: 

a b c , a b c 

a x x c 

[121 

The corresponding transducer paths in Figure 2 are 
0 - 1 - 3 - 0  and 0 - 2 - 0 - 0 ,  where the last 0 -0  transi- 
tion is over a c arc. 

If this ambiguity is not des i rable ,  we  may write 
two replacement expressions and compose them to 
indicate which replacement should be preferred if a 
choice has to be made. For example, if the ab  match 
should have precedence, we write 

[13] 
a b - > x  

o0o 
b c -> x ; 

a:x 

X X 

Figure3: a b ->  x . o .  b c ->  x 

This composite relation produces the same output  
as the previous  one except for strings like a bc  
where it unambiguously  makes only the first re- 
placement, giving xc  as the output. The a b e  to xc  
path in Figure 3 is 0 - 2 - 0 - 0 .  

1.2. Special cases 

Let us illustrate the meaning of the replacement 
operator by considering what  our  definition im- 
plies in a few spedal  cases. 

If UPPER is the empty set, as in 

[] -> a [ b 

[141 

the expression compiles to a transducer that freely 
inserts as and bs  in the input string. 

If UPPER describes the null set, as in, 

~$[] -> a [ b ; 
[151 
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the LOWER part is irrelevant because there is no 
replacement. This expression is a description of the 
sigma-star language. 

If LOWER describes the empty set, replacement be- 
comes deletion. For example, 

[16] 
a I b-> [] 

removes all as and bs from the input. 

If LOWER describes the null set, as in 

a [ b ->  ~$[]  ; 
[17] 

all strings containing UPPER, here a or b, are ex- 
cluded from the upper side language. Everything 
else is mapped to iiself. An equivalent expression is 
~$ [a [ b]. 

1.3. Inverse replacement 

The inverse replacement operator. 

UPPER <-  LOWER 
[18] 

is defined as the inverse of the relation LOWER -> 
UPPER. 

1.4. Optional replacement 

An optional version of unconditional replacement 
is derived simply by augmenting LOWER with UP- 
PER in the replacement relation. 

[19] 
UPPER (->) LOWER 

is defined as 

UPPER -> [LOWER [ UPPER] 

[20] 

The optional replacement relation maps UPPER to 
both LOWER and UPPER. The optional version of < -  
is defined in the same way. 

2. Conditional replacement 

We now extend the notion of simple replacement 
by allowing the operation to be constrained by a 
left and a right context. A conditional replacement 
expression has four components: UPPER, LOWER, 
LEFT, and RIGHT. They must all be regular expres- 
sions that describe a simple language. We write the 
replacement part UPPER -> LOWER, as before, and 

the context part as LEFT _ RIGHT, where  the 
underscore indicates where the replacement takes 
place. 

In addition, we need a separator between the re- 
placement and the context part. We use four alter- 
nate separators, [ I, / / ,  \ \ and \ / ,  which gives rise 
to four types of conditional replacement expres- 
sions: 

[21l 
(1) Upward-oriented: 
UPPER -> LOWER J[ LEFT RIGHT ; 

(2) Right-oriented: 
UPPER-> LOWER // LEFT RIGHT ; 

(3) Left-oriented: 
UPPER -> LOWER \\ LEFT RIGHT ; 

(4) Downward-oriented: 
UPPER -> LOWER \/ LEFT RIGHT ; 

All four kinds of replacement expressions describe 
a relation that maps UPPER to LOWER between 
LEFT and RIGHT leaving everything else un- 
changed. The difference is in the intelpretation of 
'%etween LEFT and RIGHT." 

2.1. Overview: divide and conquer 

We define UPPER-> LOWER l[ LEFT RIGHT 

and the other versions of conditional replacement 

in terms of expressions that are already in our regu- 
lar expression language, including the uncondi- 
tional version just defined. Our general intention is 
to make the conditional replacement behave ex- 
actly like unconditional replacement except that the 
operation does not take place unless the specified 
context is present. 

This may seem a simple matter  but it is not, as 
Kaplan and Kay 1994 show. There are several 
sources of complexity. One is that the part  that is 
being replaced may at the same time serve as the 
context of another adjacent replacement. Another 
complication is the fact just mentioned: there are 
several ways to constrain a replacement by a con- 
text. 

We solve both problems using a technique that was 
originally invented for the implementat ion of 
phonological rewrite rules (Kaplan and Kay 1981, 
1994) and later adapted for two-level rules (Kaplan, 
Karttunen, Koskenniemi 1987; Kar t tunen and 
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Beesley 1992). The strategy is first to decompose the 
complex relation into a set of relatively s imple 
components,  define the components  independently 
of one another, and then define the whole opera- 
tion as a composit ion of these auxiliary relations. 

We need six intermediate relations, to be defined 
shortly: 

[22] 
(1) InsertBrackets 
(2) ConstrainBrackets 
(3) LeftContext 
(4) RightContext 
(5) Replace 
(6) RemoveBrackets 

Relations (1), (5), and (6) involve the unconditional 
replacement operator defined in the previous sec- 
tion. 

Two auxiliary symbols, < and >, are introduced in 
(1) and (6). The left bracket, <, indicates the end of a 
left context. The right bracket, >, marks the begin- 
ning of a complete right context. The distribution of 
the auxiliary brackets is controlled by (2), (3), and 
(4). The relations (1) and (6) that introduce the 
brackets internal to the composit ion at the same 
time remove them from the result. 

2.2. Basic defini t ion 

The full spedfication of the six component  relations 
is given below. Here UPPER, LOWER, LEFT, and 
RIGHT are placeholders for regular expressions of 
any complexity. 

In each case we give a regular expression that pre- 
cisely defines the component  followed by an Eng- 
lish sentence describing the same language or rela- 
tion. In our regular expression language, we have 
to prefix the auxiliary context markers  with the 
escape symbol % to dist inguish them from other 
uses of < and >. 

[23] 
(1) InsertBrackets 

[] <- %< 1%> ; 

The relation that eliminates from the upper side lan- 
guage all context markers that appear on the lower 
side. 

[24] 
(2) ConstrainBrackets 

~$ [%< %>] ; 

The language consisting of strings that do not contain 
<> anywhere. 

[2s] 
(3) LeftContext 

-[-[...LEFT] [<...]] & 
~[ [...LEFT] ~[<...]] ; 

The language in which any instance of < is immedi- 
ately preceded by LEFT, and every LEFT is ii~iedi- 
ately followed by <, ignoring irrelevant brackets. 

Here [...LEFT] is an abbreviation for [ [?* 
LEFT/[%<I%>]] - [2" %<] ], that is, anystring 
ending in LEFT, ignoring all brackets except for a 
final <. Similarly, [%<... ] stands for [%</%> 
? * ], any string beginning with <, ignoring the 
other bracket. 

[26] 
(4) RightContext 

~[ [...>] -[RIGHT...] & 
~[~[...>] [RIGHT...] ; 

The language in which any instance of > is immedi- 
ately followed by RIGHT, and any RIGHT is immedi- 
ately preceded by >, ignoring irrelevant brackets. 

Here [...>] abbreviates [?* %>/%<], and 
RIGHT... stands for [RIGHT/ [%< 1%>] - [%> 
? * ] ], that is, any string beginning with RIGHT, 
ignoring all brackets except for an initial >. 

[27] 
(5) Replace 

%< UPPER/[%<I %>] %> 
-> 

%< LOWER/ [%< I %>] %> ; 

The unconditional replacement of <UPPER> by 
<LOWER>, ignoring irrelevant brackets. 

The redundant  brackets on the lower side are im- 
portant for the other versions of the operation. 

[28] 
(6) RemoveBrackets 

%< t % > - >  [ ]  ; 
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The relation that maps the strings of the upper lan- 
guage to the same strings without any context mark- 
ers. 

The upper  side brackets are eliminated by the in- 
verse replacement defined in (1). 

2.3. Four ways of using contexts 

The complete definition of the first version of con- 
ditional replacement is the composition of these six 
relations: 

[29] 
UPPER -> LOWER [l LEFT RIGHT ; 

InsertBrackets 

oO. 

ConstrainBrackets 

oO. 

LeftContext 

°O. 

RightContext 

.Oo 

Replace 

oO. 

RemoveBrackets ; 

The composition with the left and right context 
constraints prior to the replacement means that any 
instance of UPPER that is subject to replacement is 
surrounded by the proper context on the upper  
side. Within this region, replacement operates just 
as it does in the unconditional case. 

Three other versions of conditional replacement 
can be defined by applying one, or the other, or 
both context constraints on the lower side of the 
relation. It is done by varying the order of the three 
middle relations in the composition. In the right- 
oriented version ( / / ) ,  the left context is checked on 
the lower side of replacement: 

[30] 
UPPER -> LOWER // LEFT RIGHT ; 

° o .  

RightContext 

°Oo 

Replace 
oOo 

LeftContext 

°.o 

The left-oriented version applies the constraints in 
the opposite order: 

UPPER -> LOWER \\ LEFT RIGHT 

[31] 

. ° °  

LeftContext 

.O. 

Replace 
.o. 

RightContext  
° ° ° 

The first three versions roughly correspond to the 
three alternative interpretations of phonological 
rewrite rules discussed in Kaplan and Kay 1994. 
The upward-oriented version corresponds to si- 
multaneous rule application; the right- and left- 
oriented versions can model rightward or leftward 
iterating processes, such as vowel harmony and 
assimilation. 

The fourth logical possibility is that the replace- 
ment operation is constrained by the lower context. 

[32] 
UPPER -> LOWER \/ LEFT RIGHT ; 

° o o 

Replace 

.O. 

LeftContext 

oOo 

RightContext  
. • ° 

When the component relations are composed to- 
gether in this manner,  UPPER gets mapped  to 
LOWER just in case it ends up between LEFT and 
RIGHT in the output string. 

2.4. Examples 

Let us illustrate the consequences of these defini- 
tions with a few examples. We consider four ver- 
sions of the same replacement expression, starting 
with the upward-oriented version 

[331 
a b-> x II a b a ; 

applied to the string abababa. The resulting rela- 
tion is 

ab ab a b a 

a b x x a 

The second and the third occurrence of ab are re- 
placed by x here because they are between ab and 
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x on the upper  side language of the relation• A 
transducer for the relation is shown in Figure 4. 

• x b 

?l x ' < ! /  

Figure4: a b - >  x I I  a b _ a 

The path through the network that maps abababa  
to abxxa  is 0 - 1 - 2 - 5 - 7 - 5 - 6 - 3 .  

The right-oriented version, 

a b -> x // a b a; 

? 9 
b 

X 

O--G Cr 

Figure5: a b - >  x / /  a b _ a 

givesusadif ferentresul t :  

a b a b a b a  

ab x aba 

b ? 

b 
? 

( 
a:x 

Figure6: a b - >  x \ \  a b _ a 

With a b a b a b a  composed on the upper  side, it 
yields 

[38] 
a b a b a b a 

a b a b x a 

[35] by the path 0 - 1 - 2 - 3 - 4 - 5 - 6 - 3 .  

[36] 

following the path 0 - 1 -  2 -  5 -  6 - 1 -  2 -  3. The last 
occurrence of ab must remain unchanged because it 
does not have the required left context on the lower 
side. 

The left-oriented version of the rule shows the 
opposite behavior because it constrains the left 
context on the upper  side of the replacement re- 
lation and the right context on the lower side. 

[37] 
a b -> x \\ a b a ; 

The first two occurrences of ab remain unchanged 
because neither one has the proper right context on 
the lower side to be replaced by x. 

Finally, the downward-oriented fourth version: 
[39] 

a b -> x \/ a b a ; 

a:x 

Figure7: a b - >  x \ /  a b _ a 

This time, surprisingly, we get two outputs from 
the same input: 

[40] 
ab a b a b  a , ab ab aba 

a b x a b a a b a b x a 

Path 0-1-2-5-6-1-2-3 yields abxaba, path 0- 
1-2-3-4-5-6-1 gives us ababxa 

It is easy to see that if the constraint for the re- 
placement pertains to the lower side, then in this 
case it can be satisfied in two ways. 
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3. Comparisons 

3.1. Phonological rewrite rules 

Our definition of replacement is in its technical 
aspects very closely related to the way phonologi- 
cal rewrite-rules are defined in Kaplan and Kay 
1994 but there are important differences. The initial 
motivation in their original 1981 presentation was 
to model a left-to-right deterministic process of rule 
application. In the course of exploring the issues, 
Kaplan and Kay developed a more abstract notion 
of rewrite rules, which we exploit here, but their 
1994 paper retains the procedural point of view. 

Our paper has a very different starting point. The 
basic case for us is unconditional obligatory re- 
placement, defined in a purely relational way 
without any consideration of how it might be ap- 
plied. By starting with obligatory replacement, we 
can easily define an optional version of the opera- 
tor. For Kaplan and Kay, the primary notion is op- 
tional rewriting. It is quite cumbersome for them to 
provide an obligatory version. The results are not 
equivalent. 

Although people may agree, in the case of simple 
phonological rewrite rules, what the outcome of a 
deterministic rewrite operation should be, it is not 
clear that this is the case for replacement expres- 
sions that involve arbitrary regular languages. For 
that reason, we prefer to define the replacement 
operator in relational terms without relying on an 
uncertain intuition about a particular procedure. 

3.2. Two-level rules 

Our definition of replacement also has a close con- 
nection to two-level rules. A two-level rule always 
specifies whether a context element belongs to the 
input (= lexical) or the output (= surface) context of 
the rule. The two-level model also shares our pure 
relational view of replacement as it is not con- 
cerned about the application procedure. But the 
two-level formalism is only defined for symbol-to- 
symbol replacements. 

4. Conclusion 

The goal of this paper has been to introduce to the 
calculus of regular expressions a replace operator, 
->, with a set of associated replacement expressions 
that concisely encode alternate variations of the 
operation. 

We defined uncondit ional  and conditional re- 
placement, taking the unconditional obligatory 
replacement as the basic case. We provide a simple 
declarative definition for it, easily expressed in 
terms of the other regular expression operators, 
and extend it to the conditional case providing four 
ways to constrain replacement by a context. 

These definitions have already been implemented. 
The figures in this paper correspond exactly to the 
output of the regular expression compiler in the 
Xerox finite-state calculus. 
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