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Many current interfaces for natural language 

represent syntactic and semantic information in the 

form of directed graphs where attributes correspond 

to vectors and values to nodes. There is a simple 

correspondence between such graphs and the matrix 

notation linguists traditionally use for feature sets. 
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Figure I 

The standard operation for working with such graphs 

is unification. The unification operation succedes only 

on a pair of compatible graphs, and its result is a 

graph containing the information in both 

contributors. When a parser applies a syntactic rule, it 

unifies selected features of input constituents to 

check constraints and to budd a representat=on for the 

output constituent. 

Problem: proliferation of copies 
When words are combined to form phrases, 

unification is not applied to lexlcat representations 

directly because it would result in the lexicon being 

changed. When a word is encountered in a text, a 

copy is made of its entry, and unification is applied to 

the copied graph, not the original one. In fact, 

unification in a typical parser is always preceded by a 

copying operation. Because of nondeterminism in 

parsing, it is, in general, necessary to preserve every 

representation that gets built. The same graph may 

be needed again when the parser comes back to 

pursue some yet unexplored option. Our experience 

suggests that the amount of computational effort 

that goes into producing these copies is much greater 

than the cost of unification itself. It accounts for a 

significant amount of the total parsing time. 

In a sense, most of the copying effort is wasted. 

Unifications that fail typically fail for a simple reason. 

If it were known in advance what aspects of structures 

are relevant in a particular case, some effort could be 

saved by first considering only the crucial features of 

the input. 

Solution: structure sharing 

This paper lays out one strategy that has turned out to 

be very useful in eliminating much of the wasted 

effort. Our version of the basic idea is due to Martin 

Kay. It has been implemented in slightly different 

ways by Kay in Interlisp-O and by Lauri Karttunen in 

Zeta Lisp. The basic idea is to minimize copying by 

allowing graphs share common parts of their 

structure. 

This version of structure sharing is based on four 

related ideas: 
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• Binary trees as a storage device for feature 

graphs 

• "Lazy" copying 

• Relative indexing of nodes in the tree 

• Strategy for keeping storage trees as balanced 

as possible 

Binary trees 

Our structure-sharing scheme depends on 

represented feature sets as binary trees. A tree 

consists of cells that have a content field and two 

pointers which, if not empty, point to a left and a 

right cell respectively. For example, the content of the 

feature set and the corresponding directed graph in 

Figure 1 can be distributed over the cells of a binary 

tree in the following way. 

Figure 2 

The index of the top node is 1; the two cells below 

have indices 2 and 3. In general, a node whose index 

is n may be the parent of ceils indexed 2n and 2n + 1. 

Each cell contains either an atomic value or a set of 

pairs that associate attr ibute names with indices of 

cells where their value is stored. The assignment of 

vaiues to storage cells is arbitrary; =t doesn't matter 

which cell stores which value. Here, cell 1 conta,ns the 

information that the value of the at"tribute cat is 

found in ceil 2 and that of agr in cell 3. This is a slight 

simplification. As we shall shortly see, when the value 

in a cell involves a reference to another cell, that 

reference is encoded as a relative index. 

The method of locating the cell that corresponds to a 

given index takes advantage of the fact that the tree 

branches in a binary fashion. The path to a node can 

be read of f  from the binary representation of its index 

by starting after the first 1 in this number and taking 0 

to be a signal for a left turn and 1 as a mark for a right 

turn. For example, starting at node 1, node S is 

reached by first going down a left branch and then a 

right branch. This sequence of turns corresponds to 

the digits 01. Prefixed with 1, this is the same as the 

binary representation of 5, namely 101. The same 

holds for all indices. Thus the path to node 9 (binary 

1001) would be LEFT-LEFT-RIGHT as signalled by the 

last three digits fol lowing the initial 1 in the binary 

numeral (see Figure 6). 

Lazy copying 

The most important advantage that the scheme 

minimizes the amount of copying that has to be done. 

In general, when a graph is copied, we duplicate only 

The operation that replaces copying in this scheme 

starts by duplicating the topmost node of the tree 

that contains it. The rest of the structure remains the 

same. It is Other nodes are modified only ~f and when 

destructive changes are about to happen. For 

example, assume that we need another copy of the 

graph stored in the tree in Figure 2. This can be 

obtained by producing a tree which has a dif ferent 

root node, but shares the rest of the structure with its 

original. In order to keep track of which tree actually 

owns a given node, each node tames a numeral tag 

that indicates its parentage. The relationship 

between the original tree (generation 0) and its copy 

(generation 1) is illustrated in Figure 3 where the 

generation is separated from the index of a node by a 

colon. 

1:0 1:1 

person 4 
2:0 I n p l  3:0 number S 

4:0 S:O 

Figure 3 
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If the node that we want to copy is not the topmost 

node of a tree, we need to duplicate the nodes along 

the branch leading to it. 

When a tree headed by the copied node has to be 

changed, we use the generation tags to minimize the 

creation of new structure. In general, all and only the 

nodes on the branch that lead to the site of a 

destructive change or addition need to belong to the 

same generation as the top node of the tree. The rest 

of the structure can consist of old nodes. For example, 

suppose we add a new feature, say [gender: femJ to 

the value of agr in Figure 3 to yield the feature set in 

Figure 4. 

p 
at: np 11  Fperson: 3rd 

Jnumber: sg agr: 
gender: fern 

Figure 4 

Furthermore, suppose that we want the change to 

affect only the copy but not the original feature set. 

In terms of the trees that we have constructed for the 

example in Figure 3, this involves adding one new cell 

to the copied structure to hold the value fem, and 

changing the content of cell 3 by adding the new 

feature to it. 

The modified copy and its relation to the original is 

shown in Figure S. Note that one half of the structure 

is shared. The copy contains only three new nodes. 

2 : 0 ~  4 
/ ~ J...~ml~t ~ j number 5 

/ " ~  gender 6 

4:0,1~"] S:oF'~ f 
6:1 ~m'--~, 

Figure 5 

From the point of view of a process that only needs to 

find or print out the value of particular features, it 

makes no difference that the nodes containing the 

values belong to several ,trees as long as there is no 

confusion about the structure. 

Relative addressing 

Accessing an arbitrary cell in a binary tree consumes 

time in proportion to the logarithm of the size of the 

structure, assuming that cells are reached by starting 

at the top node and using the index of the target 

node as an address. Another method is to use relative 

addressing. Relative addresses encode the shortest 

path between two nodes in the tree regardless of 

where they are are. For example, if we are at node 9 

in Figure 6.a below and need to reach node 11, it is 

easy to see that it is not necessary to go all the way up 

to node 1 and then partially retrace the same path in 

looking up node 11. instead, one can stop going 

upward at the lowest common ancestor, node 2., of 

nodes 9 and 11 and go down from there. 

a. 

Figure 6 

With respect to node 2, node 11 is in the same 

position as 7 is with respect 1. Thus the retative 

address of cell 11 counted from 9 is 2,7-- ' two nodes 
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up, then down as if going to node 7". In general, 

relative addresses are of the form <up,down > where 

< u p >  is the number of links to the lowest common 

ancestor of the origin and < d o w n >  is the relative 

index of the target node with respect to it. 

Sometimes we can just go up or down on the same 

branch; for example, the relative address of cell 10 

seen from node 2 is simply 0,6; the path from 8 or 9 to 

4is 1,1. 

As one might expect, it is easy to see these 

relationships if we think of node indices in their 

binary representation (see Figure 6.b). The lowest 

common ancestor 2 (binary 10) is designated by the 

longest common initial substring of 9 (binary 1001) 

and 11 (binary 1011). The relative index of 11, with 

respect to, 7 (binary 111), is the rest of its index with 1 

prefixed to the front. 

In terms of number of links traversed, relative 

addresses have no statistical advantage over the 

simpler method of always starting from the top. 

However, they have one important property that is 

essential for our purposes: relative addresses remain 

valid even when trees are embedded ~n other trees; 

absolute indices would have to be recalculated. 

Figure 7 is a recoding of Figure S using relative 

addresses. 

2:0 ~ 3.01 ~ o ~ , ~ 1 ~  I ~: l l  person1,4 
/ \  I I number 1,s 

4:01 ira I 5:01 sg I 6:1 

Figure 7 

Keeping t rees balanced 
When two feature matrices are unified, the binary 

trees corresponding to them have to be combined to 

form a single tree. New attributes are added to some 

of the nodes; other nodes become "pointer nodes," 
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i.e., their only content is the relative address of some 

other node where the real content is stored. As long 

as we keep adding nodes to one tree, it is a simple 

matter to keep the tree maximally balanced. At any 

given time, only the growing fringe of the tree can be 

incompletely filled. When two trees need to be 

combined, it would, of course, be possible to add all 

the cells from one tree in a balanced fashion to the 

other one but that would defeat the very purpose of 

using binary trees because it would mean having to 

copy almost all of the structure. The only alternative 

is to embed one of the trees in the other one. The 

resulting tree will not be a balanced one; some of the 

branches are much longer than others. Consequently, 

the average time needed to look up a value ~s bound 

to be worse than in a balanced tree. 

For example, suppose that we want to unify a copy of 

the feature set in Figure lb, represented as in Figure 2 

but with relative addressing, with a copy of the 

feature set in Figure 8. 

a. agr: [gender: fem]] 

l:01agr0,2 J 

gender 2:ol 1,31 3:o 

Figure 8 

a. [-cat: np 

I person: 3rd I I  
Lagr: I-number: sg-~ 

Lgender : fem~J 

I cat0,2 l 
b. 1"1 aqr0,3 

Z . 0 [ ~ ~ ~ ~ ~  ~ n  1,4 
• ~1_:.~ I number 1,5 

1:11 agrO,2 I 

2:11 --> 2,1 I 3:0 

Figure 9 



Although the feature set in Figure 9.a is the same as 

the one represented by the right half of Figure 7, the 

structure in Figure 9.b is more complicated because it 

is derived by unifying copies of two separate trees, 

not by simply adding more features to a tree, as in 

Figure 7. In 9b,  a copy of 8.b has been embedded as 

node 6 of the host tree. The original indices of both 

trees remain unchanged. Because all the addresses 

are relative; no harm comes from the fact that indices 

in the embedded tree no longer correspond to the 

true location of the nodes. Absolute indices are not 

used as addresses because they change when a tree is 

embedded. The symbol - >  in node 2 of the lower tree 

indicates that the original content of this 

node--<jender 1,3~has been replaced by the address 

of the cell that it was unified with, namely cell 3 in the 

host tree. 

In the case at hand, it matters very little which of the 

two trees becomes the host for the other. The 

resulting tree is about as much out of balance either 

way. However, when a sequence of unifications is 

~erformed, differences can be very significant. For 

example, if A, B, and C are unified with one another, ~t 

can make a great deal of difference, which of the two 

alternative shapes in Figure 10 is produced as the final 
result. 

A A 

.., ¢ ~ ~ 
,& 

Figure 10 

When a choice has to be made as to which of the two 

• ,rees to embed in the other, it is important to 

minimize the length of the longest path in the 

resulting tree. To do this at all efficiently requires 

addtitional infornation to be stored with each node. 

According to one simple scheme, this is simply the 

length of the shortest path from the node down to a 

node with a free left or right pointer. Using this, it is a 

simple matter to find the shallowest place in a tree at 

which to embed another one. If the length of the 

longer path is also stored, it is also easy to determine 

which choice of host will give rise to the shallowest 

combined tree. 

Another problem which needs careful attention 

concerns generation markers. If a pair of trees to be 

unified have independent histories, their generation 

markers will presumably be incommensurable and 

those of an embedded tree will therfore not be valide 

in the host. Various solutions are possible for this 

problem. The most straightforward is relate the 

histories of all trees at least to the extent of drawing 

generation markers from a global pool. In Lisp, for 

example, the simplest thing is to let them be CONS 

cells. 

Conc lus ion  

We will conclude by comparing our method of 

structure sharing with two others that we know of: R. 

Cohen's immutable arrays and the idea discussed in 

Fernando Pereira's paper at this meeting. The three 

alternatives involve different trade-offs along the 

space/time continuum. The choice between them wdl 

depend on the particular application they are 

intended for. No statistics on parsing are avadable yet 

but we hope to have some in the final version. 
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