
Expressing Concern

Computer Science Division
University of California at Berkeley

Berkeley, CA 94720
U.S.A.

Abstract

A consultant system's main task is to provided helpful advice
to the user. Consultant systems should not only find solutions
to user problems, but should also inform the user of potential
problems with these solutions. Expressing such potential
caveats is a difficult process due to the many potential plan
failures for each particular plan in a particular planning situa-
tion. A commonsense planner, called KIP, Knowledge Inten-
sive Planner, is described. KIP is the planner for the UNIX
Consultant system. KIP detect potential plan failures using a
new knowledge structure termed a concern. Concerns allow
KIP to detects plan failures due to unsatisfied conditions or
goal conflict. KIP's concern algorithm also is able to provide
information to the expression mechanism regarding potential
plan failures. Concern information is passed to the expression
mechanism when KIP's selected plan might not work. In this
case, KIP passes information regarding both the suggested
plan and the potential caveats in that plan to the expression
mechanism. This is an efficient approach since KIP must
make such decisions in the context of its planning process. A
concern's declarative structure makes it easier to express than
procedural descriptions of plan failures used by earlier sys-
tems.

Marc Luria
Computer Science Department

Technion, Israel Institute of Technology
Halfa
Israel

(a2) Let me know if the door is locked.
(a3) Be careful walking down the stairs.
(a4) Make sure to turn off the basement light.

In (al), the mother has provided the child with information
about the location of his shoe. The mother has also implied
the use of a plan: Walk down to the basement and get your
shoes. However, there are a number of problems inherent in
this plan. The mother might also inform her child of these
problems. The first problem, (a2), is that one of the condi-
tions necessary to execute the plan might be unsatisfied. The
door to the basement might be locked. If it is locked addition-
al steps in the plan will be necessary. The second problem,
(a3), is that executing the walk-down-the-stairs plan might
result in a fall. The mother knows that this outcome is likely,
due to her experience of the child's previous attempts at the
walk-down-the-stairs plan. The mother wishes to prevent the
child from falling, since this is a potentially dangerous and
frightening experience for the child. The third problem, (a4),
is that the child might forget to turn off the light in the base-
ment. This would threaten the mothers's goal of preventing
the basement light from burning out.

However, the same parent might not add:

I. Introduction

The most important task of a consultant is to provide
advice to a user. Human consultants are asked to provide
answers to user queries in domains within which they have
more expertise than the user. In some cases, the answers pro-
vided to the user are basic information about a particular
domain. However, in many cases, the task of the consultant is
provide answers to user problems. Furthermore, they are not
only asked to find solutions, they are also asked to use their
expertise to anticipate potential problems with these solutions.
Let us consider a very simple example of a consultant rela-
tionship. For example, suppose a child asks the following
question:

(a) Where is my shoe?

His mother might respond:

(al) It 's in the basement.

However, his mother might also add:

(a5) Let me know if the door needs to be oiled
(a6) Be careful walking in the basement
(a7) Make sure to close the basement door

This second set of responses also provide advice that reflects
problems due to unsatisfied conditions of the plan or potential
goal conflicts. However, the mother might not decide to ex-
press these statements to the child since they are either unlike-
ly or unimportant causes of potential plan failure.

Therefore, the mother has made three decisions. First,
she has decided which plan to suggest to the child based on
his world knowledge. Secondly, she has decided which parts
of that plan should be expressed to the child. Thirdly, she has
decided which potential caveats in that plan should be ex-
pressed to the child based on her experience.

Previous research in intelligent user interfaces (Allen84,
Appelt85, McDonald84) has focused on the second decision.
Systems attempt not to violate Grice's second Maxim of
Quantity: Make your contribution as informative as is re-
quired (Grice 1975). These systems formulated a response

221

that would provide information or a plan to the user. Allen
sought to discover obstacles in the user's plan. He tried to
help the user's plan by providing the user with the information
he needed to execute that plan. However, he did not provide a
mechanism for expressing plan failures. In this paper, we
focus on the problem of making decisions regarding those po-
tential problems which should be expressed to the user. How-
ever, rather than using a separate mechanism for this purpose,
we propose that this decision be made using information pro-
vided by the problem solving component of the system, the
planner.

We describe a commonsense planner called KIP,
Knowledge Intensive Planner. KIP is being developed for
UC, the UNIX Consultant system (Luria85, Wilensky 84a,
86). UC provides solutions to user problems in the UNIX
operating system domain. KIP provides the information
necessary in order to make decisions regarding which poten-
tial plan failures should be expressed to the user. KIP must
make decisions regarding potential plan failures in order to
devise a good plan for the user. Rather than use a separate
process to make decisions about those potential plan failures
which should be expressed to the user, KIP provides this in-
formation to the expression mechanism directly. In the next
section, we give some examples of KIP's interaction with ex-
pression mechanism. KIP provides information about poten-
tial plan failures which will be expressed to the user. We also
describe KIP's role in the UNIX Consultant system. In the
following section, we describe a declarative representation
that allows KIP to detect and provide expression information
about potential plan failures.

2. KIP Examples

(b) User:

UC:

How do I print Jim's file on
the lineprinter?

Print Jim's file foo by
typing ipr foo. This plan
will not work if you don't have

read permission on Jim's file
or if the printer is out of
paper.

(c) User:

UC:

How do I move a file named
paul to the file named mary?

To move the file paul to the

file named mary, type mv paul
mary. However, if the file
mary exists, it will be

deleted.

(d) User:
UC:

How do I change my password?
To change your passwd use the
passwd command. However,
remember that if you change
your password on one machine,

it will not be changed on
other machines.

In each of these examples, KIP has selected a known
plan for accomplishing the goals of the user. However, in
each of these examples, KIP determines that the plan could
fail and therefore has decided to express this potential failure
to the user.

KIP has a large knowledge-base of information about
the UNIX operating system. Decisions regarding UC's own
actions are made by UCEgo. The parser and goal analyzer
(Mayfield 86) of UC pass KIP a set of goals, and KIP wies to
find appropriate plans for those goals. KIP determines a plan
for the problem, and notes which potential plan failures should
be expressed to the user. KIP passes this decision-making in-
formation to the UCExpression mechanism(Chin86, Wilen-
sky86). The expression mechanism decides how to express
the plan to the user, given a model of the user's knowledge
about UNIX. The plan is then passed to the natural language
generator, which generates a natural language response to the
user. UC is a conversational system, and if necessary KIP can
query the user for more information. Nevertheless, KIP tries
to provide the best plan it can with the information provided
by user.

3. Concerns

In the previous sections, we have described the impor-
tance of informing the user about potential problems with a
plan. In this section, we describe a new concept which we
have introduced, termed a concern. A concern allows KIP to
predict potential plan failures and provide knowledge to ex-
press potential plan failures to the user.

A concern refers to those aspects of a plan which should
be considered because they are possible sources of plan
failure. A concern describes which aspects of a plan are likely
to cause failure.

There are two major types of concerns, condition con-
cerns, and goal conflict concerns. These two types reflect the
two major types of plan failure. Condition concerns refer to
those aspects of a plan that are likely to cause plan failure due
to a condition of the plan that is needed for successful execu-
tion. The conditions about which KIP is concerned are always
conditions of a particular plan. (These are fully described in
Luria86, 87a).

Goal conflict concerns refer to those aspects of a plan
which are likely to cause plan failure due to a potential goal
conflict between an effect of a plan and a goal of the user.
Goal conflict concerns relate plans to user goals and to other
pieces of knowledge that are not part of the plan. Examples of
this knowledge include background goals which may be
threatened by the plan. Since these background goals are not
usually inferred until such a threat is perceived, goal conflict
concerns often refer to conflicts between a potential plan and a
long-term interest of the user. Interests are general states that
KIP assumes are important to the user. An interest differs
from a goal in that one can have interests about general states
of the world, while goals refer to a concrete state of the world.
For example, preserving the contents of one's files is an in-
terest, while preserving the contents of the file named filel is a

222

goal. KIP's knowledge-base includes many interests that KIP
assumes on the part of the user. Goals are generated only
when expressed by the user, or by KIP itself during the plan-
ning process.

Stored goal conflict concerns refer to concerns about
conflicts of interest. These are concerns about the selected
plan conflicting with an interest of the user. If KIP detects a
conflict-of-interest concern, then KIP must determine if it
should infer an individual goal on the part of the user that
reflects this interest. If KIP decides to infer this individual
goal, then a dynamic concern between the selected plan and
the individual goal is also instantiated. (Goal conflict are
described more fully in Luria87b.)

Some plan failures are more likely to occur than others,
and some plan failures are more important than others if they
do occur. The representation of concerns reflects this differ-
ence by assigning a varying degree of concern to the stored
concerns in the knowledge base. The degree of a condition
concern reflects both the likelihood that the condition will fail,
and the importance of satisfying the condition for the success-
ful execution of the plan. There are many factors that deter-
mine the degree of concern about a confiict-of-interes~. The
planning knowledge base designer needs to determine how
likely a conflicting effect is to occur, how likely it is that the
user holds the threatened goal, and how important this goal is
to the user.

In the present implementation of KIP, information re-
garding concerns of potential plans is supplied by a human ex-
pert with a great deal of UNIX experience. Stored concerns
are therefore, a way for the planner database designer to ex-
press his personal experience regarding those aspects of a
stored plan that are most likely to fail. In principle, however,
the information might be supplied by an analysis of data of ac-
tual UNIX interactions.

4. Concerns and Expression

In this section, we describe the problems that concerns
were initially meant to address in plan failure detection. We
also describe how this same process has been used to express
potential plan failures to the user.

KIP is a a commonsense planner ONilensky83) - a
planner which is able to effectively use a large body of
knowledge about a knowledge-rich domain. Such knowledge
includes a general understanding of planning strategy, detailed
descriptions of plans, the conditions necessary for these plans
to execute successfully, and descriptions of those potential
goal conflicts that the plans might cause. Due to the detailed
nature of this knowledge, it is difficult to detect potential plan
failures. Condition failures are hard to detect since there are
many conditions for any particular plan. Goal conflict failures
are difficult to detect since any of the many effects could
conflict with any of the many goals of the user. Furthermore,
many of the user goals are not inferred until a threat to user in-
terest is perceived. Previous planning programs (Fikes71,

Newel172, Sacerdoti74) searched exhaustively among every
condition and every potential goal conflict for potential plan
failure. This is a very inefficient process. On the other hand,
human consultants generally consider only a few potential
plan failures while assessing a particular plan.

Additionally, KIP may not be aware of the values of
many of the conditions of a particular plan. Most previous
planning research assumed that the values for all the condi-
tions is known. However, in UC, when a user describes a
planning problem which is then passed to KIP, the values for
many conditions are usually left out. All users would believe
that normal conditions, like the machine being up, would be
assumed by the consultant. A naive user might not be aware
of the value of many conditions that require a more sophisti-
cated knowledge of UNIX. An expert user would believe that
the consultant would make certain assumptions requiring this
more sophisticated knowledge of UNIX. It would be undesir-
able to prompt the user for this information, particularly for
those values which axe not important for the specific plonning
situation.

Therefore, concerns were introduced in order to detect
plan failures. Concerns allow KIP to use information about
the likelihood and importance of potential plan failures. They
allow the planning database designer to store knowledge re-
garding which conditions are most likely to be unsatisfied, and
which goal conflicts are most likely to occur as a result of the
execution of a particular plan.

Furthermore, the same concern information can be used
in order to determine which potential plan failures should be
expressed to the user. When, KIP selects a potential plan, the
concerns of that particular plan are evaluated in the particular
planning situation. Once the concerns of a plan are evaluated
there are three possible scenarios. In the first case, none of the
concerns are important in the particular planning situation.
The plan is generated to the user without any concern infor-
mation. In the second case, there is a moderate degree of con-
cern regarding the plan. In this case, the plan is generated
along with the concern information. In cases where there is a
high degree of concern, the plan is modified or a new plan is
selected. These scenarios will be fully explained in the fol-
lowing section. Before describing KIP's algorithm regarding
decisions about concerns, we first describe a simple example
of the use of concerns. For the purposes of this example, we
consider only condition concerns.

5. An Example of the Use of Concerns

The simplest use of concerns addresses the problem of
specifying which conditions of a particular plan are important
enough invoke the planner's concern. For example, suppose
the user asks the following question:

(e) How do I print out the file named

george on the laser printer?

KIP is passed the goal of printing the file named george
on the laser printer. In this case, KIP's knowledge-base con-

223

rains a stored plan for the goal of printing a file, namely, the
USE-LSPR-COI~gclAND plan. KIP creates an instance of this
plan, which it calls USE-LSPR-COMMANDI. KIP must then
evaluate the USE-LSPR-COMMAND1 plan in order to determine
if the plan is appropriate for this particular planning situation.
This process entails the examination of those conditions likely
to cause failure of this plan.

In order to examine these conditions, KIP looks at the
stored concerns of the stored plan, USE-LSPR-COMMAND. For
each of the stored concerns of the stored plan, it creates a
dynamic concern in this individual plan, USE-LSPR-
COMMANDI. KIP examines the USE-LSPR-COM~'IAND plan,
and finds that two of its many conditions are cause for con-
cern:

(i) the printer has paper
(2) the printer is online

The most likely cause of plan failure involves (1), since the
paper runs out quite often. Therefore, (1) has a moderate de-
gree of concern, and (2) has a low degree of concern. KIP
considers the most likely concerns first. These concerns are
called stored condition concerns, because the failure of these
conditions" often causes the failure of USE-LSPR-COMMAND.
KIP therefore creates dynamic concerns regarding the paper in
the printer, and the printer being online.

KIP then must evaluate each of these dynamic concerns.
In this particular example, there is no explicit information
about the paper in the printer or the printer being online.
Therefore, KIP uses the default values for the concerns them-
selves. KIP's concern about paper in the printer is high
enough to warrant further consideration. Therefore, this con-
tern is temporarily overlooked. However, the concern about
the printer being online is disregarded. Its degree of concern
is low. It is not a very likely source of plan failure. Since
there are no other dynamic concerns for this particular plan,
KIP looks back at its overlooked concern. Since this is the
only concern, and the degree of concern is moderate, KIP de-
cides that this concern should not be elevated to a source of
plan failure. Rather, KIP decides to express this concern to
the user. KIP assumes that, except for this concern, the plan
will execute successfully. The plan is then suggested to the
user:

(E) UC: To print the file george on the
laser printer, type lpr -Plp
george. This plan will not work
if the printer is out of paper.

There are many other conditions of the USE-LSPR-
COMMAND plan that KIP might have considered. For exam-
ple, the condition that the file exists is an important condition
for the lpr command. However, KIP need not be concerned
about this condition in most planning situations, since it is un-
likely that this condition will cause plan failure. Hence such
conditions are not stored in the long term memory of KIP as
stored concerns.

6. KIP ' s Concern T rea tmen t Algor i thm

In the following section, we describe the part of KIP's
algorithm that decides what to do with concerns once they
have been evaluated. KIP's entire algorithm for determining
the concerns of a particular plan is fully described in
(Luria86) and CLuria87ab).

Once KIP has evaluated a particular dynamic concern of
a particular plan, it can proceed in one of three ways, depend-
ing on the degree of that particular concern. If the degree of
concern is low, KIP can choose to disregard the concern.
Disregard means that the concern is no longer considered at
all. KIP can u'y to modify other parts of the plan, and suggest
the plan to the user with no reference to this particular con-
tern.

If the degree of concern is high, KIP can choose to
elevate the concern to a source of plan failure. In this case,
KIP determines that it is very likely that the plan will fail.
KIP tries to fix this plan in order to change the value of this
condition, or tries to find another plan.

The most complex case is when the degree of concern is
moderate. In this case, KIP can choose to disregard the con-
cern, or elevate it to a source of plan failure. KIP can also
choose to overlook the concern.

KIP then evaluates each of the concerns of a particular
plan. It addresses all of the concerns which have been elevat-
ed to a a source of plan failure. KIP thus develops a complete
plan for the problem by satisfying conditions about which it
was concerned, and resolving goal conflicts about which it
was concerned. Once KIP has developed a complete plan, it is
once again faced with the need to deal with the overlooked
concerns. If the plan will work, except for the overlooked
concerns, KIP can again choose to disregard the concern. If
there are a number of overlooked concerns KIP may choose to
elevate one or more of these overlooked concerns to a source
of plan failure. The plan is then modified accordingly, or a
new plan is selected.

At this point, KIP can also choose to suggest an answer
to the user. Any, overlooked concerns are then expressed to
the user in the answer.

Furthermore, if the concern has been elevated to a
source of plan failure, and no other acceptable plan has been
found, KIP can choose to suggest the faulty plan to the user,
along with the potential caveats. The concern information is
based on default knowledge that assumed by KIP. Therefore,
the plans may work if these defaults are not correct even if
there are concerns in the particular planning situation. Also,
the user may decide that he is not concerned about particular
plan failure. For example, KIP may have mid the user about a
potential deleterious side effect. The user may decide that this
side effect is not that important if it occurs. This corresponds
to a human consultant, who, when faced with a problem he
cannot solve, gives the user a potentially faulty plan with the
explanation of the potential caveats. This is more informative

' 2 2 4

for the user than just saying that he doesn't know.

7. Advantages of Concerns

Thus, concerns are used by KIP to decide how the plan-
ning process should proceed and how to decide which answer
is expressed. In this section, we describe a few more exam-
pies of KIP's behavior In these examples, we also refer to a
new type of concern called a violated default concern. These
concerns are accessed by KIP whenever it realizes that a de-
fault has been violated. In this way, KIP can use knowledge
from default concerns when there is no knowledge that de-
faults have been violated. However, when planning in novel
situations, general violated default concerns are accessed.
Consider the following examples:
(f) How do I edit the file anyfile?
(g) How do I edit Jim's file jimfile?
(h) How do I edit the file groupfile

which is shared by my group?

One of KIP's main concerns in any of the possible edit-
ing plans is the write permission of the file. If the user tries to
edit a file on which he does not have write permission, the
plan will fall. In (f), this concern is inherited from the edit
plan with a relatively low degree of concern. According to the
default case, the file belongs to the user and he has write per-
mission on the file. Since there is no infortnation about the
write permission of the file, the default must be assumed and
this concern is disregarded. KIP would therefore return a plan
of

(F) To edit the file named anyfile, use
vi anyfile.

In (g) , KIP realizes that the default of the file belong-
ing to the user is violated. Due to this default violation, a
violated default concern of having write permission on the file
is created. This concern of write permission is therefore
evaluated by the default mechanism. Since there is a very
good chance that the plan will not work, this concern about
write permission of the file is elevated to a cause of plan
failure. Once a condition is a cause of plan failure, KIP must
deal with the plan failure. KIP c/n suggest a plan for chang-
ing the condition or try some new plan. In this case, since
there is no way to change the write permission of J im's file,
another plan is chosen.

(G) In order to edit Jim's file, copy the
file to your directory and then use vi
filename to edit the file.

In (h) , KIP also realizes that the default of the file be-
longing to the user has been violated. However, the default
value for write permission of this file is different because the
file belongs to the user's group. There is a good chance that
the user does have write permission on the file. However,
since there still is some chance that he does not have group
write permission, there is still some concern about the condi-
tion. In this case, since the degree of concern is moderate,
KIP can choose to overlook the concern, and suggest the plan

to the user. However, the concern is sdli high enough that the
answer expression mechanism (Luria 82ab), might choose to
express the concern to the user. The answer to (h) would
therefore be:

(H) To edit the file groupfile, use vi
groupfile. However, it might not work,
if you don't have write permission on

this particular group file.

KIP can therefore use concerns to select a potential plan
which has a moderate likelihood of success. KIP can express
the plan and its reservations regarding the plan to the user. By
temporarily overlooking a concern, KIP may search for other
plan failures of a particular plan or other potential plans. KIP
can accomplish this without completely disregarding a con-
cern or elevating the concern to a source of certain plan
failure.

8. Implementation and Representation

KIP is implemented in Zetalisp on a Symbolics 3670.
Concepts are represented in the KODIAK knowledge represen-
tation language (Wilensky84b). In particular, knowledge
about UNIX commands has been organized in complex hierar-
chies using multiple inheritance. Therefore, when searching
for stored default concerns of a particular plan that uses a par-
ticular UNIX command, KIP must search through a hierarchy
of these commands. This is also true when looking for default
violations. KIP searches up the hierarchy, and retrieves the
stored concerns or default violations in this hierarchy.

Stored condition concerns are presently implemented by
creating a different CONCERN concept for each concern. Also,
a HAS-CONCER~ relation is added between each concern and
those conditions which are cause for concern. Degrees of con-
cern are implemented by creating a HAS-CONCERN-LEVEL re-
lation between the particular concern and the degree of con-
cern. Degrees of concerns are presently implemented as
numbers from one to ten. Dynamic condition concerns are
implemented as instances of these stored concerns.

Stored goal conflict concerns are presendy implemented
by creating a different CONCERN concept for each concern.
Also, a 3-way HAS-CONCERN relation is created between each
concern, the conflicting effect and the threatened interest or
goal which are cause for concern.

Defaults are implemented in the current version of KIP
by attaching default values of conditions to the plans them-
selves. Context-dependent defaults are implemented by ex-
ploiting the concretion mechanism of UC, which tries to find
the most specific concept in the hierarchy. Therefore, since
KIP retrieves the most specific plan in the knowledge-base, it
automatically retrieves the most specific defaults.

Violated default concerns are implemented by creating
a different VIOLATED-DEFAULT-CONCERN concept for each
violated default concern. A HAS-VIOLATED-DEFAULT-

225

CONCERN relation is added between the concern and the
stored default which is violated. Therefore, when KIP has
found the default that has been violated, it looks for the violat-
ed default concerns that are referenced by this default.

Particular concerns have been entered into the database
of UNIX plans through a KODIAK knowledge representation
acquisition language called DEFABS. These concerns are all
based on my experience using UNIX and on discussions I
have had with other UNIX users in our research group. We
are currently investigating a way to enter this concern infor-
mation, using the UCTeacher program (Martin, 1985) a natur-
al language knowledge acquisition system. Eventually, KIP
may incorporate a learning component that would allow KIP
to detect the frequency of certain plan failures and to store
these as concerns.

9. Previous Research

9.1. Planning

Early planners such as STRIPS (Fikes71) did not address
Goal Conflict Detection as a separate problem. Conflicts were
detected by the resolution theorem prover, The theorem
prover compares a small set of add or delete formulas, and a
small set of formulas that described the present state and the
desired state of the world. If an action deleted the precondi-
tion of another action in the plan sequence, backtracking al-
lowed the planner to determine another ordering of the plan
steps. ABSTRIPS (Sacerdod74), modified STRIPS to avoid these
interacting subgoal problems by solving goals in a hierarchical
fashion. Conflicts in ABSTRIPS were also noticed by the
theorem prover. However, since the most important parts of
the plan were solved first, they occurred less often and fewer
paths were explored. Thus, both these programs identified a
plan failure as a failed path in the search tree. Therefore, no
information about the nature of a failed path could easily be
extracted and expressed to a user of the planning system.

Sacerdoti's NOAH (Sacerdoti77) program separated the
detection of conflicts from the rest of the planning process us-
ing his Resolve-Conflicts critic. This critic detects one partic-
ular kind of conflict, in which one action deletes the precondi-
tion of another action. We refer to this type of conflict as a
deleted precondition plan conflict. The critic resolves the
conflict by committing to an ordering of steps in which the ac-
tion which requires the precondition is executed first. The
ordering of steps is usually possible since NOAH uses a least
commitment strategy for plan step ordering. By separating the
detection of goal conflicts from the rest of the planning pro-
cess, NOAH needs to search fewer plan paths than earlier
planners.

In order to detect conflicts NOAH computes a TOME, a
table of multiple effects, each time a new action is added to
the plan. This table includes all preconditions which are as-
serted or denied by more than one step in the current plan.
Conflicts are recognized when a precondition for one step is
denied in another step. In order to construct this table, NOAH
must enter all the effects and preconditions for each of the
steps in the plan every time a new step is added to the plan.

NOAH'S separation of the Goal Conflict Detection Phase
from the rest of the planning process was an important addi-
tion to planning research. However, NOAH'S approach is
problematic in a number of ways. First, it only detects
conflicts that occur as a result of deleted preconditions. Other
conflicts, such as conflicts between effects of a plan and other
planner goals, cannot be detected using this method. Most of
the examples in this paper are part of this category of conflict.
If many planner goals were included in a TOME, as would be
necessary in real world planning situations, this method would
be computationally inefficient, Therefore, the same problems
that were discussed earlier in regard to exhaustive search also
apply to this method. A TOME is (1) computationally
inefficient, (2) not cognitively valid, (3) unable to deal with
default knowledge, and (4) assumes that all user goals are
known, i.e. would have to evaluate every planner interest in a
particular planning situation.

Furthermore, information from a critic which is derived
from a TOME is very difficult to express. The only thing that
NOAH knows regarding a potential plan failure is that one
step in a plan will delete the precondition of another step in
the plan. A concern, on the other hand is very easy express to
the user. Concerns connect the various objects that are effect-
ed by a plan failure. In addition, as in any part of the KO-
DIAK knowledge base, additional expression information can
be attached to the concern itself. This difference between a
concern and a TOME is another example of the advantage of
knowledge-rich declarative representations over procedural
representation of knowledge.

9.2. Expression

As discussed earlier, work in intelligent user
interfaces(Allen84, Appelt85, McDonald84) has primarily
focused on decisions regarding what aspects of a plan should
be expressed to the user. Expressing concerns about potential
plan failures is a natural extension to these other user inter-
faces.

The texture of this work is very similar to work done
earlier by the author. In earlier work on question answering in
a text understanding system (Luria82ab), question-answering
was divided into two separate processes. According to earlier
work one question-answering process determined what was
contained in the answer and how that information was ex-
pressed to the user. The first of our two processes determined
which part of a causal chain was relevant for a particular
answer. The second process determined which part of that
causal chain should be generated into a natural language
response for the user. This resulted in one relatively simple
process that found that correct response, and another more
general expression process termed answer expression.

In the present work, the process of expressing potential
caveats in a plan was not divided into two new processes, In-
stead, this process is divided into the preexisting planning
component, and a more general expression mechanism. In so
doing, we have improved the ability of the planning com-
ponent to deal with potential plan failures.

226

10. References

Allen, J. 1984. Recognizing Intentions From Natural
Language Utterances. In Michael Brady (ed.) Computa-
tional Models of Discourse Cambridge, Mass; MIT
Press.

Appelt, D. 1982. Planning Natural Utterances to Satisfy Mul-
tiple Goals. SRI International AI Center Technical Note
259.

Chin, D. N. 1987. "KNOME: Modeling What the User Knows
in UC" to appear in User Modelling in Dialog Systems,
Springer-Verlag series on Symbolic Computation.

Ernst, G. and Newell, A. 1969. GPS: A Case Study in Gen-
erality and Problem Solving. New York: Academic
Press.

Fikes, R. E., and Nilsson, N. J. STRIPS: A new approach to
the application of theorem proving to problem solving.
Artificial Intelligence, Vol. 2, No. 3-4, pp. 189-208.
1971.

Grice, H. P. Logic and Conversation. In P. Cole (ed.) Syntax
and Semantics, Vol. 3: Speech Acts, New York: Academ-
ic Press, pp. 41-58.

Luria, M. "Question Answering: Two Separate Processes"
Proceedings of the 4th National Conference of the Cog-
nitive Science Society, Ann Arbor, MI August, 1982.

Luria, M. "Dividing up the Question Answering Process"
Proceedings of the National Conference on Artificial In-
telligence, Pittsburgh, PA. August, 1982.

Luria, M. "Commonsense Planning in a Consultant System"
Proceedings of 9th Conference of the IEEE on Systems,
Man, and Cybernetics, Tuscon, AZ. November, 1985.

Luria, M. "Concerns: How to Detect Plan Failures." Proceed-
ings of the Third Annual Conference on Theoretical ls-
sues in Conceptual Information Processing. Philadel-
phia, PA. August, 1986.

Luria, M. "Concerns: A Means of Identifying Potential Plan
Failures." Proceedings of the Third IEEE Conference on
Artificial Intelligence Applications. Orlando, Florida.
February, 1987.

Luria, M. "Goal Conflict Concerns" Proceedings of the Tenth
International Joint Conference on Artificial Inteligence.
Milan, Italy. August, 1987.

McDonald, D. 1984. Natural Language Generation as a com-
putational problem. In Michael Brady (ed.) Computa-
tional Models of Discourse Cambridge, Mass; MIT
Press.

Martin, J., 1985. Knowledge Acquisition Through Natural
Language Dialogue, Proceedings of the 2nd Conference
on Artificial Intelligence Applications, Miami, Florida,
1985.

Mayfield, J., 1986. When to Keep Thinking, Proceedings of
the Third Annual Conference on Theoretical Issues in
Conceptual Information Processing. Philadelphia, PA.
1986.

Newell, A., and Simon, H. A. Human Problem Solving.
Prentice-Hall, Englewood Cliffs, N. J. 1972.

Sacerdoti, E., Planning in a Hierarchy of Abstraction Spaces,
Artificial lnteUigence Vol. 5, pp. 115-135, 1974.

Sacerdoti E. A Structure for Plans and Behavior Elsevier
North-Holland, New York, N.Y. 1977.

Wilensky, R. Planning and Understanding: A Computational
Approach to Human Reasoning. Addison-Wesley, Read-
ing, Mass., 1983.

Wilensky, R., "KODIAK: A Knowledge Representation
Language". Proceedings of the 6th National Conference
of the Cognitive Science Society, Boulder, CO, June
1984.

Wilensky, R., Arens, Y., and Chin, D. Talking to Unix in En-
glish: An Overview of UC. Communications of the As-
sociation for Computing Machinery, June, 1984.

Wilensky, R., et. al., UC - A Progress Report. University of
California, Berkeley, Electronic Research Laboratory
Memorandum No. UCB/CSD 87/303. 1986.

Sponsored by the Defense Advanced Research Projects
Agency (DoD), Arpa Order No. 4871, monitored by Space
and Naval Warfare Systems Command under Contract
N00039-84-C-0089.

227

