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A b s t r a c t  

In this paper  we relate a number  of parsing algorithms 
which have been developed in very different areas of 
parsing theory, and which include deterministic algo- 
rithms, tabular  algorithms, and a parallel algorithm. 
We show that  these algorithms are based on the same 
underlying ideas. 

By relating existing ideas, we hope to provide an op- 
portunity to improve some algorithms based on features 
of others. A second purpose of this paper  is to answer a 
question which has come up in the area of tabular  pars- 
ing, namely how to obtain a parsing algorithm with the 
property that  the table will contain as little entries as 
possible, but without the possibility that  two entries 
represent the same subderivation. 

I n t r o d u c t i o n  

Left-corner (LC) parsing is a parsing s t rategy which 
has been used in different guises in various areas of com- 
puter  science. Deterministic LC parsing with k symbols 
of lookahead can handle the class of LC(k) grammars.  
Since LC parsing is a very simple parsing technique and 
at the same time is able to deal with left recursion, it is 
often used as an alternative to top-down (TD) parsing, 
which cannot handle left recursion and is generally less 
efficient. 

Nondeterministic LC parsing is the foundation of a 
very efficient parsing algorithm [7], related to Tomita ' s  
algorithm and Earley's algorithm. I t  has one disad- 
vantage however, which becomes noticeable when the 
grammar  contains many rules whose right-hand sides 
begin with the same few grammars  symbols, e.g. 

A ~ c~f~l I ~f~2 I . . .  

where ~ is not the empty  string. After an LC parser 
has recognized the first symbol X of such an c~, it will 
as next step predict all aforementioned rules. This 
amounts to much nondeterminism, which is detrimental  
both  to the t ime-complexity and the space-complexity. 
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A first a t t empt  to solve this problem is to use predic- 
tive LR (PLR) parsing. PLR parsing allows simulta- 
neous processing of a common prefix c~, provided that  
the left-hand sides of the rules are the same. However, 
in case we have e.g. the rules A --* c~t31 and B --~ ~/32, 
where again ~ is not the empty  string but  now A ~ B, 
then P L R  parsing will not improve the efficiency. We 
therefore go one step further and discuss extended LR 
(ELR) and common-prefix (CP) parsing, which are al- 
gorithms capable of simultaneous processing of all com- 
mon prefixes. ELR and CP parsing are the foundation 
of tabular  parsing algorithms and a parallel parsing al- 
gori thm from the existing literature, but they have not 
been described in their own right. 

To the best of the author 's  knowledge, the various 
parsing algorithms mentioned above have not been dis- 
cussed together in the existing literature. The main 
purpose of this paper  is to make explicit the connec- 
tions between these algorithms. 

A second purpose of this paper  is to show that  CP 
and ELR parsing are obvious solutions to a problem of 
tabular  parsing which can be described as follows. For 
each parsing algorithm working on a stack there is a 
realisation using a parse table, where the parse table 
allows sharing of computat ion between different search 
paths. For example, Tomita 's  algorithm [18] can be seen 
as a tabular  realisation of nondeterministic LR parsing. 

At this point we use the term state to indicate the 
symbols occurring on the stack of the original algo- 
rithm, which also occur as entries in the parse table 
of its tabular  realisation. 

In general, powerful algorithms working on a stack 
lead to efficient tabular  parsing algorithms, provided 
the g rammar  can be handled almost deterministically. 
In case the stack algorithm is very nondeterministic for 
a certain g rammar  however, sophistication which in- 
creases the number  of states may lead to an increasing 
number  of entries in the parse table of the tabular  re- 
alization. This can be informally explained by the fact 
that  each state represents the computat ion of a number  
of subderivations. If  the number of states is increased 
then it is inevitable that  at some point some states 
represent an overlapping collection of subderivations, 
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which may lead to work being repeated during parsing. 
Furthermore,  the parse forest (a compact  representa- 
tion of all parse trees) which is output  by a tabular  
algorithm may in this case not be optimally dense. 

We conclude tha t  we have a tradeoff between the case 
that  the g rammar  allows almost deterministic parsing 
and the case that  the stack algorithm is very nondeter- 
ministic for a certain grammar.  In the former case, so- 
phistication leads to less entries in the table, and in the 
lat ter  case, sophistication leads to more entries, pro- 
vided this sophistication is realised by an increase in 
the number  of states. This is corroborated by empirical 
da ta  from [1, 4], which deal with tabular  LR parsing. 

As we will explain, CP and ELR parsing are more 
deterministic than  most  other parsing algorithms for 
many grammars ,  but  their tabular  realizations can 
never compute the same subderivation twice. This rep- 
resents an op t imum in a range of possible parsing algo- 
rithms. 

This paper  is organized as follows. First we discuss 
nondeterministic left-corner parsing, and demonstra te  
how common prefixes in a g rammar  may be a source of 
bad performance for this technique. 

Then,  a multi tude of parsing techniques which ex- 
hibit bet ter  t rea tment  of common prefixes is dis- 
cussed. These techniques, including nondeterministic 
PLR, ELR, and CP parsing, have their origins in theory 
of deterministic, parallel, and tabular  parsing. Subse- 
quently, the application to parallel and tabular  parsing 
is investigated more closely. 

Further, we briefly describe how rules with empty  
right-hand sides complicate the parsing process. 

The ideas described in this paper  can be generalized 
to head-driven parsing, as argued in [9]. 

We will take some liberty in describing algorithms 
from the existing literature, since using the original de- 
scriptions would blur the similarities of the algorithms 
to one another. In particular,  we will not t reat  the use 
of lookahead, and we will consider all algorithms work- 
ing on a stack to be nondeterministic.  We will only 
describe recognition algorithms. Each of the algorithms 
can however be easily extended to yield parse trees as 
a side-effect of recognition. 

The notation used in the sequel is for the most par t  
s tandard and is summarised below. 

A context-free g rammar  G = (T, N, P, S) consists of 
two finite disjoint sets N and T of nonterminals and 
terminals, respectively, a s tar t  symbol S E N,  and a 
finite set of rules P.  Every rule has the form A --* c~, 
where the left-hand side (lhs) A is an element from N 
and the right-hand side (rhs) a is an element from V*, 
where V denotes ( N U T ) .  P can also be seen as a 
relation on N × V*. 

We use symbols A, B, C , . . .  to range over N, symbols 
a, b, c , . . .  to range over T, symbols X, ]I, Z to range over 
V, symbols c~, [3, 7 , - . .  to range over V*, and v, w, x , . . .  
to range over T*. We let e denote the empty  string. The 

notation of rules A --* a l ,  A --* a 2 , . . ,  with the same 
lhs is often simplified to A ~ c~1]a21... 

A rule of the form A --~ e is called an epsilon rule. 
We assume grammars  do not have epsilon rules unless 
s tated otherwise. 

The relation P is extended to a relation ~ on V* × V* 
as usual. The reflexive and transitive closure of ~ is 
denoted by --**. 

We define: B L A if and only if A --* B e  for some a.  
The reflexive and transitive closure of / is denoted by 
/*,  and is called the left-corner relation. 

We say two rules A --* a l  and B --* a2 have a com- 
mon prefix [3 if c~1 = [3"/1 and a2 = [3'/2, for some '/1 
and '/2, where [3 ¢ e. 

A recognition algorithm can be specified by means 
of a push-down automaton A = (T, Alph, Init, ~-, Fin), 
which manipulates  configurations of the form (F,v) ,  
where F E Alph* is the stack, constructed from left 
to right, and v • T* is the remaining input. 

The initial configuration is (Init, w), where Init E 
Alph is a distinguished stack symbol, and w is the input. 
The steps of an automaton are specified by means of the 
relation ~-. Thus,  (F,v)  ~- (F ' , v ' )  denotes tha t  (F ' , v ' )  
is obtainable from (F, v) by one step of the automaton.  
The reflexive and transitive closure of ~- is denoted by 
F-*. The input w is accepted if (Init, w) F-* (Fin, e), 
where Fin E Alph is a distinguished stack symbol. 

L C  p a r s i n g  
For the definition of left-corner (LC) recognition [7] we 
need stack symbols ( i tems) of the form [A --~ a • [3], 
where A --~ c~[3 is a rule, and a ¢ e. (Remember  that  
we do not allow epsilon rules.) The informal meaning 
of an i tem is "The part  before the dot has just been 
recognized, the first symbol after the dot is to be rec- 
ognized next".  For technical reasons we also need the 
items [S' ~ . .S ]  and [S' --~ S .], where S' is a fresh 
symbol. Formally: 

I LC = {[A --* a • f ] l  A --* a f  • P t  A(c~ ¢ e V A  -- S')} 

where p t  represents the augmented set of rules, consist- 
ing of the rules in P plus the extra  rule S t --~ S. 

A l g o r i t h m  1 ( L e f t - c o r n e r )  
A L e =  ( T , I  Lc, Init,~-, Fin), Init = IS' ---* • S], Fin = 
[S t --* S .]. Transitions are allowed according to the 
following clauses. 

1. (FIB --* f • C'/], av) ~- 
(F[B --~/3 • CT][A ~ a • ~], v) 

where there is A --* ac~ • P~ such that  A [* C 

2. (F[A --~ a • aft], av) ~- (F[A --* c~a •/3], v) 

3. (FIB ~ [3 • C' / ] [d  ~ ~ . ] ,  v)  
( r i b  ~ f • C'/][D ---, A • 6], v) 

where there is D ~ A5 • p t  such that  D L* C 

4. (FIB --* [3 • A'/][A ---* a .], v) ~- (FIB ~ f A  • '/], v) 

The conditions using the left-corner relation Z* in the 
first and third clauses together form a feature which is 
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called top-down (TD) filtering. T D  filtering makes sure 
that  subderivations that  are being computed bot tom-  
up may eventually grow into subderivations with the re- 
quired root. TD filtering is not necessary for a correct 
algorithm, but it reduces nondeterminism, and guar- 
antees the correct-prefix property, which means that  in 
case of incorrect input the parser does not read past  the 
first incorrect character. 

E x a m p l e  1 Consider the g rammar  with the following 
rules: 

E ---* E + T [ T T E [ T  

T ~ T * F I T * * F  I F  

F ---* a 

It  is easy to see that  E / E , T  Z E , T  L T, F / T. 
The relation L* contains g but from the reflexive closure 
it also contains F L* F and from the transitive closure 
it also contains F L* E. 

The recognition of a * a is realised by: 

[ E '  --* • E-I- a , a  
1 [E'--~ • E ] [ F - - * a • ]  * a  
2 [ E ' - - * • E ] [ T ~ F • ]  * a  
3 [ E ' - - ~ Q E ] [ T - - * T . * F ]  *a  
4 [ E ' ~  • E ] [ T ~ T . • F ]  a 
5 [ E ' ~ . E I [ T - - * T . • F ] [ F - - - * a e ]  
6 [E' ---* • E][T ---* T * F •] 
7 [ E ' ~ • E ] [ E ~ T • ]  
8 [ E ' ~ E • ]  

Note that  since the automaton does not use any looka- 
head, Step 3 may also have replaced [T ---* F •] by 
any other i tem besides [T --* T • • F] whose rhs starts  
with T and whose lhs satisfies the condition of top- 
down filtering with regard to E,  i.e. by [T --~ T • **F] ,  
[E ~ T .  T El, or [E ~ T •]. [] 

LC parsing with k symbols of lookahead can handle 
deterministically the so called LC(k) grammars.  This 
class of grammars  is formalized in [13]. 1 How LC pars- 
ing can be improved to handle common su~xes effi- 
ciently is discussed in [6]; in this paper  we restrict our 
at tention to common prefixes. 

PLR, ELR, and CP parsing 
In this section we investigate a number  of algorithms 
which exhibit a bet ter  t reatment  of common prefixes. 

P r e d i c t i v e  L R  pars ing  
Predictive LR (PLR) parsing with k symbols of looka- 
head was introduced in [17] as an algorithm which yields 
efficient parsers for a subset of the LR(k) grammars  [16] 
and a superset of the LC(k) grammars.  How determin- 
istic PLR parsing succeeds in handling a larger class 
of g rammars  (the PLR(k)  grammars)  than the LC(k) 
grammars  can be explained by identifying PLR parsing 

1In [17] a different definition of the LC(k) grammars may 
be found, which is not completely equivalent. 

for some g rammar  G with LC parsing for some gram- 
mar  G t which results after applying a transformation 
called left-factoring. 

Left-factoring consists of replacing two or more rules 
A ~ a/31 [a/32[... with a common prefix a by the rules 
A ~ hA'  and A' --* ~311f~2[..., where A' is a fresh non- 
terminal. The effect on LC parsing is that  a choice 
between rules is postponed until after all symbols of a 
are completely recognized. Investigation of the next k 
symbols of the remaining input may then allow a choice 
between the rules to be made deterministically. 

The PLR algorithm is formalised in [17] by trans- 
forming a PLR(k)  g rammar  into an LL(k) g rammar  
and then assuming the s tandard realisation of LL(k) 
parsing. When we consider nondeterministic top-down 
parsing instead of LL(k) parsing, then we obtain the 
new formulation of nondeterministic PLR(0) parsing 
below. 

We first need to define another  kind of item, viz. of 
the form [A --* ~] such that  there is at least one rule of 
the form A --* a/3 for some ft. Formally: 

I PLR = {[A ---* ~] [ A --* a/3 • p t  A (a  # e V A = S')} 

Informally, an i tem [A --* ~ I PLa a • represents one or 
more items [A --~ cr •/3] • I e. 

Algori thm 2 (Predict ive LR) 
A PLR = (T, I PLR, Init, F-, Fin), Init = [S' --~ ], Fin = 
[S t --~ S], and F- defined by: 

1. (F[B --~/3], av) F- (rib -~/3][A -~ ~] , , )  
where there are A --~ as ,  B ---* tiC7 • p t  such that  
A L * C  

2. (F[A --* a], av) F- (r[A --, ~a], v) 
where there is A ~ haft • P+ 

3. (FIB--*/3][A -* a], v) b (rOB--,/3][0--, A], v) 
where A --* cr • P t a n d  where there are D 
A~f, B --~ f?C7 • p t  such that  D / *  C 

4. (F[B --*/3][A --, a ] ,v)  ~- (F[B --*/~A], v) 
where A --~ a • pT and where there is B --~/3A7 • 
p t  

E x a m p l e  2 Consider the g r ammar  from Example 1. 
Using Predictive LR, recognition of a * a is realised by: 

[E' ~ ] a * a 
[E' ][F a] • a 
[E' --~ ][T ---* F] * a 
[E' --* ][T --* T] * a 
[E' --* ][T ~ T .] a 

: 

[E' E] 
Comparing these configurations with those reached by 
the LC recognizer, we see tha t  here after Step 3 the 
stack element IT --~ T] represents both [T ~ T • * F] 
and [T --* T • **F],  so that  nondeterminism is reduced. 
Still some nondeterminism remains, since Step 3 could 
also have replaced [T --* F] by [Z --* T], which repre- 
sents both  [E --* T -  T E] and [E --~ T •]. [] 
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E x t e n d e d  L i t  p a r s i n g  

An extended context-free g rammar  has right-hand sides 
consisting of arbi t rary regular expressions over V. This 
requires an LR parser for an extended g rammar  (an 
ELR parser) to behave differently from normal LR 
parsers. 

The behaviour of a normal LR parser upon a reduc- 
tion with some rule A --* a is very simple: it pops la[ 
states from the stack, revealing, say, s tate Q; it then 
pushes s tate  goto(Q, A). (We identify a s tate  with its 
corresponding set of items.) 

For extended g rammars  the behaviour upon a reduc- 
tion cannot be realised in this way since the regular 
expression of which the rhs is composed may describe 
strings of various lengths, so that  it is unknown how 
many states need to be popped.  

In [11] this problem is solved by forcing the parser to 
decide at each call goto(Q, X )  whether  

a) X is one more symbol of an i tem in Q of which some 
symbols have already been recognized, or whether  

b)  X is the first symbol of an i tem which has been 
introduced in Q by means of the closure function. 

In the second case, a s tate  which is a variant of 
goto(Q,X)  is pushed on top of s tate  Q as usual. In 
the first case, however, s ta te  Q on top of the stack is 
replaced by a variant of goto(Q, X) .  This is safe since 
we will never need to return to Q if after some more 
steps we succeed in recognizing some rule correspond- 
ing with one of the i tems in Q. A consequence of the 
action in the first case is that  upon reduction we need 
to pop only one state off the stack. 

Further work in this area is reported in [5], which 
treats  nondeterministic ELR parsing and therefore does 
not regard it as an obstacle if a choice between cases a)  
and b)  cannot be uniquely made. 

We are not concerned with extended context-free 
g rammars  in this paper.  However, a very interesting 
algorithm results from ELR parsing if we restrict its ap- 
plication to ordinary context-free grammars .  (We will 
maintain the name "extended LR" to stress the origin 
of the algorithm.) This results in the new nondetermin- 
istic ELR(0) algorithm that  we describe below, derived 
from the formulation of ELK parsing in [5]. 

First, we define a set of items as 

I = {[A --* c~ •/3] I A --* 4/3 E p t }  

Note tha t  I LC C I. If we define for each Q G I: 

closure(Q) -= 

Q U { [ A - - * . a ] I [ B - - * / 3 . C T ] E Q A A Z * C }  

then the goto function for LR(0) parsing is defined by 

g o t o ( q , x )  = 

closure({[A ---* a X  •/3] I [A ~ a • X/3] E Q}) 

For ELR parsing however, we need two goto func- 
tions, goto I and goto2, one for kernel i tems (i.e. those 

in I LC) and one for nonkernel items (the others). These 
are defined by 

g o t o l ( Q , X )  = 

closure({[A --* a X  • fl] I [A ---* (~ • X/3] E Q A 
( a  # e VA = S ' )})  

goto2(Q,X ) = 
closure({[A ~ X •/3] I [A --* • X/3] 6 Q A A # S'}) 

At each shift (where X is some terminal) and each re- 
duce with some rule A --* a (where X is A) we may non- 
deterministically apply gotol, which corresponds with 
case a) ,  or goto2, which corresponds with case b) .  Of 
course, one or both  may not be defined on Q and X, 
because gotoi(Q, X )  may be @, for i E {1, 2}. 

Now remark tha t  when using goto I and goto2, each 
reachable set of items contains only items of the form 
A --* a •/3, for some fixed string a ,  plus some nonkernel 
items. We will ignore the nonkernel items since they 
can be derived from the kernel items by means of the 
closure function. 

This suggests representing each set of items by a new 
kind of i tem of the form [{Az, A 2 , . . . ,  A,~} --* a], which 
represents all i tems A --* a • /3 for some /3 and A E 
{A1, A 2 , . . . ,  An}. Formally: 

I ELR .~ {[A ---+ a] ] 0 C A G {A I A --* af t  E p t }  A 
(4  # E v a = { s ' } ) }  

where we use the symbol A to range over sets of non- 
terminals. 

A l g o r i t h m  3 ( E x t e n d e d  L R )  
A ELR = (T, I ELR, Init, t-, Fin), Init = [{S'} --* ], Fin = 
[{S'} --* S], and t- defined by: 

1. ( r i d  -./31, ( r i d  - . /3][a '  - .  a],v) 
where A' = {A I 3A ~ aa, S --~ flC'y 6 p t [B  E 
A A A Z* C]} is non-empty 

2. ( r i d  a], ( r i d '  
where A' = { A E A [ A ---* daft E p t  } is non-empty 

3. (F[A --* fl][A' --. a],v) t- (F[A --*/3][A" --. A],v) 
where there is A --* a E p t  with A E A' ,  and A" -~ 
{D 1 3 0  ---* A6, B --*/3C7 E Pt[B 6 A A D Z* C]} i s  
non-empty 

4. (F[A --. fl][A' ---, a ] ,v )  }- (F[A" --* flA],v) 
where there is A --* a E p t  with A E A',  and A" = 
{B E A I B --*/3A',/E p t }  is non-empty 

Note tha t  Clauses 1 and 3 correspond with goto 2 and 
that  Clauses 2 and 4 correspond with goto 1. 

E x a m p l e  3 Consider again the g rammar  from Exam- 
ple 1. Using the ELR algorithm, recognition of a * a is 
realised by: 

[{E'} -* ] a a 
[{E'} ][{F} 6] a 
[{E'} --* ][{T} --* F] a 
[{E'} --* ][{T, E} --* T] a 
[{E'} --* ][{T} --* T *] a 

[{E'} ---* E] 
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Comparing these configurations with those reached by 
the PLR recognizer, we see that  here after Step 3 the 
stack element [{T, E} ~ T] represents both [T ---* T • 
• F] and [T --, T • * * F], but also [E --* T .] and 
[E -~ T • T E], so that  nondeterminism is even further 
reduced. [] 

A simplified ELR algorithm, which we call the pseudo 
ELR algorithm, results from avoiding reference to A in 
Clauses 1 and 3. In Clause 1 we then have a simplified 
definition of A ~, viz. A ~ = {A [ 3A --* as, B ---* tiC'7 E 
Pt[a  l* C]}, and in the same way we have in Clause 3 
the new definition A" = {D [ 3D ~ AS, B --~ ~C~( E 
Pt[D [* C]}. Pseudo ELR parsing can be more easily 
realised than full ELR parsing, but the correct-prefix 
property can no longer be guaranteed. Pseudo ELR 
parsing is the foundation of a tabular algorithm in [20]. 

C o m m o n - p r e f i x  p a r s i n g  

One of the more complicated aspects of the ELR algo- 
ri thm is the treatment of the sets of nonterminals in 
the left-hand sides of items. A drastically simplified 
algorithm is the basis of a tabular algorithm in [21]. 
Since in [21] the algorithm itself is not described but 
only its tabular realisation, 2 we take the liberty of giv- 
ing this algorithm our own name: common-prefix (CP) 
parsing, since it treats all rules with a common prefix 
simultaneously, a 

The simplification consists of omitting the sets of 
nonterminals in the left-hand sides of items: 

I Cp = {[--* s] [ A ~ s/3 e p t }  

A l g o r i t h m  4 ( C o m m o n - p r e f i x )  
A t;r = (T, I cP, Init, ~-, Fin), Init = [--*], Fin = [---+ S], 
and I- defined by: 

i. (F[---* /3], av) ~ (F[---* /3][4_. a], v) 
where there are A --~ as ,  B --~/3C'7 E p t  such that  
A L * C  

2. (r[-~ a], av) ~ (r[-~ sa], v) 
where there is A --~ sa~3 E p t  

3. (F[--~/3][4_. s], v) F- (F[--~ fl][--. A], v) 
where there are A --* a, D -* A6, B --* /3C'7 E p t  
such that  D / *  C 

4. (V[-~/3][4_, s], v) F- (V[--*/3A], v) 
where there are A --* s ,  B --~/3A'7 E p t  

The simplification which leads to the CP algorithm 
inevitably causes the correct-prefix property to be lost. 

E x a m p l e  4 Consider again the grammar from Exam- 
ple 1. It is clear that a ÷ a  T a i s  not aco r rec t  string 
according to this grammar. The CP algorithm may go 
through the following sequence of configurations: 

2An attempt has been made in [19] but this paper does 
not describe the algorithm in its full generality. 

3The original algorithm in [21] applies an optimization 
concerning unit rules, irrelevant to our discussion. 

1 
2 F] 
3 [--*][-* T] 
4 [--*][-* E] 
5 E 
6 E 
7 E 

0 ¢ 

+] 

÷][--, F] 
T] 
T T] 

a ÷ a T a  
÷ a T a  
÷ a T  a 
÷ a T a  
÷ a T a  

a T a  
Ta 
Ta 
~a 

a 

10 E r a] 

We see that  in Step 9 the first incorrect symbol T is read, 
but recognition then continues. Eventually, the recog- 
nition process is blocked in some unsuccessful configu- 
ration, which is guaranteed to happen for any incorrect 
input 4. In general however, after reading the first incor- 
rect symbol, the algorithm may perform an unbounded 
number of steps before it halts. (Imagine what happens 
for input of the f o r m a + a T a ÷ a + a + . . . + a . )  [] 

Tabular parsing 
Nondeterministic push-down automata  can be realised 
efficiently using parse tables [1]. A parse table consists 
of sets Ti,j of items, for 0 < i < j _~ n, where al . . . a n  
represents the input. The idea is that  an item is only 
stored in a set Ti,j if the item represents recognition of 
the part of the input ai+l • • • aj.  

We will first discuss a tabular form of CP parsing, 
since this is the most simple parsing technique discussed 
above. We will then move on to the more difficult ELR 
technique. Tabular PLR parsing is fairly straightfor- 
ward and will not be discussed in this paper. 

T a b u l a r  C P  p a r s i n g  

CP parsing has the following tabular realization: 

A l g o r i t h m  5 ( T a b u l a r  c o m m o n - p r e f i x )  P 
c Sets Ti j  of the table are to be subsets of I . Start 

with an empty table. Add [-*] to T0,0. Perform one of 
the following steps until no more items can be added. 

1. Add [--~ a] to T~-i,i for a = al and [--*/3] E Tj, i- i  
where there are A --* an, B --* /3C'7 E P? such that  
A / * C  

2. Add [-~ sa] to Tj,i for a = ai and [--* a] E Tj,l-i  
where there is A --* an/3 E p t  

3. Add [--* A] to Tj# for [--* a] e Tj,i and [-*/3] E Th,j 
where there are A --~ s ,  D --* AS, B --* /3C'7 E p t  
such that  D / *  C 

4. Add [--~/3A] to Th,i for [--* s] E Tj,i and [---~/3] E Th,j 
where there are A --* s ,  B --*/3A 7 E p t  

Report recognition of the input if [--~ S] E T0,n. 

For an example, see Figure 1. 
Tabular CP parsing is related to a variant of CYK 

parsing with TD filtering in [5]. A form of tabular 

4unless the grammar is cyclic, in which case the parser 
may not terminate, both on correct and on incorrect input 
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Figure 1: Tabular 

0 

[--* T T] (9) 

CP parsing without top-down filtering (i.e. without the 
checks concerning the left-corner relation /*)  is the 
main algorithm in [21]. 

Without  the use of top-down filtering, the references 
to [---~/9] in Clauses 1 and 3 are clearly not of much use 
any more. When we also remove the use of these items, 
then these clauses become: 

[--* T T E] 

Consider again the grammar from 
Example 1 and the (incorrect) in- 
put a + a T a. After execution 
of the tabular common-prefix al- 
gorithm, the table is as given here. 
The sets Tj,i are given at the j - th  
row and i-th column. 
The items which correspond with 
those from Example 4 are labelled 
with (0), (1 ) , . . .  These labels also 
indicate the order in which these 
items are added to the table. 

1. Add [--+ a] to Tc-I,C for a = ai 
where there is A --* ac~ • p t  

3. Add [--* A] to Tj,i for [--+ o~] • Tj,i 
where there are A ---* a, D --* A6 • pt 

[--* a] (Io) 

T] 
[--, E] 

CP parsing 

However, for certain i there may be many [A ~ /9] • 
Tj,c-1, for some j ,  and each may give rise to a different 
A' which is non-empty. In this way, Clause 1 may add 
several items [A' --~ a] to Tc-I,C, some possibly with 
overlapping sets A'. Since items represent computation 
of subderivations, the algorithm may therefore compute 
the same subderivation several times. 

In the resulting algorithm, no set Tc,j depends on any 
set Tg,h with g < i. In [15] this fact is used to construct 
a parallel parser with n processors P o , . . . ,  Pn-1,  with 
each Pi processing the sets Ti,j for all j > i. The flow 
of data  is strictly from right to left, i.e. items computed 
by Pc are only passed on to P 0 , . . . ,  Pc-1. 

T a b u l a r  E L R  p a r s i n g  

The tabular  form of ELR parsing allows an optimiza- 
tion which constitutes an interesting example of how a 
tabular algorithm can have a property not shared by its 
nondeterministic origin. 5 

First note that  we can compute the columns of a 
parse table strictly from left to right, that  is, for fixed i 
we can compute all sets Tj,c before we compute the sets 
Tj,C-F1 • 

If we formulate a tabular ELR algorithm in a naive 
way analogously to Algorithm 5, as is done in [5], then 
for example the first clause is given by: 

1. Add [A' --. a] to Tc-1,c for a = ac and 
[A ~ / 9 ]  • Tj,c-1 

where A '  -- {A  ] 3A --~ a(~,B --+ /9C~ • P t [ B  • 
A A A Z* C]} is non-empty 

5This is reminiscent of the admissibility tests [3], which 
are applicable to tabular realisations of logical push-down 
automata, but not to these automata themselves. 

We propose an optimization which makes use of the 
fact that  all possible items [A --+/9] • Tj,i-1 are already 
present when we compute items in Ti-l , i:  we compute 
one single item [A' -+ hi, where A' is a large set com- 
puted using all [A --+ /9] • Tj,i-1, for any j .  A similar 

t o  Tj, i • 

[A ---* c~] • Tj, i -1 
• A i A -~ c~a/9 • p t  } is non-empty 

optimization can be made for the third clause. 

A l g o r i t h m  6 ( T a b u l a r  e x t e n d e d  L R )  
Sets T/ j  of the table are to be subsets of I ELR. Start  
with an empty table. Add [{S'} ~ ] to T0,0. For 
i ---- 1 , . . . ,  n, in this order, perform one of the following 
steps until no more items can be added. 

1. Add [A' --. a] to Ti - l#  for a = ai 
where A' = {A I 3j3[A --*/9] • Tj , i -13A ----, ha,  B ---* 
/9C0' • p t [ B  • A A A Z* C]} is non-empty 

2. Add [A' --* aa] for a = ai and 

where A' = {A 
3. Add [A" --. A] to Tj,i for [A' --* a ] E  Tj,i 

where there is A --+ a E p t  with A E A', and A" = 
{D [ 3h3[A --* /9] E TtL,j3D ----, A6, B ----, /9C',/ E 
p t [ B  E A A D Z* C]} is non-empty 

4. Add [A" --./gA] to Th,i for [A' --* a] E Tj,/ and 
[A --,/9] • Th,j 

where there is A --* a • p t  with A • A', and A" = 
{B • A ] B --~/9A7 • p t }  is non-empty 

Report  recognition of the input if [{S'} --* S] • T0,,~. 

Informally, the top-down filtering in the first and 
third clauses is realised by investigating all left corners 
D of nonterminals C (i.e. D Z* C) which are expected 
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from a certain input position. For input position i these 
nonterminals D are given by 

Si = {D ] 3j3[A ~ fl] E Td,i 
3B --, t iC"/e Pt[B E A A D Z* C]} 

Provided each set Si is computed just after comple- 
tion of the i-th column of the table, the first and third 
clauses can be simplified to: 

1. Add [A' ~ a] t o  T i - l , i  for a = a i 

where A'  = {A [ A --~ a a  E p t }  M Si-1 is non-empty 

3. Add [A" ---, A] to Tj,i for [A' --, ~] E Tj,i 
where there is A --, a E p t  with A E A',  and A"  = 
{D [ D ~ A5 E p t }  N Sj is non-empty 

which may lead to more practical implementations.  
Note that  we may have that  the tabular  ELR algo- 

r i thm manipulates items of the form [A --~ a] which 
would not occur in any search pa th  of the nondeter- 
ministic ELR algorithm, because in general such a A 
is the union of many  sets A'  of items [A ~ --~ a] which 
would be manipulated at the same input position by the 
nondeterministic algorithm in different search paths. 

With minor differences, the above tabular  ELR algo- 
r i thm is described in [21]. A tabular  version of pseudo 
ELR parsing is presented in [20]. Some useful data  
structures for practical implementat ion of tabular  and 
non-tabular  PLR, ELR and CP parsing are described 
in [S], 

F i n d i n g  a n  o p t i m a l  t a b u l a r  a l g o r i t h m  

In [14] Schabes derives the LC algorithm from LR pars- 
ing similar to the way that  ELR parsing can be derived 
from LR parsing. The LC algorithm is obtained by not 
only splitting up the goto function into goto 1 and goto 2 
but also splitting up goto~ even further, so that  it non- 
deterministically yields the closure of one single kernel 
item. (This idea was described earlier in [5], and more 
recently in [10].) 

Schabes then argues that  the LC algorithm can be 
determinized (i.e. made more deterministic) by manip- 
ulating the goto functions. One application of this idea 
is to take a fixed g rammar  and choose different goto 
functions for different parts  of the grammar,  in order 
to tune the parser to the grammar.  

In this section we discuss a different application of 
this idea: we consider various goto functions which are 
global, i.e. which are the same for all parts  of a grammar.  
One example is ELR parsing, as its goto~ function can 
be seen as a determinized version of the goto 2 function 
of LC parsing. In a similar way we obtain P L R  parsing. 
Traditional LR parsing is obtained by taking the full 
determinization, i.e. by taking the normal goto function 
which is not split up. 6 

6Schabes more or less also argues that LC itself can be 
obtained by determinizing TD parsing. (In lieu of TD pars- 
ing he mentions Earley's algorithm, which is its tabular 
realisation.) 

We conclude that  we have a family consisting of LC, 
PLR, ELR, and LR parsing, which are increasingly de- 
terministic. In general, the more deterministic an algo- 
r i thm is, the more parser states it requires. For exam- 
ple, the LC algorithm requires a number  of states (the 
items in I Lc) which is linear in the size of the gram- 
mar. By contrast,  the LR algorithm requires a number  
of states (the sets of items) which is exponential in the 
size of the g rammar  [2]. 

The differences in the number  of states complicates 
the choice of a tabular  algorithm as the one giving op- 
timal behaviour for all grammars .  If  a g rammar  is very 
simple, then a sophisticated algorithm such as LR may 
allow completely deterministic parsing, which requires a 
linear number  of entries to be added to the parse table, 
measured in the size of the grammar.  

If, on the other hand, the g rammar  is very ambigu- 
ous such that  even LR parsing is very nondeterministic, 
then the tabular  realisation may at worst add each state 
to each set T i j ,  so that  the more states there are, the 
more work the parser needs to do. This favours sim- 
ple algorithms such as LC over more sophisticated ones 
such as LR. Furthermore, if more than one state repre- 
sents the same subderivation, then computat ion of that  
subderivation may be done more than once, which leads 
to parse forests (compact representations of collections 
of parse trees) which are not optimally dense [1, 12, 7]. 

Schabes proposes to tune a parser to a grammar,  or 
in other words, to use a combination of parsing tech- 
niques in order to find an optimal  parser for a certain 
grammar.  7 This idea has until now not been realised. 
However, when we t ry  to find a single parsing algorithm 
which performs well for all grammars,  then the tabu- 
lar ELR algorithm we have presented may be a serious 
candidate, for the following reasons: 

• For M1 i, j ,  and a at most one i tem of the form 
[A --, ct] is added to Tij .  Therefore, identical sub- 
derivations are not computed more than once. (This 
is a consequence of our optimization in Algorithm 6.) 
Note that  this also holds for the tabular  CP algo- 
rithm. 

• ELR parsing guarantees the correct-prefix property, 
contrary to the CP algorithm. This prevents com- 
putat ion of all subderivations which are useless with 
regard to the already processed input. 

• ELR parsing is more deterministic than LC and PLR 
parsing, because it allows shared processing of all 
common prefixes. It  is hard to imagine a practical 
parsing technique more deterministic than ELR pars- 
ing which also satisfies the previous two properties. 
In particular, we argue in [8] that  refinement of the 
LR technique in such a way that  the first property 
above holds whould require an impractically large 
number  of LR states. 

7This is reminiscent of the idea of "optimal cover" [5]. 
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Epsilon rules 
Epsilon rules cause two problems for bottom-up pars- 
ing. The first is non-termination for simple realisations 
of nondeterminism (such as backtrack parsing) caused 
by hidden left recursion [7]. The second problem occurs 
when we optimize TD filtering e.g. using the sets Si: it 
is no longer possible to completely construct a set Si be- 
fore it is used, because the computation of a derivation 
deriving the empty string requires Si for TD filtering 
but at the same time its result causes new elements to 
be added to S~. Both problems can be overcome [8]. 

Conclusions 
We have discussed a range of different parsing algo- 
rithms, which have their roots in compiler construction, 
expression parsing, and natural language processing. 
We have shown that these algorithms can be described 
in a common framework. 

We further discussed tabular realisations of these al- 
gorithms, and concluded that we have found an opti- 
mal algorithm, which in most cases leads to parse tables 
containing fewer entries than for other algorithms, but 
which avoids computing identical subderivations more 
than once. 
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