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A B S T R A C T  

Hassan Ait-Kaci introduced the #/-term, 
an informational  s t ructure  resembling feature- 
based functional s tructures but  which also 
includes taxonomic inheritance (Ait-Kaci, 1984). 
We describe e - te rms  and how they have been 
incorporated into the Logic Grammar  formal- 
ism. The result, which we call Inheritance 
Grammar ,  is a proper superset of DCG and 
includes many features of PATR-II.  Its taxo- 
nomic reasoning facilitates semantic type-class 
reasoning during grammatical analysis. 

I N T R O D U C T I O N  

The Inheri tance Grammar  (IG) formalism 
is an extension of Hassan Ait-Kaci 's  work on #/- 
terms (Ait-Kaci, 1984; Ait-Kaci  and Nasr,  
1986). A e - t e rm is an informational  s t ructure 
similar to both the feature s t ructure  of PATR-II  
(Shieber, 1985; Shieber, et al, 1986) and the 
first-order term of logic, e - terms are ordered by 
subsumption and form a latt ice in which 
unification of #/-terms amounts  to greatest lower 
bounds (GLB, [-']). In Inheritance Grammar ,  #/- 
terms are incorporated into a computat ional  
paradigm similar to the Definite Clause Gram- 
mar (DCG) formalism (Pereira and Warren,  
1980). Unlike feature s tructures and first-order 
terms, the atomic symbols of #/-terms are 
ordered in an IS-A taxonomy, a distinction tha t  
is useful in performing semantic type-class rea- 
soning during grammatical  analysis. We begin 
by discussing this ordering. 

T H E  IS-A R E L A T I O N  A M O N G  
F E A T U R E  V A L U E S  

Like other  grammar  formalisms using 
feature-based functional structures,  we will 
assume a fixed set of symbol8 called the signa- 
ture. These symbols are atomic values used to 

represent lexical, syntact ic  and semantic 
categories and other  feature  values. In many 
formalisms (e.g. DCG and PATR-II),  equality is 
the only operat ion for symbols; in IG symbols 
are related in an IS-A hierarchy.  These rela- 
tionships are indicated in the grammar  using 

s ta tements  such as1: 

boy < masculineObject. 
girl < feminineObject. 
man < masculineObject. 
woman < feminineObJect. 
{boy, girl} < child. 
{man, woman} < adult. 
{child, adult} < human. 

The symbol < can be read as "is a" and the 
notat ion { a , , . . .  ,an}<b is an abbreviat ion for 
a l<b ,  • • • ,an<b. The grammar  wri ter  need not 
distinguish between instances and classes, or 
between syntact ic  and semantic categories when 
the hierarchy is specified. Such distinctions are 
only determined by how the symbols are used in 
the grammar.  Note tha t  this example ordering 
exhibits multiple inheritance: f e m i n i n e O b -  
jeers a r e  n o t  n e c e s s a r i l y  humans a n d  

humans  are not necessarily f e m i n i n e 0 b -  
J e e r s ,  yet a g i r l  is both a human and a 
feminineObj ect. 

Computa t ion  of LUB (t_ J)  and GLB (['7) 
in a rb i t ra ry  par t ia l  orders is problematic.  In 
IG, the grammar  writer  specifies an a rb i t ra ry  
ordering which the rule execution system 
automat ical ly  embeds in a lat t ice by the addi- 
tion of newly created symbols (Maier, 1980). 

Symbols may be thought  of as standing 
for conceptual  sets or semantic types and the 
IS-A relationship can be thought  of as set 

I Symbols appearing in the grammar  but not in the 
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inclusion. Finding the GLB- i .e .  unification of 
symbols - then  amounts  to set intersection. For 
the par t ia l  order specified above, two new sym- 
bols are automat ical ly  added, representing 
semantic categories implied by the IS-A state-  
ments, i.e. human females and human males. 
The first new category (human females) can be 
thought  of as the intersection of human and 
feminlneObJect or as the union of girl and 
woman 2, and similarly for human males. The 
signature resulting from the IS-A statements is 
shown in Figure 1. 

C - T E R M S  AS F E A T U R E  S T R U C T U R E S  

Much work in computat ional  linguistics is 
focussed around the application of unification to 
an informational s t ructure tha t  maps a t t r ibute  
names (also called feature names, slot names, or 
labels) to values (Kay, 1984a; Kay,  1984b; 
Shieber, 1985; Shieber, et al, 1986). A value is 
either atomic or (recursively) another  such map- 
ping. These mappings are called by various 
names: feature structures,  functional structures,  
f-structures, and feature matrices. The feature 
s tructures of PATR-II  are most easily under- 
stood by viewing them as directed, acyclic 
graphs (DAGs) whose arcs are annota ted  with 
feature labels and whose leaves are annota ted  
with atomic feature values (Shieber, 1985). 

IS-A s t a t e m e n t s  are taken  to be unrelated.  

2 Or any th ing  in between. One is the most  liberal in- 
te rpre ta t ion ,  the  other  the  most  conservat ive.  The  s igns-  
ture  could be extended by adding both classes, and any 
number  in between. 

IGs use C-terms, an informational  struc- 
ture tha t  is best described as a rooted, possibly 
cyclic, directed graph. Each  node (both leaf 
and interior) is annota ted  with a symbol from 
the signature. Each arc of the graph is labelled 
with a feature label (an attribute). The set of 
feature labels is unordered and is distinct from 
the signature. The formal definition of C-terms, 
given in set theoretic terms, is complicated in 
several ways beyond the scope of this 
p resen ta t ion-see  the definition of well-formed 
types in (Ait-Kaci, 1984). We give several 
examples to give the flavor of C-terms. 

Feature  s tructures are often represented 
using a bracketed matr ix notat ion,  in addition 
to the DAG notat ion.  C-terms, on the other 
hand, are represented using a textual  notat ion 
similar to tha t  of first-order terms. The syntax 
of the textual  representat ion is given by the fol- 
lowing extended BNF grammar  3. 

term ::= 

featureList  ::= 

feature ::= 

symbol [ featureList  ] 
[ featureList  

( feature , feature , 
... , feature  ) 

label => term 
[ label ~ variable [ : term ] 

Our first example contains the symbols 
np ,  s i n g u l a r ,  and t h i r d .  The label of 

3 The  vertical bar separa tes  a l t e rna te  cons t i tuents ,  
brackets  enclose opt ional  cons t i tuen ts ,  and ellipses are used 
(loosely) to indicate  repet i t ion.  The charac te r s  ( ) - >  , and 
z are terminals .  

feminineObject human masculineObject 

adu i t humanF ema i e humanMa i e chi i d 

woman man gir I boy 

Figure 1. A signature. 
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the root node, np, is called the head symbol. 
This C-term contains two features, labelled by 
number and person. 

np ( number ~ singular, 
person ~ t h i r d )  

The next example includes a subterm at  
agreement:=>: 

(cat ~ np, 
agreement ~ (number ~ singular, 

person ~ third)) 

In this C-term the head symbol is missing, as is 
the head symbol of the subterm. When a sym- 
bol is missing, the most general symbol of the 
signature ( T )  is implied. 

In t radi t ional  first-order terms, a variable 
serves two purposes. First, as a wild card, it 
serves as a place holder which will match any 
term. Second, as a tag, one variable can con- 
strain several positions in the term to be filled 
by the same structure.  In C-terms, the wild 
card function is filled by the maximal symbol of 
the signature ( T )  which will match any C-term 
during unification. Variables are used 
exclusively for the tagging function t o  indicate 
C-term eore/erence. By convention, variables 
always begin with an uppercase let ter  while 
symbols and labels begin with lowercase letters 
and digits. 

In the following ~b-term, representing The 
man want8 to dance with Mary, X is a variable 
used to identify the subject of wants with the 
subject of dance. 

sentence ( 
subject ~ X: man, 
predicate ~ wants, 
verbComp ~ clause ( 

subject ~ X, 
predicate ~ dance, 
object ~ mary )) 

If a variable X appears in a term tagging 
a subterm t, then all subterms tagged by other 
occurrences of X must be consistent with (i.e. 

unify with) t 4. If a variable appears  without  a 
subterm following it, the term consisting of sim- 
ply the top symbol ( T )  is assumed. The con- 
s t ra int  implied by variable coreference is not 
just equality of s t ructure  but  equality of refer- 
ence. Fur ther  unifications tha t  add information 
to one sub-structure will necessarily add it to 
the other.  Thus, in this example, X constrains 
the terms appearing at  the paths  subject=> 
a n d  verbComp~subject~ to be the same 
term. 

In the ~b-term representat ion of the sen- 
tence The man with the toupee sneezed, shown 
below, the np filling the s u b j e c t  role, X, has 
two at t r ibutes .  One is a q u a l i f i e r  filled by 
a relativeClause whose subject is X 
itself. 

sentence ( 
subject ~ X: np ( 

head ~ man, 
qualifier ~ relativeClause 

subject ~ X, 
predicate ~ wear, 
object ~ toupee)), 

predicate ~ sneezed) 

As the graphical representat ion (in Figure 2) of 
this te rm clearly shows, this C-term is cyclic. 

U N I F I C A T I O N  O F  ~b-TERMS 

The unification of two ~b-terms is similar 
to the unification of two feature  s t ructures  in 
PATR-II  or two first-order terms in logic. 
Unification of two terms t I and t 2 proceeds as 
follows. First, the head symbols of tl and t2"are 
unified. T h a t  is, the GLB of the two symbols in 
the signature latt ice becomes the head symbol 
of the result. Second, the subterms of t I and t ,  
are unified. When t I and t 2 both contain the 
feature f, the corresponding subterms are unified 
and added as feature f of the result. If one 
term, say h ,  contains feature  f and the other  
term does not, then the result will contain 
feature f with the value from h .  This is the 
same result t ha t  would obtain if t2 contained 
feature f with value T .  Finally, the subterm 

4 Normal ly ,  the  sub t e rm  at  X will be wri t ten  follow- 
ing the  first occurrence of X and all o ther  occurrences of X 
will not include sub te rms .  
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coreference constraints implied by the variables 
in t 1 and t 2 are respected. Tha t  is, the result is 
the least constrained ~b-term such tha t  if two 
paths (addresses) in t 1 (or t2) are tagged by the 
same variable (i.e. they core/%r) then they will 
corefer in the result. 

For example, when the C-term 

(agreement @ X: (number@singular), 
subject => (agreement@X)) 

is unified with 

(subject@ 

(agreement@ 

(person@third))) 

the result is 

(agreement @ X: (number@singular, 
person@third) , 

subject @ (agreement@X)) 

I N H E R I T A N C E  G R A M M A R S  

An IG consists of several IS-A s ta tements  
and several grammar  rul¢~. A grammar rule is 

a definite clause which uses C-terms in place of 
the first-order literals used in first-order logic 

programming s. Much of the notat ion of Pro]og 
and DCGs is used. In part icular ,  the : -  sym- 
bol separates a rule head from the C-terms 
comprising the rule body. Analogously to Pro- 
log, l i s t -nota t ion (using [, I, and ] )  can be 
used as a shorthand for C-terms representing 
lists and containing h e a d  and t a i l  features. 
When the - - >  symbol is used instead of " - ,  
the rule is t rea ted  as a context-free grammar  
rule and the interpreter  automat ical ly  appends 
two additional arguments (start and end)  to 
facil i tate parsing. The final syntact ic  sugar 
allows feature labels to be elided; sequentially 
numbered numeric labels are automat ical ly  sup- 
plied. 

Our first simple Inheri tance Grammar  
consists of the rules: 

sent --> noun (Num) ,verb (Num) . 

noun (plural) --> [cats] . 

verb (plural) --> [meow] . 

The sentence to be parsed is supplied as a goal 

6 This is to be contrasted with LOGIN, in which ¢- 

Figure 2. Graphical  representat ion of a C-term. 
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clause, as in: 

:- sent ([cats,meow] , []) . 

The interpreter first translates these clauses 

into the following equivalent IG clauses, 

expanding away the notational sugar, before 

execution begins. 

sent (start~Pl,end~P3) : - 

noun (l~Num, start~Pl, end~P2) , 
verb (l~Num, start~P2, end~P3) . 

noun (l~plural, 

start~list (head, cats, tail~L) , 

end~L) . 

verb (l~plural, 

start~list (head,meow, tail~L) , 
end~L) . 

:- sent (start~list ( 

head,cats, 

tail~list ( 

head,meow, 

tail~nil)) , 

end~nil ) . 

As this example indicates, every DCG is an 
Inheritance Grammar. However, since the argu- 
ments may be arbitrary C-terms, IG can also 
accomodate feature structure manipulation. 

T Y P E - C L A S S  R E A S O N I N G  IN P A R S I N G  

Several logic-based grammars have used 
semantic categorization of verb arguments to 
disambiguate word senses and fill case slots (e.g. 
Dahl, 1979; Dahl, 1981; McCord, 1980). The 
primary motivation for using !b-terms for gram- 
matical analysis is to facilitate such semantic 
type-class reasoning during the parsing stage. 

As an example, the DCG presented in 
(McCord, 1980) uses unification to do taxonomic 
reasoning. Two types unify iff one is a subtype 
of the other; the result is the most specific type. 
For example, if the first-order term s m i t h : _  
representing an untyped individual 6, is unified 
with the type expression X:person: student, 
representing the student subtype of person, the 

result is smith :person : student. 

terms replace first-order terms rather than predications. 

e Here the colon is used as a right-associative infix 
operator meaning subtype. 

While .this grammar achieves extensive 
coverage, we perceive two shortcomings to the 
approach. (1) The semantic hierarchy is some- 
what inflexible because it is distributed 
throughout the lexicon, rather than being main- 
tained separately. (2) Multiple Inheritance is 
not accommodated (although see McCord, 
1985). In IG, the ¢-term s t u d e n t  can act as a 
typed variable and unifies with the C-term 
s m i t h  (yielding smi th )  assuming the presence 
of IS-A statements such as: 

student < person. 

{smith, Jones, brown} < student. 

The taxonomy is specified separately-even with 
the potential of dynamic modification-and mul- 
tiple inheritance is accommodated naturally. 

OTHER GRAMMATICAL APPLICATIONS 
OF TAXONOMIC REASONING 

The taxonomic reasoning mechanism of IG 
has applications in lexical and syntactic 
categorization as well as in semantic type-class 
reasoning. As an illustration which uses C-term 
predications, consider the problem of writing a 
grammar that  accepts a prepositional phrase or 
a relative clause after a noun phrase but only 
accepts a prepositional phrase after the verb 
phrase. So The flower under the tree wilted, The 
flower that was under the tree wilted, and John 
ate under the tree should be accepted but not 
*John ate that was under the tree. The taxon- 
omy 8peeifie~ that prepositionalPhrase 

and relativeClause are npModifiers but 

only a prepositionalPhrase is a vpMo- 

difier The following highly abbreviated IG 
shows one simple solution: 

{prepositionalPhrase, 

relativeClause} < npModifier. 

prepositionalPhrase < vpModifier. 

s e n t ( . . . )  - - >  r i p ( . . . ) ,  
vp ( . . . ) ,  
vpModifier (...) . 

np(...) --> np(...), 
npModifier (...) . 

np(...) --> . . . 

vp(...) --> . . .  

prepositionalPhrase(...) --> . . • 
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relativeClause(...) --> ... 

I M P L E M E N T A T I O N  

We have implemented an IG development 
environment in Smalltalk on the Tektronix 
4406. The IS-A statements are handled by an 
ordering package which dynamically performs 
the lattice extension and which allows interac- 
tive display of the ordering. Many of the tech- 
niques used in standard depth-first Prolog exe- 
cution have been carried over to IG execution. 
To speed grammar execution, our system 
precompiles the grammar rules. To speed gram- 
mar development, incremental compilation 
allows individual rules to be compiled when 
modified. We are currently developing a large 
grammar using this environment. 

As in Prolog, top-down evaluation is not 
complete. Earley Deduction (Pereira and War- 
ren, 1980; Porter, 1986), a sound and complete 
evaluation strategy for Logic programs, frees 
the writer of DCGs from the worry of infinite 
left-recursion. Earley Deduction is essentially a 
generalized form of chart parsing (Kaplan, 1973; 
Winograd, 1983), applicable to DCGs. We are 
investigating the application of alternative exe- 
cution strategies, such as Earley Deduction and 
Extension Tables (Dietrich and Warren, 1986) 
to the execution of IGs. 
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