TAG's as a Grammatical Formalism for Generation

David D. McDoanld and James D. Pustejovsiky
Department of Computer and Information Science University of Manachuserts at Amherst

1. Abstract

Tree Adjoining Grammars, or "TAG's", (Joshi, Levy \& Takahashi 1975; Joahi 1983; Kroch \& Joshi 1985) were developed as an alternative to the reandard syntactic formalisms that are used in theoretical analyses of language. They are attractive because they may provide just the aspects of context sensitive expressive power that actually appear in buman languages while otherwise remaining contert free.

This paper describes how we have applied the theory of Tree Adjoining Grammars to natural language generation. We have been atrracted to TAG's because their central operation-the extension of an "initial" phrase structure tree through the inclusion, at very specifically cosstrained locations, of one or more "auxiliary" trees-corresponds directly to certain central operations of our own, performance-oriented theory.

We begin by briefly describing TAG's as a formalism for phrase structure in a comperence theory, and summarize the point in the theory of TAG's that are germaine to our own theory. We then consider generally the position of a grammar within the generation process, incroducing our use of TAG's through a contrast with how others have used systemic grammars. This takes us to the core results of our paper: using examples from our research with well-written texts from newspapern, we walk through cur TAG inspired treatments ci raising and wh-movement, and show the correapondence of the TAG "adjunction" operation and our "attachment" process.

In the final section we discuss extensions to the theory, motivated by the way we use the operation corresponding to TAG's adjunction in performance. This wuggents that the competence theory of TAG's can be profitably projected to structures at the morphological level as well as the preseat syntactic level.

2. Tree Adfunction Grammara

The theoretical apparatus of a TAG consists of a primitively defined set of "elementary" phrase structure trees, a "linking" relation that can be used to define dependency relations between two nodes within an elementary tree, and an "adjunction" operation that combines trees under specifiable constraints. The elementary trees are divided into two sets: initial and auxiliary. Initial trees have only terminals at their leaves. Auxiliary trees are distinguished by having one non-terminal among their leaves; the category of this node must be the same as the eategory of the rook. All elemental trees are "minimal" in the sense that they do nor recurse on any non-terminal.

A node N1 in an elementary tree may be linked (co-indexed) to a second node $N 2$ in the same tree provided N1 c-commands N2. Linting is used to indicate grammatically defined dependencies between nodes such as zubcategorization relationships or filler-gap dependencies. Links are preserved (though "stretched our") when their tree is extended through adjunction; this is the mechanism TAG's use to represent unbounded dependencies.

Sentence derivations start with an initial tree, and continue via the adjunction of an arbitrary number of auxiliary treen. To adjoin an auxiliary tree A with root category X to a initial (or derived) tree T , we firs select some node of eategory X within T to be the point at which the adjunction is to occur. Then (1) the subtree of T dominated by that instance of X (call it X) is removed from T, (2) the auxiliary tree A is knit into T at the position where X had been located, and (3) the subtree dominated by X^{*} is tnit into A to replace the recoad occurence of the eategory X at T 's froatier. The two trees have now been merged by "splicing" A into T, displacing the subtree of T at the point of the adjuaction to the frontier of A.

For example we could take the initial tree:
[${ }^{\prime}$, Who does [s John like e_{i}]]
(the subscripe " i " indicates that the "who" and the trace " e " are linked) and adjoin to it the auxiliary tree:
[s Bill believer S]
to produce the derived tree:
[s- Who does [s Bill believe [s John likes ai]]]

Adjunction may be "constrained". The grammar writer may specify which specific trees may be adjoined to a given node in an elementary tree; if no epecification is given the defauit is that there is no constraint and that any auxiliary tree may be adjoined to the aode.

2.1 Key fentares of the theory of TAG":

A TAG spedities sarface strocture. There is no notion of derivation from deep structure in the theory of TAC's-the primitive trees are not transformed or atherwise changed once they are introduced into a text, only combined with other primitive trees. As Kroch and Joshi point out, this means that a TAG is incomplete as an account of the structure of a natural language, e.g. a TAG grammar will contain both an active and a passive form of the same verbal subcategorization pattern, without an theory-mediated description of the very close relationship between them.

To our minds this is by no means a deficit. The procedural machinery that generative grammars have traditionally carried with them to characterize relations like that of active to passive has oniy gotten in the way of employing those characterizations in processing models of generation. This is because a generation model, like any theory of performance, has a procedural structure of its own and cannot coexist with an incompatible one, at least not while still operating efficiently or while retaining a simple mapping from its actual machine to the virtual machine that its authon put forward as their account of psycholinguistic data.

Our own generator uses surface structure as its only explicitly represented linguistic level. Thus grammatical formalisms that dwell on the rules governing surface form are more useful to us than those that hide those rules in a deep to surface transformational process.

A TAG involves the manipalatioa of very samall elementary stroctores. This is because of the stipulation that elementary trees may not include recursive nodes. It implies that the sentences one sees in everyday usage, e.g. newpaper texts, are the result of many sucessive adjunctions. This melds nicely with a move that we have made in recent years to view the conceptual representation from which generation proceeds as consisting of a heap of very small, redundantly related information units that have been deliberately selected by a text planning process from the total state of the knowledge base at the time of utrerance; each such unit will correspond in the final text to a head lexical item plus selected thematic arguments-a linguistic entity that is easily projected onto the elementary trees of a TAG.

TAG theory inclades oaly one operation, edfanction, and otherwive makes ao chnages to the elecmentary trees that go inte a text. This comports well with the indelibility stipulation in our model of generation, since velected text fragments can be used directly as specified by the grammar without the need for any later transformation. The composition options delimited by the constraints on
adjunction given with a TAG define a space of alternative text forms which can correspond directly in generation to alternative conceptual relations among information units, alternatives in rhetorical intent, and alternatives in prose style.

3. Adapting TAG's to Generation

The mapping from TAG's as a formalism for competence theories of language to our formalism for generation is strikingly direcr. As we described in Section 5 their adjunction operation corresponds to our attachment process; their constraints on adjunction correspond to our attachment points; their surface structure trees correspond to our surface structure trees. ${ }^{1}$ We further bypothesize that two quite strong correspondence claims can be made, though considerably more experimentation and theorizing will bave to be done with both formalisms before these claims can be confirmed.

1. The primitive information units in realization specifications can be realized exclusively as one or another elementary tree as defined by a suitable TAG, i.e. linguistic criteria can be used in derermining the proper modularity of the conceptual structure. ${ }^{2}$
2. Conversely, for any rextual relationship which our generator would derive by the attachment of muitiple information units into a single package, there is a corresponding rule of adjunction. Since we use attachment in the realization of nominal compounds like "oil tanker", this has the force of extending the domain of TAG analyses into morphology. (See section 7).

4. The Place of Grammar in a Theory of Generation

To understand why we are looking at TAG's rather than some other formalism, one muse firs undertand the role of grammar within our processing model. The following is a brief summary of the model; a more complete description can be found in McDonald \& Pustejovsty [1985b].

[^0]We have always had two complementary goals in our research: on the one hand our generation program has had to be of practical utility to the knowedge based expert systems that use it as part of a natural language interface. This means that architecturally our generator has always been designed to produce text from conceprual specifications, "plans", developed by another program and consequendly has had to be seasitive to the limitations and varying approaches of the present state of the art in conceptual representation.

At the same time, we want the architecture of the virtual machine that we abstract out of our program to be effective as a source of prycholinguistic bypothesea about the actual generation process that humans use; it should, for example, provide the basis for predictive accounts of human speech error behavior and apparent planning limitations. To achieve this, we have restricted ourselves to a highly constrained set of representations and operations, and have adopted strong and suggestive stipulations on our design such as high locality, information encapsulation, oaline quasi-realtime runtime performance, and indelibility. ${ }^{3}$ This restricts us as programmers, but disciplines us as theorists.

We see the process of generation as involviag three temporally intermingled activities: (1) determining what goals the utterance is to achieve, (2) planning what information content and thetorical force will best meer those goals given the contert, and (3) realizing the specified information and rhetorical intent as a grammatical text. Our linguistic componert (henceforth LC), the Zetalisp program MUMBLE, bandles the third of these activition, taking a realization specification"4 as input, and producing a stream of morphologically specialized words as output.

As described in [McDonald 1984], LC is a "description-directed" process: it uses the structure of the realization specification it is given, plus the syntactic surface structure of the rext in progress (which it ertends incrementally as the specification is realized) to directly control its actions, interpreting them as though they were sequential computer programs. This rechnique imposes strong demands on the descriptive formalism used for

[^1]representing surface structure. For example, nodes and category labels now designate actions the generator is to take (e.g. imposing scoping relations or constraining embedded decisions) and dictate the inclusion of function words and morphological specializations.

4.1 Unbundling Systemic Grammars

Of the established linguistic formalisms, systemic grammar [Halliday 1976] has always been the most important to Al researchers on generation. Two of the mox important generation systems that have been developed, PROTEUS [Davey 1974] and NIGEL [Mann \& Matthiessen 1983], use systemic grammar, and others, including ourselves, have been arroagly influenced by it. The reasons for this enthusiasm are central to the special concerns of generation. Systemic grammars employ a functional vocabulary: they emphasize the uses to which language can be put-how languages achieve their speakers ${ }^{-}$ goals-rather than its formal structure. Since the generation process begins with goals, unlike the comprehension process which begins with structure, this orientation makes systemic grammars more immediakely useful than, for example, eransformational generative grammars or even procedurally oriented AI formalisms for language such as ATN's.

The generation researcher's primary question is why use one construction rather than another-active instead of passive, "the" instead of "a". The principle device of a sysemic grammar, the "choice system", supports this question by highlighting how the constructions of the language are grouped into sets of altematives. Choice systems proude an anchoring point for the rules of a theory of language use since it is natural to associate the various semantic, discourse, or rhetorical criteria that bear on the selection of a given construction or feature with the choice system to which the construction belongs, thus providing the basis of a decision-procedure for selecting from its listed alternatives; the NIGEI system does precisely this in its "chooser" procedures.

In our formaliom we make use of the same informarion as a systemic grammar captures, however we hove choosen to bundle is quite differently. The underlying reason for this is that our concern for psycholinguistic modeling and efficient processing takes precedence in our design decisions about how the facts of language and language use should be represeated in a generator. It is thus instructive to look at the different kinds of linguistic information that a network of choice syrems carry. In our system we distribute these to separate computational devices.

- Dependencies among structural features: A generator must respect the constraints that dependencies impose and appreciate the impact they have on its realization options: for example that some subordinate clauses can aor express tense or modality while main clauses are required to; or that a proaominal direct object forces particle movemeat while a lexical objects leaves it optional.
- Unage criteria. The decision procedures associated with each choice syztem are not a part of the grammar per se, although they are naturally associated with it and organized by it. Also most systemic grammars include very abstract features auch as "generic reference" or "completed action", which cross-correlate the language's surface features, and thus are more controllers of why a construct is used rather than constructs themselves.
- Coordinated structural alternatives. A sentence may be either active or passive, either a question or a statement. By grouping these alternatives into systems and using these systems exclusively when constructing a text, one is guaranteed not to combine inconsisteat structural features.
o Efficient ordering of choices. The network that connects choice systems provides a natural path between decisions, which if followed strictly guarentees that a choice will not be made unless it is required, and that it will not be made before any of the choices that it is itself dependent upon, insuring that it can be made indelibly.
- Typology of surface structure. Almost by accident (since its specification is distributed throughout all of the sytuems implicity), the grammar determines the pattern of dominance and constituency relationships of the text. While not a principle of the theory, the trees of clauses. NPs, etc. in syxtemic grammars tend to be shallow and broad.
We believe, but have nox yet exablished, that equivalence transformations can be defined that would take a sytemic grammar as a specification to construct the alternative devices that we use in our generator (or augment devices that derive from other sources, e.g. a TAG) by decomposing the information in the sysemic grammar along the lines just listed and redistributing it.

5. Example Analyses

One of the task domains we are currently developing involves newspaper reports of current events. We are "reverse engineering" leading paragraphs from actual newipaper articles to produce narrow but complex conceprual representation, and then designing realization specifications-plans-chat will lead our LC to reconstruct the original text or motivated variations on it. We have adopted this domain because the newz reporting task, with its requirement of communicating what is new and significant in an event as well as the event itself, appears to impose exceptionally rich constraints on the selection of what conceptual information to report and on what syntactic constructions to use in reporting it (see discussion in Clippinger \& McDoandd [1983]. We expect to find out how much complexity a realization specification requires in order to motivate auch carefully composed texts; this will later guide us in designing a text planner with wifficient capabilities to construct such specifications on its own.

Our examples are drawn from the text fragment below (Associated Press, 12/23/84); the realization specification we use to reproduce the text follows.

"LONDON - Two ail tankers, the Norwegiapowned
Thorshaver and a Uberien-rogisterod vassel, were roported to have been hit by missilee Friday in the Gulf.
The Thorshever wam ablaze and under tow to Betrein, officiels in Osio said. Loyds reportod the two crowmen were injured on the Liberien shia."
(theday's-ovemo-ththe-Gili-tanker-war
aventerequir-centicator-as-w-scurce
(mainevert \#"<same-vem-type-varying-pationt \#<nt-by-missiles Thorshavel> \#〈m-by-masstes Lbertan>> urneval \#<number-ot-shippoht 2> xdentify-tho-ahips)
(particulare \#<damago-report Thorshaver Osto-fictale> *<damago-roport Lbeerlan Lloyds> II Flgare 1

This realization specification represents the structured object which gives the toplevel plan for this utterance. Symbols preceded by colons indicate particular features of the utterance. The two expressions in parentheses are the content items of the specification and are restricted to appear in the utterance in that order. The firs symbol in each expression is a labet indicating the function of that item within the plan; embedded items appearing in angle brackets are information units from the current-events knowledge base.

Obviously this plan must be considerably refined before it could serve as a proximal source for the text; that is why we point out that it is a "roplevel" plan. It is a specification for the general outline of the utterance which muxt be fleshed out by recursive planning once its realization has begun and the LC can aupply a linguistic context to further consurain the choices for the units and the rhetorical features.

For present purposea, the key fact to appreciate about this realization specification is how differeat it is in form from the surface arructure. One cannor produce the ited text simply by traversing and "reading out" the elements of the specification as though one were doing direar production. Structural rearrangements are required, and these must be done under the control of constraints which can only be stated in linguistic vocabulary with terms like "subject" or "raising".

The first unit in the apecification, *<sameoven-ype \rightarrow, is a reiation over two other units. It indicates that a commonality berween the two has been noticed and deemed significant in the undertying representation of the event. The present LC always realizes such rehtions by merging the realizations of the two uniss. If nothing else occurred, this would give us the text Two oil tankers were his by missiles".

As it happens, however, a pending rhetorical constraint from the realization specification, zvents-requre-certication-ab-to-source will force the addition of yet another information unit, ${ }^{6}$ the reporting event by the news service that announced the aledged event (e.g. a press release from Iraq, Reuters, etc.). In this case the "content" of the reporting event is the two damago-reports which have already been planned for inclusion in the utterance as part of the "particulars" part of the specification. Let us look closely at how that reporting event unit is folded into surface structure.

When not itself the focus of attention, a reporting event is typically realized as "so-and-so said X ", that is, the content of the report is more important than the report itself; whatever significance the report or its source has as news will be indicated subtly through which of the alternative realizations below is selected for it. ${ }^{7}$

Destred churactertatic	Resoliting text
de-emphasize report	Two tankers were his, Gulf
shipping sources said.	
source is given ebsewhere	Two tankers were reported
mphastre report	Iraq reporsed it his two tankers.

Figure 2 Poudbilties for expreadng report(soarce, tufo) in newpaper prose

In our LC, these alternative "choices" are grouped together into a "realization class" as shown in Figure 3. Our realization classes have their historic origins in the choice systems of systemic grammar, though they are very different in almost every concrete detail. The most important difference of interest theoretically is that while systemic choice systems select among single alternative features (e.g. passive, gerundive), realization classes select among entire surface structure fragments at a time (which might be seen as prespecified realizations of bundles of features). That is, our approach to generation calls for us to organize our decision procedures so as to select the values for a number of linguistic features simultaneously in one choice where a systemic grammar would make the selection incrementally. ${ }^{8}$

[^2]```
(define-realzation-ctass bellovo-verts
 parameters (agant propostion vert)
 cholces
 (/ (AGENT-VERBG-that-PROP agent verb prop)
 ctave focus(agemt) emphastzersein)
 ; e.g. "Lloyds reports Iraq hir two tankers."
 ; encompasses variations with and without thet, and
 ; also tenseless complements like "John believes him
 ; to be a fool."
 ((ralse-VERB-mto-PROP (passivize verb) prop)
 claise fociss((agent prop)) mentoned-abowherd(agent))
 ; "Two tankers were reported to have been his"
 ((a-VERB-PROP verb prop)
 clame inferable(agom))
 ; e.g. "It is reported that 2 tankers were hir."
 ((Not-dislocated-PAOP agent verb prop)
 ctave doemphasize(soin)
 ; "Two tankers were hit, Gulf sources said."
)
```



Returning to our example, we are now faced now with the need to incorporate a unit denoting the report of the Iraqi attacks into the utterance to act as a certification of the \#<mn-by-misstics> events. This will be done using the realization class bedeveverts; the class is applicable to any information unit of the form report(soorce, Info) (and others). It determines the realization of such units both when they appear in issolation and, as in the present case, when they are to augment an utterance corresponding to one of their arguments.

From this realization class the choice ralso-VERB-mo-PROP will be selected since (1) the fact that two shipt were hit is most significant, meaning that the focus will be on the information and not the source (n.b. when the class executes the source raq will be bound to its parameter and the information about the missile hits to the proposition parameter); (2) there is no rhetorical motivation for us to occupy space in the first sentence with the sources of the report since they have already been planned to follow. These conditions are sensed by attached procedures associated with the characteristics that annotate the choice (i.e. focus and mentioned-ebewhere).

[^3]Since the PROP is already in place in the surface ssructure tree, the LC will be interpreting rabe-VERE-rto-PROP as a specification of how it may fold the auxiliary tree for reported into the tree for Two ail tankers were his by missiles Friday in the Gulf. This corresponds to the TAG analysis in Figure 4 [Kroch \& Joshi 1985].



The initial tree for Two oil tankers were hit by missiles, $I_{1}$, may be extended at its INFL' node as indicated by the constraint given in parenthesis by that node. Figure 5 shows the tree after the auxiliary tree $A_{2}$, named by that constraint bas been adjoined. Notice that the original DNFL. of Figure 4 is now in the complement position of report, giving us the sentence Two oil rankers were reported hit by missiles.


Ftgare 5 After embedding report

### 5.1 Path Notation

As readers of any of our earlier papers are aware, we do nor employ a conventional tree notation in our LC. A generation model places its own kinds of demands on the representation of surface structure, and these lead to principled departures from the conventions adopted by theoretical linguists. Figure 6 shows the surface structure as our LC would actually represeat it just before the moment when the adjunction is made.


Plgare 6 Sarface aroctore in path notation

We call this representation path notation because it defines the path that our LC. Formally the structure is not a tree but a uni-directional linked list whose formation rules obey the axioms of a tree (e.g. any path "down" through a given node must eventually pass back "up" through that same node). The path consists of a stream of entities representing phrasal nodes, constituent positions (indicated by equare brackets), instances of information units (in boldface), instances of words, and activated attachment points (the labeled circle under the predicate; see next section). The various symbols in the figure (e.g. rentence, predicate, etc.) have attached procedures that are activated as the point of speoch moves along the path, a procese we call "phrase structure execution". Phrase structure execution is the meass by which grammatical constraints are imposed on embedded decisions and function words and grammatical morphemes are produced (For discussion McDonald [1984].

Once one bas begun to think of surface wructure as a traversal path, it is a short rep to imagining being able to cut the path and "rplice in" additional position sequences." This aplicing operation inherits a natural set of constraints on the kinds of distortions that it can perform, since, by the indefibility stipulation, existing position sequences can nor be destroyed or rechreaded. It is our impresion that these constraints will turn out to be formally the same as those of a TAG, but we have nor yet carried out the detailed analyes to confirm this.

[^4]
## 52 Attuchment Polats

The TAG formalism allows a grammar writer to define "constraints" by annotating the nodes of elementary trees with lists indicating what auxiliary trees may be adjoined to them (including "any" or "none"). 10 In a similar manner the "choices" in our realization classer-which by our hypothesis can be taken to always correspond to TAG elementary trees-include specifications of the atrachmens poines at which new information units can be incorporated into the surface structure path they define. Racher than being constraints on an ocherwise freely applying operation, as in a TAG, attachment points are actual objects interponed in the path notation of the surface scructure. A liss of the attachment points ective at any moment is maintained by the attachment process and coasulted whenever an information unit needs to be added. Mont units could be attached at any of several points, with the decision being made on the basis of what would be mont consistent with the desired prose style (cf. McDonald and Pustejovaky [1985a). When one of the points is selected it is instantiated, usually aplicing in new surface structure in the process, and the new unit added at a designated porition within the new structure. Figure 7 show our preseat definition of the attachment point that ultimately leads to the addition of "was reported".

[^5]Plare 7 The attachment-polint oved by was reported

This attachment point goes with any choice (elementary tree) that includes a constituent position labeled predicate. It is placed in the position path immediately after (or "under") that position (see Figure 6), where it is available to any new unit that passes the indicated requirements.

When this attrchment is selected, it builds a now VP node that has the old VP as one of its constituents, then splices this new node into the path in its place as shown in Figure 7.

The unit being attached, e.g. the report of the attack On the two ail rankers, is made the verb of the new VP. Later, once the phrase structure execution procens has walked into the new YP and renched that verb porition, the unit's realization class (bellaf-verth) will be comsulted and a choice selected that is consintent with the
grammatical constraints of being a verb (i.e. a conventioal varinat on the ralso-VERP-Anto-PROP choice), giving us "was reporied".


Figure 8 The path after attechmeat

From this discussion oae can see that our treatment of attachment uses two structures, an attachment point and a choice, where a TAG would ooly use one structure, an auxiliary tree. This is a consequence of the fact that we are working with a performance model of generation that mux thow explicitly how conceprual information units are readered into texts as part of a paycholinguistically plausible procem, while a TAG is a formalise for competence theories that only aeed to epecify the syatactic structure of the grammatical strings of a language. This is a significant difference, but not one that should atand in our way in compering what the two theories have to offer each other. Consequeatly in the rest of this paper we will omit the details of the pach notation and attachment point definitions to facilitate the comparison of theoredical issues.

## 6. Generating questions using a TAG version of wh-movement

Earlier we illustrated the TAG concept of "inking" by showing how one would rtart with an initial tree consisting of the innermart clause of question plus the fronted wh-phrase and then build outward by successively adjoining the desired auxiliary phrases to the $S$ node that intervenes berween the wh-phrave and the clause. Wh-questions are thus built from the bottom up, as in fact is any sentence involving verbs taking sentential complemencs.

This analysis has the deairable property of allowing one to state the dependencies berween the Wh-phrase and the gap as a local relation on a single elementary tree, eliminating the need to include any machinery for moverneat in the theory. All unbounded dependencien now derive from adjunctions (which, as far as the grammar is concersed, can be made without limit), rather than to the explicit migration of a constituent acroms clausen.

We also find this locality property to be dexirable, and use an analogous procedure in our production of questions and ocher kinch of Whquestions and unbounded dependency constructions.

This "bortom-up" design has consequences for how the realization apecifications for there constructions must bo organized. In particular, the logician's usual representation of sentential complement verbs as higher operators is ace tenable in that role. For example we cannot have the source of, say, How masy ships did Rewers report that Iraq had said it atracked7 be the expression:

## Lambina(quantty-ait-ebipin), report


Such an expreasios defines a antural sequence of exparure when used as realization specification, aamety that one realize the Lambed operator firx, the repert operator second, the ray third, and so on. A local TAG analysis of Wh-arovement requires us to bave the Lambela and the expremion containing its matrix trace, attech, bo present in a single "layer" of the specification, otherwise we would be foreed to violate one of the strong principlen of our theory of generation, namely that the characteristics in a realization class may "see" only the immediate arguments of the unit being realized; they may nor look "inside" those arguments to mbrequeat leveis of conceptial scructure.

This principle has served us well, and we are disinclined to give it up without a very compelling reason. We elected instead to give up the internal represeatation of sentential complemear verb terts as ingle exprexions. This move wat easy for un to make since muct erpremions are awkward to manipuiate in the "Eart Coast" syyle frame knowledge bases that we use in our own reasoning programs, and we bave preferred a reprexentational myle with redundant, ssaller sized conceprual units for quite wome time.

The reprementation we use instead amounts to breaking up the logical expresion into individual units and allowing them to include references to each other.
$U_{1}=$ lambda(quantity-oi-ships) . attact(Iraq,quantity-of-ships)

$$
\begin{gathered}
U_{2}=\operatorname{say}\left(\text { (raq, } U_{1}\right) \\
U_{3}=\operatorname{report}\left(\text { Reuters, } U_{2}\right)
\end{gathered}
$$

Given such a aerwort as the realization specifications. the LC mus have some principle by which to judge where to start: which unit should form the basis of the suriace structure to which the others are then attached? A aatural principle to adopr is to begin with the "oasis" unit, i.e. the one that does aor mention any ocher unit in its definition. We are considering adopting the policy that such units should be allowed only realizations as initial crees while units whon definition involves "pointing to" (naming) other usits should be allowed onty realizations as auxiliary trees. We have nox, however, worked through all of the ramifications such a policy mighe bave on ocher pars of our generation model; withour yet knowing whecher it would improve or degrade the ocher part of our theory, we are reluctant to assert it as one of our hypocherses relating our geaeration model to TAG's.

Given that three part source, the realization of the quescion is fairty straightorward (See Figure 9). The Lembda expresion is asrigned a realization clas for ciaural Wh constructions, whereupon the extracted argument qrantty-al-shtpe is piaced in COMP, and the body of the exprestion is placed in the HEAD position. At the same time, the wo instances of qumotity-ol-thip are qpecially marked. The one in COMP is assigned to the reatization clas for Wh phrases appropriate to quantity (e.g. it will have the choice how many $X$ and posibly rehted choices such as <qumitty> of which and ocher variants appropriate to relative clauses or ocher positions where Wh constructions can be used). Simultaneoudy the instance of quantry-of-dhip in the argument position of the head frame atteck is arrigned to the realization chass for Wh-crace. These two specializations are the equivalent, in our model, of the TAG linking relation.


Flgare 9 Qvertion formation wth sentential complement verte

The two peading unim, $U_{2}$ and $U_{3}$, are then atrached to this matrix, submerging firsx the attench unit and then $U_{2}$ into complement poritions.

## 7. Extensions to the Theory of TAG

Contert-free gramars are able to express the word formation proceses that seem to exist for aatural languages (cf. Williams [1981], Selkirk [1982D. A TAG analymis of auch a grammar seems like a antural application to the curreat version of the theory (cf. Pustejoviky (in preparation)). To illustrace our point, consider compounding rules in English. We can say that for a contert-free grammar for word formation, $G_{w}$, there is a TAG, $T_{w}$, that is equivalent to $G_{w}$ (cf. Figure 10 and 11). Consider a fragment of $G_{w}$ below.ll

[^6]$\mathbf{N} \rightarrow \mathbf{N}|A| V \mid P N$
$A \rightarrow N|A| P A$
$V \rightarrow P V$
Figure 10 CFG Frament for Word Formation

The corremponding $G_{w}$ tragment would be:



AUXILIARY TREES

| $N$ | $N_{1}^{N}$ |
| :---: | :---: |
| 1 | tanker |
| on | INITIALTREES |



terminal

Figure 11 TAG Prament for Word Formation

Now consider the compound, "all tanter termina, taken from the aswspaper reporting domain, and its derivation in TAG theory, shown in Figure 12.



Plowe 12 TAG Dentvation of ail tanker terminad

Let us compare this derivation to the process used by the LC. The undertying information units from which this compound is derived in our sysem are shown below. The planner bas decided thas the unics below need to be communicated in order to adequately expres the concepr. The top-leved unit in this bundle is \#<terminal>.

$$
\begin{aligned}
& u_{2} \stackrel{u_{1}}{=}=\text { \#<docks-al } u_{1} u_{3}> \\
& u_{3}=\text { <lanker> } \\
& U_{4} \xlongequal{=} \text { \#<carrice } u_{3} U_{5}> \\
& u_{5}=\text { <al> }
\end{aligned}
$$

The firse unit to be positioned in the sarface structure is $U_{1}$, and appears as the head of an NP. There is an attachment point on this position, however, which allows for
the possibility of expresing $U_{2}$ prenominally. One of the choices associated with this unit is a compound structure-expresed in terms of an auxiliary tree. A mapehor at this point in the derivation shows the following structure.

$$
\left[N\left[\text { comp } U_{2}\right] \quad U_{1}\right]
$$

The next unit opened up in this structure is $U_{3}$, which also allows for attechment prenominally. Thus an auxiliary tree corresponding to $U_{4}$ is introduced, giving us the structure below:

## Wicomp [Comp $\left.\left.\left.U_{4}\right] U_{3}\right] U_{1}\right]$

The selectional constraints imposed by the structural poritioning of information unit $\mathrm{U}_{4}$ allows only a compounding choice. Had there been no word-level compound realization option, we would have worted our way into a coraer without expressing the relation berween \#<oil> and \#<tanker>. Because of this it may be berter to view units such as $U_{4}$ as being associated directly with a lexical compounded form, i.e. oil tarker. This partial solution, however, would nor speak to the problem of active word formation in the language. Furthermore, it would be interesting to compare the strategic decisions made by a generation system with those planning mistakes made by humans when speaking. This is an aspect of generation that merits much further researeh.

## 8. Acknowledgements

This research has been supterminaled in part by contract N0014-85-K-0017 from the Defense Advanced Research Projects Agency. We would like to thank Marie Vaughan for belp in the preparation of this text.

## 9. References

Clippinger, \& McDonald (1983) "Why Good Writing is Essier to Undertand", Proc. LCA1-83, pp. 730-732.
Davey (1974) Dlscoarse Production, Ph.D. Dissertation, Edinburgh Uaiversity; published in 1979 by Edinburgh Univerity Press
Hailiday (1976) System and Fanction ln Langunge, Oxford University Press.
Joshi (1983) "How Much Context-Sensitivity is Required to Provide Reasonable Structural Descriptions: Tree Adjoining Grammars", preprint to appear in Dowty, Karttunen, \& Zwicky (eds.) Natural Leaguage Processing: Poycholingaistic, Computational, and Theoredicul Perspeetives, Cambridge University Press.
Kroch, T. and A. Joshi (1985) The Linguistic Relevance of Tree Adjoining Grammar", University of Pennsylvania, Depr. of Computer and Information Science.
Langendoen, D.T. (1981) The Generative Capacity of Word-Formation Components", Lngulstle Inquiry, Volume 12.2
Mann \& Matthiessen (1983) Nigel: A Systemic Gramunar for Text Generation, in Freedle (ed.) Systemic Perspective ou Discoarse, Ablex.
Marcus (1980) A Theory of Syntactic Recognision for Natural Language, MIT Press.
McDonald (1984) "Description Directed Control: Its Implications for Natural Language Generation", in Cercone (ed.) Compatailoal Lingulstica, Pergamon Press.
McDonald \& Pustejovsty (1985a) "SAMSON: a computational theory of prose style in generation", Proccedings of the 1985 meeting of the European Association for Computational Linguistics.
(1985) "Description-Directed Natural Language Generation", Proceedings of UCAI-85, W. Kaufmann Lac., Los Altos CA.

Patten T. (1985) «A Problem Solving Approach to Generating Text from Systemic Grammars", Proceedings of the 1985 meeting of the European Association for Computational Linguistics.
Pustejovsky, J. (In Preparation) "Word Formation in Tree Adjoining Grammars"
Selkirk (1982) The Syutar of Words, MIT Press
Willinms (1981) "Argument Structure and Morphology" The Linguistic Review, 1, 81-114.


[^0]:    1 Our model of generation does not employ the simple trees of labeled sodes that appear in mont theoretical linguitic analyseas Our surface surveture incorporatea the memantic propertice of treen, but it also includes reifications of constituent positions like "aubjeas" or 'senterce" and is better characterized overall as an "erecutibis sequeece of labeled poritions". We discuss this further in section 5.1.

    2 If this bypotheris is macealu, it has very cossequential implications for the "size" of the information urits that the tent planper construction the realization specification can use, esp they would nol be reatized as texts that include recursive nodes. We will diacone thin and other implication in a leter paper.

[^1]:    3 Todetibilty" in a compenaion requires that no action of a proces (mating decivions, conserveting repreceatationa, chanjing ancta cte.) can be traspareatly undene once it bas boed pertormod Mary nonbackuracking, somparailet program dexems have this propecty; it is our vers for ohat Marcue [1900] referred $\omega$ at the property of being "trictly deverministic".

    4 A reatiration specification an informally be takce to correnpood to what many researchers, perticularty prychoopgisith think of as the "mearage kevel" represenution of a text.
    5 Which is to ay that it preventy producen orives rather thas
    
    
     consituency patuersis in marface arneture.

[^2]:    6 We will not discure the mechanism by which features in the specification infuecoce reatization. Reatization spocibencions of the complenity of this axample are still very new in our research and we are unsure whetber the procem is better organirod at the coscoppinul level directing a composition procese within the planaing composem (during one of the recurnive irrocentions) or within the LC medinting - selection berween saticipated alterantiver. At thin poina our denign experiments are inconcliuive.

    7 These senteoces are artibicial; ectual onat would be cosuderably longor. Interestingly, certuin otber gyatectically permineable verions such as it wes reported thar do not occur in any of the leats we hive eramined. Pertape the lead NP position th 100 important to waste on a pronoun.

[^3]:    8 This technique of using choice syatems 10 control the extive eclection of utuerance features is employed by the most well-known apptications of systemic grammars to generation (i.e. the work of Davey [1974] and Mann and Mathiemea [1983]. However very recent work with syatemic grammars at Edinburgh by Patlen [1985] departs from this techaiqua. Pattes uses a semantic-level plansing composent to directly select groupe of features at the rightward, 'output", ade of a syatemic network, and thes morts bachwarde through the setwork to determine what other, sot sematically apecified features muat be added to the leat for it to be grammationd control is thes outside the grammar proper, with grammar rules relegated to constraint specification oaly. We are intrigued by this techmique and look forward 's its further developueat.

[^4]:    9 The pombibity of cutting the wurface reructure and inserting now sequences that cbange the lingustoic contert of posicions sifendy in plecen han boce in our theory of gencraion ince 1978, when we und it to implemeat riviag verte whome rbetorical force wit the rame as hodiong' adverbe tike passibly. Our prosent, much more extersive une of luin devios as the core of a dbatrat attectment procem datea from the number of 1984.

    10 Conernints of this sort are as inovation inuroducod in Kroch e Jombi [1983] Previous veriose of TAO thoory allowed 'contert rensidve" constraint ppocifiction that in fact were never exploitod The prexeat cossurnints are more atractive formally since they man be sutud locally to a single tree.

[^5]:    (dofro-attachment-point aftachrating-proderite reference-points
    ((presert-prectenta (stot-comtents precterat phrasa)))
    requred-charactertstica-of-untis-reatozion
    (ralatig-verb-whth-complernert(present-precicate))
    postion-oi-attachmern-point
    ( (actul-aior 'precieste phrase)
    sattecthinder)
    now-phreso-btructure
    (epmerge-aditing-cortenti-tho-now-atucture
    (vp-rifintivecomplemert) ; specification of new phrase verb; where the unit being attached goes minitvocomplememi) ; where the existing contents go
    effect-on-other-pencino-attactiment-ponts
    none
    crolcee-that-mitoducen
    chotce-pasaing-tox (inctuder-dict 'prodicata))

[^6]:    11 Whether the mord formation compocent should in fact have the power of a TAO or CFO in an opel quanion. Langendoen [1981]
     for the generative capacity of antural language word formation couproserts

