
LIMITED DOMAIN SYSTEMS FOR LANGUAGE TEACHING

S G Pulman,
Linguistics, EAS
University of East Anglia,
Norwich NR4 7Tj, UK.

This abstract describes a natural language system
which deals usefully with ungrammatical input and
describes some actual and potential applications
of it in computer aided second language learning.
However, this is not the only area in which the
principles of the system might be used, and the
aim in building it was simply to demonstrate the
workability of the general mechanism, and provide
a framework for assessing developments of it.

BACKGROUND

The really hard problem in natural language
processing, for any purpose, is the role of
non-linguistic knowledge in the understanding
process. The correct treatment of even the
simplest type of non-syntactic phenomena seems to
demand a formidable amount of encyclopedic
knowledge, and complex inferences therefrom. To
date, the only systems which have simulated
understanding to any convincing degree have done
so by sidestepping this problem and restricting
the factual domain in which they operate very
severely. In such limited domains semantic or
pragmatic processing to the necessary depth can
be achieved by brute force, as a last resort.
However, such systems are typically difficult to
transport from one domain to another.

In many contexts this state of affairs is
unsatisfactory - something more than fragile,
toy, domain dependent systems is required. But
there are also situations in which the use of
language within a limited factual domain might
well be all that was required. Second language
learning, especially during the early stages, is
one, where quite a lot of the time what is
important is practice and training in correct
usage of basic grammatical forms, not the
conveying of facts about the world. If someone
can be taught to use the comparative construction
when talking about, say, lions and tigers, he is
not likely to encounter much difficulty of a
linguistic nature when switching to talk about
cars and buses, overdrafts and bank loans, etc.,
even thought the system he was using might.

Several existing limited domain systems might
lend themselves to exploitation for these
purposes: one example might be the program

described by Isard (1974) which plays a game of
noughts and crosses with the user and then
engages in a dialogue about the game. Although
the domain is tiny the program can deal with much
of the modal and tense system of English, as well
as some conditionals. Also dealing with noughts
and crosses is the program described by Davey
(1978), which is capable of (and therefore
capable of detecting) correct uses of
conjunctions like 'but' and 'although'. Other
examples of systems geared to a particular domain
and often to a particular syntactic construction
will spring readily to mind. Embedded in
educationally motivated settings, such systems
might well form the basis for programs giving
instruction and practice in some of these
traditionally tricky parts of English grammar.
Such, at any rate, is the philosophy behind the
present work. The idea is that there is scope for
using limited systems in an area where their
limitations do not matter.

ERROR DETECTION AND REPORTING

Of course, such an application carries its own
special requirements. By definition, a language
learner interacting with such a system is likely
to be giving it input which is ill-formed in some
way quite often. It is not a feature of most NL
systems that they respond usefully in this
situation: in a language tuition context, an
efficient method for detecting and diagnosing
errors is essential.

The problem has of course not gone unnoticed.
Hayes and Mouradian (1981), Kwasny and Sondheimer
(1981) - among others - have presented techniques
for allowing a parser to succeed even with
ill-formed or partial input. The ATN based
framework of the latter also generates
descriptions of the linguistic requirements which
have had to be violated in order for the parse to
succeed. Such descriptions might well form the
basis for a useful interaction between system and
learner. However, the work most directly related
to that reported here, and an influence on it, is
that by Weischedel et al (1978) and Weischedei
and Black (1980), (see also Hendr~x (1977). They
also describe ATN based systems, this time

84

specifically intended for use in language
tutoring programs. The earlier paper describes
two techniques [or handling errors: encoding
likely errors directly into the network, so that
the ungrammatical sentences are treated like
grammatical ones, except that error messages are
printed; and using 'failable' predicates on arcs
for such things as errors of agreement. The
disadvantages of such a system are obvious: the
grammar writer has to predict in advance likely
mistakes and a/low for them in designing the ATN.
Unpredicted errors cannot be handled.

The later paper describes a generalisation of
these techniques, with two new features:
condition-action pairs on selected states of the
ATN for generating reports (1980:100) and the use
of a 'longest path' heuristic (lOI) for deciding
between alternative failed parsings. Although
impressive in its coverage, We~schedel and Black
report two major problems with the system: the
difficulty of locating precisely where in a
sentence the parser failed, and the difficulty of
generating appropriate responses for the user.
Those derived from relaxed predicates for the
meanings of states were often fairly technical:
some helpful examples of usage were given in some
cases, but these had to be prestored and indexed
by particular lexical items (103).

The problem of accurately locating
ungrammaticality is one that is extremely
difficult, but arguably made more difficult than
it need be by adopting the ATN framework for
grammatical description. The ATN formalism is
simply too rich: a successful parse in general
depends not only on having traversed the network
and consumed all the inpul but on having various
registers appropriately filled. Since the
registers may be inspected at different points
this makes it difficult to provide an algorithmic
method of locating ungrammaticality.

The problem of generating error reports and
helpful responses for the learner is also made
more difficult than it need be if this is
conceived of as something extra which needs to be
added to a system already capable of dealing with
w e / l - f o r m e d i n p u t . T h i s i s because t h e r e i s a
perfectly straightforward sense in which this
problem has already been solved if the system
contains an adequate grammar. Such a grammar, by
explicitly c~aracterising well-formedness,
automatically provides an implicit
characterisation of how far actual inputs deviate
from expected inputs. It also contains all the
grammatical information necessary for providing
the user with examples of correct usage. These
two types of information ought to be sufficient
to generate appropriate reports.

THE SYSTEM

The syntactic theory underlying the present
system is that of Generalised Phrase Structure
Grammar, of the vintage described in Gazdar
(1982). This is a more constrained grammatical
formalism than that of an ATN, and hence it was
possible to develop a relatively simple procedure
for almost always accurately locating
ungrammaticality, and also for automatically

generating error reports of varying degrees of
complexity, as well as examples of correct usage.
All this is done using no information over and
above what is already encoded in the grammar:
nothing need be anticipated or pre-stored.

Briefly, on the GPSG theory, the syntactic
description of a language consists of two parts:
a basic context-free grammar generating simple
canonical structures, and a set of metarules,
which generate rules for more complex structures
from the basic rules. The result of applying the
metarules to the basic rules is a large CFG.

The system contains a suite of pre-compilation
programs which manipulate a GPSG into the form
used by the parser. First, the metarules are
applied, producing a large, simple, CFG. The
metarule expansion routine is in fact only fully
defined for a subset of the metarules permitted
by the theory. Roughly speaking, only metarules
which do not contain variables which could be
instantiated more than one way on any given rule
application will be accepted. This is not a
theoretically motivated restriction but simply a
short cut to enable a straighforward pattern
matching production system already available in
Pop-ll to be transferred wholesale. A set of
filters can be specified for the output by the
same means if required.

Next, the resulting CFG is compiled into an
equivalent RTN, and finally this RTN is optimised
and reduced, using a variant of a standard
algorithm for ordinary transition networks (Aho
and Uilman (1977:101). The intention behind this
extensive preprocessing, apart from increased
efficiency, is that the eventual system could be
tailored by teachers for their own purposes. All
that would be needed is the ability to write GPS
grammars, or simple CF grammars, with no
knowledge needed of the internal workings of the
system.

To give an example of the effect of this
pre-processing, the grammar used by the system in
the interchanges below contained about 8 rules
and 4 metarules. These expand to a simple CFG of
about 60 rules; this compiles to an RTN of over
200 states, and the final optimised RTN contains
about 40 states.

The parser is a standard RTN parser operating
breadth first. The error detection routine is
part of the main loop of the parser and works as
follows: when no transition can be taken from a
particular state in the network, a record is
taken of the overall state of the machine. This
contains information about how much of the
sentence has been successfully parsed, the tree
built, a list of states to POP to etc. If this
record represents a more successful parse than
any record so far it is preserved. This means
that at the end of an unsuccessful parse the
system has a record of the most successful path
pursued, and this record is passed to the error
reporting routine.

If desired, all such records could be
preserved during a parse and some procedure for
choosing between then defined. This would mean
that ambiguous parses can be treated
independently, whereas at present only one record
representing the most successful path through the
input on any reading is retained.

85

The error reporting routine is based around an
RTN generator, which simply picks up from the
point in the network indicated by the record
handed to it, using the information in that
record, as well as the RTN, and a special
sub-lexicon described below. It is capable of
generating error reports of several different
types:
(i) it can say what constituent(s) it was trying
to complete
(ii) it can say what type of item it was
expecting to find at the point of failure -
either using the terminology of the grammar, or
by example

(iii) it can say what would be necessary to
continue the sentence correctly, by generating
example continuations.

Here are some transcriptions of typical
exchanges with the system using the small grammar
mentioned above:

:go();
** ready
? william put the book on the shelf
ok
? did william put the book on the shelf
yes
? was the book put on the shelf
yes
? who put the book on the shelf
william
? what did william put on the shelf
the book
? what was put on the shelf
the book
? who was the book put on the shelf by
william
? what did william put
sentence ok up to here:
what did william put ...
expecting toofind
one of the following
preposition (in, on, etc)
examples of grammatical continuations
what did william put ...
with something
? what did the read
sentence ok up to here:
what did the ...
expecting to find
one of the following
adjective (nice, big etc.)/ noun (boy, girl etc.)
examples ot grammatical continuations
what did the ...
whatdoyoucallit hit
? william hit jumble with a stick big
sentence ok up to here:
william hit jumble with a stick ...
expecting to find
end of sentence
(NB this response is not as helpful as it could
be, since the system does not look at the input
after the point of failure).
v who did was hit
sentence ok up to here:
who did ...
expecting to find
one of the following
noun phrase

examples of grammatical continuations
who did ...
something's thing hit

? who william did hit
sentence ok up to here:
who ...
expecting to find
one of the following
verbl (did, was, etc.)/ verb2 (hit, read, etc.)
examples of grammatical continuations
who ...
read something
put something with something

An attraction of this mechanism, apart from
its simplicity, is that it is defined for the
whole class of CFGs; this class of grammars is
currently believed to be more or less adequate
for English and for most of most other languages
(Gazdar 1982). The two problems faced by the
system of Weischedel and Black seem to have been
overcome in a reasonably satisfying way: since
after optimisation, the only non-determinism in
the RTN is due to genuine ambiguity, we can be
sure that the system will, given the way it
operates, almost always locate accurately the
point of failure in all non-ambiguous cases. And
of course, when working with such limited domains
we can control for ambiguity to a large extent,
and deal with it by brute force if necessary.

However, no such procedure can be wholly
learner-proof, (as one of our referees has
pointed out). A user might, for example, misspell
his intended word and accidentally produce
another legitimate word which could fit
syntactically. Under these circumstances the
parser would proceed unknowingly past the real
point of error.

The error reports delivered by the system can
be as technical or informal as the grammar writer
wants, or simply be prompts and examples of
correct usage. In practice, simple one word
prompts seem to be as useful as any more
elaborated response. As will be clear from the
examples, both for prompts and continuations, the
system uses a restricted sub-lexicon to m~nimise
the likelihood of generating grammatical
nonsense. This sub-lexicon contains vague and
general purpose words like 'thing' and 'whatsit'.
This apart, no extra work has to be done once the
grammar has been written: the system uses only
its knowledge of what is grammatical to diagnose
and report on what is ungrammatical.

DEVELOPMENTS

The mechanism is currently embedded within two
small domains. The one illustrated here is 'told'
a simple 'story' and then asks or answers
questions about that. The sample grammar was
intended to demonstrate the interaction of wh
questions with passives, among other things.
Although we are not here concerned with the
semantics of these domains, they are fairly
simple, and several different types of semantic
components are used depending on the nature of
the domain. For some domains a procedural
semantics is appropriate, manipulating objects on

86

a screen or asking and answering questions about
them. In the 'William' program here a production
system again based on the Pop-ll matching
procedures is used, currently being coupled to a
simple backwards chaining inference mechanism.

Neither the grammatical routines nor any
embodiment of them constitute a complete tuition
system, or anything approaching that: they are
merely frameworks for experimentation. But the
syntactic error detection routines could be used
in many other environments where useful feedback
of this type was required, say in database
interrogation or machine translation. Within a
language tuition context the mechanism could be
used to advantage without an associated
semantics, in some of the more traditional types
of computer aided EFL teaching programs: for
example, gap-filling, drill and practice,
sentence completion, or grammatical paraphrase
tasks. Only trivial adjustments would be needed
to the overall mechanism for this to become a
powerful and sophisticated framework within which
to elaborate such programs.

However, there are several ways in which the
general mechanism might be improved upon, most
immediately, the following:
(i) if a parse fails early in the sentence, the
user only gets a report based on that part of the
sentence, when there may be more serious errors
later one (or some praiseworthy use of the
language). In these cases a secondary parse
looking for well-formed sub-constituents, in
something like the way a chart parser might do,
would provide useful information. (I am grateful
to Steve Isard and Henry Thompson for this
suggestion).
(ii) the quality of the example continuations
could be improved. Eventually it would be
desirable to have the generator semantically
guided, but this is by no means trivial, even in
a limited domain. There are several heuristics
which can produce a better type of continuation,
however: using a temporary lexicon containing
words from the unparsed portion of the sentence,
or from the most recently parsed sentences, or
combinations of these with the restricted
sub-lexicon. In the best cases this type of
heuristic can be spectacularly successful,
producing a grammatical version of what the user
was trying to say. However, they can also flop
badly: more testing on real students would be one
way of disceovering which of these alternatives
is best.
(iii) as suggested in Weischedel and Black, it
might be profitable to explore the use of
semantic grammars - grammars using semantically
rather than syntactically motivated categories -
in the system. Although of dubious theoretical
status, they are a useful engineering tool: the
non-terminals can be labelled in a
domain-specific way that is transparent for the
user, and, being semantically motivated, the
system could appear as if it were doing semantic
diagnosis of a limited type as well as syntactic
diagnosis. For example, instead of being prompted
for an adjective, the user might be prompted for
'a word describing the appearance of a car', or
something equally specific. Furthermore, the
availability of the pre-compilation programs

means that it should be possible to use the
metarule formalism for these grammars also: this
should go some way towards minimising their
linguistic disadvantages, namely, a tendency to
repetition and redundancy in expressing facts
about the languages they generate.

The system is written in Pop-ll (a Lisp-like
language) within the POPLOG programming
environment developed by the University of
Sussex. At UEA POPLOG runs on a VAX 11/780 under
VMS.

REFERENCES

Aho, A. and Ullman, J. (1977) Principles of
Compiler Design,
London, Addison Wesley Publishing Co.

Davey, A. (1978) Discourse Production
Edinburgh University Press

Gazdar, G. (1982) Phrase Structure Grammar
in P. Jacobson and G.K. Pullum (eds) The Nature
of Syntactic Representation, Dordrecht: D.Reidel
Publishing.

Hayes, P.J., and Mouradian, G.V. (1981) Flexible
Parsing
AJCL 7, 232-242

Hendrix, G. (1977) Human Engineering for Applied
NL Processing
IJCAI 5, Cambridge MA.

Isard, S.D. (1974) What would you have done
if...?
Theoretical Linguistics 1, No 3.

Kwasny, S. and Sondheimer, N. (1981) Relaxation
Techniques for Parsing Ill-formed Input
AJCL 7, 99-108

Weischedel, R. et al. (1978) An Artificial
Intelligence Approach to Language Instruction
Artificial Intelligence 10,3

Weischedel R. and Black, J. (1980) Responding
Intelligently to Unparsable Inputs
AJCL 6, 97-109

87

