
E X P R E S S I N G D I S J U N C T I V E A N D N E G A T I V E F E A T U R E C O N S T R A I N T S W I T H

C L A S S I C A L F I R S T - O R D E R L O G I C .

Mark Johnson,
Cognitive and Linguistic Sciences, Box 1978,

Brown University, Providence, RI 02912.
mj@cs.brown.edu

ABSTRACT

In contrast to the "designer logic" approach, this
paper shows how the attribute-value feature
s t ruc tures of uni f ica t ion g r a m m a r and
constraints on them can be axiomatized in
classical first-order logic, which can express
disjunctive and negative constraints. Because
only quantifier-free formulae are used in the
axiomatization, the satisfiability problem is NP-
complete.

INTRODUCTION.

Many modern linguistic theories, such as
Lexical-Functional Grammar [1], Functional
Unification Grammar [12] Generalized Phrase-
Structure Grammar [6], Categorial Unification
G r a m m a r [20] and Head-d r iven Phrase-
Structure Grammar [18], replace the atomic
categories of a context-free grammar with a
"feature structure" that represents the.syntactic
and semantic properties of the phrase. These
feature structures are specified in terms of
constraints that they must satisfy. Lexical
entries constrain the feature structures that can
be associated with terminal nodes of the
syntactic tree, and phrase s t ructure rules
simultaneously constrain the feature structures
that can be associated with a parents and its
immediate descendants. The tree is well-formed
if and only if all of these constraints are
s imul taneous ly satisfiable. Thus for the
purposes of recogni t ion a me thod for
determining the satisfiability of such constraints
is required: the nature of the satisfying feature
structures is of secondary importance.

Most work on un i f ica t ion-based
grammar (including the references cited above)
has adopted a type of feature structure called an
attribute-value structure. The elements in an
attribute-value structure come in two kinds:
constant elements and complex elements. Constant
elements are atomic entities with no internal
structure: i.e. they have no attributes. Complex
elements have zero or more attributes, whose

173

values may be any other element in the structure
(including a complex element) and ally element
can be the value of zero, one or several
attributes. Attributes are partial: it need not be
the case that every attribute is d ef!ned for every
complex element. The set of attribute-value
structures partially ordered by the subsumption
relation (together with all additional entity T
that every attribute-value structure subsumes)
forms a lattice, and the join operation on this
lattice is called the unification operati(m 119].

Example: (from [16]). The attribute-value
structure (1) has six complex elements labelled
el ... e6 and two corastant elements, singular and
third. The complex element el has two
attributes, subj and pred, the value of which are
the complex elements e 2 and e 3 respectively.

(1)

e2
e2¢ r

number

singular

el

s u b j ~ p r e d

" ~ e 3
verb

agr

 'e6
person

third
e 7

(2) ~ p r e d)ubi ""5 e,)
verb

e8) e l ()
agr..

ell

The unification of elements el of(l) and e7 of(2)
results in the attribute-value structure (3), the

minimal structure in the subsumption lattice
which subsumes both (1)and (2).

¢1 ¢7

(3) ~ p r e d ~ ubj " ~ e 3 e9

e2 e8 verb

. . .~e 5 el0
a g r ~ a g r

number person

singular third

If constraints on attribute-value structures are
restricted to conjunctions of equality constraints
(i.e. requirements that the value of a path of
attributes is equal to a constant or the value of
another path) then the set of satisfying attribute-
value structures is the principal filter generated
by the minimal structure that satisfies the
constraints. The generator of the satisfying
principal filter of the conjunction of such
constraints is the unification of the generators of
the satisfying principal filters of each of the
conjuncts. Thus the set of attr ibute-value
structures that simultaneously satisfy a set of
such constraints can be character ized by
computing the unification of the generators of
the corresponding principal filters, and the
constraints are satisfiable iff the resulting
generator is not "T (i.e. -T- represents unification

failure). Standard t, nification-based parsers use
unification in exactly this way.

When disjunctions and negations of
constraints are permitted, the set of satisfying
attribute-value structures does not always form
a principal filter [11], so the simple unification-
based t echn ique for d e t e r m i n i n g the
satisfiability of feature structure constraints
must be extended. Kasper and Rounds [11]
provide a formal framework for investigating
such constraints by reviving a distinction
originally made (as far as I am aware) by Kaplan
and Bresnan [10] between the language in which
feature structure constraints are expressed and
the structures that satisfy these constraints.
Unification is supplanted by conjunction of
constraints, and disjunction and negation appear
only in the constraint language, not in the
feature structures themselves (an exception is [3]
and [2], where feature bundles may contain
negative arcs).

Research in this genre usually follows a
general pattern: an abstract model for feature
structures and a specialized language for
expressing constraints on such structures are
"custom-crafted" to treat some problematic
feature constraint (such as negative feature
constraints). Table 1 sketches some of the
variety of feature s t ructure models and
constraint types that previous analyses have
used.

This paper follows Kasper and Rounds
and most proposals listed in Table 1 by
distinguishing the constraint language from
feature structures, and restricts disjunction and
negation to the constraint language alone. It

Table 1: Constraint Languages and Feature Structure Models.

Author

Kaplan and Bresnan [10]

Model of Feature Structures

Partial functions

Constraint Lanl~ua~e Features

Disjunction, negation, set-
values

Pereira and Shieber [1 7] Information Domain
F = [A - - -) F] + C

Kasper and Rounds [11] Acyclic finite automata Disjunction

Moshier and Rounds [1 4] Forcing sets of acyclic finite lntuitionistic negation
automata

Dawar and Vijayashankar [3] Acyclic finite automata Three truth values, negation

Gazdar, Pullum, Carpenter, Category structures Based on propositional modal
Klein, Hukari and Levine [7] logic

Johnson [9] "Attribute-value structures" Classical negation,
disjunction...

174

(A1) For all Constants c and attributes a, a(c) = 3-.

(A2) For all distinct pairs of constants Cl, c2, Cl ~ c2.

(A3) For all attributes a, a(3-) = ±.

(A4) For all constants c, c ~ ±.

(A5) For all t e r m s u, v, U = V ~-~ (U = V A U # ±)

Figure 1: The axiom schemata that define attribute-value structures.

differs by not p ropos ing a cus tom-bui l t
"des igne r logic" for descr ib ing feature
structures, but instead uses standard first-order
logic to axiomatize attribute-value structures
and express constraints on them, including
disjunctive and negative constraints. The
resulting system is a simplified version of
Attribute-Value Logic [9] which does not allow
values to be used as attributes (although it
would be easy to do this). The soundness and
completeness proofs in [9] and other papers
listed in Table 1 are not required here because
these results are well-known properties of first-
order logic.

Since both the axiomatizion and the
constraints are actually expressed in a decidable
class of first-order formulae, viz. quantifier-free
formulae with equality, 1 the decidability of
feature structure constraints follows trivially. In
fact, because the satisfiability problem for
quantifier-free formulae is NP-complete [15] and
the relevant portion of the axiomatization and
translation of constraints can be constructed in
polynomial time, the satisfiability problem for
feature constraints (including negation) is also
NP-complete.

AXIOMATIZING ATTRIBUTE-VALUE
STRUCTURES

This sect ion shows how a t t r ibu te -va lue
structures can be axiomatized using first-order
quantifier-free formulae with equality. In the
next section we see that equality and inequality
constraints on the values of the attributes can
also be expressed as such formulae, so systems
of these constraints can be solved using standard
techniques such as the Congruence Closure
algorithm [15], [5].

The elements of the at tr ibute-value
structure, both constant and complex, together
with an additional element ± constitute the
domain of ind iv idua ls of the in tended
interpretation. The attributes are unary partial
functions over this domain (i.e. mappings from
elements to elements) which are a lways
undefined on constant elements. We capture
this partiality by the standard technique of
adding an additional element 3_ to the domain to
serve as the value 'undefined'. Thus a(x) = 3_ if x
does not have an attribute a, otherwise a(x) is the
value of x's attribute a.

We proceed by specifying the conditions
an interpretation must satisfy to be an attribute-
value structure. Modelling attributes with
functions automatically requires attributes to be
single-valued, as required.

Axiom schema (A 1) d e s c r i b e s the
propert ies of constants. It expresses the
requirement that constants have no attributes.

Axiom schema (A2) requires that
distinct constant symbols denote distinct elements
in any satisfying model. Without (A2) it would
be possible for two distinct constant elements,
say s i n g u l a r and p l u r a l , to denote the same
individual. 2

Axiom schema (A3) and (A4) state the
properties of the "undefined value" 3-. It has no
attributes, and i t is distinct from all of the
constants (and from all other elements as well -
this will be enforced by the translation of
equality constraints).

This completes the axiomatization. This
axiomatization is finite iff the sets of attribute
symbols and constant symbols are finite: in the
in t ended c o m p u t a t i o n a l and l inguis t ic
applications this is always the case. The claim is
that any interpretation which satisfies all of these

The close relationship between quantifier-
free formulae and attribute-value constraints
was first noted in Kaplan and Bresnan [10].

175

Such a schema is required because we are
concerned with satisfiability rather than
validity (as in e.g. logic programming).

axioms is an at t r ibute-value structure; i.e. (A1) -
(A4) const i tu te a definition of a t t r ibu te -va lue
structures.

Example (cont inued): The interpretation
corresponding to the attribute-value structure
(1) has as its domain the set D = { el e6,
singular, third, 3-}. The attributes denote
functions from D to D. For example, agr denotes
the function whose value is 3_ except on e2 and
es, where its values are e4 and e6 respectively. It
is straight-forward to check that all the axioms
hold in the three attribute-value structures given
above.

In fact, a ny mode l for these axioms can be
r e g a r d e d as a (p o s s i b l y i n f i n i t e a n d
disconnected) a t t r ibute-value feature structure,
where the model ' s individuals are the elements
or nodes , the u n a r y func t ions de f ine h o w
attributes take their values, the constant symbols
denote constant elements, and _L is a sink state.

EXPRESSING C O N S T R A I N T S AS
Q UANTI F IER -F REE FORMULAE.

Various notat ions are current ly used to express
a t t r i b u t e - v a l u e cons t r a in t s : the c o n s t r a i n t
requi r ing that the va lue of a t t r ibute a of (the
enti ty deno ted by) x is (the ent i ty denoted by) y
is writ ten as (x a> = y in PATR-II [19], as (x a) = y
in LFG [10], and as x(a) = y in [9], for example.
At the risk of fur ther confus ion we use another
notation here, and write the constraint requiring
that the value of at tr ibute a of x is y as a(x) = y.
This notat ion emphasises the fact that attributes
are mode l l ed by functions, and simplifies the
definit ion of ' - ' .

Clear ly for an a t t r ibute-value s t ructure
to satisfy the constraint u = v then u and v must
deno te the same element , i.e. u = v. H o w e v e r
this is not a sufficient condition: num(x) = num(y)
is not satisfied if num(x) or num(y) is I . Thus it
is necessary that the a rguments of '=' deno te
identical e lements distinct f rom the denota t ion
of_L.

Even though there are infinitely m a n y
instances of the schema in (A5) (since there are
infinitely m a n y terms) this is not problematic ,
since u = v can be regarded as an abbreviation for
U = V A U ~ : / .

Thus equal i ty constraints on at tr ibute-
v a l u e s t r u c t u r e s can be e x p r e s s e d w i th
quantif ier-free formulae wi th equality. We use
classically in te rp re ted boolean connect ives to

express conjunct ive, d is junct ive and negat ive
feature constraints.

Example (continued): Suppose each variable
xi denotes the corresponding e i, 1 <_i <_11, of (l)
and (2). Then subj(xl) ~ x2,
number(x4) = singular and number(agr(x2))
= number(x 4) are true, for example. Since e 4 and
e5 are distinct elements, x8 = Xll is false and
hence x8 ~Xl l is true. Thus " ~" means "not
identical to" or "not unified with", rather than
"not unifiable with".

Further, since agr(xl) = J-,
agr(x l) = agr(x l) is false, even though
agr(xl) = agr(xl) is true. Thus t = t is not a
theorem because of the possibility that t = J_.

S A T I S F A C T I O N AND U N I F I C A T I O N

Given an y two fo rmulae ~ and q0, the set of
models that satisfy both ~) and q0 is exactly the set
of m o d e l s tha t sat isfy ~ ^ q). That is, the
conjunct ion opera t ion can be used to describe
the intersection of two sets of models each of
which is described by a constraint formula, even
if these satisfying models do not form principal
filters [11] [9]. Since conjunction is idempotent ,
associative and commutat ive , the satisfiability of
a c o n j u n c t i o n of c o n s t r a i n t f o r m u l a e is
independen t of the order in which the conjuncts
are p re sen ted , i r respec t ive of w h e t h e r they
conta in negat ion. Thus the eva lua t ion (i.e.
s i m p l i f i c a t i o n) of c o n s t r a i n t s c o n t a i n i n g
negat ion can be freely in ter leaved with o ther
constraints.

Unification identifies or merges exactly
the elements that the axiomatizat ion implies are
equal. The unification of two complex elements
e and e' causes the unif icat ion of e lements a(e)
and a(e') for all at tr ibutes a that are def ined on
bo th e and e'. The const ra int x = x' impl ies
a(x) : a(x') in exactly the same circumstances; i.e.
w h en a(x) and a(x') are both dist inct f rom 3-.
Unif ica t ion fails e i ther w h e n two d i f f e ren t
constant e lements are to be unified, or when a
complex e lement and a cons tant e l ement are
unified (i.e. constant-constant clashes and constant-
complex clashes). The cons t ra in t x : x ' is
u n s a t i s f i a b l e u n d e r e x a c t l y the s a m e
circumstances, x -~ x' is unsatisfiable when x and
x' are also required to satisfy x = c and x' = c' for
dis t inct constants c, c', since c ~ c' by axiom
schema (A2). x = x" is also unsatisfiable when x
and x' are required to satisfy a(x) : t and x' ~ c'

176

for any attribute a, term t and constant c', since
a(c') = _t_ by axiom schema (A3).

Since uni f ica t ion is a technique for
determining the satisfiability of conjunctions of
a tomic equa l i ty constra ints , the result of a
unification operation is exactly the set of atomic
consequences of the corresponding constraints.
Since un i f i ca t ion fails precise ly w h e n the
co r respond ing constra ints are unsat isf iable ,
failure of unif icat ion occurs exactly when the
cor responding constra ints are equiva len t to
False.

Example (continued): The sets of satisfying
models for the formulae (1") and (2') are precisely
the principal filters generated by (1) and (2)
above.

(1') subj(xl) = x2 ^ agr(x2) = x4 ^
number(x4) = singular A pred(xl) = x3 A
verb(x3) = x5 A agr(x 5) ~- X6 ^
person(x6) = third

(2') subj(x7) = x8 ^ agr(x8) = Xll ^ pred(x7) = x9 a
verb(x9) = Xl0 A agr(xlO) = Xll

Because the principal filter generated by the
unification of el and e7 is the intersection of the
principal filters generated by (1) and (2), it is
also the set of satisfying models for the
conjunction of (1') and (2') with the formula
Xl = x7 (3').

(3') subj(xl) = x 2 ^ agr(x 2) = x4 ^
nmber(x4) = singular ^ pred(xl) ~- x3 ^
verb(x3) = x5 ^ agr(x5) = x6 ^
person(x6) -~ third a subj(x7) = x8 ^
agr(x8) = Xll A pred(x7) ~- x9 A
verb(x 9) = Xl0 A agr(xlO) = Xll A X 1 ~ X 7 .

The satisfiability of a formula like (3') can be
shown using standard techniques such as the
Congruence Closure Algorithm [15], [5]. In
fact, using the substitutivity and transitivity of
equality, (3') can be simplified to (3"). It is easy
to check that (3) is a satisfying model for both
(3") and the axioms for attribute-value
structures.

The t rea tment of negat ive and dis junct ive
constraints is straightforward. Since negatiou is
in terpre ted classically, the set of sa t isfying
models do not ahvays form a filter (i.e. they are
not always upward closed [16]). Nevertheless,
the quantifier-free language itself is capable of
charac te r i z ing exact ly the set of fea ture
structures that satisfy any boolean combination
of constraints, so the failure of upward closure is
not a fatal flaw of this approach.

At a methodological level, I claim that
after the mathemat ica l consequences of two
dif ferent in terpre ta t ions of feature s t ructure
constraints have been investigated, such as the
classical and intui t ionist ic in terpre ta t ions of
negation in feature structure constraints [14], it
is primarily a linguistic question as to which is
bet ter sui ted to the descr ip t ion of natural
language. I have been unable to find any
linguistic analyses which can yield a set of
constraints whose satisfiablity varies under the
classical and intuitionistic interpretations, so the
choice be tween classical and in tu i t ionis t ic
negation may be moot.

For reasons of space the fol lowing
example (based on Pereira 's example 116]
demons t ra t ing a purpor ted problem arising
from the failure of upward closure with classical
negation) exhibits only negative constraints.

Example: The conjunction of the formulae

number(agr(x)) = singular

and

agr(x) = y A ~ (pers(y) = 3rd A
number(y) = singular)

can be simplified by substitution and transitivity
of equality and boolean equivalences to

(4') agr(x) = y A number(y) ~- singular A
pers(y) ~ 3rd.

This formula is satisfied by the structure (4)
when x denotes e and y denotes f. Note the
failure of upward closure, e.g. (5) does not satisfy
(4'), even though (4) subsumes (5).

(3") subj(xl) = x2 A agr(x2) = x4 A
number(x4) = singular A person(x4) = third A
pred(xl) = x3 A verb(x 3) = x5 A agr(xs) = X4 A

Xl = X7 ^ X2 = X5 ̂ X3 = X9 AX5 = Xl0 ^
X4 ~- X6 A X4 = X11.

177

(4) el (5) el

number number pers

singular singular 3rd

However, if (4') is conjoined with
pers(agr(x)) ~- 3rd the resulting formula (6)/s
unsatisfiable since it is equivalent to (6'), and
3rd ~ 3rd is unsatisfiable.

(6) agr(x) ~, y ^ number(y) = singular ^
pers(y) ~ 3rd ^ pers(agr(x)) = 3rd.

(6') agr(x) = y a number(y) ~ singular ^
pers(y) = 3rd ^ 3rd ~ 3rd.

CONCLUSION

This paper has shown how at tr ibute-value
structures and constraints on them can be
axiomatized in a decidable class of first-order
logic. The primary advantage of this approach
over the "designer logic" approach is that
important properties of the logic of the feature
constra int language, such as soundness ,
completeness, decidability and compactness,
follow immediately, rather than proven from
scratch. A secondary benefit is that the
substantial b o d y of work on satisfiability
algorithms for first-order formulae (such as
ATMS-based techniques that can efficiently
evaluate some disjunctive constraints [13]) can
immediately be applied to feature structure
constraints.

Further, first-order logic can be used to
axiomatize other types of feature structures in
addition to attribute-value structures (such as
"set-valued" elements) and express a wider
variety of constraints than equality constraints
(e.g. subsumption constraints). In general these
extended systems cannot be axiomatized using
only quan t i f i e r - f ree formulae , so their
decidability may not follow directly as it does
here. H o w e v e r the decision problem for
sublanguages of first-order logic has been
intensively invest igated [4], and there are
decidable classes of first-order formulae [8] that
appear to be expressive enough to axiomatize an
interesting variety of feature structures (e.g.
function-free universal ly-quant i f ied prenex
formulae can express l inguistically useful
constraints on "set-valued" elements).

An objection that might be raised to this
general approach is that classical first-order
logic cannot adequately express the inherently
"partial information" that feature structures
represent. While the truth value of any formula
with respect to a model (i.e. an interpretation
and variable assignment function) is completely
determined, in general there will be many
models that satisfy a given formula, i.e. a
formula only partially identifies a satisfying
model (i.e. attribute-value structure). The claim
is that this partiality suffices to describe the
partiality of feature structures.

BIBLIOGRAPHY

. Bresnan, J. The Mental Representation of
Grammatical Relations. 1982 The MIT Press.
Cambridge, Mass.

. Dawar, A. and K. Vijayashanker. Three-
Valued Interpretation of Negation in Feature
Structure Descriptions. Universi ty of
Delaware Technical Report 90-03. 1989.

. Dawar, A. and K. Vijayashanker. "A
Three-Valued Interpretation of Negation
in Feature Structures", in The 27th Annual
Meeting of the Association of Computational
Linguistics, Vancouver, 1989,

. Dreben, B. and W. D. Goldfarb. The
Decision Problem: Solvable Classes of
Quantificational Formulas. 1979 Addison-
Wesley. Reading, Mass.

. Gallier, J. H. Logic for Computer Science.
1986 Harper and Row. New York.

. Gazdar, G., E. Klein, G. Pullum and I. Sag.
Generalized Phrase Structure Grammar. 1985
Blackwell. Oxford, England.

. Gazdar, G., G. K. Pullum, R. Carpenter, E.
Klein, T. E. Hukari and R. D. Levine.
"Category Structures." Computational
Linguistics. 14.1:1 - 20, 1988.

. Gurevich, Y. "The Decision Problem for
Standard Classes." JSL. 41.2: 460-464, 1976.

. Johnson, M. Attribute-Value Logic and the
Theory of Grammar. CSLI Lecture Notes
Series. 1988 University of Chicago Press.
Chicago.

178

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Kaplan, R. and J. Bresnan. "Lexical-
functional grammar, a formal system for
grammatical representation," in The
Mental Representation of Grammatical
Relations, Bresnan ed., 1982 The MIT Press.
Cambridge, Mass.

Kasper, R. T. and W. C. Rounds. "A logical
semantics for feature structures", in The
Proceedings of the 24th Annual Meeting of the
Association for Computational Linguistics,
Columbia University, New York, 1986,
257-266.

Kay, M. "Unification in Grammar," in
Natural Language Understanding and Logic
Programming, Dahl and Saint-Dizier ed.,
1985 North Holland. Amsterdam, The
Netherlands.

Maxwell, J. T., III and R. Kaplan. "An
Overview of Disjunctive Constraint
Satisfaction", in International Workshop on
Parsing Technologies, Pittsburgh, PA., 1989,
18 - 27. Carnegie Mellon.

Moshier, M. D. and W. C. Rounds. "A
logic for partially specified data
structures", in The ACM Symposium on the
Principles of Programming Languages,
Munich, Germany, 1987, Association for
Computing Machinery.

Nelson, G. and D. C. Oppen. "Fast
Decision Procedures based on Congruence
Closure." J. ACM. 27.2: 245-257, 1980.

Pereira, F. C. N. "Grammars and Logics of
Partial Information", in The Proceedings of
the International Conference on Logic
Programming, Melbourne, Australia, 1987.

Pereira, F. C. N. and S. M. Shieber. "The
semantics of grammar formalisms seen as
computer languages", in COLING-84,
Stanford University, 1984, 123-129. The
Assoc i a t i on for C o m p u t a t i o n a l
Linguistics.

Pollard, C. and I. Sag. Information-based
Syntax and Semantics, Volume 1. CSLI
Lecture Notes. 1987 Chicago University
Press. Chicago.

Shieber, S. M. An Introduction to
Unification-based Approaches to Grammar.

179

20.

CSLI Lecture Notes Series. 1986 University
of Chicago Press. Chicago.

Uszkoreit, H. "Categorial unification
grammar", in COLtNG-86, 1986, 187-194.

