
I N C O R P O R A T I N G I N H E R I T A N C E A N D F E A T U R E S T R U C T U R E S
I N T O A L O G I C G R A M M A R F O R M A L I S M

Harry H. Por ter , III
Oregon Gradua te Center

19600 N.W. Von Neumann Dr.
Beaver ton Oregon 97008-1999

A B S T R A C T

Hassan Ait-Kaci introduced the #/-term,
an informational s t ructure resembling feature-
based functional s tructures but which also
includes taxonomic inheritance (Ait-Kaci, 1984).
We describe e - te rms and how they have been
incorporated into the Logic Grammar formal-
ism. The result, which we call Inheritance
Grammar , is a proper superset of DCG and
includes many features of PATR-II. Its taxo-
nomic reasoning facilitates semantic type-class
reasoning during grammatical analysis.

I N T R O D U C T I O N

The Inheri tance Grammar (IG) formalism
is an extension of Hassan Ait-Kaci 's work on #/-
terms (Ait-Kaci, 1984; Ait-Kaci and Nasr,
1986). A e - t e rm is an informational s t ructure
similar to both the feature s t ructure of PATR-II
(Shieber, 1985; Shieber, et al, 1986) and the
first-order term of logic, e - terms are ordered by
subsumption and form a latt ice in which
unification of #/-terms amounts to greatest lower
bounds (GLB, [-']). In Inheritance Grammar , #/-
terms are incorporated into a computat ional
paradigm similar to the Definite Clause Gram-
mar (DCG) formalism (Pereira and Warren,
1980). Unlike feature s tructures and first-order
terms, the atomic symbols of #/-terms are
ordered in an IS-A taxonomy, a distinction tha t
is useful in performing semantic type-class rea-
soning during grammatical analysis. We begin
by discussing this ordering.

T H E IS-A R E L A T I O N A M O N G
F E A T U R E V A L U E S

Like other grammar formalisms using
feature-based functional structures, we will
assume a fixed set of symbol8 called the signa-
ture. These symbols are atomic values used to

represent lexical, syntact ic and semantic
categories and other feature values. In many
formalisms (e.g. DCG and PATR-II), equality is
the only operat ion for symbols; in IG symbols
are related in an IS-A hierarchy. These rela-
tionships are indicated in the grammar using

s ta tements such as1:

boy < masculineObject.
girl < feminineObject.
man < masculineObject.
woman < feminineObJect.
{boy, girl} < child.
{man, woman} < adult.
{child, adult} < human.

The symbol < can be read as "is a" and the
notat ion { a , , . . . ,an}<b is an abbreviat ion for
a l<b , • • • ,an<b. The grammar wri ter need not
distinguish between instances and classes, or
between syntact ic and semantic categories when
the hierarchy is specified. Such distinctions are
only determined by how the symbols are used in
the grammar. Note tha t this example ordering
exhibits multiple inheritance: f e m i n i n e O b -
jeers a r e n o t n e c e s s a r i l y humans a n d

humans are not necessarily f e m i n i n e 0 b -
J e e r s , yet a g i r l is both a human and a
feminineObj ect.

Computa t ion of LUB (t_ J) and GLB (['7)
in a rb i t ra ry par t ia l orders is problematic. In
IG, the grammar writer specifies an a rb i t ra ry
ordering which the rule execution system
automat ical ly embeds in a lat t ice by the addi-
tion of newly created symbols (Maier, 1980).

Symbols may be thought of as standing
for conceptual sets or semantic types and the
IS-A relationship can be thought of as set

I Symbols appearing in the grammar but not in the

228

inclusion. Finding the GLB- i .e . unification of
symbols - then amounts to set intersection. For
the par t ia l order specified above, two new sym-
bols are automat ical ly added, representing
semantic categories implied by the IS-A state-
ments, i.e. human females and human males.
The first new category (human females) can be
thought of as the intersection of human and
feminlneObJect or as the union of girl and
woman 2, and similarly for human males. The
signature resulting from the IS-A statements is
shown in Figure 1.

C - T E R M S AS F E A T U R E S T R U C T U R E S

Much work in computat ional linguistics is
focussed around the application of unification to
an informational s t ructure tha t maps a t t r ibute
names (also called feature names, slot names, or
labels) to values (Kay, 1984a; Kay, 1984b;
Shieber, 1985; Shieber, et al, 1986). A value is
either atomic or (recursively) another such map-
ping. These mappings are called by various
names: feature structures, functional structures,
f-structures, and feature matrices. The feature
s tructures of PATR-II are most easily under-
stood by viewing them as directed, acyclic
graphs (DAGs) whose arcs are annota ted with
feature labels and whose leaves are annota ted
with atomic feature values (Shieber, 1985).

IS-A s t a t e m e n t s are taken to be unrelated.

2 Or any th ing in between. One is the most liberal in-
te rpre ta t ion , the other the most conservat ive. The s igns-
ture could be extended by adding both classes, and any
number in between.

IGs use C-terms, an informational struc-
ture tha t is best described as a rooted, possibly
cyclic, directed graph. Each node (both leaf
and interior) is annota ted with a symbol from
the signature. Each arc of the graph is labelled
with a feature label (an attribute). The set of
feature labels is unordered and is distinct from
the signature. The formal definition of C-terms,
given in set theoretic terms, is complicated in
several ways beyond the scope of this
p resen ta t ion-see the definition of well-formed
types in (Ait-Kaci, 1984). We give several
examples to give the flavor of C-terms.

Feature s tructures are often represented
using a bracketed matr ix notat ion, in addition
to the DAG notat ion. C-terms, on the other
hand, are represented using a textual notat ion
similar to tha t of first-order terms. The syntax
of the textual representat ion is given by the fol-
lowing extended BNF grammar 3.

term ::=

featureList ::=

feature ::=

symbol [featureList]
[featureList

(feature , feature ,
... , feature)

label => term
[label ~ variable [: term]

Our first example contains the symbols
np , s i n g u l a r , and t h i r d . The label of

3 The vertical bar separa tes a l t e rna te cons t i tuents ,
brackets enclose opt ional cons t i tuen ts , and ellipses are used
(loosely) to indicate repet i t ion. The charac te r s () - > , and
z are terminals .

feminineObject human masculineObject

adu i t humanF ema i e humanMa i e chi i d

woman man gir I boy

Figure 1. A signature.

229

the root node, np, is called the head symbol.
This C-term contains two features, labelled by
number and person.

np (number ~ singular,
person ~ t h i r d)

The next example includes a subterm at
agreement:=>:

(cat ~ np,
agreement ~ (number ~ singular,

person ~ third))

In this C-term the head symbol is missing, as is
the head symbol of the subterm. When a sym-
bol is missing, the most general symbol of the
signature (T) is implied.

In t radi t ional first-order terms, a variable
serves two purposes. First, as a wild card, it
serves as a place holder which will match any
term. Second, as a tag, one variable can con-
strain several positions in the term to be filled
by the same structure. In C-terms, the wild
card function is filled by the maximal symbol of
the signature (T) which will match any C-term
during unification. Variables are used
exclusively for the tagging function t o indicate
C-term eore/erence. By convention, variables
always begin with an uppercase let ter while
symbols and labels begin with lowercase letters
and digits.

In the following ~b-term, representing The
man want8 to dance with Mary, X is a variable
used to identify the subject of wants with the
subject of dance.

sentence (
subject ~ X: man,
predicate ~ wants,
verbComp ~ clause (

subject ~ X,
predicate ~ dance,
object ~ mary))

If a variable X appears in a term tagging
a subterm t, then all subterms tagged by other
occurrences of X must be consistent with (i.e.

unify with) t 4. If a variable appears without a
subterm following it, the term consisting of sim-
ply the top symbol (T) is assumed. The con-
s t ra int implied by variable coreference is not
just equality of s t ructure but equality of refer-
ence. Fur ther unifications tha t add information
to one sub-structure will necessarily add it to
the other. Thus, in this example, X constrains
the terms appearing at the paths subject=>
a n d verbComp~subject~ to be the same
term.

In the ~b-term representat ion of the sen-
tence The man with the toupee sneezed, shown
below, the np filling the s u b j e c t role, X, has
two at t r ibutes . One is a q u a l i f i e r filled by
a relativeClause whose subject is X
itself.

sentence (
subject ~ X: np (

head ~ man,
qualifier ~ relativeClause

subject ~ X,
predicate ~ wear,
object ~ toupee)),

predicate ~ sneezed)

As the graphical representat ion (in Figure 2) of
this te rm clearly shows, this C-term is cyclic.

U N I F I C A T I O N O F ~b-TERMS

The unification of two ~b-terms is similar
to the unification of two feature s t ructures in
PATR-II or two first-order terms in logic.
Unification of two terms t I and t 2 proceeds as
follows. First, the head symbols of tl and t2"are
unified. T h a t is, the GLB of the two symbols in
the signature latt ice becomes the head symbol
of the result. Second, the subterms of t I and t ,
are unified. When t I and t 2 both contain the
feature f, the corresponding subterms are unified
and added as feature f of the result. If one
term, say h , contains feature f and the other
term does not, then the result will contain
feature f with the value from h . This is the
same result t ha t would obtain if t2 contained
feature f with value T . Finally, the subterm

4 Normal ly , the sub t e rm at X will be wri t ten follow-
ing the first occurrence of X and all o ther occurrences of X
will not include sub te rms .

230

coreference constraints implied by the variables
in t 1 and t 2 are respected. Tha t is, the result is
the least constrained ~b-term such tha t if two
paths (addresses) in t 1 (or t2) are tagged by the
same variable (i.e. they core/%r) then they will
corefer in the result.

For example, when the C-term

(agreement @ X: (number@singular),
subject => (agreement@X))

is unified with

(subject@

(agreement@

(person@third)))

the result is

(agreement @ X: (number@singular,
person@third) ,

subject @ (agreement@X))

I N H E R I T A N C E G R A M M A R S

An IG consists of several IS-A s ta tements
and several grammar rul¢~. A grammar rule is

a definite clause which uses C-terms in place of
the first-order literals used in first-order logic

programming s. Much of the notat ion of Pro]og
and DCGs is used. In part icular , the : - sym-
bol separates a rule head from the C-terms
comprising the rule body. Analogously to Pro-
log, l i s t -nota t ion (using [, I, and]) can be
used as a shorthand for C-terms representing
lists and containing h e a d and t a i l features.
When the - - > symbol is used instead of " - ,
the rule is t rea ted as a context-free grammar
rule and the interpreter automat ical ly appends
two additional arguments (start and end) to
facil i tate parsing. The final syntact ic sugar
allows feature labels to be elided; sequentially
numbered numeric labels are automat ical ly sup-
plied.

Our first simple Inheri tance Grammar
consists of the rules:

sent --> noun (Num) ,verb (Num) .

noun (plural) --> [cats] .

verb (plural) --> [meow] .

The sentence to be parsed is supplied as a goal

6 This is to be contrasted with LOGIN, in which ¢-

Figure 2. Graphical representat ion of a C-term.

231

clause, as in:

:- sent ([cats,meow] , []) .

The interpreter first translates these clauses

into the following equivalent IG clauses,

expanding away the notational sugar, before

execution begins.

sent (start~Pl,end~P3) : -

noun (l~Num, start~Pl, end~P2) ,
verb (l~Num, start~P2, end~P3) .

noun (l~plural,

start~list (head, cats, tail~L) ,

end~L) .

verb (l~plural,

start~list (head,meow, tail~L) ,
end~L) .

:- sent (start~list (

head,cats,

tail~list (

head,meow,

tail~nil)) ,

end~nil) .

As this example indicates, every DCG is an
Inheritance Grammar. However, since the argu-
ments may be arbitrary C-terms, IG can also
accomodate feature structure manipulation.

T Y P E - C L A S S R E A S O N I N G IN P A R S I N G

Several logic-based grammars have used
semantic categorization of verb arguments to
disambiguate word senses and fill case slots (e.g.
Dahl, 1979; Dahl, 1981; McCord, 1980). The
primary motivation for using !b-terms for gram-
matical analysis is to facilitate such semantic
type-class reasoning during the parsing stage.

As an example, the DCG presented in
(McCord, 1980) uses unification to do taxonomic
reasoning. Two types unify iff one is a subtype
of the other; the result is the most specific type.
For example, if the first-order term s m i t h : _
representing an untyped individual 6, is unified
with the type expression X:person: student,
representing the student subtype of person, the

result is smith :person : student.

terms replace first-order terms rather than predications.

e Here the colon is used as a right-associative infix
operator meaning subtype.

While .this grammar achieves extensive
coverage, we perceive two shortcomings to the
approach. (1) The semantic hierarchy is some-
what inflexible because it is distributed
throughout the lexicon, rather than being main-
tained separately. (2) Multiple Inheritance is
not accommodated (although see McCord,
1985). In IG, the ¢-term s t u d e n t can act as a
typed variable and unifies with the C-term
s m i t h (yielding smi th) assuming the presence
of IS-A statements such as:

student < person.

{smith, Jones, brown} < student.

The taxonomy is specified separately-even with
the potential of dynamic modification-and mul-
tiple inheritance is accommodated naturally.

OTHER GRAMMATICAL APPLICATIONS
OF TAXONOMIC REASONING

The taxonomic reasoning mechanism of IG
has applications in lexical and syntactic
categorization as well as in semantic type-class
reasoning. As an illustration which uses C-term
predications, consider the problem of writing a
grammar that accepts a prepositional phrase or
a relative clause after a noun phrase but only
accepts a prepositional phrase after the verb
phrase. So The flower under the tree wilted, The
flower that was under the tree wilted, and John
ate under the tree should be accepted but not
*John ate that was under the tree. The taxon-
omy 8peeifie~ that prepositionalPhrase

and relativeClause are npModifiers but

only a prepositionalPhrase is a vpMo-

difier The following highly abbreviated IG
shows one simple solution:

{prepositionalPhrase,

relativeClause} < npModifier.

prepositionalPhrase < vpModifier.

s e n t (. . .) - - > r i p (. . .) ,
vp (. . .) ,
vpModifier (...) .

np(...) --> np(...),
npModifier (...) .

np(...) --> . . .

vp(...) --> . . .

prepositionalPhrase(...) --> . . •

232

relativeClause(...) --> ...

I M P L E M E N T A T I O N

We have implemented an IG development
environment in Smalltalk on the Tektronix
4406. The IS-A statements are handled by an
ordering package which dynamically performs
the lattice extension and which allows interac-
tive display of the ordering. Many of the tech-
niques used in standard depth-first Prolog exe-
cution have been carried over to IG execution.
To speed grammar execution, our system
precompiles the grammar rules. To speed gram-
mar development, incremental compilation
allows individual rules to be compiled when
modified. We are currently developing a large
grammar using this environment.

As in Prolog, top-down evaluation is not
complete. Earley Deduction (Pereira and War-
ren, 1980; Porter, 1986), a sound and complete
evaluation strategy for Logic programs, frees
the writer of DCGs from the worry of infinite
left-recursion. Earley Deduction is essentially a
generalized form of chart parsing (Kaplan, 1973;
Winograd, 1983), applicable to DCGs. We are
investigating the application of alternative exe-
cution strategies, such as Earley Deduction and
Extension Tables (Dietrich and Warren, 1986)
to the execution of IGs.

ACKNOWLEDGEMENTS

Valuable interactions with the following people
are gratefully acknowledged: Hassan A.it-Kaci,
David Maier, David S. Warren, Fernando
Pereira, and Lauri Karttunen.

R E F E R E N C E S

AJt-Kaci, Hassan. 1984. A Lattice
Theoretic Approach to Computation Based on a
Calculus of Partially Ordered Type Structures,
Ph.D. Dissertation, University of Pennsylvannia,
Philadelphia, PA.

A.it~-Kaci, Hassan and Nasr, Roger. 1986.
LOGIN: A Logic Programming Language with
Built-in Inheritance, Journal of Logic Program,
ruing, 3(3):185-216.

Dahl, Veronica. 1979. Logical Design of
Deductive NL Consultable Data Bases, Proc.
5th Intl. Conf. on Very Large Data Bascn, Rio de

Janeiro.

Dahl, Veronica. 1981. Translating Span-
ish into Logic through Logic, Am. Journal of
Comp. Linguistics, 7(3):149-164.

Dietrich, Susan Wagner and Warren,
David S. 1986. Extension Tables: Memo Rela-
tions in Logic Programming, Technical Report
86/18, C.S. Dept., SUNY, Stony Brook, New
York.

Kaplan, Ronald. 1973. A General Syn-
tactic Processor, in: Randall Rustin, Ed.,
Natural Language ProcesMng, A_lgorithmics
Press, New York, NY.

Kay, Martin. 1984a. Functional
Unification Grammar: A "Formalism for Machine
Translation, Proc. 2Znd Ann. Meeting of the
Assoc. for Computational Linguistics (COLING),
Stanford University, Palo Alto, CA.

Kay, Martin. 1984b. Unification in
Grammar, Natural Lang. Understanding and
Logic Programming Conf. Proceedings, IRISA-
INRIA, Rennes, France.

Maier, David. 1980. DAGs as Lattices:
Extended Abstract, Unpublished manuscript.

MeCord, Michael C. 1980. Using Slots
and Modifiers in Logic Grammars for Natural
Language, Artificial Intelligence, 18(3):327-368.

McCord, Michael C. 1985. Modular Logic
Grammars, Proc. of the eSrd ACL Conference,
Chicago, IL.

Pereira, F.C.N. and Warren, D.H.D. 1980.
Definite Clause Grammars for Language
Analysis - A Survey of the Formalism and a
Comparison with Augmented Transition Net-
works, Artificial Intelligence, 13:231-278.

Pereira, F.C.N. and Warren, D.H.D. 1983.
Parsing as Deduction, elst Annual Meeting of
the Assoc. for Computational Linguistics, Bos-
ton, MA.

Porter, Harry H. 1986. Earley Deduction,
Technical Report CS/E-86-002, Oregon Gradu-
ate Center, Beaverton, OR.

Shieber, Stuart M. 1985. An Introduction
to Unification-Based Approaches to Grammar,
Tutorial Session Notes, £3rd Annual Meeting of
the A~oc. for Computational Linguistics, Chi-
cago, IL.

233

Shieber, S.M., Pereira, F.C.N., Karttunen,
L. and Kay, M. 1986. A Compilation of Papers
on Unification-Based Grammar Formalisms,
Parts I and II, Center for the Study of Language
and Information, Stanford.

Winograd, Terry. 1983. Language aa a
Cognitive Process, Vol. Z: Syntax, Addison-
Wesley, Reading, MA.

234

