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Abstract 

I describe a head-driven parser for a class of gram- 
mars that handle discontinuous constituency by a 
richer notion of string combination than ordinary 
concatenation. The parser is a generalization of 
the left-corner parser (Matsumoto et al., 1983) 
and can be used for grammars written in power- 
ful formalisms such as non-concatenative versions 
of HPSG (Pollard, 1984; Reape, 1989). 

1 I n t r o d u c t i o n  

Although most formalisms in computational lin- 
guistics assume that phrases are built by string 
concatenation (eg. as in PATR II, GPSG, LFG 
and most versions of Categorial Grammar), this 
assumption is challenged in non-concatenative 
grammatical formalisms. In Pollard's dissertation 
several versions of 'qlead wrapping" are defined 
(Pollard, 1984). In the analysis of the Australian 
free word-order language Guugu Yimidhirr, Mark 
Johnson uses a 'combine' predicate in a DCG-like 
grammar that corresponds to the union of words 
(Johnson, 1985). 

Mike Reape uses an operation called 'sequence 
union' to analyse Germanic semi-free word or- 
der constructions ( l~ape,  1989; Reape, 1990a). 
Other examples include Tree Adjoining Gram- 
mars (Joshi et al., 1975; Vijay-Shankar and 
Joshi, 1988), and versions of Categorial Gram- 
mar (Dowry, 1990) and references cited there. 

Mot iva t ion .  There are several motivations for 
non-concatenative grammars. First, specialized 
string combination operations allow elegant lin- 
guistic accounts of phenomena that are otherwise 
notoriously hard. Examples are the analyses of 

Dutch cross serial dependencies by head wrap- 
ping or sequence union (Reape, 1990a). 

Furthermore, in non-concatenative grammars 
it is possible to relate (parts of) constituents that 
belong together semantically, but which are not 
adjacent. Hence such grammars facilitate a sim- 
ple compositional semantics. In CF-based gram- 
mars such phenomena usually are treated by com- 
plex 'threading' mechanisms. 

Non-concatenative grammatical formalisms 
may also be attractive from a computational 
point of view. It is easier to define generation 
algorithms if the semantics is built in a systemat- 
ically constrained way (van Noord, 1990b). The 
semantic-head-driven generation strategy (van 
Noord, 1989; Calder ef al., 1989; Shieber et al., 
1989; van Noord, 1990a; Shieber et al., 1990) 
faces problems in case semantic heads are 'dis- 
placed', and this displacement is analyzed us- 
ing threading. However, in this paper I sketch 
a simple analysis of verb-second (an example of 
a displacement of semantic heads) by an oper- 
ation similar to head wrapping which a head- 
driven generator processes without any problems 
(or extensions) at all. Clearly, there are also some 
computational problems, because most 'standard' 
parsing strategies assume context-free concatena- 
tion of strings. These problems are the subject of 
this paper. 

T h e  task.  I will restrict the attention to a 
class of constraint-based formalisms, in which 
operations on strings are defined that are more 
powerful than concatenation, but which opera- 
tions are restricted to be nonerasing, and linear. 
The resulting class of systems can be character- 
ized as Linear Context-Free Rewriting Systems 
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(LCFRS), augmented with feature-structures (F- 
LCFRS). For a discussion of the properties of 
LCFRS without feature-structures, see (Vijay- 
Shanker et al., 1987). Note though that these 
properties do not carry over to the current sys- 
tem, because of the augmention with feature 
structures. 

As in LCFRS, the operations on strings in F- 
LCFRS can be characterized as follows. First, 
derived structures will be mapped onto a set of 
occurances of words; i.e. each derived structure 
'knows' which words it 'dominates'. For example, 
each derived feature structure may contain an at- 
tribute 'phon' whose value is a list of atoms repre- 
senting the string it dominates. I will write w(F) 
for the set of occurances of words that the derived 
structure F dominates. Rules combine structures 
D1 . . .  Dn into a new structure M. Nonerasure re- 
quires that the union of w applied to each daugh- 
ter is a subset of w(M): 

}I 

U w(Di) C_ w(M) 
i = l  

Linearity requires that the difference of the car- 
dinalities of these sets is a constant factor; i.e. a 
rule may only introduce a fixed number of words 
syncategorematically: 

Iw(M)l- I U w(Oi)) = c,c a constant 
i = 1  

CF-based formalisms clearly fulfill this require- 
ment, as do Head Grammars, grammars using 
sequence union, and TAG's. I assume in the re- 
mainder of this paper that  I.Jin=l w(Di) = w(M),  
for all rules other than lexical entries (i.e. all 
words are introduced on a terminal). Note though 
that a simple generalization of the algorithm pre- 
sented below handles the general case (along the 
lines of Shieber et al. (1989; 1990)by treating 
rules that introduce extra lexical material as non- 
chain-rules). 

Furthermore, I will assume that each rule has a 
designated daughter, called the head. Although 
I will not impose any restrictions on the head, it 
will turn out that the parsing strategy to be pro- 
posed will be very sensitive to the choice of heads, 
with the effect that F-LCFRS's in which the no- 
tion 'head' is defined in a systematic way (Pol- 
lard's Head Grammars, Reape's version of HPSG, 
Dowty's version of Categorial Grammar), may be 

much more efficiently parsed than other gram- 
mars. The notion seed of a parse tree is defined 
recursively in terms of the head. The seed of a 
tree will be the seed of its head. The seed of a 
terminal will be that terminal itself. 

O t h e r  a p p r o a c h e s .  In (Proudian and Pollard, 
1985) a head-driven algorithm based on active 
chart parsing is described. The details of the al- 
gorithm are unclear from the paper which makes 
a comparison with our approach hard; it is not 
clear whether the parser indeed allows for ex- 
ample the head-wrapping operations of Pollard 
(1984). Reape presented two algorithms (Reape, 
1990b) which are generalizations of a shift-reduce 
parser, and the CKY algorithm, for the same class 
of grammars. I present a head-driven bottom-up 
algorithm for F-LCFR grammars. The algorithm 
resembles the head-driven parser by Martin Kay 
(Kay, 1989), but is generalized in order to be used 
for this larger class of grammars. The disadvan- 
tages Kay noted for his parser do not carry over 
to this generalized version, as redundant search 
paths for CF-based grammars turn out to be gen- 
uine parts of the search space for F-LCFR gram- 
mars. 

The advantage of my algorithm is that it both 
employs bottom-up and top-down filtering in a 
straightforward way. The algorithm is closely re- 
lated to head-driven generators (van Noord, 1989; 
Calder et al., 1989; Shieber et al., 1989; van No- 
ord, 1990a; Shieber et ai., 1990). The algorithm 
proceeds in a bottom-up, head-driven fashion. In 
modern linguistic theories very much information 
is defined in lexical entries, whereas rules are re- 
duced to very general (and very uninformative) 
schemata. More information usually implies less 
search space, hence it is sensible to parse bottom- 
up in order to obtain useful information as soon 
as possible. Furthermore, in many linguistic the- 
ories a special daughter called the head deter- 
mines what kind of other daughters there may be. 
Therefore, it is also sensible to start  with the head 
in order to know for what else you have to look 
for. As the parser proceeds from head to head it 
is furthermore possible to use powerful top-down 
predictions based on the usual head feature per- 
colations. Finally note that  proceding bottom-up 
solves some non-termination problems, because in 
lexicalized theories it is often the case that infor- 
mation in lexical entries limit the recursive appli- 
cation of rules (eg. the size of the subcat list of 
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an entry determines the depth of the derivation 
tree of which this entry can be the seed). 

Before I present the parser in section 3, I will 
first present an example of a F-LCFR grammar, 
to obtain a flavor of the type of problems the 
parser handles reasonably well. 

2 A sample  g r a m m a r  

In this section I present a simple F-LCFR gram- 
mar for a (tiny) fragment of Dutch. As a caveat 
I want to stress that the purpose of the current 
section is to provide an example of possible input 
for the parser to be defined in the next section, 
rather than to provide an account of phenomena 
that is completely satisfactory from a linguistic 
point of view. 

Grammar rules are written as (pure) Prolog 
clauses. 1 Heads select arguments using a sub- 
cat list. Argument structures are specified lexi- 
cally and are percolated from head to head. Syn- 
tactic features are shared between heads (hence 
I make the simplifying assumption that head - 
functor, which may have to be revised in order 
to treat  modification). In this grammar I use 
revised versions of Pollard's head wrapping op- 
erations to analyse cross serial dependency and 
verb second constructions. For a linguistic back- 
ground of these constructions and analyses, cf. 
Evers (1975), Koster (1975) and many others. 

Rules are defined as 

ru l e (Head ,Mothe r ,O the r )  

o r  ~s 

rule(Mother) 

(for lexical entries), where Head represents the 
designated head daughter, Mother the mother 
category and Other  a list of the other daughters. 
Each category is a term 

x(Syn ,Subca t ,Phon ,Sem,Rule )  

where Syn describes the part of speech, Subcat 

1 It should be stressed though tha t  other unification 
g rammar  formalisms can be  extended quite easily to en- 
code the same grammar .  I implemented the algori thm for 
several g rammars  wri t ten in a version of PATR II  without  
built-in s tr ing concate~aation. 

is a list of categories a category subcategorizes 
for, Phon describes the string that is dominated 
by this category, and Sere is the argument struc- 
ture associated with this category. Rule indicates 
which rule (i.e. version of the combine predicate 
eb to be defined below) should be applied; it gen- 
eralizes the 'Order'  feature of UCG. The value of 
Phon is a term p(Lef t ,Head ,R£gh t )  where the 
fields in this term are difference lists of words. 
The first argument represents the string left of the 
head, the second argument represents the head 
and the third argument represents the string right 
of the head. Hence, the string associated with 
such a term is the concatenation of the three ar- 
guments from left to right. There is only one pa- 
rameterized, binary branching, rule in the gram- 
mar: 

rule(x(Syn,[x(C,L,P2,S,R)[L],PI,Sem,_), 

x(Syn,L,P,Sem,_), 

[ x (C ,L ,P 2 ,S ,R) ] )  : -  

cb(R, PI ,  P2, P) .  

In this rule the first element of the subcategoriza- 
tion list of the head is selected as the (only) other 
daughter of the mother of the rule. The syntac- 
tic and semantic features of the mother and the 
head are shared. Furthermore, the strings associ- 
ated with the two daughters of the rule are to be 
combined by the cb predicate. For simple (left or 
right) concatenation this predicate is defined as 
follows: 

cb(left, p(L4-L.H,R), 
p(L1-L2,L2-L3 ,L3-L4) ,  

p(L1-L,H,R)). 

c b ( r i g h t ,  p(L,H,RI-R2), 

p(R2-R3,R3-R4,R4-R), 

p(L,H,RI-R)). 

Although this looks horrible for people not famil- 
iar with Prolog, the idea is really very simple. 
In the first case the string associated with the 
argument is appended to the left of the string 
left of the head; in the second case this string is 
appended to the right of the string right of the 
head. In a friendlier notation the examples may 
look like: 

116 



p(A1.A2.A3-L,H, R) 

/ \  
p(L,H,R) p(A1,A2,A3) 

p(L, H. R-A1.A2.A3) 

/ \  
p(L,H,R) p(A1,A2,A3) 

Lexical entries for the intransitive verb 'slaapt' 
(sleeps) and the transitive verb 'kust' (kisses) are 
defined as follows: 

rule( x(v , [x(n,  [] , _ , A , l e f t ) ] ,  
p ( P - P , [ s l a a p t l T ] - T , R - R ) ,  
s l e e p ( A ) , _ ) ) .  

ru le(  x(v,  [x(n,  [] ,_ ,B , le f t ) ,  
x(n,  [] , _ ,A , l e f t ) ] ,  

p (P-P, [kust  I T]-T, R-R), 
kiss(A,B) ,_) ) .  

Proper nouns are defined as: 

rule( x(n, [] ,p(P-P, [p ier  [T]-T,R-R), 
pete,_)). 

and a top category is defined as follows (comple- 
mentizers that have selected all arguments, i.e. 
sentences): 

top(x(comp,[] . . . . . .  ) ) .  

Such a complementizer, eg. 'dat '  (that) is defined 
a s :  

rule( x(comp, Ix(v, [] , _ , A , r i g h t ) ] ,  
p(P-P, [dat  I T]-T, R-R), 
t h a t  (A), _) ). 

The choice of datastructure for the value of 
Phon allows a simple definition of the verb raising 
(vr) version of the combine predicate that may be 
used for Dutch cross serial dependencies: 

cb(vr ,  p(L1-L2,H,R3-R), 
p(L2-L,R1-R2,R2-R3), 
p(L1-L,H,R1-R)).  

Here the head and right string of the argument 
are appended to the right, whereas the left string 
of the argument is appended to the left. Again, 
an illustration might help: 

p(L-AI , II, A2.A3.R) 

/ \  
p(L,li,X) p(A1,A2,A3) 

A raising verb, eg. 'ziet' (sees) is defined as: 

r u l e ( x ( v , [ x ( n ,  [] , _ , I n f S u b j , l e f t ) ,  
x ( i n f , [ x (  . . . . . .  I n fSub j ,_ )  

] , _ ,B ,vr ) ,  
x(n, [] , _ , A , l e f t ) ] ,  

p ( P - P , [ z i o t I T ] - T , R - R ) ,  
see(A,B),_)). 

In this entry 'ziet' selects - -  apart from its np- 
subject - -  two objects, a np and a VP (with cat- 
egory inf ) .  The i n f  still has an element in its 
subcat list; this element is controlled by the np 
(this is performed by the sharing of InfSubj) .  To 
derive the subordinate phrase 'dat jan piet marie 
ziet kussen' (that john sees pete kiss mary), the 
main verb 'ziet' first selects its rip-object 'piet' 
resulting in the string 'piet ziet'. Then it selects 
the infinitival 'marie kussen'. These two strings 
are combined into 'piet marie ziet kussen' (using 
the vr  version of the cb predicate). The subject 
is selected resulting in the string 'jan pier marie 
ziet kussen'. This string is selected by the com- 
plementizer, resulting in 'dat jan piet marie ziet 
kussen'. The argument structure will be instan- 
tiated as t h a t  (sees  ( j  elm, k i s s  (pe te ,  mary))) .  

In Dutch main clauses, there usually is no overt 
complementizer; instead the finite verb occupies 
the first position (in yes-no questions), or the 
second position (right after the topic; ordinary 
declarative sentences). In the following analysis 
an empty complementizer selects an ordinary (fi- 
nite) v; the resulting string is formed by the fol- 
lowing definition of ¢b: 

cb(v2, p(A-A,B-B,C-C), 
p(R1-R2,H,R2-R), 
p(A-A,H,RI-R)). 

which may be illustrated with: 
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p(  [ ] ,  A2, A1.A3) 

/ \  
p([l, [], []) p(A1,A2,A3) 

The finite complementizer is defined as: 

xatle(xCcomp, [xCv, FI ,_,A,v2)], 
p(B-B,C-C,D-D), 
that (A),_)). 

Note tha t  this analysis captures the special rela- 
tionship between complementizers and (fronted) 
finite verbs in Dutch. The sentence 'ziet jan piet 
marie kussen' is derived as follows (where the 
head of a string is represented in capitals): 

inversion: ZIET jan piet marie kussen 

/ \  
e left: jan piet marie ZIET kussen 

/ \  
raising: piet marie ZIET kussen JAN 

/ \  
left: piet ZIET left: marie KUSSEN 

/ \  / \  
ZIET PIET KUSSEN MARIE 

3 T h e  h e a d  c o r n e r  p a r s e r  

This section describes the head-driven parsing 
algorithm for the type of grammars  described 
above. The parser is a generalization of a left- 
corner parser. Such a parser, which may be called 
a 'head-corner '  parser, ~ proceeds in a bot tom-up 
way. Because the parser proceeds from head to 
head it is easy to use powerful top-down pre- 
dictions based on the usual head feature perco- 
lations, and subcategorization requirements that  
heads require from their arguments. 

In left-corner parsers (Matsumoto et aL, 1983) 
the first step of the algorithm is to select the left- 

2This name is due to Pete White.lock. 

most word of a phrase. The parser then proceeds 
by proving that  this word indeed can be the left- 
corner of the phrase. It  does so by selecting a rule 
whose leftmost daughter unifies with the category 
of the word. I t  then parses other daughters of the 
rule recursively and then continues by connecting 
the mother category of that  rule upwards, recur- 
sively. The left-corner algorithm can be general- 
ized to the class of grammars under consideration 
if we s tar t  with the seed of a phrase, instead of its 
leftmost word. Furthermore the connect  predi- 
cate then connects smaller categories upwards by 
unifying them with the head of a rule. The first 
step of the algorithm consists of the prediction 
step: which lexical entry is the seed of the phrase? 
The first thing to note is that  the words intro- 
duced by this lexical entry should be part  of the 
input string, because of the nonerasure require- 
ment (we use the string as a 'guide'  (Dymetman 
ef al., 1990) as in a left-corner parser, but we 
change the way in which lexical entries 'consume 
the guide'). Furthermore in most linguistic theo- 
ries it is assumed that  certain features are shared 
between the mother and the head. I assume that  
the predicate head /2  defines these feature perco- 
lations; for the grammar  of the foregoing section 
this predicate may be defined as: 

head(x(Syn . . . . .  Sent,_), 
x ( S T -  . . . . .  Sn,_)). 

As we will proceed from head to head these fea- 
tures will also be shared between the seed and 
the top-goal; hence we can use this definition to 
restrict lexical lookup by top-down prediction. 3 
The first step in the algorithm is defined as: 

parse(Cat,PO,P) "- 
predict_lex(Cat,SmallCat,PO,P1), 
connect(SmallCat,Cat,P1,P). 

p r e d i c t _ l e x ( C a t , S m a l l C a t , P 0 , P )  : -  
head(Cat ,Sma11Cat ) ,  
rule(SmallCat), 
string(SmallCat,Words), 
subset(Words,PO,P). 

Instead of taking the first word from the current 
input string, the parser may select a lexical en- 

3In the general case we need to compute the transitive 
closure of (restrictions of) pcesible mother-head relation- 
ships. The predicate 'head may also be used to compile 
rules into the format adopted here (i.e. using the defini- 
tion the compiler will identify the head of a rule). 
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try dominating a subset of the words occuring in 
the input string, provided this lexical entry can 
be the seed of the current goal. The predicate 
subset(L1,L2,L3) is true in case L1 is a subset 
of L2 with complement L3. 4 

The second step of the algorithm, the connect 
part, is identical to the connect part of the left- 
corner parser, but instead of selecting the left- 
most daughter of a rule the head-corner parser 
selects the head of a rule: 

connect(X,X,P,P). 
c o n n e c t ( S m a l l , B i g , P O , P )  : -  

rule(Small ,  Mid, Others), 
parse_rest(Others,PO,Pl), 
connect(Mid,Big,PI,P). 

parse_rest( [] ,P,P).  
parse_rest([HlT],PO,P) : -  

parse(H,PO,P1), 
parse_rest(T,P1,P).  

The predicate ' s t a r t _ p a r s e '  starts the parse pro- 
cess, and requires furthermore that the string as- 
sociated with the category that has been found 
spans the input string in the right order. 

s t a r t _ p a r s e  ( S t r i n g ,  Cat) : - 
top(Cat), 
parse (Cat, S t r i n g ,  [] ),  
string(Cat, String). 

The definition of the predicate ' s t r i n g '  depends 
on the way strings are encoded in the grammar. 
The predicate relates linguistic objects and the 
string they dominate (as a list of words). I assume 
that each grammar provides a definition of this 
predicate. In the current grammar s t r i n g / 2  is 
defined as follows: 

4In Prolog this  predicate  m a y  he  defined as follows: 

subset([],P,P). 
subset([HIT],P0,P):- 

selectchk(H, P0,Pl), 
subset(T, PI,P). 

select.chk (El, [El IP] ,P) :- 
!. 

select_chk (El, [HIP0], [HIP] ) :- 
select.chk (El, P0, P) . 

The  cut  in  select.chkls necessary  in case the  same  word 
occurs twice in the  i npu t  s t r ing;  wi thout  it  t h e  parser  
would no t  be 'min ima/ ' ;  th is  could be  changed  by index-  
ins  words w.r.t ,  their  posi t ion,  h u t  I will no t  a s s u m e  this  
compl ica t ion here,  

s t r i n g ( x (  . . . .  Phon . . . .  ) , S t r ) : -  
copy_term(Phon ,Phon2) ,  
s t r ( P h o n 2 , S t r ) .  

str (p(P-P1,P1-P2,P2- [ ] ) ,P) .  

This predicate is complicated using the predi- 
cate copy_term/2 to prevent any side-effects to 
happen in the category. The parser thus needs 
two grammar specific predicates: head/2  and 
s t r i n g / 2 .  

E x a m p l e .  To parse the sentence 'dat jan 
slaapt', the head corner parser will proceed as 
follows. The first call to 'parse' will look like: 

parse (x(colap, [] . . . . . .  ) ,  
[dat, j an, s laapt ] ,  [] ) 

The prediction step selects the lexical entry 'dat' .  
The next goal is to show that this lexical entry is 
the seed of the top goal; furthermore the string 
that still has to be covered is now [ j a n , s l a a p t ] .  
Leaving details out the connect clause looks as : 

connect ( 
x(comp, I x (v , . .  , r i g h t ) ] , . .  ),  
x(comp, 17, . .  ), [ jan, slaapt] ,  [] ) 

The category of da t  has to be matched with 
the head of a rule. Notice that  da t  subcatego- 
rises for a v with rule feature r i g h t .  Hence the 
r i g h t  version of the cb predicate applies, and the 
next goal is to parse the v for which this comple- 
mentizer subcategorizes, with input 'jan, slaapt'. 
Lexical lookup selects the word s l a a p t  from this 
string. The word s l a a p t  has to be shown to be 
the head of this v node, by the connect  predi- 
cate. This time the l e f t  combination rule applies 
and the next goal consists in parsing a np (for 
which s l a a p t  subcategorizes) with input string 
jan.  This goal succeeds with an empty output 
string. Hence the argument of the rule has been 
found successfully and hence we need to connect 
the mother of the rule up to the v node. This suc- 
ceeds trivially, and therefore we now have found 
the v for which dat  subcategorizes. Hence the 
next goal is to connect the complementizer with 
an empty subcat list up to the topgoal; again this 
succeeds trivially. Hence we obtain the instanti- 
ated version of the parse call: 
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parse(x(comp,  [] ,p (P-P ,  [dat  IT]-T, 
[ j a n , s l a a p t  [ q ] - q ) ,  
t h a t  ( s l e eps  ( j  ohn) ) , _ ) ,  
[dat, j an, slaapt], O ) 

and the predicate start_parse will succeed, 
yielding: 

Cat = x(comp, [] ,p (P-P ,  [dat  [T]-T,  
[ j an ,  s l a a p t  IQ]-q) ,  
that (sleeps (john) ) ,  _) 

4 Discussion and Extensions 

S o u n d  a n d  C o m p l e t e .  The algorithm as it is 
defined is sound (assuming the Prolog interpreter 
is sound), and complete in the usual Prolog sense. 
Clearly the parser may enter an infinite loop (in 
case non branching rules are defined that may 
feed themselves or in case a grammar makes a 
heavy use of empty categories). However, in case 
the parser does terminate one can be sure that it 
has found all solutions. Furthermore the parser is 
minimal in the sense that  it will return one solu- 
tion for each possible derivation (of course if sev- 
eral derivations yield identical results the parser 
will return this result as often as there are deriva- 
tions for it). 

Eff iciency.  The parser turns out to be quite ef- 
ficient in practice. There is one parameter that 
influences efficiency quite dramatically. If the no- 
tion 'syntactic head' implies that  much syntac- 
tic information is shared between the head of a 
phrase and its mother, then the prediction step 
in the algorithm will be much better at 'predict- 
ing' the head of the phrase. If on the other hand 
the notion 'head' does not imply such feature per- 
colations, then the parser must predict the head 
randomly from the input string as no top-down 
information is available. 

I m p r o v e m e n t s .  The efficiency of the parser 
can be improved by common Prolog and parsing 
techniques. Firstly, it is possible to compile the 
grammar rules, lexical entries and parser a bit fur- 
ther by (un)folding (eg. the string predicate can 
be applied to each lexical entry in a compilation 
stage). Secondly it is possible to integrate well- 
formed and non-well-formed subgoal tables in the 

parser, following the technique described by Mat- 
sumoto et al. (1983). The usefulness of this tech- 
nique strongly depends on the actual grammars 
that are being used. Finally, the current indexing 
of lexical entries is very bad indeed and can easily 
be improved drastically. 

In some grammars the string operations that 
are defined are not only monotonic with respect 
to the words they dominate, but also with respect 
to the order constraints that  are defined between 
these words ('order-monotonic'). For example 
in Reape's sequence union operation the linear 
precedence constraints that  are defined between 
elements of a daughter are by definition part of 
the linear precedence constraints of the mother. 
Note though that the analysis of verb second in 
the foregoing section uses a string operation that  
does not satisfy this restriction. For grammars 
that do satisfy this restriction it is possible to ex- 
tend the top-down prediction possibilities by the 
incorporation of an extra clause in the 'connect'  
predicate which will check that  the phrase that 
has been analysed up to that  point can become a 
substring of the top string. 
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