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A B S T R A C T *  

Efficient syntactic and semantic parsing for 
ambiguous context-free languages are generally 
characterized as complex, specialized, highly formal 
algorithms. In fact, they are readily constructed from 
straightforward recursive Iransition networks (RTNs). 
In this paper, we introduce LR-RTNs, and then 
computationally motivate a uniform progression from 
basic LR parsing, to Earley's (chart) parsing, 
concluding with Tomita's parser. These apparently 
disparate algorithms are unified into a single 
implementation, which was used to automatically 
generate all the figures in this paper. 

1. I N T R O D U C T I O N  

Ambiguous context-free grammars (CFGs) are 
currently used in the syntactic and semantic 
processing of natural language. For efficient parsing, 
two major computational methods are used. The first 
is Earley's algorithm (Earley, 1970), which merges 
parse trees to reduce the computational dependence 
on input sentence length from exponential to cubic 
cost. Numerous variations on Earley's dynamic 
programming method have developed into a family of 
chart parsing (Winograd, 1983) algorithms. The 
second is Tomita's algorithm (Tomita, 1986), which 
generalizes Knuth's (Knuth, 1965) and DeRemer's 
(DeRemer, 1971) computer language LR parsing 
techniques. Tomita's algorithm augments the LR 
parsing "set of items" construction with Earley's 
ideas. 

What is not currently appreciated is the continuity 
between these apparently distinct computational 
methods. 

• Tomita has proposed (Tomita, 1985) constructing 
his algorithm from Earley's parser, instead of 
DeRemer's LR parser. In fact, as we shall show, 
Earley's algorithm may be viewed as one form 
of LR parsing. 

• Incremental constructions of Tomita's algorithm 
(Heering, Klint, and Rekers, 1990) may 
similarly be viewed as just one point along a 
continuum of methods. 

* This work was supported in part by grant R29 
LM 04707 from the National Library of Medicine, 
and by the Pittsburgh NMR Institute. 

The apparent distinctions between these related 
methods follows from the distinct complex formal 
and mathematical apparati (Lang, 1974; Lang, 1991) 
currently employed to construct these CF parsing 
algorithms. 

To effect a uniform synthesis of these methods, in 
this paper we introduce LR Recursive Transition 
Networks (LR-RTNs) as a simpler framework on 
which to build CF parsing algorithms. While RTNs 
(Woods, 1970) have been widely used in Artificial 
Intelligence (AI) for natural language parsing, their 
representational advantages have not been fully 
exploited for efficiency. The LR-RTNs, however, are 
efficient, and shall be used to construct" 

(1) a nondeterministic parser, 
(2) a basic LR(0) parser, 
(3) Earley's algorithm (and the chart parsers), and 
(4) incremental and compiled versions of Tomita's 

algorithm. 

Our uniform construction has advantages over the 
current highly formal, non-RTN-based, nonuniform 
approaches to CF parsing: 

• Clarity of algorithm construction, permitting LR, 
Earley, and Tomita parsers to be understood as 
a family of related parsing algorithm. 

• Computational motivation and justification for 
each algorithm in this family. 

• Uniform extensibility of these syntactic methods 
to semantic parsing. 

• Shared graphical representations, useful in 
building interactive programming environments 
for computational linguists. 

• Parallelization of these parsing algorithms. 
• All of the known advantages of RTNs, together 

with efficiencies of LR parsing. 
All of these improvements will be discussed in the 
paper. 

2. L R  R E C U R S I V E  T R A N S I T I O N  
N E T W O R K S  

A transition network is a directed graph, used as a 
finite state machine (Hopcroft and Ullman, 1979). 
The network's nodes or edges are labelled; in this 
paper, we shall label the nodes. When an input 
sentence is read, state moves from node to node. A 
sentence is accepted if reading the entire sentence 
directs the network traversal so as to arrive at an 
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Figure 1. Expanding Rule#l: S---~NP VP. A. Expanding the nonterminal symbol S. B. Expanding the rule node for 
Rule #1. C. Expanding the symbol node VP. D. Expanding the symbol node NP. E, Expanding the start node S. 

accepting node. To increase computational power 
from regular languages to context-free languages, 
recursive transition networks (RTNs) are introduced. 

instantiation of the Rule's chain indicates the partial 
progress in sequencing the Rule's right-hand-side 
symbols. 

An RTN is a forest of disconnected transition 
networks, each identified by a nonterminal label. All 
other labels are terminal labels. When, in traversing 
a transition network, a nonterminal label is 
encountered, control recursively passes to the 
beginning of the correspondingly labelled transition 
network. Should this labelled network be 
successfully traversed, on exit, control returns back to 
the labelled calling node. 

The linear text of a context-free grammar can be 
cast into an RTN structure (Perlin, 1989). This is 
done by expanding each grammar rule into a linear 
chain. The top-down expansion amounts to a partial 
evaluation (Futamura, 1971) of the rule into a 
computational expectation: an eventual bottom-up 
data-directed instantiation that will complete the 
expansion. 

Figure 1, for example, shows the expansion of the 
grammar rule #1 S---~NP VP. First, the nonterminal 
S, which labels this connected component, is 
expanded as a nonterminal node. One method for 
realizing this nonterminal node, is via Rule#l; its rule 
node is therefore expanded. Rule#1 sets up the 
expectation for the VP symbol node, which in turn 
sets up the expectation for the NP symbol node. NP, 
the first symbol node in the chain, creates the start 
node S. In subsequent processing, posting an 
instance of this start symbol would indicate an 
expectation to instantiate the entire chain of Rule#l, 
thereby detecting a nonterminal symbol S. Partial 

The expansion in Figure 1 constructs an LR-RTN. 
That is, it sets up a Left-to-fight parse of a Rightmost 
derivation. Such derivations are developed in the 
next Section. As used in AI natural language parsing, 
RTNs have more typically been LL-RTNs, for 
effecting parses of leftmost derivations (Woods, 
1970), as shown in Figure 2A. (Other, more efficient, 
control structures have also been used (Kaplan, 
1973).) Our shift from LL to LR, shown in Figure 
2B, uses the chain expansion to set up a subsequent 
data-driven completion, thereby permitting greater 
parsing efficiency. 

In Figure 3, we show the RTN expansion of the 
simple grammar used in our first set of examples: 

S -+ NP VP 

NP--)N i DN 

VP --) V NP . 

Chains that share identical prefixes are merged 
(Perlin, 1989) into a directed acyclic graph (DAG) 
(Aho, Hopcroft, and Ullman, 1983). This makes our 
RTN a forest of DAGs, rather than trees. For 
example, the shared NP start node initiates the chains 
for Rules #2 and #3 in the NP component. 

In augmented recursive transition networks 
(ATNs) (Woods, 1970), semantic constraints may be 
expressed. These constraints can employ case 
grammars, functional grammars, unification, and so 
on (Winograd, 1983). In our RTN formulation, 
semantic testing occurs when instantiating rule nodes: 
failing a constraint removes a parse from further 

( ) 
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(B) 
Figure 2. A. An LL-RTN for S~NP VP. This expansion does not set up an expectation for a data-driven leftward 

parse. B. The corresponding LR-RTN. The rightmost expansion sets up subsequent data-driven leftward parses. 

99 



processing. This approach applies to every parsing 
algorithm in this paper, and will not be discussed 
further. 

Figure 3. The RTN of an entire grammar. The three 
connected components correspond to the three 

nonterminals in the grammar. Each symbol node in 
the RTN denotes a subsequence originating from its 

lefimost start symbol. 

3. N O N D E T E R M I N I S T I C  D E R I V A T I O N S  

A grammar's RTN can be used as a template for 
parsing. A sentence (the data) directs the 
instantiation of individual rule chains into a parse 
tree. The RTN instances exactly correspond to parse. 
tree nodes. This is most easily seen with 
nondeterministic rightmost derivations. 

Given an input sentence of n words, we may 
derive a sentence in the language with the 
nondeterministic algorithm (Perlin, 1990): 

Put an instance of nonterminal 
node S into the last column. 

From right to left, for every 
column : 
From top to bottom, within the 
column : 
(i) Recursively expand the 

column top-down by 
nondeterministic selection of 
rule instances. 

(2) Install the next (leftward) 
symbol instance. 

In substep (1), following selection, a rule node and its 
immediately downward symbol node are instantiated. 
The instantiation process creates a new object that 
inherits from the template RTN node, adding 
information about column position and local link 
connections. 

For example, to derive "I Saw A Man" we would 
nondeterministically select and instantiate the correct 
rule choices #1, #4, #2, and #3, as in Figure 4. 
Following the algorithm, the derivation is (two 
dimensionally) top-down: top-to-bottom and right-to- 
left. To actually use this nondeterministic derivation 
algorithm to obtain all parses, one might enumerate 
and test all possible sequences of rules. This, 

however, has exponential cost in n, the input size. A 
more efficient approach is to reverse the top-down 
derivation, and recursively generate the parse(s) 
bottom-up from the input data. 

( )  

[ 

cJ 

Figure 4. The completed top-down derivation (parse- 
tree) of "I Saw A Man". Each parse-tree symbol 
node denotes a subsequence of a recognized RTN 

chain. Rule #0 connects a word to its terminal 
symbol(s). 

4. B A S I C  L R ( 0 )  P A R S I N G  

To construct a parser, we reverse the above top- 
down nondeterministic derivation teChnique into a 
bottom-up deterministic algorithm. We first build an 
inefficient LR-parser, illustrating the reversal. For 
efficiency, we then introduce the Follow-Set, and 
modify our parser accordingly. 

4.1 AN INEFFICIENT BLR(0) PARSER 

A simple, inefficient parsing algorithm for 
computing all possible parse-trees is: 

Put an instance of start node S 
into the 0 column. 

From left to right, for every 
column : 
From bottom to top, within the 
column : 
(i) Initialize the column with 

the input word. 
(2) Recursively complete the 

column bottom-up using the 
INSERT method. 

This reverses the derivation algorithm into bottom-up 
generation: bottom-to-top, and left-to-right. In the 
inner loop, the Step (1) initialization is 
straightforward; we elaborate Step (2). 
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Step (2) uses the following method (Perlin, 1991) 
to insert instances of RTN nodes: 

INSERT ( instance ) 
( 

ASK instance 
(I) Link up with predecessor 

instances. 
(2) Install self. 
(3) ENQUEUE successor instances 

for insertion. } 
In (1), links are constructed between the instance and 
its predecessor instances. In (2), the instance 
becomes available for cartesian product formation. 
In (3), the computationally nontrivial step, the 
instance enqueues any successor instances within its 
own column. Most of the INSERT action is done by 
instances of symbol and rule RTN nodes. 

Using our INSERT method, a new symbol  
instance in the parse-tree links with predecessor 
instances, and installs itself. If the symbol's RTN 
node leads upwards to a rule node, one new rule 
instance successor is enqueued; otherwise, not. 

Rule instances enqueue their successors in a more 
complicated way, and may require cartesian product 
formation. A rule instance must instantiate and 
enqueue all RTN symbol nodes from which they 
could possibly be derived. At most, this is the set 

SAME-LABEL(rule) = 
{ N • RTN I N is a symbol node, and 

the label of N is identical to the label of the 
rule's nonterminal successor node }. 

For every symbol node in SAME-LABEL(rule), 
instances may be enqueued. If X • SAME- 
LABEL(rule) immediately follows a start node, i.e., it 
begins a chain, then a single instance of it is 
enqueued. 

If Y e SAME-LABEL(rule) does not immediately 
follow a start node, then more effort is required. Let 
X be the unique RTN node to the left of Y. Every 
instantiated node in the parse tree is the root of some 
subtree that spans an interval of the input sentence. 
Let the left border j be the position just to left of this 
interval, and k be the rightmost position, i.e., the 
current column. 

Then, as shown in Figure 5, for every instance x 
of X currently in position j, an instance y (of Y) is a 
valid extension of subsequence x that has support 
from the input sentence data. The cartesian product 

{ x I x an instance of X in column j } 
x { rule instance} 

forms the set of all valid predecessor pairs for new 
instances of Y. Each such new instance y of Y is 
enqueued, with some x and the rule instance as its 
two predecessors. Each y is a parse-tree node 
representing further progress in parsing a 
subsequence. 

RTN chain - X - Y - 

x" y ' ~  
x'. y' 
x, y 

posi t ion ~ a  
i i' i" j k 

Figure 5. The symbol node Y has a left neighbor 
symbol node X in the RTN. The instance y of Y is 

the root ofa  parse-subtree that spans (j+l ak). 
Therefore, the rule instance r enqueues (at leasO all 
instances of y, indexed by the predecessor product: 

{ x in column j } × {r }. 

4.2 .  U S I N G  T H E  F O L L O W - S E T  

Although a rule parse-node is restricted to 
enqueue successor instances of RTN nodes in SAME- 
LABEL(rule), it can be constrained further. 
Specifically, if the sentence data gives no evidence 
for a parse-subtree, the associated symbol node 
instance need never be generated. This restriction 
can be determined column-by-column as the parsing 
progresses. 

We therefore extend our bottom-up parsing 
algorithm to: 

Put an instance of start node S 
into the 0 column. 

From left to right, for every 
column: 
From bottom to top, within the 
column : 
(I) Initialize the column with 

the input word. 
(2) Recursively complete the 

column bottom-up using the 
INSERT method. 

(3) Compute the column's 
(rightward) Follow-Set. 

With the addition of Step (3), this defines our Basic 
LR(O), or BLR(O), parser. We now describe the 
Follow-Set. 

Once an RTN node X has been instantiated in 
some column, it sets up an expectation for 

• The RTN node(s) Yg that immediately follow it; 
• For each immediate follower Yg, all those RTN 

symbol nodes Wg,h that initiate chains that 
could recursively lead up to Yg. 

This is the Follow-Set (Aho, Sethi, and Ullman, 
1986). The Follow-Set(X) is computed directly from 
the RTN by the recursion: 
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Follow-Set(X) 
LET Result c- 

For every unvisited RTN node Y 
following X: 

Result e- ( Y } to 
IF Y's label is a terminal 
symbol, 
THEN O; 
ELSE Follow-Set of the 

start symbol of Y's label 
Return Result 

As is clear from the re, cursive definition, 
Follow-Set (tog {Xg}) = tog Follow-Set (Xg). 

Therefore, the Follow-Set of a column's symbol 
nodes can be deferred to Step (3) of the BLR(0) 
parsing algorithm, after the determination of all the 
nodes has completed. By only recursing on unvisited 
nodes, this traversal of the grammar RTN has time 
cost O(IGI) (Aho, Sethi, and UUman, 1986), where IGI 
>_ IRTNI is the size of the grammar (or its RTN 
graph). A Follow-Set computation is illustrated in 
Figure 6. 

Figure 6. The Follow-Set (highlighted in the 
display) of RTN node V consists of the immediately 
following nonterminal node NP, and the two nodes 
immediately following the start NP node, D and N. 
Since D and N are terminal symbols, the traversal 

halts. 

The set of symbol RTN nodes that a rule instance 
r spanning (j+l,k) can enqueue is therefore not 

SAME-LABEL(rule), 
but the possibly smaller set of RTN nodes 

SAME-LABEL(rule) n Follow-Set(j). 
To enqueue r's successors in INSERT, 

LET Nodes = SAME-LABEL(rule) rh 
Follow-Set (j) . 

For every RTN node Y in Nodes, 
create and enqueue all instances 
y inY: 
Let X be the leftward RTN symbol 
node neighbor of Y. 

Let PROD = 
{x I x an instance of X in 
column j) x (r), if X exists; 

{r}, otherwise. 

Enqueue all members of PROD as 
instances of y. 

The cartesian product PROD is nonempty, since an 
instantiated rule anticipates those elements of PROD 
mandated by Follow-Sets of preceding columns. The 
pruning of Nodes by the Follow-Set eliminates all 
bottom-up parsing that cannot lead to a parse-subtree 
at column k. 

In the example in Figure 7, Rule instance r is in 
position 4, with j=3 and k=4. We have: 

SAME-LABEL(r) = {N 2, N 3 }, 
i.e, the two symbol nodes labelled N in the 

sequences of Rules #2 and #3, shown in the 
LR-RTN of Figure 6. 

Follow-Set(3) = Follow-Set(I D 2 }) 
= {N21. 

Therefore, SAME-LABEL(r)c~Follow-Set(3) = {N2}. 

¢ 

® [ 
Figure 7. Th~ 

) 

) r 

] s 
rule instance r can only instantiate the 

single successor instance N 2. r uses the RTN to find 
the left RTN neighbor D of N 2. r then computes the 

cartesian product of instance d with r as {d}x{r}, 
generating the successor instance of N 2 shown. 

5. E A R L E Y ' S  P A R S I N G  A L G O R I T H M  

Natural languages such as English are ambiguous. 
A single sentence may have multiple syntactic 
structures. For example, extending our simple 
grammar with rules accounting for Prepositions and 
Prepositional-Phrases (Tomita, 1986) 

S -9 S PP 
NP -9 NP PP 
PP -9 P NP, 

the sentence "I saw a man on the hill with a telescope 
through the window" has 14 valid derivations, In 
parsing, separate reconstructions of these different 
parses can lead to exponential cost. 

For parsing efficiency, partially constructed 
instance-trees can be merged (Earley, 1970). As 
before, parse-node x denotes a point along a parse- 
sequence, say, v-w-x. The left-border i of this parse- 
sequence is the left-border of the leftmost parse-node 
in the sequence. All parse-sequences of RTN symbol 
node X that cover columns i+l through k may be 
collected into a single equivalence class X(i,k). For 
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the purposes of (1) continuing with the parse and (2) 
disambiguating parse-trees, members of X(i,k) are 
indistinguishable. Over an input sentence of length n, 
there are therefore no more than O(n 2) equivalence 
classes of X. 

Suppose X precedes Y in the RTN. When an 
instance y of Y is added m position k, k.<_n, and the 
cartesian product is formed, there are only O(k 2) 
possible equivalence classes of X for y to combine 
with. Summing over all n positions, there are no 
more than O(n 3) possible product formations with Y 
in parsing an entire sentence. 

Merging is effected by adding a MERGE step to 
INSERT: 

INSERT ( instance ) 
( 

instance ~- MERGE (instance) 
ASK instance 

(1) Link up with predecessor 
instances. 

(2) Install self. 
(3) ENQUEUE successor instances 

for insertion. } 
The parsing merge predicate considers two 
instantiated sequences equivalent when: 

(1) Their RTN symbol nodes X are the same. 
(2) They are in the same column k. 
(3) They have identical left borders i. 

The total number of links formed by INSERT during 
an entire parse, accounting for every grammar RTN 
node, is O(n3)xO(IGI). The chart parsers are a family 

of algorithms that couple efficient parse-tree merging 
with various control organizations (Winograd, 1983). 

6. T O M I T A ' S  P A R S I N G  A L G O R I T H M  

In our BLR(0) parsing algorithm, even with 
merging, the Follow-Set is computed at every 
column. While this computation is just O(IGI), it can 
become a bottleneck with the very large grammars 
used in machine translation. By caching the requisite 
Follow-Set computations into a graph, subsequent 
Follow-Set computation is reduced. This incremental 
construction is similar to (Heering, Klint, and Rekers, 
1990)'s, asymptotically constructing Tomita's all- 
paths LR parsing algorithm (Tomita, 1986). 

The Follow-Set cache (or LR-table)  can be 
dynamically constructed by Call-Graph Caching 
(Perlin, 1989) during the parsing. Every time a 
Follow-Set computation is required, it is looked up in 
the cache. When not present, the Follow-Set is 
computed and cached as a graph. 

Following DeRemer (DeRemer, 1971), each 
cached Follow-Set node is finely partitioned, as 
needed, into disjoint subsets indexed by the RTN 
label name, as shown in the graphs of Figure 8. The 
partitioning reduces the cache size: instead of 
allowing all possible subsets of the RTN, the cache 
graph nodes contain smaller subsets of identically 
labelled symbol nodes. 

When a Follow-Set node has the same subset of 

(A) 

• 5 
I~-N ~V~3- '~D~4~N 

(!)) 

II [ i i - - - - I  P--2 P P- -5  

( P ( ~  ! L ( ~ )  ( 1 V--3 - -4 - -N 
® [ ] I (o  

Figure 8. (A) A parse of "I Saw A Man" using the grammar in Oromita, 1986). (B) The Follow-Set cache 
dynamically constructed during parsing. Each cache node represents a subset of RTN symbol nodes. The numbers 

indicate order of appearance; the lettered nodes partition their preceding node by symbol name. Since the cache was 
created on an as-needed basis, its shape parallels the shape of the parse-tree. (C) Compressing the shape of (B). 
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P P P 

P ~ ~ P'-23 

~-- ~ 1  F~--5 

1 1P-'I 3~-'D--'I 5 - N  1P'--I 9~.D--21--N 
(A) 

1 ~-~N ~V ~ 3 / - - ~ ,  4 ~ N  

(B) 
Figure 9. The LR table cache graph when parsing "I Saw A Man On The Hill With A Telescope Through The 

Window" (A) without cache node merging, and (B) with merging. 

grammar symbol nodes as an already existing 
Follow-Set node, it is merged into the older node's 
equivalence class. This avoids redundant expansions, 
without which the cache would be an infinite tree of 
parse paths, rather than a graph. A comparison is 
shown in Figure 9. If the entire LR-table cache is 
needed, an ambiguous sentence containing all 
possible lexical categories at each position can be 
presented; convergence follows from the finiteness of 
the subset construction. 

7. IMPLEMENTATION AND 
CURRENT WORK 

We have developed an interactive graphical 
programming environment for constructing LR- 
parsers. It uses the color MAC/II computer in the 
Object LISP extension of Common LISP. The 
system is built on CACHE TM (Perlin, © 1990), a 
general Call-Graph Caching system for animating AI 
algorithms. 

The RTNs are built from grammars. A variety of 
LR-RTN-based parsers, including BLR(0), with or 
without merging, and with or without Follow-Set 
caching have been constructed. Every algorithm 
described in this paper is implemented. Visualization 
is heavily exploited. For example, selecting an LR- 
table cache node will select all its members in the 
RTN display. The graphical animation component 
automatically drew all the RTNs and parse-trees in 
the Figures, and has generated color slides useful in 
teaching. 

Fine-grained parallel implementations of BLR(0) 
on the Connection Machine are underway to reduce 
the costly cartesian product step to constant time. We 
are also adding semantic constraints. 

8. CONCLUSION 

We have introduced BLR(0), a simple bottom-up 
LR RTN-based CF parsing algorithm. We explicitly 
expand grammars to RTNs, and only then construct 
our parsing algorithm. This intermediate step 
eliminates the complex algebra usually associated 
with parsing, and renders more transparent the close 
relations between different parsers. 

Earley's algorithm is seen to be fundamentally an 
LR parser. Earley's propose expansion step is a 
recursion analogous to our Follow-Set traversal of the 
RTN. By explicating the LR-RTN graph in the 
computation, no other complex data structures are 
required. The efficient merging is accomplished by 
using an option available to BLR(0): merging parse 
nodes into equivalence classes. 

Tomita's algorithm uses the cached LR Follow-Set 
option, in addition to merging. Again, by using the 
RTN as a concrete data structure, the technical feats 
associated with Tomita's parser disappear. His shared 
packed forest follows immediately from our merge 
option. His graph stack and his parse forest are, for 
us, the same entity: the shared parse tree. Even the 
LR table is seen to derive from this parsing activity, 
particularly with incremental construction from the 
RTN. 
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Bringing the RTN into parsing as an explicit 
realization of the original grammar appears to be a 
conceptual and implementational improvement over 
less uniform treatments. 
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