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ABSTRACT 

In this paper we apply some recent work of Angluin 

(1982) to the induction of the English auxiliary verb system. 
In general, the induction of finite automata is computation- 

ally intractable. However, Angluin shows that restricted 
finite automata, the It-reversible automata, can be learned 

by el~cient (polynomial time) algorithms. We present an ex- 

plicit computer model demonstrating that the English aux- 

iliary verb system can in fact be learned as a I-reversible 

automaton, and hence in a computationally feasible amount 

of time. The entire system can be acquired by looking at 

only half the possible auxiliary verb sequences, and the pat- 
tern of generalization seems compatible with what is known 
about human acquisition of auxiliaries. We conclude that 

certain linguistic subsystems may well be learnable by in- 
ductive inference methods of this kind, and suggest an ex- 
tension to context-free languages. 

I N T R O D U C T I O N  

Formal inductive inference methods have rarely been ap- 
plied to actual natural language systems. Linguists gener- 
ally suppose that languages axe easy to learn because grarn- 
mars axe highly constrained; no ~gener,d purpose" inductive 
inference methods are required. This assumption has gener- 
ally led to fruitful insights on the nature of grammars. Yet 
it remains to determine whether ~ll of a language is learned 
in a granHnar-specilic manner. In this paper we show how 

to successfully apply one computationally emcient inductive 
inference algorithm to the acquisition of a domain of English 
sy'nca.x. Our results suggest that particular language subsys- 
tems can be learned by general induction procedures, given 
certain general constraints. 

The problem is that these methods are in general com- 
pntationally intractablc. Even for regular languages induc- 
tion can be exponentially diiTicult (Gold, 1978). This sug- 
gests that there may be general constraints on the design 
of ce~ain linguistic subsystems to make them easy to learn 
by general inductive inference methods. We propose the 
constraint of k-reversibilit V as one such restriction. This 
constraint guarantees polynomial time inference (Angluin, 

1982). In the remainder of this paper, we also show, by 

an explicit computer model, that the English auxiliary verb 

system meets this constraint, and so is easily inferred from a 

corpus. The theory gives one precise characterization of just 
whcre we may expect general inductive inference methods 

to be of v,~,lue in language acquisition. 

LEARNING K-REVERSIBLE LANGUAGES 

FROM EXAMPLES 

The question we address is, If a learner presumes that 
a natural language domain is systematic in some way, can 

the learner intelligently infer the complete system from only 

--- subset of sample sentences? Let us develop a:i exaauple 
to formally describe what we mean by "systematic in some 
way," and how such a systematic domain allows the infer- 

ence of a complete system front examples. If you were told 
that Mar~ bakes cakes, John bakes cakes, and Mar V eat~ 
pies are legal strings m some language, you might guess 
that John eats pies is also in that language. Strings in the 
language seem to follow a recognizable pattern, so you ex- 
pect other strings that follow the same pattern to be in the 
language also. 

In this particular case, you axe presuming that the to- 
be-learned language is a zero-reversible regular language. 
Angluin (1982) has defined and explored the formal proper- 
ties of reversible regular languages. We here translate some 
of her formal definitions into less technical terms. 

A regular language is any language that can be generated 
from a formula called a regular expression. For example the 
strings mentioned above might have come from the language 
that the following regular expression generates: 

(MarylJohu) (bakes6eats) livery* delicious] (cakeslpies)] 

A complete natural language is too complex to be gen- 
erated by some concise regular expression, but some simple 
subsets of a natural language can fit this kind of pattern. 

To formally define when a regular language is reversible, 
let us first define a prefix as any substring (possibly zero- 
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Table 1: Example of incremcntal k-reversible inference for several values of k. 

SEQUENCE OF NEW NEW STRINGS INFERRED: 
STRINGS PRESENTED k = 0 k = I 

NONE Mary bakes cakes 

John bakes cakes 

Mary eats pies 

Mary bakes pies 

Mary bakes 

NONE 

John eats pies 

John bakes pies 
Mary eats cakes 
John eats cakes 

John bakes 
Mary eats 
John eats 
Mary bakes cakes cakes 
John bakes cakes cakes 
Mary bakes pies cakes 

(MarylJohn){bakes!eats) (cakesipies)* 

NONE 

NONE 

NONE 

Johnbakes pies 

John bakes 

k = 2  
NONE 

NONE 

NONE 

NONE 

NONE 

length) that can be found at the very beginning of some legal 
string in a language, and a suffix as any substring (again, 
possibly zero-length) that can be found at the very end of 
some legal string in a language. In our case the strings ~ e  
sequences of words, and the langamge is the set of all legal 
sentences in our simplified subset of English. Also, in any 
legal string say that the surtax that immediately follows a 
prefix is a tail for that prefix. Then a regular language 
is zero-reverstble if whenever two prefixes in the language 
have a tail in common, then the two prefixes have all tails 
in common. 

In the above example prefixes Mary and John have the 
tail bakes cakes in common. If we presume that the language 
these two strings come from is zero-reversible, then M a ~  
and John must have all tails in common. In particular, the 
third string shows that Mary has eats pies as a tail, so John 
must also have eats pies as a tail. Our current hypothesis 
after having seen these three strings is that they come not 
from the three-string language expressed by (Mar~tiJohn) 
bakes cakes i Mary eats p:es, which is not zero-reversible, 
but rather from the four-string language (MarytJohn) (bakes 
cakes ! eats pies), which is zero-reversible. Notice that we 
have enlarged the corpus just enough to make the language 
zero-reversible. 

A regular language is k-reversible, where k is a non- 
negative integer, if whenever two prefixes whose l ~ t  k tuorda 
match have a tail in common, then the two prefixes have all 
tails in common. A higher value of k gives a more conser- 
vative condition for inference. For example, i /we presume 
that the aforementioned strings come from a l-reversible 

language, then instead of presuming that whatever Mary 
does John does, we would presume only that whatever Mary 
bakes, John bakes. In this case the third string fails to yield 
any inference, but if we were later told that Mary bakes 
pies is in the language, we could infer that John bakes pies 
is also in the language. Further adding the sentence Mary 
bakes would allow 1-reversible inference to also induce John 
bakes, resulting in the seven-string 1-reversible language ex- 
pressed by ( Maryldohn) bakes Icakesipiesi l Mary eats pies. 

With these examples zero-reversible inference would 
have generated ( MarylJohn) ( bakesieats) ( cakesipies)* by 
now, which overgeneralizes an optional direct object into 
zero or more direct objects. On the other hand, two- 
reversible inference would have inferred no additional strings 
yet. For a particular language we hope to find a k that is 
small enough to yield some inference but not so small that 
we overgeneralize and start inferring strings that are in fact 
not in the true language we are trying to learn. Table 1 
summarizes our examples of k-reversible inference. 

AN I N F E R E N C E  A L G O R I T H M  

In addition to formally characterizing k-reversible lan. 
guages, Angluin also developed an algorithm for inferring 
a k-reversible language from a finite set of positive exam- 
pies, an well an a method for discovering an appropriate k 
when negative examples (strings known not to be in the lan- 
guage) are also presented. She also presented an algorithm 
for determining, given some k-reversible regular language, 
a minimal set of examples from which the entire language 

7"1 



can be induced. We have implemented these procedures on 

a computer in MACLISP and have applied them to all of 

the artificial languages in Angluin's paper as well as to all 
of the natural language examples in this paper. 

To describe the inference algorithm, we make use of the 
fact that  every regular language can be associated with a 
corresponding deterministic finite-state automaton (DFA) 
which accepts or generates exactly that  language. 

Given a sample of strings taken from the full corpus, we 
first generate a prefix-tree automaton which accepts or gen- 
erates exactly those strings and no others. We now want 
to infer additional strings so as to induce a/c-reversible lan- 
guage, for some chosen /C. Let us say that when accepting 
a string, the last k symbols encountered before arriving at 
a state is a ~c-leader of that  state. Then to generalize the 
language, we recursively merge any two states where any of 
the following is true: 

*Another state arcs to both states on the same word. 

(This enforces determinism.) 

oBoth states have a common k-leader and either 

-both states are accepting states or 

-both states arc to a common state on the same 
word. 

When none of these conditions obtains any longer, the re- 

suiting DFA accepts or generates the smallest k-reversible 
language that includes the original sample of strings. (The 
term ~reversible" is used because a ~c-reversible DFA is still 

deterministic with lookahead /C when its sets of initial and 
final states are swapped and Ml of its arcs are reversed.) 

This procedure works incrementally. Each new string 

may be added to the DFA in prefix-tree fashion and the 

state-merging algorithm repeated. The resulting language 

induced is independent of the order of presentation of sam- 
ple strings. 

If an appropriate /C is not known a pr/o~', but some 

negative as well as positive examples are presented, then 

one can try increasing values of k until the induced language 

contains none of the negative examples. 

Though the inference algorithm takes a sample and in- 

duces a/c-reversible language, it is quite helpful to use An- 

gluin's algorithm for going in the reverse direction: given a 

k- reversible language we can determine what minimal set of 
shortest possible examples (a "characteristic" or "covering n 

sample) will be sufficient for inducing the language. Though 

the minimal number of examples is of course unique, the set 
of particular strings in the covering sample is not necesm~rily 

Imique. 

INFERENCE OF THE ENGLISH AUXILIARY 

SYSTEM 

We have chosen to test the English auxiliary system un- 
der /c-reversible inference because English verb sequences 
are highly regular, yet they have some degree of complexity 
and admit to some exceptions. We represent the English 
auxiliary system am a corpus of 92 variants of a declarative 
statement in third person singular. The variants cover all 
s tandard legal permutations of tense, aspect, and voice, in- 
cluding do support and nine models. We simply use the 
surface forms, which are strings of words with no additional 
information such as syntactic category or root-by-inflection 
breakdown. For instance, the present, simple, active ex- 
ample is Judy glvez bread. One modal, perfective, passive 
variant is Judy would have been given bread. 

We have explored the/c-reversible properties of this nat- 
,iral language subsystem in two main steps. First we deter- 
mined for what values of k the corpus is in fact k-reversible. 

(Given a finite corpus, we could be sure the language is 

/c-reversible for all /C at or above some value.) To do this 

we treated the full corpus as a set of sample strings and 

tried successively larger values of/C until finding one where 

/c-reversible inference applied to the corpus generates no ad- 

ditional strings. We could then be sure that any /C of that 

value or greater could be used to infer an accurate model of 

the English auxiliary system without overgeneralizing. 

After finding the range of values of/C to work with, we 

were interested in determining which, if any, of those values 

of/C would yield some power to infer the full corpus from 
a proper subset of examples. To do this we took the DFA 
which represents the full corpus and computed, for a trial 

k, a set of samp|e strings that would be minimally sufficient 

to induce the full corpus. If any such values of k exist, then 

we can say that, in a nontrivial way, the English auxiliary 

system is learnable as a k-reversible language from exam- 

ples. 

We found that the English auxiliary system can be faith- 

fully modeled as a/c-reversible regular language for k >_ I. 

Only zero-reversible inference overgeneralizes the full corpus 

as well as the active and passive corpora treated as separate 

languages. For the active corpus, zero-reversible inference 

groups the forms of do with the other modals. The DFAs for 

the passive and full corpora also contain loops and thereby 
generate infinite numbers of illegal variants. 

F:.gure I compares a correct DFA for the English auxil- 
iary system with an overgeneralized DFA. Both are shown in 

a minimized, canonical form. The top, correct, automaton 
can be generated by either minimizing the prefix tree for the 
full corpus or by minhnizing the result of/c-reversible infer- 
ence applied to any sufficiently characteristic set of sample 
sentences, for any /C _.> 1. One can read off all 92 variants 
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(giveslg,,,ve) 

(do.,,Idid) ~ give 

(i, lw"') 

(huth,,a) 

Judy ~ ~ ~ ~  7 ~'~ 4 b ~ d  

be J \ (~6",'i-~Igi',,:n) 

glven 

give 

THE ENGLISH AUXILIARY SYSTEM 

(giv.tgave) f r  -'~ 

Judy _ f 

(i*!wastha.lhsd) (beeatbeln|) 

(•do.sQdid 
Imlylmi|bttmus¢ 

~/i,hallt.hou~"d3~ 
,h,*.(S't ~ ) (givingtgiven) ~ / 

~ve j 

ZERO-REVERSIBLE OVERGENERALIZATION 

OF THE ENGLISH AUXILIARY SYSTEM 

bread 

Figure I: The top automaton generates the English auxiliary system. Zero-reversible inference 
merges state 3 with state 2 and merges states 7 and 6 with state 5, resulting in the bottom 
overgeneralized version. 
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in the language by taking different paths from initial state 
to final state. The bottom, overgeneralized, automaton is 
generated by subjecting the top one to zero-reversible infer- 
e u c e ,  

Does treating the English auxiliary system as a I-or- 
more-reversible l,'mguage yield any inferential power? The 
English auxiliary system as a l-reversible language can in 
fact be inferred from a cover of only 48 examples out of 

the 92 variants in the corpus. The active corpus treated 
separately requires 38 examples out of 46 and the passive 

corpus requires 28 out of 46. Treating the full corpus as 

a 2-reversible language requires 76 examples, and a 3 "~- 
reversible model cannot infer the corpus from any proper 

subset whatsoever. 

For l-reversible inference, 45 of the verb sequences of 
length three or shorter will yield the remaining nine such 

strings and nonc longer. Verb sequences of length four 

or five can be divided into two patterns, <modal> have 
been 9iv(ing,,en) ,'wad . . .  be, en} bern9 given. Adding any one 
(length-four) string from the first pattern will yield the re- 
maining 17 strings of that pattern. Further adding two 
length-four strings from the awkward second pattern will 
yield the remaining 18 strings of that pattern, nine of which 
are of length five. This completes the corpus. 

DISCUSSION 

The auxiliary system has often been regarded ,as an acid 
test for a theory of langulage acquisition. Given this, we are 

encouraged that it is in fact learnable via a computationally 
eII.icient general method. It is significant that at [east in 
this domain we have found a k (of l) that is low enough to 

generate a good amount of inference from examples yet high 

enough to avoid overgeneralization. Even more conservative 
2-reversibility generates a little inference. 

This inductive power derives from the systematic se- 
quential structure of the English auxiliary system. In an 
idealized form (ignoring tense and inflections) the regular 
expression 

[DO I [<modal>] [HAVE] [nEll [BEpassive] GIVE 

generates all English verb sequence patterns in our corpus. 

Zero-reversible inference basically attempts to simplify 

any partial, disjunctive permutation like (a'.b)z:ay into an 
exhaustive, combinatorial permutation like (ab)(z',y). Since 
the active corpus (excluding BE.passive from the idealized 
regular expression) in fact has such a simple form except for 
the DO disjunction, zero-reversible inference productively 

completes the three-place permutation but also destroys the 

disjunction, by overgeneralizing what patterns can follow 
both DO ,'rod <modal>. One-reversible inference requires 
that disjuncts share some final word to be mergeable, so 

that DO cannot merge with any auxiliary triplet, yet the 
permutation of < modal:, IIA VE by BE; is still productive. 
Similar considerations obtain in the passive case, as well as 

for the joint corpus. Table 2 illustrates the trade-off in this 

case between inferential power and the proper handling of 
exceptions. 

In complex environments, rather than reduce the infer- 

ential power by raising k one could instead embed this al- 

gorithm within a larger system. For example, a more re- 

alistic model of processing English verb sequences would 
have an external, more linguistically motivated mechanism 

force the separate tre.atment of active versus passive forms. 

Then if, say on considerations of frequency of occurrence, 
do exceptions were externally handled and the infrequent 

Table 2: Incremental k-reversible inference of some English auxiliary verb sequences. 

SEQUENCE ()F NEW NEW .~TRIN(;S INFERRED: 
.~TRIN(;S PIIESENTED ilk = 0 ' k = ! k = 2 
¢,mhl giw NONE NONE 

may give 

does give 

, could have given 

f 
may have given 

could have been giving 

, NONE 

NONE 

may have given 
does have given 

(ALREADY INFERRED) 

may have been giving 
does have been giving 

NONE 

NONE 

NONE 

NONE 

may have been giving 

NONE 

NONE 

NONE 

NONE 

NONE 

NONE 
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. . .  BE being . . .  cases were similarly excluded from the im- 
mature learner, then one could apply the more powerful 
zero-reversible inference to the remaining active and passive 
forms without overgeneralizing. In such a case the active 
system can be induced from 18 examples out of 44 variants 
and the passive system from 14 out of 22. The entire active 
system is learnable once examples of each form of each verb 
and each modal have been seen, plus one example to fix the 
relative order of have vs. be, and one example each to fix 
the order of modal vs. have or be. 

Though a more complex model must ultimately repre- 
sent a domain like the English auxiliary system, the way 
k-reversible inference in itself handles a complex territory 
satisfies some condition~ of psychological fidelity. Especially 
.'-cro-reversibility is a rather simple form of generalization 
of sequential patterns with which we believe humans read- 
ily identify. In general the longer, more complex cases can 
be inferred from simpler cases. Also, there is a reasonable 
degree of play in the composition of the covering saanple, 
and the order of presentation does not affect the language 
learned. 

Children evidently never make mistakes on the relative 
order of auxiliaries, which is consistent with the reversibility 
model, but they do mistakenly combine do with tensed verb 
forms (Pinker, 1984). Given that the appearance of do in 
declarative sentences is also fairly rare, one might prefer 
the aforementioned zero-reversible system that handles do 
support as an exception, rather than opt for a 1-reversible 
inference which is flawless but a slower learner. 

The . . .  BE being ...  cases are systematically related 
to the rest, but also have a natural boundary: 1-reversible 
inference from simpler cases doesn't intrude into that ter- 
ritory, yet only a few such examples allow one to infer the 
remainder. Very. rare sequences like could have been be- 
ing given will be successfully acquired even if they axe not 

seen. This seems consistent with human judgments that  
such phrasing is awkward but apparently legal. 

k-Reversibility is essentially a model of simplicity, not of 
complexity. As such, it induces not linguistic structure but 
the substitution classes that linguistic structures typically 
work with, building these by analogy from examples. In the 
linguistic structure for which k-reversibility is defined 
regular ~ammars  ~ it functions to induce the closes  that  
fill "slots" in a regular expression, based on the similarity 
of tail sets. Increasing the value of k is a way of requiring 
a higher degree of similarity before calling a match. (See 
Gonzalez and Thomason, 1978, for other approaches to k- 
tail inference that are not so efficient.) 

The same principle can apply to the induction of substi- 
tution classes in other linguistic domains including morpho- 
logical, syntactic, and semantic systems. For a particularly 
direct example, consider the right-hand sides of context-free 

rewrite rules. Any subset of such rules having the same left- 
hand side constitutes a regular language over the set of ter- 
minal a~d nonterminal symbols, and is therefore a candidate 
for induction. One might thus infer new rewrite rules from 

the pattern of existing ones, thereby not only concluding 
that words are members of certain simple syntactic classes, 

but also simplifying a disjunctive set of rules into a more 
concise set that exhibits systematic properties. Berwick's 
Lparsi/al system (1982) is ,an example of this kind of exten- 
sion. 

We believe that k-reversibility illustrates a psycholog- 
ically plausible pattern induction process for natural lan- 
guage learning that in its simplest form has an efficient 
computational algorithm associated with it. The basic prin- 
ciple behind k-reversible inference shows some promise ,'~ a 
flexible tool within more complex models of language ac- 
quisition. It is encouraging that, at lea.st in a simple case, 
computational linguistic models can suggest formal leaxn- 
ability constraints that ;tre natural enough to be useful in 
the le,'trning , f  human languages. 
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